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Abstract: The increasing development in aerial vehicles shows a wide range of configurations
for different requirements. Many of them combine conventional configurations’ features to take
advantage of their qualities, such as performing a cruise flight as an airplane and hovering like a
helicopter. Thereby, this study analyzes the modeling and control of a pair of fixed-wing airplanes
joined together to form a larger rotor that incorporates valuable features in missions with aerial
vehicles. The model uses the Lagrange approach to obtain the motion equations in the flight plane,
and two control strategies are proposed to regulate the movement in the horizontal plane: a cyclic
proportional derivative control and a positive function. Both controls generate a sinusoidal signal
to regulate the thrust of the motors, and this leads to the generation of pulses that direct and move
the vehicle toward a desired position until it is reached. Our analysis is validated by simulation that
shows how both controls govern the center of mass position of the rotating planes, and it also shows
the airplanes’ trajectory. The results show good performance.

Keywords: fixed-wing airplane; positive function; Unmanned Aerial Vehicle; virtual swashplate

1. Introduction

Unmanned Aerial Vehicles (UAVs) can be classified as fixed-wing and rotary-wing
vehicles, or aircraft (A/C) and helicopters. Aircraft can fly long distances and consume
much less energy than helicopters, but in contrast to aircraft, helicopters can hover. The in-
creasing development in aerial vehicles shows a wide range of configurations for different
requirements. These include vehicles that combine features of conventional configurations
such as convertible aircraft [1,2]. However, the complexity of the mechanical design has
negatively affected the development of convertible aircraft [3,4]. The objective of the proto-
type presented is to obtain a UAV that can fly as efficiently as an aircraft but can hover like
a helicopter [5,6].

Convertible aircraft can facilitate lots of flight operations. The weight of the proto-
type presented in this paper is clearly smaller than that of an equivalent helicopter and
thus leading to larger endurance. Therefore, it can replace a conventional helicopter in
surveillance tasks and have more time to complete its mission successfully. The prototype
is mechanically simpler than a helicopter, and this will save cost maintenance and time.
Thinking of applications, in view of its longer endurance, it may be considered for use as
an emergency radio relay.

This paper presents a set up of two fixed-wing rotary airplanes connected by a rigid
rod. The vehicle configuration can operate efficiently as an aircraft and hover as a helicopter.
In hovering flight, the two attached aircraft rotate in a circle around the center of the rigid
rod attaching them. According to the proposed configuration, the airplanes are assumed
to be the blades of a helicopter. The distance between airplanes depends on the length
of the rigid rod that connects them. Turbulence may interfere with the efficiency of the
aircraft flight when the distance between them is similar to the distance between the blades
of a helicopter. With an adequate rigid rod length, the negative turbulence effects can
be diminished.
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Note also that in a helicopter, the engine is in the fuselage, whereas in the proposed
configuration, the motors are in each airplane. Contrary to the two airplanes’ configuration,
a helicopter requires a swashplate, a gearbox, and a tail rotor that increase its weight [7].

There are various benefits of the proposed configuration compared to a helicopter: It
does not require a tail rotor and its associated gear. A reduction gearbox does not need to
be installed between the engine and the main rotors. There is no need for a mechanical
swash plate. A fuselage is not required. It is mechanically simpler. In view of the reduction
of weight, it should have an increased endurance, larger energy efficiency and less air
turbulence compared to an equivalent helicopter. In addition, as an airplane, it may be
driven by solar energy [8]. We consider that if we sufficiently separate the two rotating
airplanes, they can be driven in the same way.

The modeling and control of the two rotating airplanes which form a larger rotor
result in valuable characteristics in the world of aerial vehicles, which is addressed in [9].
Considering the periodic operation of the set up, positive function as well as cyclic pro-
portional derivative (PD) control approaches have been implemented. These play the role
of the swashplate in helicopters to command the displacement of the prototype in the
horizontal plane.

This paper focuses on the development of the aerodynamical model of the two rotat-
ing airplanes using the Euler–Lagrange approach. Two control designs are proposed to
regulate the horizontal displacement in such a way that a swashplate is virtually created.
The controllers stabilize the planar position at the same time that the angular rotation is
regulated. The performance of the control strategies is presented in numerical simulations.

2. System Description

This section presents a control strategy for an aerial vehicle consisting of two fixed-
wing aircraft in constant rotation. The strategy is based on a conventional PD control that
varies cyclically due to the aircraft dynamics. The cyclic strategy is designed to control the
motion of the set up in two dimensions.

