Benjamin Bouvier 
  
Julien Marzat 
  
A Comparison of Two Decoupled Methods for Simultaneous Multiple Robots Path Planning

Keywords: Multi-robot motion coordination, Decoupled path planning, Prioritized Planning, Fixed-Path Coordination

Two path planning algorithms dedicated to multiple robots driving simultaneously in a cluttered workspace are defined and compared in this paper. Each robot is assigned an initial position, a goal position and a constant reference speed, and has to drive without colliding with its teammates and the environment. Both approaches are based on an implementation of the widely known A* algorithm and belong to the family of decoupled path planning methods, since robots are considered sequentially and with a predefined priority ranking. The first algorithm is called Prioritized Planning (PP), where the path of each robot is computed sequentially while taking into account static obstacles as well as the previously-planned robot positions. The second algorithm, called Fixed-Path Coordination (FPC), follows a two-step approach: (i) obtaining A* paths of all robots taking into account static obstacles only; (ii) applying a velocity-tuning procedure so that lower-priority robots can stop and restart along their paths to let the higher-priority robots move freely. Both algorithms have been applied on a variety of test-cases through a Monte Carlo setup to evaluate and compare their performances.

Introduction

Coordinated path planning of a group of mobile robots is a major requirement for many cooperative tasks in interaction with a complex environment (e.g. unknown, cluttered, dynamical). A high-level description of the problems related to either collaborative or competitive robot coordination can be found in [START_REF] Yan | A survey and analysis of multi-robot coordination[END_REF]. This coordination implies an inherent conflict of resources: in path planning the conflict is mostly a space conflict because the robots move around each other, but it may also be a conflict due to limited communication channels or a conflict of payload if various robots manipulate the same one. Task allocation is a problem in itself too, as well as the option of leaving the fleet management to a centralized authority or allowing every robot to take decisions on their own. It is considered here that the allocation of goal positions has already been performed and that the problem consists in coordinating the robots' simultaneous motion in the workspace. When managing more than one robot, a solution can consist in applying motion coordination [START_REF] Parker | Path planning and motion coordination in multiple mobile robot teams[END_REF] i.e. coordinating the robots online, as they are moving, to prevent collisions from occurring. This can be achieved either through a centralized authority sending commands to the robots (centralized approach) or with the robots communicating with each other based on their future displacements (decentralized approach). Motion coordination can result in various solutions: (i) a system of traffic rules; (ii) reactive approaches which can be based on potential fields with attractive forces towards goals and repulsive ones to stay away from obstacles; (iii) the management of a swarm or fleet with a common objective. For example, coordinated control approaches have been previously used for several applications that can be addressed by a fleet of autonomous aerial or terrestrial robots [START_REF] Hoy | Algorithms for collision-free navigation of mobile robots in complex cluttered environments: a survey[END_REF]. To limit computational complexity, the online search of a model predictive control input for each vehicle can be reduced to a discretized set while still taking into account the predicted motion of the other robots, as in [START_REF] Bertrand | MPC strategies for cooperative guidance of autonomous vehicles[END_REF]. However this strategy can be limited for autonomous robots moving freely in a very cluttered environment, where in some configurations no feasible solution can be found. This is why graph-based and sampling-based path planning methods should also be considered for simultaneous robot coordination [START_REF] Lavalle | Planning algorithms[END_REF][START_REF] Švestka | Coordinated path planning for multiple robots[END_REF]. In the latter framework, a simple approach could consist in considering only the current positions of the other robots when computing the path of each one, but collision avoidance with the other robots is then not guaranteed. The objective of the present work is to study path planning methods that can be applied to multiple robots moving simultaneously in the same cluttered environment, with an explicit handling of their motion interaction. For this purpose two decoupled sampling-based path planning algorithms derived from the A* procedure are described in Section 3, and their performances are evaluated in a Monte Carlo setup with a combination of map sizes, rate of static obstacles and number of robots (see Section 4).

