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ABSTRACT

Steelpans are musical percussions made from steel bar-
rels. During the manufacturing, the metal is stretched and
bended, to produce a set of thin shells that are the differ-
ents notes of the instrument. In normal playing, each note
is struck, and the sound reveals some nonlinear character-
istics which give its peculiar tone to the instrument. In
this paper, an experimental approach is first presented in
order to show the complex dynamics existing in steelpan’s
vibrations. Then two models, based on typical modal inter-
actions, are proposed to quantify these nonlinearities. Fi-
nally, one of them is observed in free oscillations simula-
tions, in order to compare the internal resonance model to
the steelpan vibrations behaviour in normal playing. The
aim is to identify the important modes participating in the
vibrations in view of building reduced-order models for
modal sound synthesis.

1. INTRODUTION

Steelpans belong to a musical instruments family coming
from the island of Trinidad and Tobago. They are usu-
ally played in steelbands (see Fig. 1(a)), that are orchestras
composed of steelpans covering a range of several octaves.

A steelpan is a tuned percussion, built from cylindrical
steel barrels subjected to several stages of metal forming
that stretch and bend the structure. The top of the barrel is
pressed, hammered, punched and burnt in order to obtain a
sort of main thin bowl within which convex substructures
are formed. Each convex dome corresponds to a musical
note, which natural frequency is precisely tuned according
to harmonic relationships ( f , 2f , 3 (or 4) f , ...). Usually,
this instrument is played by striking each note with a stick
covered by a piece of rubber, as shown on the Fig. 1(b).
When a note is stroke with a stick, vibration amplitudes
are such that geometric nonlinearities cannot be neglected,
and are recognized as a key feature for explaining the pe-
culiar tone of the steelpan [1]. This nonlinearity combined
with harmonic relationships, due to steelpan tuning, can
activate internal resonances creating strong energy trans-
fers between eigenmodes.
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Figure 1. Pictures of steelpans : (a) Steelpans of a typical
steelband. (b) Steelpan in normal playing.

Vibrations modelling have been proposed in a series of
papers by Achong et al. [2]. In these works, the steelpan
is considered as a nonlinear system of oscillators, and en-
ergy transfers between normal modes of vibration are high-
lighted. Rossing et al. [3, 4] have performed modal anal-
yses by holographic techniques to observe modal interac-
tions between harmonically tuned notes. More recently,
numerical modal analyses with the finite element meth-
ods have been proposed [5]. The steelpans sound radiation
has been recently addressed experimentally by Copeland et
al. [6]. Finally, some metallurgical issues during the steel-
pan making have been considered in [7].

In this contribution, we propose a refined analysis of modal
couplings and energy exchanges occurring in nonlinear vi-
brations of steelpan. A modal analysis first reveals the ap-
pearance of pairs of modes from the second harmonic, for
each note of the pan. These pairs of modes, having nearly
equal eigenfrequencies, are interpreted as a consequence
of the localization of the vibration into the notes area.
Secondly, experiments in forced vibrations allow to reveal
the complex nature of the energy exchanges between the
modes, that are excited for very small levels of vibration
amplitudes. Simple original models including a 1:2:2 and a
1:2:4 resonance are then fitted to the experiments, showing
that: (i) mode pairing substantially complexifies the dy-
namical behaviours and favours the appearance of unstable
regimes, (ii) few details of the resonance curves are missed
by those 3-dofs models, indicating that even at very small
amplitudes of vibrations, a complex dynamics involving
more than 3 modes is at hand.
Those findings are used to derive oscillator models for sound
synthesis. The first results with three dofs show that the
main features (energy transfers and enveloppe modulation)
are recovered.
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2. STEELPAN TUNING AND LINEAR ANALYSIS

In steelpan making, a fine tuning of the notes already formed
is performed at the end of the building process. Most of the
time, the steelpan maker tunes the first three harmonics of
each note [8]. He begins with the fundamental frequency
(the pitch) by modelling the center of the note. Then, he fo-
cuses on the overtones. He adjusts the frequency of two up-
per harmonics (partials) by modelling the periphery of the
note area, as it is shown of Fig. 2(a). This procedure can
be easily understood by considering that each harmonic of
a given note is associated to a particular vibration mode
shape, as it will be explained in the following.