Each aircraft has two control surfaces, an elevator and a rudder. While the elevator
can be used to change altitude, the rudder produces a rotational movement of the aircraft
around the stick joint. This angular displacement is denoted by the angle µ and varies
equally for both airplanes. To further simplify the model, it is considered that a mechanism
at the junction of the wing and the rod modifies this angle. Based on this arrangement,
the joint has a range of motion of −90◦ ≤ µ ≤ 90◦; therefore, the angle between the two
planes is defined as

µa = 180◦ − 2µ, (1)

measured from the thrust vector T1 toward the thrust vector T2 in the clockwise direction.
The distance between the center of mass (CM) of the whole system and the CM of each
airplane is denoted by l. For this case study, the thrust vectors T1 and T2 are considered as
control variables, while µ is considered as a disturbance.

3. Dynamic Model
3.1. Forces and Moments

The thrust forces T1 and T2 are expressed in the body axes as[
fx
fy

]
=

[
T1 cos(µ)
T1 sin(µ)

]
+

[
−T2 cos(µ)
T2 sin(µ)

]
, (2)

and produce a moment represented by

N = lT1 cos(µ) + lT2 cos(µ), (3)

acting about the z-axis of the body.
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3.2. Thrust Force of the Motors

The thrust force of a motor is given by

T = ρn2D4CT , (4)

where ρ is the density of the air, n corresponds to the revolutions per second of the motor,
D is the diameter of the propeller and CT is the thrust coefficient [10]. Then, the thrust
forces are defined as

T1 = ρn2
1D4CT1 , (5)

T2 = ρn2
2D4CT2 , (6)

and the motors are considered to operate under similar conditions, same density and equal
propeller size. If the angular velocity of the motors is different, the thrust coefficients will
also be different.

In practice, it is common to characterize the thrust force in the motors as a function of
the number of revolutions. From [11], we obtain the data for a propeller of 4.5 inches in
diameter; then, the function of the thrust coefficient is obtained as

CT =

{
f (n) for 1500 ≤ n ≤ 10800
0, otherwise

, (7)

where

f (n) = −1.9743× 10−10n2 + 3.8068× 10−6n + 0.1030, (8)

note that the trust coefficient depends on the revolutions per second.

3.3. Translational Dynamic Equations

To develop the motion equations, the aircraft system is considered as point masses;
see Figure 1.

Figure 1. Top view of the system in the inertial plane.
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The vector r goes from the inertial origin to the CM of the system, that is

r = [x y]T , (9)

while the position of each plane with respect to the body frame is expressed as[
x1 y1

]T
=
[
0 l

]T , (10)[
x2 y2

]T
=
[
0 −l

]T , (11)

this can also be expressed with respect to the inertial frame as[
xm1

ym1

]
=

[
x
y

]
+

[
− sin ψ cos ψ
cos ψ sin ψ

][
0
l

]
, (12)

[
xm2

ym2

]
=

[
x
y

]
+

[
− sin ψ cos ψ
cos ψ sin ψ

][
0
−l

]
, (13)

where

Ri
b =

[
− sin ψ cos ψ
cos ψ sin ψ

]
, (14)

is the transformation matrix that leads from the body frame to the inertial frame.
The equations of motion are developed using the Euler–Lagrange approach, i.e.,

d
dt

∂L
∂q̇
− ∂L

∂q
= F, (15)

where the Lagrangian is written as the sum of translational and rotational kinetic energy

L = Ktr +Krot =
1
2

m(ẋ2 + ẏ2) +
1
2

Izzψ̇2, (16)

and the generalized coordinate vector is defined as

q = [x y ψ]T , (17)

where x and y represent the position and ψ represents the spin.
Applying (15), we obtain

ẍ =
1
m

FX , (18)

ÿ =
1
m

FY, (19)

ψ̈ =
1

Izz
N, (20)

where FX and FY are the forces represented in the inertial frame. These forces are obtained as[
FX
FY

]
=

[
− sin ψ cos ψ
cos ψ sin ψ

][
fx
fy

]
=

[
− fx sin ψ + fy cos ψ

fx cos ψ + fy sin ψ

]
, (21)

when applying the transformation matrix. The inertia product Izz is obtained as

Izz =
i=2

∑
i=1

mir2
i = m1l2 + m2l2 = (m1 + m2)l2 = ml2, (22)

where the mass of each plane is considered to be equal and m is their sum.