Related Work

Simultaneous motion planning for multiple robots comes with various difficulties, such as the numerical capacity of planning for a high number of robots or large workspaces, the consideration of robot dynamics as well as sensing constraints, or the transition from numerical simulation to real robots experiments [START_REF] Parker | Path planning and motion coordination in multiple mobile robot teams[END_REF]. To deal with this variety of possible issues, several motion planning paradigms have been derived as described in the reference textbook [START_REF] Lavalle | Planning algorithms[END_REF], where in particular algorithms can be classified as either sampling-based or combinatorial methods. In Sampling-based motion planning, the idea is to sample the free space to conduct the search for a path relying on a collision detection module, hence the explicit construction of the obstacle space is avoided. In Combinatorial motion planning, also referred to as exact methods, paths are computed in the continuous configuration space without resorting to sampling or discretization. Two main categories emerge from the literature to address simultaneous path planning, namely coupled approaches [START_REF] Švestka | Coordinated path planning for multiple robots[END_REF][START_REF] Yu | Planning optimal paths for multiple robots on graphs[END_REF][START_REF] Lavalle | Optimal motion planning for multiple robots having independent goals[END_REF] and decoupled approaches [START_REF] Lavalle | Optimal motion planning for multiple robots having independent goals[END_REF][START_REF] Van Den | Prioritized motion planning for multiple robots[END_REF][START_REF] Zheng | Priority based dynamic multiple robot path planning[END_REF][START_REF] Kala | Rapidly exploring random graphs: motion planning of multiple mobile robots[END_REF]. In coupled planning, the problem can be seen as handling a single robot which concatenates the states of the actually different robots. This increases the dimension of the configuration space and complexity is known to rise exponentially in this number. Classical algorithms may then fail to find a solution or require too much time (this has been verified in our evaluations, see Section 4.1). In decoupled path planning, two subcategories can be considered [START_REF] Van Den Berg | Centralized path planning for multiple robots: Optimal decoupling into sequential plans[END_REF]:

1. Robots are treated one by one. For every one of them, a path is calculated considering all other robots as moving obstacles on top of the already-existing static obstacles.

Two steps are required, namely: a planning algorithm and a prioritization rule. The planning algorithm is applied to obtain the path of each robot to its respective goal, and then prioritization should favor those with the highest cost (depending on time, distance, energy, etc.). For instance, robots with the least cost could be penalized by having to bypass or make detours. 2. Each robot has its own path, calculated independently of the others with only the static obstacles taken into account. Then a coordination diagram should plan the displacements to avoid collisions. Some authors mention a second phase of velocity tuning (e.g. in [START_REF] Sánchez | On delaying collision checking in PRM planning: Application to multi-robot coordination[END_REF]) to coordinate robots in parallel: the relative speed between two robots can thus be tuned in the portion of path subject to a risk of collision.

Finally, it is possible to build hybrid approaches [START_REF] Van Den Berg | Centralized path planning for multiple robots: Optimal decoupling into sequential plans[END_REF] which rely on both coupled and decoupled search. The idea is to divide the robots into subgroups depending on their level of dependency or degree of priority (the constitution of such groups is in itself a task). For each subgroup, which has a smaller configuration space, a coupled approach is applied. The groups are treated in a decoupled way with respect to one another. The authors in [START_REF] Saha | Implan: Scalable incremental motion planning for multi-robot systems[END_REF] proposed a planning algorithm based on satisfiability modulo theory, where suboptimal paths can be accepted if, in turn, this makes the problem solvable.

