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Valuing non-marginal changes in mortality and morbidity risk ∗

Daniel Herrera-Araujo†, Christoph M. Rheinberger‡, James K. Hammitt§

Abstract

Many stated-preference studies that seek to estimate the marginal willingness-to-pay (WTP) for reductions
in mortality or morbidity risk suffer from inadequate scope sensitivity. One possible reason is that the
risk reductions presented to respondents are too small to be meaningful. Survey responses may thus not
accurately reflect respondents’ preferences for health and safety. In this paper we propose a novel approach
to estimating the value per statistical life (VSL) or the value per statistical case (VSC) based on larger risk
reductions measurable as percentages. While such non-marginal risk reductions are easier to understand,
they introduce well known biases. We propose a methodology to de-bias VSL and VSC estimates derived
from the evaluation of non-marginal risk reductions and present a proof of concept using simulated stated
preference data.
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1 Introduction

Evaluating policies that seek to improve risks to life and limb requires estimating the rate at which
people trade money for a small change in the chance of dying or suffering an adverse health effect
in a specified period. This marginal rate of substitution is commonly referred to as the value per
statistical life (VSL) or the value per statistical case (VSC) of illness or injury. As these metrics
enable the analyst to monetize mortality and morbidity risk reductions, they are crucial to regulatory
impact analysis (Cropper et al., 2011; Cameron 2014).

In the context of environmental health and safety policies, VSL is often estimated using stated-
preference (SP) studies that seek to mimic a market for mortality risk reductions. Most of these
studies evaluate very small risk reductions—often as small as 1 in 100,000—to elicit VSL. The reason
for choosing such small risk reductions is that VSL and VSC are marginal rates of substitution that
differ from average rates of substitution for large risk changes. Moreover, under conventional as-
sumptions, respondents’ willingness-to-pay (WTP) should be nearly proportional to the risk change
for such small increments (Hammitt & Graham, 1999). This near-proportionality provides a useful
test of scope sensitivity. Unfortunately, many VSL studies do not pass the test. In some studies, the
estimated WTP is much less than proportional to the risk reduction—a violation of strong scope
sensitivity; in others, the estimated WTP is not even statistically related to the size of the risk
reduction—a violation of weak scope sensitivity.1 For example, fewer than 20% of the 405 VSL
studies analyzed by Lindhjem et al. (2011) displayed at least weak sensitivity to the size of risk
reduction.

There are at least two potential reasons for scope insensitivity. First, a lack of scope sensitivity
may be related to the curvature of the indifference function between money and risk (Hammitt
& Treich, 2007); second, it may reflect the difficulties that respondents have in understanding
the small mortality risk reductions they are commonly asked to value (Baron, 1997; Hammitt &
Graham, 1999; Kunreuther et al., 2001). To improve respondents’ understanding, numerous risk
communication aids have been employed (Corso et al., 2001). However, while such aids may help
in communicating risks, they do not overcome the core problem that marginal reductions in risk
are an abstract benefit that is likely to be interpreted differently by different people (Rheinberger
et al., 2018).

In this paper, we propose the use of non-marginal risk reductions to improve people’s under-
standing. The literature on risk communication suggests that, in addition to the description of risk,
the size of risk changes influences understanding (Spiegelhalter, 2017). Larger risk reductions ap-
pear to be easier for researchers to explain, and for respondents to grasp and recall, than smaller risk
reductions (Okan et al., 2020). For example, Garcia-Retamero and Glasic (2011) provide evidence

1Scope insensitivity has been seen as a major concern for the validity of preferences elicited in SP studies (Kahneman
& Knetsch, 1992; Diamond et al., 1994) or a reflection of people’s incapacity to form preferences over (public) goods
(Kahneman et al., 1999; Hausman, 2012).
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that individuals are better able to comprehend and recall (after 3 weeks) cancer risks, if these are on
the order of 1 in 100 rather than 1 in 1,000. The effect is more pronounced in low-numeracy individ-
uals than in high-numeracy individuals, suggesting that the former group has particular problems
in understanding small probabilities (Peters et al., 2011). This suggests that using non-marginal
risk changes in SP studies may help people to better grasp the trade-offs they are asked to evaluate.

The size of risk reduction may influence individuals’ responses through a combination of various
judgment processes. First, as individuals often consider small probability events too rare to pay
attention to, the use of large probabilities can encourage them to take protective behavior by
increasing the stakes above their threshold level of concern (Slovic et al., 1977). Second, as mortality
(or morbidity) risks are often expressed on a yearly basis (e.g., as a 1 in 100,000 annual chance of
dying) respondents may exhibit myopia, or narrow bracketing, in their decisions (Kahneman and
Lovallo, 1993). That is, they focus on short time periods rather than recognizing the long-term
impact of a cumulative annual risk. Recent evidence suggests that broad bracketing that conveys
cumulative information about the distribution of possible outcomes of a gamble over a long period
of time counters the narrow bracketing tendency (Chaudhry et al., 2020).

While moving to non-marginal risk reductions—i.e., risk changes in the percent range—seems
promising, it comes at the cost of biasing the estimated VSL (or VSC). This is because VSL (and
VSC) are defined asmarginal rates of substitution between money and risk, which differ from average
rates of substitution for non-marginal risk changes. Indeed, the marginal WTP for risk reduction
decreases with the size of the risk reduction because of the individual’s budget constraint, an income
effect (Jones-Lee, 1974). In addition, eliciting WTP for a non-marginal risk reduction requires a
setting in which the baseline risk is large enough to make the proposed reduction meaningful (e.g.,
the lifetime risk of developing cancer). This can introduce an additional bias, because WTP for a
marginal risk reduction is increasing in baseline risk (Pratt & Zeckhauser, 1996).2 This baseline
risk effect arises because individuals facing a large probability of dying have little incentive to limit
their spending on risk reduction, the so-called dead-anyway effect. Because of both effects, the
rate of substitution for a large risk reduction does not coincide with the rate of substitution for an
infinitesimally small risk reduction. Non-marginal risk reductions have therefore rarely been used
to measure WTP in applied studies.

We develop a method that simultaneously corrects for income and baseline risk effects, allowing
for unbiased VSL (or VSC) estimates from the evaluation of non-marginal risk reductions. The
method is based on the WTP model for prevention-based and treatment-based health interventions
developed by Rheinberger et al. (2016, RHH hereafter). As we assume that disease-induced mor-
tality is conditional on suffering the disease, the model includes three health states: healthy, ill, and

2Zeckhauser and Viscusi (1990) propose a compelling analogy. In a game of Russian roulette, rational individuals
should be willing to pay more to reduce the number of bullets in a six-chamber revolver from 5 to 4 than they should
be for a reduction from 2 to 1. Although the risk reduction is the same (i.e., 1 fewer bullet), the chances of dying are
obviously greater with 4 bullets remaining in the revolver than with 1 bullet.

3



dead. This enables us to study trade-offs between incidence rate, mortality rate, and health quality.
We derive two new theoretical results. First, we extend the RHH model by decomposing the WTP
for reduced disease incidence into a weighted sum of the WTP for reductions in conditional mortal-
ity and the WTP for reducing the risk of a nonfatal course of disease. Second, we show that, when
an intervention exists that simultaneously reduces incidence, severity and conditional mortality of
a disease, WTP cannot be simultaneously proportional to infinitesimal reductions in each of the
three components. Instead, WTP is proportional to each term’s contribution to the total WTP.