Drones 2022, 6, 214 5 of 18

Then, the equations of motion are written as

ẍ =
1
m
(− fx sin ψ + fy cos ψ), (23)

ÿ =
1
m
( fx cos ψ + fy sin ψ), (24)

ψ̈ =
1

Izz
(lT1 cos(µ) + lT2 cos(µ)), (25)

4. Control Strategy

The system consists of two fixed-wing aircraft that are connected by a rigid rod, as
shown in Figure 2. The arrangement of airplanes causes a circular motion. This configura-
tion forms a larger vehicle that resembles a single rotor, and its CM is assumed to be at the
center of the two-aircraft system.

Figure 2. Rotating motion of the two airplanes.

4.1. Cyclic PD Control

The angular velocity control varies the thrust force of the motors simultaneously so
that the control signal for each motor is

τψ = kψ(ψ̇d − ψ̇) = kψ ėψ, (26)

where kψ is a positive constant and ψ̇d is the desired angular velocity.
The position control uses the aircraft engines to generate a varying thrust force; for this

purpose, a cyclically varying proportional derivative control is chosen. The control signal
in each motor for the displacement in the x-axis is set to

u1x = +k1ex sin(ψ) + kd1 ėx sin(ψ) = (k1ex + kd1 ėx) sin(ψ), (27)

u2x = −k1ex sin(ψ)− kd1 ėx sin(ψ) = (−k1ex − kd1 ėx) sin(ψ), (28)

and the signal for the displacement on the y-axis is

u1y = −k2ey cos(ψ)− kd2 ėy cos(ψ) = (−k2ey − kd2 ėy) cos(ψ), (29)

u2y = +k2ey cos(ψ) + kd2 ėy cos(ψ) = (k2ey + kd2 ėy) cos(ψ), (30)

where k1 and k2 are positive constants, while ex and ey are the positional errors defined as

ex = xd − x, (31)
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ey = yd − y, (32)

where xd and yd are the coordinates of the desired position.
The system (27) and (28) control the displacement in the x-axis, which allows the

magnitude of the proportional derivative control to be modulated. Due to the geometrical
arrangement of the system, when the angle ψ is zero degrees, the thrust vector in the motors
are aligned with the inertial y-axis, so in this configuration, no thrust is generated by the
controller, but as the angle ψ increases, so does the value of the PD control. The ψ value
increases so that when the value reaches 90◦, the controller registers a maximum pulse;
at this instant, the thrust vector is aligned with the inertial x-axis. After the maximum
pulse is presented, the magnitude of the controller starts to decrease as ψ approaches 180◦;
when it reaches 180◦, the thrust vector is again parallel to the y-axis where the value of
the controller becomes zero. This behavior continues as the airplanes turn, so that when
270◦ is reached, the magnitude of the control has another maximum and subsequently
becomes zero when the angle reaches 360◦; thus, the dynamics is repeated with each turn
the airplanes complete. This dynamics is achieved by multiplying the value of the PD
control by a sinusoidal function that has ψ as argument; hence, it has been named as cyclic
control or cyclic PD.

Similar behavior is obtained for Equations (29) and (30), which control the displace-
ment in the y-axis. In this case, a cosine function with argument ψ is used, which multiplies
the PD control.

Considering the above equations, we obtain the control signal for each actuator as

T1 = τψ + u1x + u1y , (33)

T2 = τψ + u2y + u2y , (34)

or equivalently[
T1
T2

]
=

[
kψ ėψ

kψ ėψ

]
+

[
k1 kd1
−k1 −kd1

][
ex
ėx

]
sin ψ +

[
−k2 −kd2
k2 kd2

][
ey
ėy

]
cos ψ, (35)

where these signals indicate the revolutions on each motor to obtain the thrust force
required to bring the system to the desired position.

4.2. Positive Function

This section presents a control strategy based on a positive function to regulate the
displacement of the planes in the x–y plane. Equations of force in the body (2) are taken
into account, and it is considered that µ = 0, resulting in

fx = T1 − T2, (36)

fy = 0. (37)

Therefore, (21) for inertial force simplifies to[
FX
FY

]
=

[
− fx sin ψ
fx cos ψ

]
, (38)

hence, the system (23)–(25) reduces to

ẍ = − 1
m
( fx sin ψ), (39)

ÿ =
1
m
( fx cos ψ), (40)

ψ̈ =
1

Izz
(lT1 + lT2), (41)
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Then, the position control is set as

T1 =
1
2

mIzz

Izz −mαψl
F(p), (42)

T2 =
1
2

mIzz

−Izz −mαψl
F(p), (43)

where

F(p) = −κ

2
W − ψ̇ cos(ψ)rx + ψ̇ sin(ψ)ry − sin(ψ)αx ėx − cos(ψ)αy ėy, (44)

W = sin(ψ)rx + cos(ψ)ry + rψ, (45)

were obtained using a positive function approach; see Appendix A.