Coupled or hybrid approaches however still report computational loads that are prohibitive for embedded applications for realistic numbers of robots and workspace dimensions. It has thus been chosen to focus on decoupled planning methods in this work, since this category of approaches has the capacity of decomposing the problem into simpler ones, and the literature shows that feasible solutions can be found even when the number of robots, the workspace dimension or the degrees of freedom increase. In the context of managing intersections for autonomous vehicles, a priority-based coordination framework which combines a high-level priority graph with a feedback control law has been proposed in [START_REF] Gregoire | Priority-based coordination of mobile robots[END_REF]. Under this framework, the proposed overall coordination system is proven to be collision-free and deadlock-free. In [START_REF] Čáp | Prioritized planning algorithms for trajectory coordination of multiple mobile robots[END_REF], a prioritized planning approach has been defined with a formal guarantee to provide a solution under strict conditions regarding the workspace and the robots initial conditions. An asynchronous decentralized implementation of this strategy has also been proposed and demonstrated reliable results via a simulation evaluation on real-world maps. Similar approaches relying on priority-based planning have also been proposed in [START_REF] Van Den | Prioritized motion planning for multiple robots[END_REF][START_REF] Zheng | Priority based dynamic multiple robot path planning[END_REF]. The main ideas for coordinating the speed of robots having independent goals along predefined paths have been presented in [START_REF] Lavalle | Optimal motion planning for multiple robots having independent goals[END_REF]. The so-called coordination diagram based on a bounding box representation of the obstacles has then been introduced in [START_REF] Siméon | Path coordination for multiple mobile robots: A resolution-complete algorithm[END_REF] to tackle the motion coordination of several robots moving along fixed independent paths while avoiding mutual collisions. Multi-robot path planning continues to be an active area of research with many different approaches proposed in the past few years, based e.g. on reinforcement learning [START_REF] Bae | Multi-robot path planning method using reinforcement learning[END_REF][START_REF] Wen | A multi-robot path-planning algorithm for autonomous navigation using meta-reinforcement learning based on transfer learning[END_REF], particle swarm optimization [START_REF] Das | Multi-robot path planning using improved particle swarm optimization algorithm through novel evolutionary operators[END_REF][START_REF] Tang | Multi-robot path planning using an improved selfadaptive particle swarm optimization[END_REF], graph neural networks [START_REF] Li | Graph neural networks for decentralized multi-robot path planning[END_REF] and with the design of novel heuristics [START_REF] Han | Effective heuristics for multi-robot path planning in warehouse environments[END_REF].

Several decoupled multi-robot coordination strategies have been defined and evaluated in these previous works, relying either on priority-based successive planning or on velocity adjustment along fixed paths. Two such decoupled algorithms are defined in the present paper, one from each category, namely Prioritized Planning (PP) and Fixed-Path Coordination (FPC). They are both derived from the same A* framework with practical implementations, which are detailed in pseudocodes. This allows to compare fairly the two approaches in the same simulation setup using extensive Monte-Carlo evaluations on randomly-defined workspace configurations, and as a result provide recommendations for the motion coordination of multiple robots having independent goals in cluttered environments.

Planning Algorithms

Problem formulation

The problem is illustrated in Figure 1. A two-dimensional workspace 𝑊 = R 2 is considered (but the methods can easily generalize to higher-dimension workspaces). This workspace can be separated into two parts: a first part where robots are free to move, 𝐶 𝑓 𝑟 𝑒𝑒 , and a second one occupied by static obstacles, 𝐶 𝑜𝑏𝑠 , where robots are not allowed to drive. A robot 𝐴 can undergo various transformations which result in reaching a particular configuration 𝑞 ∈ 𝑊. An obstacle-free configuration such that 𝑞 ∈ 𝐶 𝑓 𝑟 𝑒𝑒 is considered valid, while a collision configuration 𝑞 ∈ 𝐶 𝑜𝑏𝑠 is invalid. Let us now consider we have 𝑚 robots, 𝑚 ∈ ⟦2; +∞⟦. Every robot 𝐴 𝑖 , 𝑖 ∈ ⟦1; 𝑚⟧, is assigned an initial configuration, 𝑞 𝑖 𝐼 , and a final configuration or goal, 𝑞 𝑖 𝐺 , defined in 𝐶 𝑓 𝑟 𝑒𝑒 . Contrary to the single-robot case where it is sufficient to consider robot-obstacle collisions, robot-robot collisions should be taken into account. Robots are moving with respect to each other, therefore a given robot 𝐴 𝑖 should consider all the other robots 𝐴 𝑗 , 𝑗 ≠ 𝑖, as moving obstacles. The set of configurations such that robot 𝐴 𝑖 collides with robot 𝐴 𝑗 , 𝑗 ≠ 𝑖, is defined as 𝐶 𝑖, 𝑗 𝑚𝑜𝑣 𝑜𝑏𝑠 . 𝑚𝑜𝑣 𝑜𝑏𝑠 for all 𝑗 ≠ 𝑖. The notion of moving obstacles requires to have a parameter that can be used to determine where a given robot is located at some instant. If all robots have the same speed, the cumulative distance could be used and 𝑠 would be sufficient. However, for robots with different speeds 𝑣 𝑖 , time should be considered explicitly in the problem definition. Therefore, a date is associated to every configuration of the path. Instead of looking for the parameterized path 𝜏 𝑖 defined previously, we now look for a trajectory 𝜙 𝑖 = 𝜏 𝑖 • 𝜎 𝑖 considering a timing function defined as 𝜎 𝑖 : {𝑇 → [0; 1] ; 𝑡 ↦ → 𝑠}, where 𝑡 denotes time.