Based on these insights, we provide an empirically tractable method to extrapolate the incre-
mental WTP for non-marginal risk reductions to the WTP for marginal risk reductions. This new
methodology for estimating the VSL (or VSC) combines the relationship between the WTP for
a risk reduction and the size of that risk reduction with information on the relationship between
WTP and the individual’s baseline risk and income. To test the feasibility and accuracy of our
proposed appoach, we use Monte Carlo analysis to simulate a stated-preference study of WTP to
decrease incidence, severity and mortality risk in a setting similar to that of Alberini and Ščasnỳ
(2018). As our results demonstrate, we are able to accurately recover the marginal WTP for differ-
ent types of intervention—reduced risk of developing cancer, improvements in the 5-year survival
chance conditional on having cancer, or both.

The paper proceeds as follows. Section 2 introduces our workhorse model and derives the WTP
for reductions in incidence, conditional mortality, and health deterioration. In Section 3 we present
the setup of the Monte Carlo simulation. Section 4 reports on the accuracy with which our approach
estimates the true values in the Monte Carlo simulation and Section 5 concludes. Robustness checks
and alternative model specifications are presented in the Appendix.

2 Model

2.1 Notation

In our model an individual derives utility u(W,H) from wealth W and health H. We denote
first (second) derivatives of the utility function with respect to wealth by the subscript 1 (11) and
those with respect to health by the subscript 2 (22). Further, we make the following conventional
assumptions about u(W,H): non-satiation with respect to wealth, i.e., u1(W,H) > 0; non-satiation
with respect to health, i.e., u2(W,H) > 0; weak financial risk aversion, i.e., u11(W,H) ≤ 0; weak
health risk aversion, i.e., u22(W,H) ≤ 0; and weak correlation affinity, i.e., u12(W,H) ≥ 0.

The first two assumptions are the usual non-satiation assumptions. The next two assumptions
state that less risk over either wealth or health is preferable to more risk. Aversion to financial
risk is well supported by empirical evidence (Chetty, 2006). There is some empirical evidence for
risk aversion with respect to health, but results depend on the way health is defined.3 Correlation

3Several studies have investigated risk aversion with respect to longevity and have found substantial heterogeneity
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affinity implies that the marginal utility of wealth does not decrease with better health (Eeckhoudt
et al., 2007). This assumption is intuitively appealing since better health increases opportunities for
gaining utility through consumption (with the exception of consuming some forms of health care)
and there is some empirical evidence suggesting that the marginal utility of income increases with
health (Viscusi & Evans, 1990; Sloan et al., 1998; Finkelstein et al., 2013; Viscusi, 2019).

Consider now an individual who faces three possible states of the world: remain in good health,
contract a disease and survive in reduced health, or contract a disease and die from it.4 The good
health state Hg occurs with probability 1− q where q is the probability of falling ill. Conditional on
falling ill, the individual survives in the bad health state Hb with a probability 1− p, or dies with
probability p. We denote death as health state Hd. Without loss of generality, we measure health
on a unit scale so that Hg = 1, Hd = 0 and Hb = 1 − h, where 0 < h < 1 indicates the severity of
health deterioration when the disease is nonfatal.

Each of the three health conditions is associated with a state-dependent utility function that has
the property u(W, 1) > u(W, 1− h) > u(W, 0) and the individual is assumed to maximize expected
utility:

EU(W,H) = (1− q)u (W, 1) + q(1− p)u (W, 1− h) + qpu (W, 0) . (1)

Consider now that the individual is offered an opportunity to decrease incidence probability q,
conditional mortality probability p and disease severity h by the amounts θq, θp and θh, respectively.
For such a risk reduction, the individual is willing to forego the compensating variation C∗ ≡
C (W,h, p, q, θh, θp, θq). By definition, C∗ is the amount that leaves the individual as well off in
terms of expected utility as the initial endowment:

EU(W,H) = (1− q∗)u (W ∗, 1) + q∗(1− p∗)u (W ∗, 1− h∗) + q∗p∗u (W ∗, 0) (2)

where q∗ ≡ q − θq, h∗ ≡ h− θh, p∗ ≡ p− θp and W − C∗ ≡W ∗.5

with some people being risk averse, others risk seeking, and yet others who are risk neutral (Pliskin et al., 1980; Corso
& Hammitt, 2001; Nielsen et al., 2010; Hammitt & Tunçel, 2015). Risk aversion with respect to health quality is
often assumed in theoretical papers (e.g., Bleichrodt et al., 2003; Rheinberger et al., 2016; Herrera-Araujo et al., 2020;
Bleichrodt et al., 2020), but is rarely measured. One notable exception is the experimental study by Attema et al.
(2016) who reported evidence of risk aversion for both quality of life gains and losses.

4Alberini & Ščasnỳ (2021) add a competing risk of dying to the RHH model and show that the main results carry
through.

5We treat baseline risk here as exogenous. However, since our proposed correction can be applied regardless of
whether the WTP increases or decreases with baseline risk, it may also be applied to endogenous baseline risks (Liu
and Neilson, 2006; Gerking et al., 2017); see Appendix E.
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Below, we use the following notation to avoid clutter:

C (W,h, p, q, 0, 0, 0) ≡ C0,

(1− q∗)u1 (W ∗, 1) + q∗(1− p∗)u1 (W ∗, 1− h∗) + q∗p∗u1 (W ∗, 0) ≡ EU1(W ∗, H∗),

(1− q∗)u11 (W ∗, 1) + q∗(1− p∗)u11 (W ∗, 1− h∗) + q∗p∗u11 (W ∗, 0) ≡ EU11(W ∗, H∗),

(1− q)u1 (W, 1) + q(1− p)u1 (W, 1− h) + qpu1 (W, 0) ≡ EU1(W,H),

(1− q)u11 (W, 1) + q(1− p)u11 (W, 1− h) + qpu11 (W, 0) ≡ EU11(W,H).

2.2 Valuing marginal risk reductions

Assume the individual is offered an opportunity to reduce any of the three dimensions of disease
risk. We focus on the slope of the WTP with respect to the risk reduction, i.e., the marginal WTP
(MWTP from hereon). Three MWTP metrics can be derived: i) the MWTP for a reduction in
the risk of contracting the disease, ii) the MWTP for a reduction in disease severity, and iii) the
MWTP for a reduction in the conditional risk of dying from the disease.