5. Numerical Simulation Results
5.1. Simulation Results Using the Cyclic PD

Simulation results of implementing the control strategies developed in the previous
sections are presented below. The physical–geometric parameters of the system are listed
in Table 1. These parameters correspond to a real vehicle, the air density at an altitude of
2240 m (Mexico city altitude) was set according to the ISA model.

Table 1. Physical parameters.

Parameter Value

m 1 kg
l 1 m

Izz 1 kg ·m2

ρ 0.982428 kg/m3

D 0.1016 m

The values of the parameters and initial conditions employed in the simulations are
presented in Tables 2 and 3.

Table 2. Simulation parameters.

Parameter Value

xd 0.5 m
yd −0.5 m

x(0) 0 m
y(0) 0 m
ψ(0) 0 rad
ẋ(0) 0 m/s
ẏ(0) 0 m/s
ψ̇(0) 0 rad/s

µ 0◦–15◦, 15◦–0◦

Table 3. Control parameters.

Parameter Value

kψ 3200
k1 2300
kd1 1100
k2 1500
kd2 1100
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Figure 3 shows the trajectory of each airplane. Since they start from the initial condition
until they reach the desired point, the airplanes move describing a circumference that moves
along the x–y plane. The trajectory of the center of gravity (CG) of the rotating system is
shown in Figure 4; this trajectory shows an oscillating behavior when approximating the
desired position, which is due to the nature of the vehicle. Figure 5 shows the norm of
x–y position states; this norm tends to zero, which is evidence that the desired position is
reached in a given time.

Figure 6 shows the evolution of the yaw angle of the planes as a function of time
from the starting point (initial conditions of the simulation) up to the final or desired point.
Finally, Figure 7 shows the forces acting on each motor; it can be appreciated that there
exists a sinusoidal effect due to the sinusoidal control employed. From the figures, it can
be noticed that the position control starts to act until the angular velocity is close to its
desired value.

The variable µ is used as a static parameter and not as a control input, so this parameter
is set manually, as shown in Figure 8. The value of µ changes with time from zero degrees
up to fifteen degrees, stays at fifteen degrees for a while and then drops back down to zero
degrees. The variation of this parameter causes the system to deviate considerably from its
desired value; subsequently, the control counteracts the deviation until the position error
decreases to zero, as shown in Figure 9. These error signals make also evident a sinusoidal
behavior due to the applied control.

−1 −0.5 0 0.5 1 1.5
x-Position (m)

−1.5

−1

−0.5

0

0.5

1

y-
Po

si
tio

n 
(m

)

UAV Trayectory History

A/C-1 Trajectory
A/C 1
CG
A/C-2 Trajectory
A/C 2

Figure 3. System trajectory.
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5.2. Simulation Results Using the Positive Function

The physical–geometric parameters of the system considered for this analysis are
listed in Tables 4–6.

Table 4. Physical parameters.

Parameter Value

m 1 kg
l 1 m

Izz 1 kg ·m2

Table 5. Values of the simulation parameters.

Parameter Value

xd 0 m
yd 0 m
ψ̇d 6.5 rad/s

x(0) 0.5 m
y(0) 0.5 m
ψ(0) 0 rad
ẋ(0) 0 m/s
ẏ(0) 0 m/s
ψ̇(0) 0 rad/s

Table 6. Values of the control parameters.

Parameter Value

αx 0.5
αy 0.5
αψ 1.7
κ 2.0

The following figures show the behavior of the system when the positive function is
applied. Figure 10 shows the trajectory of the UAV in the x–y plane where its CG is repre-
sented by a cross (X). The trajectories of the planes are represented by dotted lines. The blue
and red dotted lines correspond to the A/C 1 and A/C 2 planes, respectively. As expected,
the trajectories are circular from the initial to the final desired position. Figure 11 corre-
sponds to the same motion of the vehicle; the figure registers the trajectory of the CG of the
vehicle. Figure 12 shows the norm of x–y position states, the decreasing behavior points to
the conclusion that in finite time, the vehicle approaches the desired position. Figure 13
shows the evolution of the yaw angle rate of the system with respect to time; it can be
observed how the control regulates the angular velocity until the reference value is reached.
The actuating forces of each motor are shown in Figure 14; these control signals allow
the vehicle to regulate its position and its angular speed. Finally, the convergence of the
position error is shown in Figure 15, where an oscillating and decreasing behavior of it can
be observed leading to the conclusion that it vanishes.
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Comparison of the Two Controllers