Decoupled Prioritized Planning (PP)

The first algorithm is a decoupled two-dimensional algorithm derived from A* using prioritization to sequentially obtain the path of every robot without collisions. The method requires that the 𝑚 robots have been ranked from highest to lowest priority. For the first one, 𝐴 1 , a standard A* path is calculated from its initial position to its goal position, taking into account the static obstacles present in the workspace. Then, the second robot is treated: besides static obstacles, 𝐴 2 has to consider the previously computed motion of robot 𝐴 1 along its path with a given constant speed 𝑣 1 . In case of collision with 𝐴 1 at a given node, 𝐴 2 will have to reach another configuration, therefore bypassing 𝐴 1 which has priority. This procedure is applied iteratively for the next robots until all have been treated. The idea is illustrated in Figure 2. In this algorithm, every robot is assumed to drive at its own constant nonzero speed, meaning that a robot is unable to stop. All it can do is bypass, which requires to have sufficient free space around the static and moving obstacles. Each robot is assigned a vector of dates associated to its A* path, given its nominal velocity 𝑣 𝑖 specified by the user. For robot 𝐴 𝑖 , it will allow to interpolate the positions of all higher-priority robots 𝐴 𝑗 , 1 ≤ 𝑗 < 𝑖, to detect possible collisions. Collisions are defined as follows: the current robot 𝐴 𝑖 is considered as a point, while all the robots with higher priorities 𝐴 𝑗 , 1 ≤ 𝑗 < 𝑖, are considered to occupy a disk of parameterized safety radius centered at the robot position at the current date. If 𝐴 𝑖 finds itself inside or on the outer circle of any disk representing 𝐴 𝑗 , a collision is detected and the corresponding node is declared unfeasible. The pseudocode of the algorithm is given in Algorithm 1. It globally consists in a loop with a modified A* procedure applied for each robot (modifications are indicated in blue). The dates in the list 𝑡𝑖𝑚𝑒_𝑣𝑒𝑐 (which is of same length as the heuristic scores 𝑔 𝑠𝑐𝑜𝑟 𝑒𝑠 ) are defined for the nodes present either in the 𝑐𝑙𝑜𝑠𝑒𝑑𝑆𝑒𝑡 (which progressively contains the path) or in the 𝑜 𝑝𝑒𝑛𝑆𝑒𝑡 (which contains nodes considered to be part of the path but eventually not selected). The considered heuristic dist(𝑛𝑏𝑔, 𝑛) is based on the Euclidean distance. In the end, a trajectory ( 𝑝𝑎𝑡ℎ 𝑖 ; 𝑑𝑎𝑡𝑒𝑠 𝑖 ) is obtained for each robot 𝑖. If the 𝑤ℎ𝑖𝑙𝑒 loop is exited with 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 𝑓 𝑎𝑙𝑠𝑒, the path is extracted from the node of minimal heuristic value instead of 𝑞 𝑖 𝐺 , therefore an incomplete path is obtained to determine how far the robot can go before having to stop.

The core of the multi-robot layer lies in the robot-robot collision detection. When managing static obstacles, it is sufficient and straightforward to check if the intended configuration is inside or outside 𝐶 𝑜𝑏𝑠 . When it comes to moving obstacles (higherpriority robots), one has to consider the relative speed between the robot and the obstacle as well as the obstacle width. Collision checks are performed every 𝑑𝑇 seconds, given the relative speed vector and the obstacle width. When moving from a current node position 𝑛 to the intended one 𝑛𝑔𝑏, the robot does not change its direction but the moving obstacle might. As a consequence, care should be taken in selecting the dates and in calculating the relative speed vector. Moreover, collision checks are performed with all robots of higher priority (the sweeping is nevertheless stopped when a collision is detected because one is sufficient). All these additional calculations can be costly so they are run only if a static obstacle has not already been detected. Finally, a post-check is conducted on the obtained paths and dates such that the coordination is considered to have failed in the particular case where a lower-priority robot has reached its destination and is blocking the path of a higher-priority robot. Algorithm 1: Prioritized Planning (PP) pseudocode