MWTP for a reduction in the risk of contracting the disease. We start by differentiating
Eq. (2) with respect to θq. Isolating ∂C∗

∂θq
yields the MWTP for reductions in the risk of contracting

the disease:

MWTPθq ≡
∂C∗

∂θq
= u(W ∗, 1)− [(1− p∗)u(W ∗, 1− h∗) + p∗u(W ∗, 0)]

EU1(W ∗, H∗) > 0, (3)

where the numerator equals the gain in utility from avoiding the disease and the denominator
corresponds to the individual’s expected opportunity cost of spending, both evaluated after the
payment of C∗. The VSC is thus defined as the slope of the WTP for a reduction in the risk of
contracting the disease evaluated at zero risk reduction:

V SC ≡MWTPθq

∣∣∣
θq=θp=θh=0

≡ ∂C0
∂θq

= u(W, 1)− [(1− p)u(W, 1− h) + pu(W, 0)]
EU1(W,H) . (4)

MWTP for a reduction in disease severity. Next, we differentiate Eq. (2) with respect to θh.
The MWTP for a reduction in disease severity h by an amount θh is given by:

MWTPθh ≡
∂C∗

∂θh
= q∗(1− p∗)u2(W ∗, 1− h∗)

EU1(W ∗, H∗) > 0,

where the numerator equals the gain in utility due to a less severe form of the disease (equal to
the marginal utility of wealth if ill multiplied by the probability of suffering the nonfatal condition)
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and evaluated after the payment of C∗. We use cV SR to denote the value of severity reduction
conditional on being ill (c is a mnemonic for conditional). The cV SR is defined as the slope of the
WTP for a reduction in disease severity evaluated at zero risk reduction:

cV SR ≡MWTPθh

∣∣∣
θq=θp=θh=0

≡ ∂C0
∂θh

= q(1− p)u2(W, 1− h)
EU1(W,H) . (5)

MWTP for a reduction in conditional mortality. Finally, we differentiate Eq. (2) with
respect to θp. The MWTP for a reduction in conditional mortality risk p by an amount θp is given
by:

MWTPθp ≡
∂C∗

∂θp
= q∗ [u(W ∗, 1− h∗)− u(W ∗, 0)]

EU1(W ∗, H∗) > 0,

where the numerator equals the gain in utility from avoiding mortality (the utility gain conditional
on illness multiplied by the probability of disease) and the denominator is the expected marginal
utility of consumption, both evaluated after the payment of C∗. We use cV SL to denote the value
per statistical life at the prevailing ill-health state (and wealth) conditional on contracting the
disease. The cV SL is defined as the slope of the WTP for a reduction in conditional mortality risk
evaluated at zero risk reduction:

cV SL ≡MWTPθp

∣∣∣
θq=θp=θh=0

≡ ∂C0
∂θp

= q [u(W, 1− h)− u(W, 0)]
EU1(W,H) . (6)

2.3 Deriving the unconditional VSL

Because of the compound nature of the RHH model, the three metrics—V SC, cV SR and cV SL—
are not independent. We exploit this dependence to derive the unconditional VSL. We start by
decomposing the VSC into two components, the values of reducing the risk of falling ill and the
conditional risk of dying. To this end, we re-express the VSC as:

V SC = u(W, 1)− u(W, 1− h) + p [u(W, 1− h)− u(W, 0)]
EU1(W,H) . (7)

Let ψ denote the ratio between average utility of health and marginal utility of health when ill:

ψ = u(W, 1)− u(W, 1− h)
h

1
u2(W, 1− h) ≤ 1. (8)
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By inserting equations (5), (6) and (8) into (7), we obtain:

V SC =
(

ψh

q(1− p)

)
cV SR+

(
p

q

)
cV SL. (9)

The first term on the right hand side (RHS) of Eq. (9) corresponds to the monetized utility gain
from avoiding a nonfatal health state; the second term corresponds to the contribution from the
avoidance of premature death conditional on contracting the disease. A challenge for empirical work
relates to the identification of each term on the RHS of Eq. (9). Indeed, survey respondents need
to evaluate treatments that hold constant the likelihood of the non-relevant health states.6

A similar logic can be applied to derive the standard VSL defined as the slope of the WTP
for an unconditional mortality risk reduction. A treatment that decreases incidence risk needs
to hold constant the risk of experiencing the nonfatal ill-health state. However, as any reduction
in incidence risk also reduces the probability of becoming ill, the treatment needs to create an
additional reduction in conditional mortality risk to compensate. VSL can be derived from such a
treatment, yielding the conventional definition:7

V SL = u(W, 1)− u(W, 0)
EU1(W,H) = V SC +

(1− p
q

)
cV SL. (10)

This finding is summarized in Result I.

Result I. As a reduction in incidence risk reduces severity and mortality simultaneously, it is pos-
sible to decompose the MWTP for incidence risk reduction into a weighted sum of the MWTP for
severity reduction and the MWTP for conditional mortality risk reduction. To obtain the uncondi-
tional VSL, the MWTP for incidence risk reduction must be corrected by a factor proportional to
the MWTP for conditional mortality risk reduction.

2.4 Risk reduction elasticity of willingness-to-pay

Let ηq, ηh, and ηp denote the elasticities of C∗ with respect to reductions in incidence q, disease
severity h, and conditional mortality p. When dealing with marginal mortality risk reduction alone,
the elasticity of WTP with respect to mortality risk reduction equals one (Hammitt & Herrera-
Araujo, 2018). However, in our more complex setting we have:

ηk =
∂C∗

∂θk
θk

∂C∗

∂θq
θq + ∂C∗

∂θh
θh + ∂C∗

∂θp
θp
, ∀ k = {q, p, h}.

6To identify the first term, a treatment is required that reduces the incidence risk while holding constant the
unconditional mortality risk; see Appendix A for a full derivation. Alternatively, one could isolate the second term
by evaluating a treatment that reduces the conditional mortality while holding constant the incidence risk.

7The first equality follows from the WTP for a treatment that holds constant the risk of experiencing the nonfatal
ill-health state and is derived in Appendix B. The second follows after some minor manipulations.
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Thus, ηq, ηh and ηp are not only the elasticities with respect to WTP but also denote the relative
shares of each dimension in the WTP for a simultaneous reduction in all three dimensions, i.e.,
ηq + ηh + ηp = 1. This finding is summarized in Result II.

Result II. WTP for a simultaneous improvement in incidence, severity and mortality is not pro-
portional to small reductions in each of these dimensions. Instead, the elasticity of WTP for an im-
provement in any dimension equals its contribution to the total WTP (i.e., to ∂C∗

∂θq
θq+∂C∗

∂θh
θh+∂C∗

∂θp
θp).

Thus, the sum of the elasticities of WTP for incidence, severity and conditional mortality risk re-
duction equals unity.

2.5 Valuing non-marginal risk reductions

What happens if one moves from marginal to non-marginal risk reductions? To answer this question,
we consider the MWTP for reductions in the risk of contracting the disease.8 Effects for the other
two risk dimensions can be derived analogously. We first illustrate the issues that arise when dealing
with non-marginal risk reductions, followed by a method to correct for these issues.

2.5.1 Issues with non-marginal risk reductions

To understand the link between baseline risk and income effects on MWTP, consider the scenario
where an individual is offered the opportunity to reduce only the incidence probability of a po-
tentially fatal disease. The solid line in Figure 1 depicts the individual’s compensating variation
(or WTP) for a risk reduction of (arbitrary) size θ ∈ (0, q]. The WTP for a risk reduction of
size θLq is C(W,h, p, q, θLq , 0, 0). VSC is the slope of the WTP function at baseline risk, repre-
sented by the dotted line.9 The long-dashed line is tangent to the WTP function at θLq . We
denote the slope of this line by V SC∗; it corresponds to the VSC evaluated at a new income level
W ∗ = W − C(W,h, p, q, θLq , 0, 0) and a new incidence risk q∗ = q − θLq (and at baseline levels of h
and p). Note that VSC* is the marginal WTP for an increase in a non-marginal risk reduction θLq .
It is not the average WTP for a non-marginal risk reduction C(W,h, p, q, θLq , 0, 0)/θLq .