Modal analysis is usually used to characterize the linear
behaviour of a structure by identifying eigenfrequencies,
mode shapes and modal damping coefficients. A home-
made non-contact coil/magnet exciter is used to excite the
steelpan at a given point. The equivalent point force is es-
timated by recording the current intensity in the coil [9].
The steelpan vibratory response, in velocity, is measured
with a laser vibrometer.

The steelpan, shown on the figure 2(b), is a right bar-
rel of a double second (middle-high frequency steelpan).
It is composed of 19 precisely tuned notes, distributed on
three concentric circles, the lower notes being on the outer
circle. Previous studies have shown that the vibration re-
mains confined around the solicitation area [3]. Hence, the
scan is more particularly focused on G3 (of fundamental
frequency f1 ) and its harmonically tuned neighbours G4
(2f1) and G5 (4f1).

(a)

"timbre"

octave

fundamental (b)

Figure 2. (a) Steelpan tuning. (b) Modal analysis of the
steelpan used for the experiment (right barrel of a double
second) excited on G3.

Fig. 3 shows the transfer function, measured on the exci-
tation point, in the frequency range [0, 1700] Hz, and the
associated mode shapes of the structure. One can see that
the first three modes are perfectly tuned like f1, 2f1 and
4f1, while the fourth and the fifth departs a little from the
perfect harmonic relationship, and are slighlty shifted from
the exact 6f1 and 8f1 relation.
More precisely, around f1, the modal shape of the structure
is focused on the excited note only. Around 2f1, a double
peak is clearly visible indicating that the mode is degen-
erate with two mode shapes around the same frequency.
The first one has for eigenfrequency f2 = 390 Hz and is
composed of the second vibration pattern of the G3 note
together with the fundamental vibration mode of the G4

note. The second one has its eigenfrequency at f3 = 397.8
Hz and its mode shape is similar except the fact that the
pattern on the G4 note is out of phase. Finally the mea-
surement reveals also that at 4f1, two degenerate modes
are also at hand, with eigenfrequencies f4 = 789.5 Hz and
f5 = 799.3 Hz, and companion mode shapes.
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Figure 3. Modal analysis of the steelpan excited on the
note G3. FRF measurement and associated mode shapes.

This modal analysis reveals that in steelpan vibrations,
modes appear by parts from the second partial. This is a
consequence of the fact that vibrations are strongly local-
ized into notes areas, and is a classical feature in mode
localization that has been observed for instance in simple
beam systems [10].

Forced vibrations at higher force amplitudes will now be
detailed to depict how energy is transferred between these
modes.

3. FORCED OSCILLATIONS

The previous linear analysis shows that the first frequen-
cies of the steelpan note are organized as a 1:2:2:4:4 se-
quency. In a nonlinear regime, and in the case of thin
curved structures, harmonic relationships create strong modal
interactions via internal resonances [11]. In order to in-
vestigate the nonlinear behaviour of the steelpan, the same
home-made coil/magnet exciter is used, but higher force
amplitudes are applied. The coil/magnet exciter has been
thoroughly analyzed for calibration in [12], where it has
been shown that for the vibration amplitudes encountered,
harmonic distortion is less than 1%, ensuring a clean and
reproducible harmonic excitation. An external sinusoidal
current is applied with an external excitation frequency
around the first eigenfrequency (fdr ' f1). The vibratory
response of one point of the excited note is measured. The
first three harmonics (at f1, 2f1 and 4f1) of the response



are precisely measured. Then, two analytical models of
internal resonance relationships are proposed to fit the ex-
periment and identify some modal interactions in steelpans
vibrations. More details can be found in [13, 14].