Decoupled Fixed-Path Coordination (FPC)

The second algorithm is also decoupled, two-dimensional and A*-based. It differs from the PP algorithm in that it allows robots to stop on their paths and resume their motions. Therefore, robot-robot collisions are not avoided by bypassing but simply by stopping and starting again (see Figure 3a), which is one possible choice for modulating the robot velocities along their trajectories [START_REF] Lavalle | Planning algorithms[END_REF]. First, an A* path is obtained independently for each of the 𝑚 robots by considering static obstacles only (referred to as single-robot planning). The input requirements are the same as the previous algorithm: the robots should be ranked from highest to lowest priority and each is assigned a nominal velocity 𝑣 𝑖 . A speed profile is then initialized for each robot along the A* paths. The next step consists in tuning these velocity profiles to ensure collision-free paths, which is achieved by inserting pauses every time a robotrobot collision is detected. Note that these breaks can be inserted anywhere in the path, which means not necessarily on the nodes of the A* grid. If a collision is detected (with the same mechanism as in PP), the robot with the lowest priority will pause as long as necessary for the higher-priority robots to go past. Another less conservative option would be to optimize the robot motions given some global criterion to select which robot should stop for given collision conditions, which might result in different prioritization rules for similar collision configurations at different time instants.

In the PP algorithm, a list of dates has been added as additional information to handle collision-checking. The same applies in this second algorithm, with the addition of a binary motion command state associated to each date, to determine if the robot is driving or waiting (see Figure 3b). Another difference with Algorithm 1 is the calculation of 𝑑𝑇. In PP it is calculated from the relative speed vector between two given robots at a certain date, while a unique 𝑑𝑇 is now used in FPC for all couples of robots on the basis of the highest possible relative speed. The pseudocode is given in Algorithm 2. Every time a collision is detected, a pause is inserted, which requires to check again the collisions of all pairs of robots at the date of collision, in case the pause insertion would induce a collision that did not exist before. Also, when two robots are moving exactly in opposite directions, that stop may need to be inserted several times 𝑑𝑇 before the collision date, which requires going backwards in time to check all pairs and can turn out to be costly. Although not explicit in Algorithm 2, the main 𝑤ℎ𝑖𝑙𝑒 loop (line 7) can be interrupted on a maximum number of collision checks in the sub-routines, which indicates a likely absence of solution and is thus considered as a failure to find coordinated paths. 

Numerical Experiments

Extensive simulations have been run based on the following setup. The workspace is a bounded subset of R 2 with translational degrees of freedom. As shown in Figure 4a, the free space is sampled at regularly-spaced points (in green) which form a grid with at most eight neighbors per node. Robots move along the edges with the aim of traveling from their starting positions (black) to their final ones (red). The number indicated next to every node is the date at which the robot reaches the corresponding position. 

Illustrative test cases

Coupled planning A coupled A * strategy has been considered as a baseline, where all the positions of the robots in the fleet were aggregated into a single state vector. However the combinatorial complexity grows exponentially with the number of nodes and the number of robots, making it impractical for the simultaneous path planning of teams with more than two or three robots. This has been verified on a simple example with around 100 nodes where computing the paths takes a few milliseconds for one robot, several seconds for two robots, and several hours for three robots. Therefore, the focus has been put on the comparison of the proposed decoupled algorithms.

Decoupled methods As an illustrative example, a simple test case for three robots with different velocities is presented in Figures 4b to 4d. Both decoupled algorithms are successful in coordinating the three agents. With PP, robot 𝐴 2 finds an alternative node to avoid a collision with 𝐴 1 at node (45; 25). With FPC, robots 𝐴 2 and 𝐴 3 stop once and twice respectively, increasing their motion duration by 16 and 89% compared to the constant-speed travel time of the initial independent A* paths.