How different is V SC∗ from V SC? Using the mean-value theorem (Hammitt, 2020), we can
represent the difference between measures as

V SC∗ = V SC − θq
∂2Cx
∂θq∂q

− Cx
∂2Cx
∂θq∂W

, (11)

where Cx is the WTP for incidence risk reduction with baseline wealth W̃ and incidence risk q̃

somewhere between (W, q) and (W ∗, q∗). This implies that V SC∗ equals V SC minus feedback
8As we focus on incidence risk, we refer to the effect of changing baseline incidence risk as the sick-anyway effect

by analogy to the dead-anyway effect in mortality risk valuation.
9Most, if not all, SP studies of mortality or morbidity valuation approximate VSC by the ratio of

C(W,h, p, q, θLq , 0, 0) to θLq for small values of θLq .
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effects due to (i) the reduced risk of contracting the disease, and (ii) the reduction in disposable
income. Both baseline risk and income effects decrease the VSC, but as shown in Figure 1 these
effects vanish as θLq tends to zero.

Figure 1: Non-marginal risk reductions bias downwards VSC estimates

Monetary
Units

Risk Reduction 
!!

!"#
!"#∗ = %&#∗

&'" #!$#!#

! ", ℎ, %, &, '!

!!"

! ", ℎ, %, &, '!"

Notes: The bold line corresponds to the compensating variation evaluated at different levels of incidence
risk reduction, while holding other risk dimensions at their baseline levels. The dotted line corresponds to
the V SC. The long-dashed line is tangent to the bold line at θLq . The long-dashed line, labelled V SC∗,
corresponds to the VSC evaluated at baseline levels of h and p, and at a new income level W ∗ = W −
C(W,h, p, q, θLq , 0, 0) and a new incidence risk q∗ = q − θLq .

2.5.2 Correcting for income and baseline risk effects

The upshot of Eq. (11) is that, when estimating the VSC using non-marginal risk reductions,
the feedback effects cannot be ignored. To correct the distortions introduced by non-marginal
risk reductions, we follow the approach proposed by Herrera-Araujo et al. (2017). We start by
differentiating Eq. (2) with respect to baseline incidence risk q. Upon inserting Eq. (3) and some
manipulations, we have:10

∂C∗

∂q
= u(W, 1)− [(1− p)u(W, 1− h) + pu(W, 0)]

EU1(W ∗, H∗) − ∂C∗

∂θq
. (12)

10Appendix C provides a detailed derivation of the proposed correction for a risk reduction in incidence. Analogous
derivations yield the corrections for the other two dimensions.
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Differentiating Eq. (2) with respect to wealth W and re-arranging some terms yields:

∂C∗

∂W
= 1− EU1(W,H)

EU1(W ∗, H∗) ≥ 0. (13)

By inserting Eqs. (13) and (4) into Eq. (12), we have

∂C∗

∂q
= ∂C0
∂θq

(
1− ∂C∗

∂W

)
− ∂C∗

∂θq
.

Finally, by isolating ∂C0
∂θq

, we obtain the following expression:

V SC ≡ ∂C0
∂θq

=
∂C∗

∂q + ∂C∗

∂θq

1− ∂C∗

∂W

> 0. (14)

Correcting for the sick-anyway effect (∂C∗

∂q ) and the income effect (1 − ∂C∗

∂W ) thus enables us to
recover the theoretically correct V SC. Along the same lines, we can obtain:

cV SR ≡ ∂C0
∂θh

=
∂C∗

∂p + ∂C∗

∂θp

1− ∂C∗

∂W

> 0, (15)

and

cV SL ≡ ∂C0
∂θp

=
∂C∗

∂h + ∂C∗

∂θh

1− ∂C∗

∂W

> 0. (16)

Note that in these expressions the indirect effects of reducing one risk vs. another are accounted
for through the income effect and the baseline risk effect. We summarize this as Result III.

Result III. We provide an empirically tractable method to compute V SC, cV SR and cV SL for any
positive risk reduction. Proposing a larger risk reduction introduces both income and baseline risk
effects that bias conventional empirical estimates. These can be corrected by applying the expressions
given in Eqs. (14), (15) and (16). All terms required for the correction can, in principle, be
estimated, but require specific adaptations in the survey design to allow for identification in the
empirical analysis.

3 Monte Carlo Simulation

As we are unaware of any SP study that has elicited WTP for non-marginal changes in incidence,
severity, and conditional mortality risk needed to implement our approach, we conduct a Monte
Carlo simulation of such a study to determine its feasibility and to provide a proof of concept.
Specifically, we simulate a setting similar to a study by Alberini and Ščasnỳ (2018) that asked
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respondents aged 45-60 years in four European countries to report their WTP for reductions in
cancer risk. Respondents provided answers to a sequence of dichotomous questions that offered
the choice between current cancer risk and a hypothetical program that would reduce the risk of
developing cancer, improve 5-year cancer survival, or both, at a specified cost to the respondent.
While this setup is close to what we require for implementing the corrections introduced in Section
2, there is no variation in the baseline risk. We therefore turn to synthetic data.

3.1 Data Generating Process

We consider a simple data generating process and construct 1000 different data sets for N = 5, 000
synthetic individuals. Each individual i is characterized by a level of baseline wealthWi, an incidence
probability qi, a health deterioration if ill hi, and a conditional mortality risk pi. To simulate
individuals’ WTP we assume that utility is linear in health and displays constant relative risk
aversion (CRRA) with respect to wealth. The utility function we simulate from is

u(Wi, 1− hi) =

(1− hi) 1
1−γW

1−γ
i γ 6= 1

(1− hi) log(Wi) γ = 1,

where γ is a measure of relative risk aversion with regard to wealth. Bequest utility is given
by u(Wi, 0) = 0. The simulated data mimic a survey in which each individual i is offered an
incidence-severity-mortality risk reduction package (θqi , θhi , θpi). To illustrate how our approach
can be applied to actual data, we introduce multiplicative noise in the compensating variation
C∗i .11 In other words, we mimic scenarios in which the researcher has an informative, albeit, noisy
measure of WTP.

We solve for the exact compensating variation C∗i using Eq. (2). For the simulated empirical
study, we introduce sufficient variation in the baseline risk and the risk reduction to identify the
WTP function depicted in Figure 1.12 To do so, we need to define the parameter space and support
for each of the variables in our model. Table 1 presents the supports and distributions used in the
simulation. We consider a mean baseline risk of developing cancer of 25 in 1,000 over 5 years as in
Alberini and Ščasnỳ (2018). The average probability of survival over 5 years is 45% and the baseline
health if ill is 55%. All three dimensions and improvements in each dimension are independently
and uniformly distributed. Wealth is log-normally distributed and approximates U.S. annual income
in 2010 using the mean and standard deviation reported by Hammitt and Haninger (2010). We
assume that all synthetic individuals have a relative risk aversion equal to one, i.e., γ = 1. As a
robustness check, we created new synthetic data with γ = 0.6 and re-estimated the regressions and

11We do so by assuming that the measurement error εi follows a normal distribution, with mean zero and standard
deviation equal to one, so that C̃∗

i = C∗
i exp(εi).

12Figure 1 shows WTP for a fixed baseline risk. By varying both the baseline risk and risk reduction in our
simulation study, we trace out different WTP functions corresponding to different baseline risks.
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corresponding results.
This set up allows for evaluating many different scenarios. We report on two: The first scenario

proposes risk reductions similar to those typically found in the SP literature, which are often (much)
smaller than 50 in 10,000 for all risks (Andersson et al., 2016). As reported in Table 1, all risk
reductions are on average 200 times smaller than their corresponding baseline risks. We label these
as marginal risk reductions. Our second scenario proposes non-marginal reductions in incidence
risk of about 1 in 1,000, disease severity of 25 in 100, and conditional mortality risk of 16 in 100.
For each scenario, we simulate reductions in each risk alone, each pair of risks, and a simultaneous
reduction in all three risks.