Figure 16 shows the comparison of the norm of the position states for both controls,
positive function and cyclic PD. Both controllers have a similar response, this is due to
the sinusoidal nature of the controls that lead to an oscillating behavior observed in the
dynamic position of the vehicle. The controls successfully placed the vehicle in the desired
position; this can be verified watching the decreasing behavior of the norm.
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m
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Figure 16. Comparison of the norm of the two controls.

6. Conclusions

This paper has presented two control techniques to control the horizontal displacement
of a set of two attached rotating airplanes. One of them uses a PD control that varies
cyclically, and the other one uses a positive function approach. The rotating aircraft were
modeled using the Euler–Lagrange approach, and numerical simulations showed the
effectiveness of control techniques. Even though the rudder and elevator of each airplane
are installed, only the thrust force was used for control.

In order to achieve horizontal movements of the prototype, we created a virtual
swashplate to emulate this mechanism in helicopters. The virtual swashplate was created
by introducing a sinusoidal control on the airplanes’ motors. The thrust amplitude was
proportional to the sinusoidal amplitude, and the direction was determined by the phase
of the introduced sinusoidal signal.
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Nonlinear control algorithms enabled the rotating airplanes to reach a particular
position in space. The performance of the control strategies was compared and successfully
tested in numerical simulations.

Future research will include the vertical take off and landing stages of the vehicle.
The transition from the vertical take off to the cruise flight and vice versa from the cruise
flight to the vertical landing stage will also be considered. Another future topic of research
will include an experimental study of the control behavior of Euler angles when the
proposed strategy is the usage of the elevators of the planes as actuators. The control of the
horizontal displacement will also be studied considering a power difference of the motors
of the planes or a difference in the position of the rudders.
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Appendix A. Deduction of Control Using a Positive Function

Let be the system defined by the Equations (39)–(41). The state vector and state
variables are defined as

p =
[
p1 p2 p3 p4 p5 p6

]T
=
[
x ẋ y ẏ ψ ψ̇

]T , (A1)

differentiating the state variables, the following is obtained

ṗ1 = p2, (A2)

ṗ2 = − 1
m

fx sin(ψ), (A3)

ṗ3 = p4, (A4)

ṗ4 =
1
m

fx cos(ψ), (A5)

ṗ5 = p6, (A6)

ṗ6 =
1

Izz
(lT1 + lT2), (A7)
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The desired state vector is defined as

pd =
[
xd ∗ yd ∗ ∗ ψ̇d

]T , (A8)

where * indicates that no value is set for that state. The following functions and error
functions are defined

rx = ėx + αxex = (ẋd − ẋ) + αx(xd − x), (A9)

ry = ėy + αyey = (ẏd − ẏ) + αy(yd − y), (A10)

rψ = αψ ėψ = αψ(ψ̇d − ψ̇), (A11)

ex = xd − x, (A12)

ey = yd − y, (A13)

ėψ = ψ̇d − ψ̇, (A14)

where αx, αy and αψ are positive constants.
Set the positive function as

V(p) =
1
2

W2, (A15)

where

W = sin(ψ)rx + cos(ψ)ry + rψ, (A16)

then, Equation (A15) can be rewritten in vector form as

V(p) =
1
2

[sin(ψ) cos(ψ) 1
]
.

rx
ry
rψ

2

=
1
2
(v1v2)

2 ≥ 0, (A17)

where the vector v1 is a function of ψ which varies much faster than the vector v2, i.e., the
variable ψ performs complete cycles from 0 to 360 degrees in a given amount of time while
the functions rx, ry and rψ associated with the states x, y and ψ̇ vary slowly as if they
remained constant. This behavior is due to the way the vehicle moves, the CG moves
slower compared to the rotation of the system (see Section 5). Therefore it is possible to
choose values of ψ in a given cycle such that:

V1(p)
∣∣∣
ψ=0

=
1
2

[0 1 1
]
.

rx
ry
rψ

2

, (A18)

V4(p)
∣∣∣
ψ=1/2π

=
1
2

[1 0 1
]
.

rx
ry
rψ

2

, (A19)

V6(p)
∣∣∣
ψ=π

=
1
2

[0 −1 1
]
.

rx
ry
rψ

2

, (A20)

Since V(p) in (A17) converges to zero and using the above it follows:0 1 1
1 0 1
0 −1 1

.

rx
ry
rψ

 = 0 = C1r1, (A21)
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where the matrix C1 is regular with eigenvalues {1 + i, 1− i,−1} therefore the vector v1
will converge to zero.