Monte Carlo simulations

In order to evaluate and compare the algorithms performances, a Monte Carlo simulation was set up. It consisted in (i) creating random scenarios (following uniform distributions) as two-dimensional maps with randomly-placed static obstacles and random initial and final configurations of robots and (ii) applying the two algorithms. The following parameters are selected for each experiment: (a) a number of nodes (related to the map size), (b) a rate of static obstacles and (c) a number of robots. The static obstacles are placed so that a particular percentage of the map (called occupancy rate) is covered with them, e.g. 10% means that 10% of the nodes are occupied by static obstacles. Even though both algorithms allow the robots to have different nominal speeds, they were all set to the same value in these evaluations for a fair comparison since path lengths and travel times are handled differently by PP and FPC. Two values were respectively chosen for the map size (about 10 3 and 10 4 nodes), the occupancy rate (10 and 30%) and the number of robots (5 and 10), and all eight combinations evaluated. Any map where single-robot A* planning failed was dismissed, since that means at least one destination cannot be reached. The expression single-robot planning refers to the superposition of the paths obtained for every robot considering only the static obstacles and ignoring the other agents. Two main metrics were computed for all the test cases and algorithms: the success rate and the increase of travel duration with respect to the single-robot reference (see Table 1). Rate of planning success Single-robot success refers to cases where independent single-robot planning happens to generate no collisions with constant-speed travel. As can be seen in Table 1 (line 1), the success rates ranging from 10 to 90% decrease by 4 to 15 points when the occupancy rate is tripled and by 26 to 67 points when the number of robots is doubled. Available nodes become progressively less numerous so the probability of path overlap and/or crowded areas rises, which produces more collisions. On the contrary, growing the number of nodes has a positive impact on the success rate because more free space becomes available: paths are less likely to overlap and, even if they do, robots are less likely to take these common portions at the same dates.

Considering now the cases where single-robot planning fails and multi-robot planning becomes necessary, we may compare the efficiency of PP and FPC (lines 2-3 in Table 1, also shown in Figure 5). It should be noted that this metric is calculated only on the subset of single-robot failures. PP has a success rate between 64 and 96% and FPC from 51 to 81%. PP always performs better than FPC because FPC fails when an initial or final position is on another robot's path. A goal position acts as an additional static obstacle from the perspective of a lower-priority robot; an initial position is also seen as a static obstacle but by a higher-priority robot because this is the only position that cannot be freed by holding up the robot somewhere else in the map. In a nutshell, FPC handles path overlaps less efficiently. A check on initial and final positions as well as priority reordering could help avoiding such cases. Finally, the number of nodes has a positive impact on the planning status because it offers more possibilities for PP to find alternative paths and because FPC is less affected by the previously described issues.

Travel duration increase It is worth reminding the difference between PP and FPC path alteration. PP will change portions of paths to bypass higher-priority robots while driving continuously so both travel duration and distance may increase. FPC, however, can make smaller-priority robots wait but cannot make them divert from single-robot paths, which means distance remains unchanged. This is why Table 1 only mentions travel duration increase. Path lengthening would be zero for FPC and equal to duration increase for PP because all speeds are equal. The metric is computed only on multi-robot configurations for which the paths were successfully modified by the corresponding algorithm. The results show that FPC delays the robots much more than PP, with 18 to 57% of time increase on average compared to less than 6.1% for the smaller map and always less than 1% on the bigger one. In many cases, bypassing a robot has a limited impact on arrival time because various slightly different paths (and sometimes ones of exact same length) lead to the goal. If two robots drive in opposite directions, one may simply shift to a parallel lane with PP whereas in FPC the smaller-priority agent will have to stop to give way.

Conclusion

Two path planning algorithms dedicated to multiple robots driving simultaneously in a cluttered workspace have been defined as variations of A* procedures and compared in this paper. Both are based on a predefined order of priority and assumptions of constant nominal velocities. The first one named Prioritized Planning (PP) consists in bypassing higher-priority agents while continuously driving. The second one named Fixed-Path Coordination (FPC) handles collision risks along fixed paths by inserting pauses in order to let higher-priority robots move past. The Monte Carlo simulation setup showed that directly superimposing single-robot planning paths can be successful in a number of configurations with limited occupancy rates and fleet sizes. This could thus be a first step when addressing a multi-robot coordination problem, where the new strategies can then be called upon when this straightforward approach has failed. PP showed good performances thanks to its flexibility in adapting the paths by following alternative nodes. Satisfactory success rates and very limited travel duration and distance increases were obtained. The proposed FPC version proved less efficient because of the incapacity of diverting from the initial single-robot paths. This strategy may only prove more efficient in extremely cluttered environments where alternative nodes would be harder to find for PP. Most of the FPC failed cases were due to initial and final positions conflicts, as they may prevent other robots from reaching their goals. Moreover, although distance remains minimal with FPC, travel duration grows significantly more than with PP. Free space sampling maximization is of interest to improve the success rate of both singleand multi-robot algorithms.