3.2 Empirical strategy

We begin by solving for the exact WTP corresponding to each choice in our synthetic data using
Eq. (2). For the empirical counterpart, we regress the natural logarithm of the simulated (noisy)
WTP C̃∗i on baseline risks and risk reductions:

log(C∗i ) = α+ βqlog(qi) + βhlog(hi)+βplog(pi) + βW log(Wi)+

λqlog(θqi) + λhlog(θhi) + λplog(θpi) + εi, (17)

where α denotes a constant and βq, βh, βp, and βW are the empirical analogues of the elasticities
of WTP with respect to baseline incidence q, severity h, conditional mortality risk p and wealth
W , respectively. The elasticities of WTP with respect to reductions in incidence risk θq, severity
θh and conditional mortality risk θp are denoted by λq, λh, and λp, respectively. The remaining
unobserved idiosyncratic variation is captured by εi.

3.3 Marginal willingness-to-pay estimates

Since the natural logarithm of the compensating variation is the dependent variable in Eq. (17),
the standard calculation of MWTP for a risk reduction using the regression estimates is as follows:

∂̂C

∂θk
= λ̂k ×

C

θk
, (18)

where C and θk correspond to the average WTP and the average reduction in a risk of type
k ∈ {q, h, p}. The proposed correction uses the estimates from the WTP regression for a k-type
risk reduction along with information on the relationship between the WTP for the k-type risk
reduction and the k-type baseline risk, and between the WTP for the k-type risk reduction and the
individual’s income. The corrected estimates of the WTP for each k-type risk reduction can thus
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be computed as follows:
∂̂C0
∂θk

=
∂̂C
∂k + ∂̂C

∂θk

1− ∂̂C
∂W

, (19)

where
∂̂C

∂k
= β̂k ×

C

k
,

∂̂C

∂W
= β̂W ×

C

W
, and ∂̂C

∂θk
= λ̂k ×

C

θk
,

and where k and W correspond to the average baseline risk k ∈ {q, h, p} and the average income,
respectively.

4 Results

In Panel A of Table 2 we report the coefficients estimated by applying the model in Eq. (17) to
marginal risk reductions. The dependent variable in all regressions is the natural logarithm of WTP
for a corresponding risk reduction. All regressions are estimated using OLS and the coefficients
are fully identified exploiting the variation between the proposed risk reductions. The coefficient
estimates presented in the table are averaged over the 1,000 random data sets.

The first, second and third columns present estimates for a reduction in only one risk: incidence
risk, mortality risk, and disease severity, respectively. Although we do not report the coefficients’
standard errors, all coefficients are statistically significant, but some are economically insignificant.
Baseline incidence, severity and mortality have different effects on WTP depending on the risk
reduction proposed. When the baseline risk and the type of risk improvement coincide, the esti-
mated coefficients of the baseline risk are near zero, which is consistent with theoretical predictions
(Hammitt and Herrera-Araujo, 2018). Cross-baseline risks, however, do have an effect on WTP.
In the case of mortality risk or severity reduction, incidence baseline risk has a proportional effect
on WTP for both risk reductions. Baseline mortality (severity) risk has a negative effect on WTP
for a severity (mortality) risk reduction, and has a positive effect on the WTP for incidence risk
reduction. Theory suggests a positive relationship between mortality (severity) and WTP to reduce
incidence risk. Under certain conditions, theory also provides guidance on the relationship between
baseline mortality (severity) and WTP to reduce severity (mortality). One can unambiguously sign
the effect of a higher conditional baseline mortality on the WTP for reductions in the severity if
one assumes, as we do, the functional form of utility that is consistent with any life-year measure
(Rheinberger et al., 2016). As expected, we find a negative relationship. Finally, we find that, as
predicted by theory, WTP to reduce only one risk is proportional to the risk reduction.

The next three columns report estimates for a simultaneous reduction in two risks: incidence
risk and disease severity, incidence and mortality risk, and mortality risk and disease severity,
respectively. All estimated effects are statistically different from zero. WTP is larger for larger
baseline incidence risk. Baseline severity has a positive effect only when incidence and severity
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risk reductions are proposed. Baseline mortality risk, however, has a negative effect when a risk
reduction in incidence and conditional mortality are proposed, and has a positive effect in the other
two situations. For each column, all risk reduction coefficients are less than one, which implies a
less than proportional effect, but their column sum is (almost) one.

The last column reports estimates for a simultaneous reduction in all three risks. The coefficients
for baseline incidence and conditional mortality risk are positive, while the coefficient for the baseline
severity is negative. As in the previous models, all risk reduction coefficients are less than one,
while their sum is very close to one. Finally, the WTP for any combination of risk reductions is
proportional to wealth.

Panel B in Table 2 reports coefficient estimates applying the model in Eq. (17) to non-marginal
risk reductions. Again, the first three columns present estimates for a reduction in only incidence
risk, mortality risk or disease severity. Nearly all coefficients are statistically significant. The results
for baseline risks are very similar to those reported in Panel A. WTP is not very sensitive to own-
baseline risk, but it is sensitive to cross-baseline risks. Also, WTP is nearly proportional to risk
reduction. The effects on proportionality are more pronounced in the next three columns, which
report estimates for a reduction in incidence risk and disease severity, a reduction in incidence risk
and reduction in mortality risk, and a reduction in mortality risk and disease severity, respectively.
As before, all estimated effects are statistically different from zero and all risk reduction coefficients
are less than one. The sum, however, no longer equals one. In all cases the coefficients sum to less
than one, except when severity and mortality risk reduction are proposed jointly for which the sum
exceeds one.13

Table 3 reports the MWTP values derived from each of the models in Table 2. The MWTPs for
incidence, mortality and severity are computed under each configuration of risk reductions proposed
in Table 2 and are reported in the three panels: incidence, mortality and severity. Within each panel,
we compare the exact MWTP computed with the empirical counterparts of equations (4), (5) and
(6) to the standard MWTP estimates derived based on Eq. (18) and to the corrected MWTP
estimates derived based on Eq. (19) using estimates from Table 2. We do so for both marginal and
non-marginal risk reductions. (The exact MWTP is reported in the table notes. In the table itself,
we report ratios measuring the deviation of the standard and the corrected MWTP estimates from
the exact MWTP.)

Regardless of the configuration of the risk reduction program proposed, both the standard and
13We also ran a log-log model with the marginal unconditional mortality risk m = pq as explanatory variable. As

the change in unconditional mortality risk can be re-expressed as the sum of three elements θm = θqp+θpq−θqθp two
models were tested. The first model allows the coefficients on each of the three terms of the sum to differ; the second
constrains the coefficients on each of the three terms to be equal. In the unconstrained model, the product between the
coefficient of the first term (θqp) and the average WTP yields the VSC divided by the average conditional mortality
probability (V SC/p). Similarly, the product between the coefficient of the second term ( θpq) and the average WTP
yields the cV SL divided by the incidence probability (cV SL/q). As the second model constrains the coefficients from
the three terms to be equal, the resulting coefficient is a weighted average of the unconstrained coefficients.
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the corrected MWTP estimates are very close to the exact MWTP for marginal reductions to
incidence, mortality, and severity risks. This suggests that both methods are able to retrieve the
exact MWTP for any of the three risk reductions. For non-marginal risk reductions, the two methods
to estimate MWTPs are no longer equivalent. The standard method substantially underestimates
the exact MWTP for a reduction in one risk dimension and can under- or overestimate it for a
reduction in multiple risk dimensions. The deviations increase with the number of risk components
and the size of baseline risks to be reduced. For example, the MWTP for a reduction in incidence
risk estimated using the standard approach falls short of the exact MWTP by 10% when a reduction
in q alone is considered but by nearly 40% when all three risks are reduced. The corrected method,
however, is able to retrieve the exact MWTP regardless of the combination of risk reductions
proposed.