3.1 Experiments

In Fig. 4 the nonlinear response of the steelpan excited
around 197.5 Hz with I = 5A is shown. The harmon-
ics 1, 2 and 4 of the recorded displacement are shown,
they are denoted respectively by wH1, wH2 and wH4. A
strong coupling between these harmonics, oscillating at f1,
f2 ' 2f1 and f3 ' 4f1, is revealed. Markers are inserted
into the figures to precisely locate, in frequency, the differ-
ent eigenfrequencies of the system.
First, a 1:2:2 internal resonance is observed through the
complex behaviour of the measured amplitude at twice the
excitation frequency. The energy transfered gives a large
amplitude of vibration to the second (390 Hz) and the third
eigenmode (789.5 Hz). Secondly, coupling with the fourth
harmonic is also observed where wH4 seems to be slaved
to wH2 due to the similar global shapes of the two corre-
sponding amplitudes. One can assume that a 1:2:2:4 reso-
nance is here activated.
A strong peak of amplitude exists around fdr ' 192 Hz.
At this frequency, the first mode, directly excited, reaches
0.06mm, the second harmonic 0.08mm and the fourth one
0.003mm. Considering the thickness of a typical steelpan
initial barrel around 1 mm, one can conclude that geomet-
ric nonlinear effects are exhibited for vibration amplitudes
of 1/16 times the thickness.
Then, a quasiperiodic regim, around 193 Hz, reveals a com-
plex dynamics of the system. This implies that there is a
difference between the forward and the backward excita-
tion. A jump phenomenom is observed at 192.6 Hz.
Compared to the theory [14, 15], the shapes of the solu-
tions are slightly different than a 1:2 or a 1:2:2 internal
resonance, probably because the cubic nonlinearity is not
anymore negligible. An other remark on the effects of cu-
bic nonlinearities can be the shift of the curves to the left
part of the graph, compared to the linear initial frequen-
cies. The maximum of each harmonic response is observed
around fdr ' 192 Hz.

3.2 3-dofs internal resonance models fitting

The complicated dynamics exhibited by the forced vibra-
tions is now modeled by two simple systems involving
three internally resonant modes, so as to highlight the most
salient features of the dynamics of the steelpan. The two
models involve either a 1:2:2, or a 1:2:4 eigenfrequency
relationship. For these 3-dofs models, analytical solutions
are accessible via multiple scales analysis [14]. Model fit-
ting to experimental measurements will thus shed new light
on the identification of nonlinear coupling coefficients as
well as energy transfers.

Considering the steelpan as a curved thin structure, the
transverse displacement w can be discretised by expanding
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Figure 4. Frequency response curves I = 5A, excitation
frequency fdr in the vicinity of the first mode. Perlines:
harmonics 1, 2 and 4 of the measured displacementw. For-
ward (black line: .) and backward (grey line: /) frequency
sweeps. Linear eigenfrequency markers f1 (– –) ; 2f1 (–
· –) and 4f1 (· · · ).

w on the linear modes basis {Φk} as

w(x, t) =

N∑
k=1

Φ(x)qk(t), (1)

where qk is the modal coordinate and Φk is the mode shape
amplitude value at the spatial point x.

Now two 3-dofs simple models are proposed, considering
the most important coupling found in the modal analysis,
and thus displaying respectively a 1:2:2 and the 1:2:4 in-
ternal resonance. The 1:2:2 internal resonance considers
three modes which eigenfrequencies are tuned such that
ω3 ' ω2 ' 2ω1. The associated normal form of the am-
plitude of the three corresponding modes reads :
q̈1 + ω2

1q1 = ε [−2µ1q̇1 − α1q1q2 − α2q1q3 + F1 cos Ωt] ,

q̈2 + ω2
2q2 = ε

[
−2µ2q̇2 − α3q

2
1

]
,

q̈3 + ω2
3q2 = ε

[
−2µ3q̇3 − α4q

2
1

]
,

(2)
where ωk = 2πfk denotes the angular frequency of the
mode k and µk its damping coefficient. Ω = 2πfdr is
the external frequency and F1 the amplitude of the exter-
nal force. In first approximation, only quadratic nonlinear
coupling terms αi are kept. Only four of them are present.
They correspond to the resonant terms. All other possi-
ble nonlinear quadratic terms have no importance for the
global dynamics and can be cancelled. Nonlinear coeffi-
cients, damping terms and external forcing are assumed to



be small as compared to the linear oscillatory part, and thus
are scaled by ε � 1. According to the multiple scales de-
velopment, the solutions of the dynamical system Eqs. (2)
are obtained as:

q1 = a1 cos (Ωt+ ϕ1) ,

q2 = a2 cos (2Ωt+ ϕ2) ,

q3 = a3 cos (2Ωt+ ϕ3) ,

(3)

where ak and ϕk are amplitudes and phases of the solu-
tion qk, respectively. In term of transverse displacement,
the equation (1) leads to w(x, t) = w1 cos(Ωt + ϕ1) +
w2 cos(2Ωt + γ2), where w1 = Φ1a1 and where w2 and
γ2 are combinations of Φ2, Φ3, a2, a3, ϕ2 and ϕ3.