Future work directions include the evaluation of priority shuffles for both PP and FPC algorithms and their extension to higher-dimensional workspaces, which will allow to handle heterogeneous teams of robots. Additional comparison criteria can also be considered, such as energy efficiency. Finally, the deployment on embedded computers of real-world robots and the interaction with actual perception and control modules would also make it possible to estimate the computational load and performances in full autonomy loops on the field.
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 1 Fig. 1: Multiple robots path planning: robots 𝐴 1 and 𝐴 2 drive from their initial to final configurations while avoiding two static obstacles and ensuring they do not collide. The path planning problem consists in finding, for every robot 𝐴 𝑖 , a continuous path 𝜏 𝑖 : [0; 1] → 𝐶 𝑓 𝑟 𝑒𝑒 ; 𝑠 ↦ → 𝜏 𝑖 (𝑠) where 𝑠 parameterizes the path such that 𝜏(0) = 𝑞 𝑖 𝐼
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 2 Fig. 2: PP Algorithm: 𝐴 2 's path is obtained by bypassing the higher-priority robot 𝐴 1 .
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 3 Fig.3: 𝐴 2 's trajectory is obtained by pausing until higher-priority robot 𝐴 1 has gone by.
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 4 Fig. 4: Illustrative test case with 3 robots successfully solved by PP (b) and FPC (c-d). Arrival times are indicated around the nodes and motion command profiles (d) show the stop-and-go behaviour of FPC.
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 5 Fig. 5: PP and FPC success rates show little dependency on occupancy rate
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  Initialize 𝑐𝑙𝑜𝑠𝑒𝑑𝑆𝑒𝑡 to empty and 𝑜 𝑝𝑒𝑛𝑆𝑒𝑡 to the node containing 𝑞 𝑖 𝐼 ;

1 foreach robot 𝑖 ∈ ⟦1; 𝑚⟧ [ranked from highest to lowest priority] do 2 3 Initialize lists 𝑔 𝑠𝑐𝑜𝑟 𝑒𝑠 (cumulated distances from 𝑞 𝑖 𝐼 ) and 𝑡𝑖𝑚𝑒_𝑣𝑒𝑐 (time instants); while 𝑜 𝑝𝑒𝑛𝑆𝑒𝑡 not empty do 4 Find node 𝑛 in 𝑜 𝑝𝑒𝑛𝑆𝑒𝑡 with minimal heuristic value 𝑚ℎ𝑣; 5 if 𝑚ℎ𝑣 = ∞ then Assign 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 false; Break Loop; end; 6 if 𝑛 = 𝑞 𝑖 𝐺 then Assign 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 true; Break Loop; end; 7 Add 𝑛 in 𝑐𝑙𝑜𝑠𝑒𝑑𝑆𝑒𝑡; Remove 𝑛 from 𝑜 𝑝𝑒𝑛𝑆𝑒𝑡; 8 for all neighbors 𝑛𝑔𝑏 of "𝑛" inside the workspace do 9 if 𝑛𝑔𝑏 ∉ 𝑐𝑙𝑜𝑠𝑒𝑑𝑆𝑒𝑡 then 10 Compute candidate cost 𝑎𝑙𝑡 𝑔 𝑠𝑐𝑜𝑟 𝑒𝑠 (𝑛) + dist(𝑛𝑔𝑏, 𝑛); 11 if "𝑛𝑔𝑏" collides with a static obstacle or with previous robots on {𝑝𝑎𝑡ℎ 𝑗 , 𝑑𝑎𝑡𝑒𝑠 𝑗 , ∀ 𝑗 < 𝑖} then 12 𝑎𝑙𝑡 ∞; 13 end 14 if 𝑎𝑙𝑡 < 𝑔 𝑠𝑐𝑜𝑟 𝑒𝑠 (𝑛𝑔𝑏) then Update 𝑔 𝑠𝑐𝑜𝑟 𝑒𝑠 , 𝑡𝑖𝑚𝑒_𝑣𝑒𝑐 if 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 𝑡𝑟𝑢𝑒 then 19 Get full 𝑝𝑎𝑡ℎ 𝑖 from start 𝑞 𝑖 𝐼 to goal 𝑞 𝑖 𝐺 and vector 𝑑𝑎𝑡𝑒𝑠 𝑖 from 𝑡𝑖𝑚𝑒_𝑣𝑒𝑐; 20 else 21 Get incomplete 𝑝𝑎𝑡ℎ 𝑖 and vector 𝑑𝑎𝑡𝑒𝑠 𝑖 from start to best reachable node; 22 end 23 Return 𝑝𝑎𝑡ℎ 𝑖 and 𝑑𝑎𝑡𝑒𝑠 𝑖 ; 24 end