In Table 4, we report VSL taking the empirical counterparts of Eq. 10 using the estimates
from Table 3. Specifically, the table compares the VSL estimates derived using marginal and
non-marginal reductions in mortality risk for two sets of simulated data. The first set assumes a
relative risk aversion coefficient of γ = 1 (as do all the previous results). The second specification
assumes a smaller degree of relative risk aversion (γ = 0.6). Again, we find that for marginal risk
reductions the corrected and the standard VSL estimates are very close to the exact VSL. However,
for non-marginal risk reductions, the standard method to estimate VSL falls short of the exact VSL
by 30-37% depending on the degree of relative risk aversion considered, while the corrected VSL
estimate recovers the exact VSL regardless of the specification.14

5 Conclusion

The value of health risk reductions is commonly estimated in a framework of marginal risk reduc-
tions. This paper makes a case for using risk reductions that are large enough to be meaningful
to respondents of SP studies. Relying on a structural model of state-dependent preferences, we
propose a novel method that allows recovering the WTP for a marginal reduction in risk from the
difference in WTP for different non-marginal risk reductions. The standard method to estimate
VSL or VSC assumes a linear relationship between WTP and risk reduction, which is invalid for
larger risk reductions and will result in biased estimates because of income and baseline risk effects.
Our method augments the standard method with additional sources of variation—namely the re-
lationship between the WTP for a risk reduction and baseline risk, and between the WTP for a
risk reduction and income—to correct for these effects. Using these additional sources of informa-
tion, our correction method provides a theoretically valid means for estimating VSL or VSC while
presenting respondents with meaningful risk reductions.

Although we have presented the correction method within a model that studies trade-offs be-
14The exact gaps are (0.683 − 0.429)/0.683 = 37.2% and (0.152 − 0.106)/0.152 = 30.3%, respectively.
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tween incidence rate, mortality rate, and health quality, it also applies to settings involving only
one or two of these dimensions (as these simpler models are special cases of the model we present).
The advantage of our method is that the variation needed for its implementation can be readily
obtained from tailored surveys. It requires that researchers elicit information on how the WTP for
a risk reduction in each of the intervention dimensions considered varies with baseline risk, the size
of risk reduction and the respondent’s income. Eliciting information on how WTP varies with the
size of risk reduction and with income is standard. Creating variation in the baseline risk is more
challenging. At least two strategies have been proposed in the SP literature. One method consists
of providing respondents with exogenous variation in the baseline risk (Hammitt and Haninger,
2010). Another approach consists of first eliciting respondents’ perceived risk, then offering them
the opportunity to revise their risk assessments based on objective risk information and eliciting
WTP from the revised baseline risk (Gerking et al., 2017).

In the paper, we have employed an expected utility framework ignoring that people often over-
weight small probabilities and under-weight large ones in health decisions. As non-marginal risk
reductions require a substantial baseline risk, which may exacerbate probability weighting effects,
one might want to apply a rank dependent utility (RDU) framework to study the effect of probability
weighting in our context.15 Doing so suggests that our correction method is robust to probability
weighting, but VSL itself is not robust to probability weighting because WTP for risk reductions
under RDU differs from WTP under the linear-in-probabilities assumption of the EU framework
(Bleichrodt and Eeckhoudt, 2006). Our method corrects for the baseline risk and income effects
under probability weighting, but not for the probability weighting itself. It may, however, be
possible to adjust empirical estimates of WTP to correct for probability weighting as suggested in
other contexts by Bleichrodt et al. (2001) and Johansson-Stenman (2008).

In future work, we hope to collect new stated preference data that will allow us to test the
procedure on real data. One key challenge consists of selecting reasonable bids in a SP study that
features non-marginal risk reductions. The results of our Monte Carlo analysis suggest that the
WTP for a non-marginal risk reduction should represent a sizeable proportion of income (Hammitt,
2020). Whether individuals will pay large amounts of their income is an empirical question. An-
other important challenge relates to ensuring sufficient variation in baseline risk and risk reduction.
In the synthetic data set analyzed here we are unconstrained but in an actual SP survey one cannot
present too many different scenarios without risk of confusing or tiring respondents and hampering
the credibility of the scenarios. An efficient survey design along with enough sample respondents
should help identify the effects. Finally, an implicit assumption of our correction method is that
we can accurately elicit differences in WTP for different non-marginal risk reductions, which high-
lights the importance of sound risk communication. Overcoming these challenges will require close
adherence to contemporary guidance for SP studies (Johnston et al., 2017) and risk communication

15Appendix D details the derivation of our correction method under RDU.
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(Spiegelhalter, 2017).

18



Table 1: Simulation structural parameters

Distribution Mean Std Min Max

Log-wealth, log(W ) Log-normal 10.54 0.95 7.04 14.18

Baseline risks
Baseline incidence, q Uniform 0.025 0.0058 0.015 0.035
Baseline severity, h Uniform 0.45 0.0866 0.30 0.60
Baseline mortality, p Uniform 0.65 0.0865 0.50 0.80

Marginal risk reduction
Incidence reduction, θq Uniform 0.00019 0.00004 0.00012 0.00025
Severity reduction, θh Uniform 0.00338 0.00065 0.00225 0.00450
Mortality reduction, θp Uniform 0.0049 0.0009 0.0032 0.0065

Non-marginal risk reduction
Incidence reduction, θq Uniform 0.0094 0.0018 0.0063 0.0125
Severity reduction, θh Uniform 0.1679 0.0323 0.1123 0.2246
Mortality reduction, θp Uniform 0.2437 0.0468 0.1626 0.3252

Notes: Log-wealth mean and standard deviation are taken from Hammitt & Haninger (2010). Non-marginal
baseline incidence, severity and mortality risks are calibrated for cancer. Tuning parameter κ is set to -150.
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Table 2: Regression results of WTP on marginal risk reductions

Panel A: Marginal
Log WTPq Log WTPp Log WTPh Log WTPqh Log WTPph Log WTPqp Log WTPqhp

Log baseline incidence 0.02 1.02 1.02 0.18 1.02 0.32 0.40
Log baseline mortality 0.45 0.01 -1.88 0.07 -0.56 0.31 0.06
Log baseline severity 0.20 -0.80 0.00 0.16 -0.55 -0.10 -0.09
Log incidence reduction 1.00 0.83 0.69 0.60
Log mortality reduction 1.00 0.69 0.30 0.26
Log severity reduction 1.00 0.16 0.31 0.12
Log wealth 1.10 1.10 1.10 1.10 1.10 1.10 1.10

Proportionality 1.00 1.00 1.00 0.99 0.99 0.99 0.98

Panel B: Non-marginal
Log WTPq Log WTPp Log WTPh Log WTPqh Log WTPph Log WTPqp Log WTPqhp