The 1:2:4 internal resonance, is a 3-dofs nonlinear dy-
namical system constructed with the following eigenfre-
quency relationship: ω3 ' 2ω2 ' 4ω1. It reads:

q̈1 + ω2
1q1 = ε [−2µ1q̇1 − α5q1q2 + F1 cos Ωt] ,

q̈2 + ω2
2q2 = ε

[
−2µ2q̇2 − α6q

2
1 − α7q2q3

]
,

q̈3 + ω2
3q3 = ε

[
−2µ3q̇3 − α8q

2
2

]
,

(4)
where α5,6,7,8 are the four new nonlinear coupling coef-
ficients associated to the 1:2:4 internal resonance system.
Solutions of Eqs. (4) are:

q1 = a1 cos (Ωt+ ϕ1) ,

q2 = a2 cos (2Ωt+ ϕ2) ,

q3 = a3 cos (4Ωt+ ϕ3) .

(5)

In that case, two upper-harmonics, oscillating at 2Ω and
4Ω, simultaneously appear. The transverse displacement
is w(x, t) = w1 cos(Ωt + ϕ1) + w2 cos(2Ωt + φ2) +
w3 cos(4Ωt + φ3), where w1 = Φ1a1, w2 = Φ2a2 and
w3 = Φ3a3.

Fig. 5 presents the 1:2:2 model fitting (in red color), first
compared to the experiment, then compared to a 1:2:4 in-
ternal resonance model fitting. Experimental fitting, pre-
sented in Fig. 5, determines the value of each nonlinear co-
efficient while the linear parameters (ωk, µk) are identifyed
by modal analysis. The amplitude of the external current
is I = 2A. The two 3-dofs models allow to locally identify
some modal interactions in steelpan vibrations. Each of
them locally fits parts of the experimental curves. Markers
of linear frequencies indicate the mode activated by nonlin-
ear coupling. This fitting shows that simple models can be
used to enhance the comprehension of the complicated dy-
namics experimentally observed. More complicated sce-
narii invoking also the presence of the modes at 6f1 and
8f1 may also be activated in certain vibratory regimes.

The steelpan is harmonically tuned (both between notes
and between harmonics in a note). Therefore, the thinness
of the curved structure and the amplitude of sollicitation
of the note lead to nonlinear behaviour with modal inter-
actions and energy transfers, consequently. Internal reso-
nance models displaying a 1:2:2 and a 1:2:4 frequency re-
lationships allow to recover the main features of the FRFs,
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Figure 5. Frequency response curves and experimental
fitting (I = 2A) (black line). Nonlinear coupling coef-
ficients identified: 1:2:2 internal resonance model (blue
line) - α1 = 0.42, α2 = 0.46, α3 = 0.46, α4 = 0.39
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while non-modelled effect appears to be easily interpreted.
The most complete model for that case should be a 1:2:2:4:4
one, unfortunately analytical solutions for that problem are
not tractable.

4. NONLINEAR MODEL FOR SOUND
SYNTHESIS

4.1 Free oscillations measurement

In Fig. 6, two time-frequency representations of free os-
cillations of the G3 note in normal playing are shown. A
weak stroke (see Fig. 6(a)) reveals that most of energy is
stored within the first two harmonics. Comparatively, a
strong stroke (see Fig. 6(b)) has much more energy on the
higher frequencies. It can be noticed that, on these two
spectrograms, there is no energy at F = 3f1. For the
low frequency range, only the tuned harmonics are excited
when the steelpan is played.