Differentiating (A15) respect to time the following is obtained

V̇(p) = W(sin(ψ)ṙx + ψ̇ cos(ψ)rx + cos(ψ)ṙy − ψ̇ sin(ψ)ry + ṙψ), (A22)

in order to achieve global exponential stability, it is required that (A23) is satisfied for κ > 0
see [12]

V̇(p) = −κV, (A23)

Therefore, the term in the parentheses furthest to the right of (A22) must satisfy
the following

(sin(ψ)ṙx + ψ̇ cos(ψ)rx + cos(ψ)ṙy − ψ̇ sin(ψ)ry + ṙψ) = −
κ

2
W, (A24)

grouping ṙx, ṙy and ṙψ and substituting their values the following is obtained

sin(ψ)ṙx + cos(ψ)ṙy + ṙψ = −κ

2
W − ψ̇ cos(ψ)rx + ψ̇ sin(ψ)ry, (A25)

sin(ψ)(ëx + αx ėx) + cos(ψ)(ëy + αy ėy) + αψ ėψ = −κ

2
W − ψ̇ cos(ψ)rx + ψ̇ sin(ψ)ry, (A26)

sin(ψ)ëx + cos(ψ)ëy + αψ ėψ =

−κ

2
W − ψ̇ cos(ψ)rx + ψ̇ sin(ψ)ry − sin(ψ)αx ėx − cos(ψ)αy ėy, (A27)

also if xd, yd and ψ̇d are constant values, ëx, ëy and ëψ are simplified, then (A27) becomes

sin(ψ)(−ẍ) + cos(ψ)(−ÿ) + αψ(−ψ̈) =

−κ

2
W − ψ̇ cos(ψ)rx + ψ̇ sin(ψ)ry − sin(ψ)αx ėx − cos(ψ)αy ėy, (A28)

sin(ψ)(
1
m

fx sin(ψ)) + cos(ψ)(
1
m

fx cos(ψ)) + αψ(−
l

Izz
(T1 + T2)) =

−κ

2
W − ψ̇ cos(ψ)rx + ψ̇ sin(ψ)ry − sin(ψ)αx ėx − cos(ψ)αy ėy, (A29)

1
m

fx(sin2(ψ) + cos2(ψ))−
αψl
Izz

(T1 + T2) =

−κ

2
W − ψ̇ cos(ψ)rx + ψ̇ sin(ψ)ry − sin(ψ)αx ėx − cos(ψ)αy ėy, (A30)

1
m
(T1 − T2)−

αψl
Izz

(T1 + T2) =

−κ

2
W − ψ̇ cos(ψ)rx + ψ̇ sin(ψ)ry − sin(ψ)αx ėx − cos(ψ)αy ėy, (A31)

grouping T1 and T2 the following is obtained

1
m

T1 −
αψl
Izz

T1 −
1
m

T2 −
αψl
Izz

T2 =

−κ

2
W − ψ̇ cos(ψ)rx + ψ̇ sin(ψ)ry − sin(ψ)αx ėx − cos(ψ)αy ėy, (A32)
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Izz −mαψl
mIzz

T1 +
−Izz −mαψl

mIzz
T2 =

−κ

2
W − ψ̇ cos(ψ)rx + ψ̇ sin(ψ)ry − sin(ψ)αx ėx − cos(ψ)αy ėy, (A33)

Izz −mαψl
mIzz

T1 +
−Izz −mαψl

mIzz
T2 = F(p), (A34)

where

F(p) = −κ

2
W − ψ̇ cos(ψ)rx + ψ̇ sin(ψ)ry − sin(ψ)αx ėx − cos(ψ)αy ėy, (A35)

From (A34) it can be seen that it is convenient to select

T1 =
1
2

mIzz

Izz −mαψl
F(p), (A36)

T2 =
1
2

mIzz

−Izz −mαψl
F(p), (A37)

as the controls that can be adjusted using the parameters αx, αy, αψ and κ. With this selection
it is satisfied that V̇(p) in (A23) is negative definite as required for stability.
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