Log baseline incidence 0.02 1.00 1.01 0.18 0.98 0.34 0.49
Log baseline mortality 0.43 0.01 -1.87 0.18 -0.45 0.33 0.15
Log baseline severity 0.19 -0.78 0.00 0.16 -0.44 -0.02 -0.01
Log incidence reduction 0.95 0.78 0.61 0.45
Log mortality reduction 0.98 0.72 0.20 0.22
Log severity reduction 0.99 0.10 0.41 0.12
Log wealth 1.09 1.09 1.09 1.09 1.09 1.09 1.09

Proportionality 0.95 0.98 0.99 0.88 1.12 0.81 0.79

Notes: We do not report the standard deviations as all coefficients are statistically significant. WTPθq , WTPθp , WTPθh
, WTPθqθh

,
WTPθpθh

, WTPθqθp , and WTPθqθhθp correspond to MWTP when a risk reduction in incidence, in mortality, in severity, in incidence +
severity, in mortality + severity, in incidence + mortality, and incidence + severity + mortality is proposed, respectively.
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Table 4: VSL estimates for marginal and non-marginal risk reductions and for different risk
aversion coefficients

γ = 1 γ = 0.6
Marginal Non-marginal Marginal Non-marginal

Model (exact) 0.683 0.683 0.152 0.152
Corrected OLS estimate 0.677 0.677 0.152 0.151
Standard OLS estimate 0.675 0.429 0.151 0.106

Notes: Values are in millions of dollars. All estimates are statistically different from zero. γ corresponds
to the relative risk aversion with regard to wealth.
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Appendix
Appendix A – The marginal willingness-to-pay for a reduction in incidence hold-
ing constant the unconditional mortality risk.

Consider an individual that selects the decision which maximizes their expected utility given by:

EU(W,H) = (1− q)u (W, 1) + q(1− p)u (W, 1− h) + qpu (W, 0) .

Consider now that the individual is offered an opportunity to decrease incidence risk, while holding
constant the unconditional mortality probability. That is, the preventive treatment reduces the
incidence by θuq under the constraint that

pq = pu∗qu∗,

where pu∗ = p + θup and qu∗ = q − θuq . Thus, for any reduction θuq , we have an increase in the
conditional mortality probability equal to

θup =
θuq p

q − θuq
.

The intuition for this is that any reduction in incidence risk increases the survival probability. To
compensate for this benefit (so that the constraint is respected), the treatment must raise p to pu∗.

In return, the individual is willing to forfeit an amount C
(
W, q, h, p, θuq , θ

u
p

)
. This amount is by

definition one that leaves the individual’s expected utility unchanged. The amount C is defined as:

(1− qu∗)u (W ∗, 1) + qu∗(1− pu∗)u (W ∗, 1− h) + qpu (W ∗, 0) = EU(W,H).

By differentiating the above equation with respect to θuq and isolating ∂C
∂θuq

, we obtain:

MWTPθuq ≡
∂C∗

∂θuq
= u(W ∗, 1)− u(W ∗, 1− h)

EU1(W ∗, H) > 0.

Therefore, the MWTP for a reduction of incidence risk holding constant the unconditional mortality
risk equals the MWTP for a treatment allowing an individual to pass from the sick health state to
one of perfect health.
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Appendix B – The marginal willingness-to-pay for a reduction in incidence hold-
ing constant nonfatal risk.

Consider now that the individual is offered an opportunity to decrease the incidence risk, while
holding constant the nonfatal risk. The treatment reduces the incidence by θuq under the constraint
that:

q − qp = qu∗ − qu∗pu∗,

where pu∗ = p + θup and qu∗ = q − θuq . Thus, for any reduction θuq , there must be a compensating
increase in the conditional mortality probability equal to

θup = −
(1− p)θuq
q − θuq

.

The reduction in incidence risk decreases the probability of ending up in the sick state. To hold
constant the probability of ending in the nonfatal state, the treatment needs to simultaneously
decrease the conditional mortality risk. In return for this treatment, the individual is willing to
forfeit an amount C defined as:

(1− qu∗)u (W ∗, 1) + q(1− p)u (W ∗, 1− h) + qu∗pu∗u (W ∗, 0) = EU(W,H).

By differentiating the above equation with respect to θuq and isolating ∂C
∂θuq

, we obtain:

MWTPθuq ≡
∂C∗

∂θuq
= u(W ∗, 1)− u(W ∗, 0)

EU1(W ∗, H) > 0.

Therefore, the MWTP for a reduction in incidence risk holding constant the non fatal risk equals
the MWTP for a treatment allowing an individual to pass from a health state equivalent to being
dead to one of perfect health.

Appendix C – Deriving the correction for income and baseline risk (dead/sick-
anyway) effects.

Let us consider a risk reduction in all risk dimensions. We start by differentiating Eq. (2) with
respect to baseline incidence risk and isolate ∂C∗

∂q :

∂C∗

∂q
= ∆u1,1 − [(1− p)∆u1−h,1−h∗ + p∆u0,0] + θp∆u1−h∗,0

EU1(W ∗, H∗) , (20)
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where,

∆u1,1 = u (W, 1)− u (W ∗, 1) ,

∆u1−h,1−h∗ = u (W, 1− h)− u (W ∗, 1− h∗) ,

∆u0,0 = u (W, 0)− u (W ∗, 0) ,

∆u1−h∗,0 = u (W ∗, 1− h∗)− u (W ∗, 0) .

The numerator in Eq. (20) equals the change in utility arising from a change in baseline incidence
risk, while holding constant both utility and the proposed risk reduction. The first and the last term
in the numerator are positive, while the term in brackets may be positive or negative. However,
under correlation affinity, the following inequality holds:

∆u1,1 ≥ u (W, 1− h)− u (W ∗, 1− h) ≥ ∆u0,0. (21)

Combined with the non-satiation assumption with respect to health, the following inequality also
holds:

∆u1,1 ≥ u (W, 1− h)− u (W ∗, 1− h) ≥ u (W, 1− h)− u (W ∗, 1− h∗) . (22)

As the term in brackets in Eq. (20) is a convex combination of terms that are smaller than the
first term, the WTP to reduce incidence risk by any amount θq > 0 increases with baseline risk
(i.e., ∂C∗

∂q ≥ 0). This baseline risk (or sick-anyway) effect pushes an individual facing a larger risk
of incidence to be willing to spend more on risk reduction.

Differentiating Eq. (2) with respect to wealth yields:

∂C∗

∂W
= ∆u1,1

1 (1− q) + ∆u1−h∗,1−h
1 q(1− p) + ∆u0,0

1 qp+ ∆u1,1−h∗

1 θq + ∆u1−h∗,0
1 θm

EU1(W ∗, H∗) , (23)

where,

θm = θqp+ θpq − θqθp,
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is the reduction in unconditional mortality risk, and

∆u1,1
1 = u1 (W ∗, 1)− u1 (W, 1) ,

∆u1−h∗,1−h
1 = u1 (W ∗, 1− h∗)− u1 (W, 1− h) ,

∆u0,0
1 = u1 (W ∗, 0)− u1 (W, 0) ,

∆u1,1−h∗

1 = u1 (W ∗, 1)− u1 (W ∗, 1− h∗) ,

∆u1−h∗,0
1 = u1 (W ∗, 1− h∗)− u1 (W ∗, 0) .