Fig. 7 represents the measurements of the Fig. 6 filtered
on the harmonics 1, 2 and 4 (denoted H1, H2, H4), show-
ing the evolution with the time of the amplitude of each
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Figure 6. Experimental spectrograms of two free oscil-
lation measurement with two stick-impact intensities. (a)
Weak stroke. (b) Strong stroke.

harmonic. First, on the Fig. 7(a), it can be observed that
the second harmonic reaches its maximum later than the
first one does. Then, the amplitude of the maximum is
a little bit higher than the first one. The fourth harmonic
presents a very small amplitude. For a strong stroke (see
Fig. 7(b)), the amplitude of the second harmonic is much
larger than the first one. It can be deduced that energy is
transfered from the first mode to the second one, and the
intensity of the transfer depends on the intensity of the ex-
citation. The fourth one has much more energy than in the
first case. Its amplitude is very close to the first harmonic.
Thus, it is shown that initial conditions are very important
in the steelpan response.

4.2 Free oscillations simulation

The 1:2:4 adjusted model is now analyzed in free oscilla-
tions behaviour. The ordinary differential equation solver
(ODE45) of Matlab is used. The linear parameters and the
nonlinear coupling coefficients values are deduced from
the experimental fitting in forced oscillations (see Fig. 5).
An initial condition in displacement is given so as to mimic
a delta dirac temporal excitation.

Fig. 8 shows the result of two simulations. The first one
(Fig. 8(a)) is for a weak initial condition (w0 = 0.15 mm)
and the second one (Fig. 8(b)) is for a larger one (w0 =
0.65 mm). The acceleration of the three transverse dis-
placements (w1, w2 and w3) are represented versus time.
Compared to the filtered measurement (Fig. 7), the global
time evolution of a steelpan sound is recovered for the
two initial conditions. The right amplitude ratios between
modes are observed. Also, one can remark that the period
of the oscillations is qualitatively the same in the experi-
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Figure 7. Same measurements than Fig. 6, filtered on har-
monics 1, 2 and 4. Evolution of each harmonics with time.

ments and the simulations.
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Figure 8. 1:2:4 internal resonance model in free oscilla-
tions simulation. Initial conditions in displacement: (a)
w0 = 0.15 mm, (b) w0 = 0.65 mm.

These time simulations confirm that with regard to the
global dynamics carried by the envelope modulation of the
main harmonics, the 3-dofs model allows to recover the
most salient nonlinear features, and are thus identified as a
key component in steelpans’s sound and vibrations.



5. CONCLUSION

Nonlinear vibrations of a steelpan presenting a 1:2:4 modal
tuning (f , 2f , 4f ) have been investigated thanks to a re-
fined modal analysis, measurements of frequency-response
curves in forced oscillations and time domain simulations
in free, impacted vibrations, using 3-dofs models identified
from the forced response.

The main outcomes of the present study are the following

• The modal analysis has clearly evidenced the fact
that modes appear by pairs from the second harmonic
of each note, a feature that is only scarcely men-
tioned in the literature. This pairing is interpreted
as a consequence of the strong localization of the vi-
brations into the notes area. Indeed, simpler systems
consisting of beams with stiffness imperfections re-
veals the same degeneracy which is thus generic for
structural systems having at least two minima of stiff-
ness [10].

• A consequence of this mode pairing is that the dy-
namical equations are complexified. Analytically,
one can also show that the appearance of 1:2:2 (in-
stead of simpler 1:2) or e.g. 1:2:2:4:4 (instead of
simpler 1:2:4) internal resonances in a nonlinear sys-
tems favour instabilities [14].

• The forced response analysis reveals the complex
dynamics of steelpans with appearance of energy ex-
change and quasiperiodic regimes for very small am-
plitudes of vibration.

• 3-dofs models that are analytically solvable have been
fitted to measured resonance curves, showing that
the main features are recovered by considering 1:2:2
and 1:2:4 resonances. However small details in the
resonance curves are not fitted, advocating for the
fact that the precise dynamics is more complex with
energy exchange between pairs of modes and thus
solutions comprising e.g. 1:2:2:4:4 resonances and
even for some amplitudes 1:2:2:4:4:6 and 1:2:2:4:4:8.

• The temporal simulations allow recovering the main
features of the energy exchange, once again confirm-
ing that the most important part of the dynamics is
carried by the identified resonances. However, small
details are still missing to the ear for a sound synthe-
sis approach, stating clearly that the higher modes
(at 6f and 8f) have to be included in a simple modal
model for sound synthesis.

At the conference, sound synthesis will be presented in or-
der to more precisely quantify the importance of the higher
modes for the sound production, as well as the impact model.
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