31 end 32 end 33

  𝑝𝑎𝑡ℎ 𝑖 (with static obstacles only), initial 𝑑𝑎𝑡𝑒𝑠 𝑖 and 𝑚𝑜𝑡𝑖𝑜𝑛 𝑖 vectors; Calculate 𝑑𝑇 given nominal speeds 𝑣 𝑖 , 𝑖 ∈ ⟦1, 𝑚⟧ ; 6 Initialize 𝐾 ceil(𝑇 𝑚𝑎𝑥 /𝑑𝑇) and time index 𝑘 ← 1; 7 while 𝑘 ≤ 𝐾 do Initialize boolean 𝑎𝑛𝑦_𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 with value 𝑡𝑟𝑢𝑒; Insert a stop at last date 𝑑 𝑠𝑡𝑜 𝑝 when a motion command had been applied before the collision, and update 𝑑𝑎𝑡𝑒𝑠 𝑠 and 𝑚𝑜𝑡𝑖𝑜𝑛 𝑠 ;

	1 for all robots 𝑖 ∈ ⟦1; 𝑚⟧ do
	2 get A* 3 end
	4 𝑇 𝑚𝑎𝑥	maximum final date among all robots;
	5 9	Initialize integer 𝑘_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 with value 𝑘;
	10	while 𝑎𝑛𝑦_𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 do
	11		Set 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 to 0;
	20		end
	21		end
	22		end
	23		end
	24		if 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 == 0 then 𝑎𝑛𝑦_𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑	𝑓 𝑎𝑙𝑠𝑒;
	25		end
	26	end	
	27	if 𝑘_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 < 𝑘 then

8 12 for robot 𝑟 from 1 to 𝑚 -1 [loop over priority robots] do 13 for robot 𝑠 from 𝑟 to 𝑚 [loop over subordinate robots] do 14 if robot '𝑠' collides with robot '𝑟' then 15 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1; 16 17 𝑘_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← min 𝑘_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒; ceil 𝑑 𝑠𝑡𝑜 𝑝 /𝑑𝑇 ; 18 if final date of robot '𝑠' > final date of all other robots then 19 𝐾 ← 𝐾 + 1; 28 𝑘 ← 𝑘_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒; [start over the collision check in the subinterval containing or ending by the smallest 𝑑 𝑠𝑡𝑜 𝑝 used in the latest collision while loop] 29 else 30 𝑘 ← 𝑘 + 1 [go to next time subinterval]; For all robots 𝑖 ∈ ⟦1; 𝑚⟧, return 𝑑𝑎𝑡𝑒𝑠 𝑖 , 𝑚𝑜𝑡𝑖𝑜𝑛 𝑖 (𝑝𝑎𝑡ℎ 𝑖 is fixed by design); Algorithm 2: Fixed-Path Coordination (FPC) pseudocode

Table 1 :

 1 Monte-Carlo comparison (mean results on 1000 runs) for PP and FPC algorithms

	Number of Nodes			9.10 2				10 4		
	Occupancy Rate		10%		30%		10%	30%
	Number of Robots	5	10	5	10	5	10	5	10
	Single-robot success rate (%) 72	22	57	9.3	90	64	86	49
	Multi-robot success rate (%)	PP	89	75	86	64	90	85	96	86
	(single-robot failures)	FPC	75	62	74	51	81	80	80	77
	Travel duration	PP	1.4	1.6	6.1	5.4	0.75	0.34	0.80	0.71
	increase (%)	FPC	45	41	48	57	18	33	32	
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