The numerator in Eq. (23) corresponds to the expected net gain in marginal utility of consumption
from having additional income, while holding constant both utility and the proposed risk reduction.
Weak financial risk aversion implies that both the first term and the third term are positive. The
second term is positive due to a compound effect of weak financial risk aversion and correlation
affinity, while the last two terms are positive because of weak health risk aversion.

As all five terms in the numerator are positive, WTPmust be increasing in wealth. For simplicity,
we may re-express equation (23) as:

∂C∗

∂W
= 1− EU1(W,H)

EU1(W ∗, H∗) ≥ 0. (24)

Hence, under our assumptions, the derivative of WTP with respect to income is positive and
bounded above by one. This income effect arises because individuals have less wealth after paying
for the risk reduction.

Note that regrouping all terms with a star in the numerator of Eq. (20) yields the negative of
Eq. (3). We can thus establish a theoretical link between the baseline risk (sick-anyway) effect, the
income effect, and the MWTP for a reduction in incidence risk by inserting Eq. (3) into Eq. (20),
which yields:

∂C∗

∂q
= u(W, 1)− [(1− p)u(W, 1− h) + pu(W, 0)]

EU1(W ∗, H∗) − ∂C∗

∂θq
. (25)

Given that the MWTP for an infinitesimally small incidence risk reduction is equal to:

∂C0
∂θq

= u(W, 1)− [(1− p)u(W, 1− h) + pu(W, 0)]
EU1(W,H) > 0, (26)

multiplying and dividing the first term on the RHS of Eq. (25) by EU1(W,H) and inserting
equations (24) and (26) into (25) yields

∂C∗

∂q
= ∂C0
∂θq

(
1− ∂C∗

∂W

)
− ∂C∗

∂θq
.
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Finally, by isolating ∂C0
∂θq

, we obtain:

V SC ≡ ∂C0
∂θq

=
∂C∗

∂q + ∂C∗

∂θq

1− ∂C∗

∂W

> 0. (27)

Correcting for the baseline risk (sick-anyway) effect, ∂C∗

∂q , and the income effect, 1− ∂C∗

∂W , thus yields
the exact V SC.

Appendix D – Allowing for Rank Dependent Utility.

VSL and other willingness-to-pay based welfare metrics are based on the assumption of linear
probabilities. In this appendix, we relax this assumption and presume a common weighting function
f [.] for mortality risks. To ease the exposition, we will assume that conditional mortality risk equals
1—so that contracting the disease is equivalent to dying from it. The rank-dependent counterpart
of the expected utility function is given by:

RD[U(W,H)] = f [1− q]u (W, 1) + (1− f [1− q])u (W, 0) .

Similarly, we derive WTP metrics for improvements in q. In particular, we can re-write Eq. (1) as:

f [1− q + θ]u
(
W − Cf , 1

)
+ (1− f [1− q + θ])u

(
W − Cf , 0

)
= RD[U(W,H)].

where Cf = C(W,h, θ, q, f [.]) denotes the compensating variation for a reduction in the incidence
rate q of the target disease by an amount θq in the presence of probability weighting through the
function f [.].

The corresponding marginal WTP under probability weighting is:

∂Cf∗

∂θ
= g′[1− q + θq](u(W − Cf , 1)− u(W − Cf , 0))

RD[U1(W − Cf , H)] > 0.

As under EU, the link between the baseline risk effect, the income effect and the MWTP for a re-
duction in incidence risk can be established by analyzing the relationship between the compensating
variation and the baseline risk as follow:

∂Cf∗

∂q
= g′[1− q](u(W, 1)− u(W, 0)) + g′[1− q + θ](u(W − Cf , 1)− u(W − Cf , 0))

RD[U1(W − Cf , H)] ,

∂Cf∗

∂q
= g′[1− q](u(W, 1)− u(W, 0)))

RD[U1(W − Cf , H)] − ∂Cf∗

∂θ

∂Cf∗

∂q
= g′[1− q](u(W, 1)− u(W, 0)))

RD[U1(W − Cf , H)]
RD[U1(W,H)]
RD[U1(W,H)] −

∂Cf∗

∂θ
.
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which can be re-expressed as,

∂Cf∗

∂q
= ∂Cfo

∂θ

(
1− ∂Cf∗

∂W

)
− ∂Cf∗

∂θ
.

isolating the marginal WTP under probability weighting when θ = 0, yields:

∂Cfo
∂θ

=
∂Cf∗

∂q + ∂Cf∗

∂θ(
1− ∂Cf∗

∂W

) .
We conclude that our proposed method to estimate VSL is robust to probability weighting, even
though VSL itself is not robust to probability weighting.

Appendix E – Allowing for endogenous risk control.

Assume that the probability of survival is determined by an individual’s expenditure on safety
improvement I, and an external expenditure G, and can be written as S(I,G). The external
input G is exogenous to the individual, but may not be exogenous to society. The final survival
probability is endogenous to the individual. This formulation allows for offsetting behavior (Liu &
Neilson, 2006). Let S1(I,G) and S2(I,G) be the first order partial derivative of S with respect to
I and G, respectively. Since both expenditures improve the chances of survival, S1(I,G) > 0 and
S2(I,G) > 0. Assuming that the utility from bequest can be normalized to zero, and the individual
survives in perfect quality of life, the individual chooses the safety-improving expenditure I to
maximize expected utility:

S(I,G)u (W − I) .

As in Liu and Neilson (2006), the first order condition yielding the optimal safety investment is
given by:

u (W − I)
S(I,G)u1 (W − I) = 1

S1(I,G) . (28)

Let I(W,G) be the individual’s expenditure that solves Eq. (28). At equilibrium, the individual’s
expected utility is:

EU(W,G) = S(I(W,G), G)u (W − I(W,G)) .

Note that Eq. (28) and the resulting equilibrium expected utility holds for any W and G. Consider
now that the individual is offered an opportunity to improve the exogenous expenditure G by θ.
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The compensating variation C for the improvement in survival probability is given by:

S(I(W − C,G+ θ), G+ θ)u (W − I(W − C,G+ θ)− C) = EU(W,G).

where I(W − C,G + θ) is the individual’s new expenditure on risk control/safety improvement in
equilibrium, and C denotes the compensating variation for an improvement in the survival rate.
Taking the derivative with respect to θ and re-arranging the terms to isolate the marginal WTP
and inserting Eq. (28) yields:

∂C∗

∂θ
= S2(I(W − C,G+ θ), G+ θ)
S1(I(W − C,G+ θ), G+ θ) > 0.

The marginal WTP to improve the survival probability by increasing the exogenous investment
equals the marginal rate of transformation between private safety improvements and exogenous
safety improvements.

Again, the link between the baseline risk effect, the income effect and the MWTP for a reduction
in incidence risk can be established by analyzing the relationship between the compensating variation
and the exogenous expenditure as follows:

∂C∗

∂G
= ∂C0

∂θ

(
1− ∂C∗

∂W

)
− ∂C∗

∂θ
.

Isolating the marginal WTP at θ = 0 yields:

∂C0
∂θ

=
∂C∗

∂G + ∂C∗

∂θ(
1− ∂C∗

∂W

) ,
where

∂C0
∂θ

= S2(I,G)
S1(I,G) > 0,

and

∂C∗

∂W
= 1− S(I(W,G)u1 (W − I(W,G))

S(I(W − C,G+ θ), G+ θ)u1 (W − I(W − C,G+ θ)) > 0.
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