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Macroscopic Coupled Traffic and Energy Model
in Front-tracking and Cell-based Frameworks

Mladen Čičić and Carlos Canudas-de-Wit

Abstract

As the transportation and power systems grow ever more coupled, through the introduction of electric vehicles and their
connection with electricity markets, modelling the traffic and energy flows in a joint manner is becoming increasingly important.
To this end, we propose a generalized Coupled Traffic and Energy Model, which is able to model the dynamics of electric vehicle
state of charge, coupled with the dynamics of the traffic flow. We define and solve a Riemann-like problem for this model,
which enables the formulation of numerical schemes for finding the overall solution. Based on the application of front-tracking on
the model, which in the studied case provides exact solutions, we propose an extension to the Front-tracking Transition System
Model, extending it to include advected energy and ramp flows. This model is used to provide exact solutions, enabling us to
define two approximate cell-based models, which are significantly simpler to implement. The proposed models are then tested and
compared in an illustrative simulation example. The simulations show that the proposed Front-tracking Transition System Model
with advected Energy is able to reproduce diverse traffic scenarios with no loss of information, and that the cell-based models
provide a good approximation, simplifying the computations and implementation with little loss of details.

I. INTRODUCTION

The accelerating pace of electrification of road transport promises to contribute immensely towards the push for decar-
bonization of all economic sectors. With the share of battery electric vehicles (EVs) projected to reach 40% in the EU by 2030
[1], it is clear that this development will significantly reduce the transportation emissions. In addition to the transportation
sector, the massive arrival of EVs will have a large effect on the power sector, on one hand straining it due to their charging
power demands [2], [3], and on the other hand helping it by providing untapped energy storage capabilities, which will be
crucial in integrating a higher portion of renewable energy sources and reducing curtailment [4]. Given these developments,
it is highly likely that the coupling between the traffic and the power networks is going to significantly increase in the near
future. Therefore, a unified modelling framework, able to capture the dynamics of EV traffic, battery dynamics, charging, and
the broader power system, will be instrumental in efficiently managing the decarbonization of both the transportation and the
power sector.

A large portion of works from the power systems side has focused on coordinating EV charging and discharging, including
vehicle-to-grid (V2G), where EV batteries can be used to provide ancillary services [5], [6]. Some works look at the coupled
transportation-power system [7], [8], approaching the problem at network scale and using traffic assignment to model the
movement of EVs. However, since the focus of these works is on the power system side, they do not provide a detailed
description of EV dynamics outside of the charging stations. On the other side, there has recently been a lot of work done
on modelling individual EVs, including their battery dynamics. In [9], the power consumption (as well as recovery, through
regenerative braking) of EVs was modelled based on its propulsion and braking forces. Other factors, such as driving behaviour
and other ambient influences, are considered in [10]. These and similar power consumption models, together with data-driven
approaches including real-time traffic data [11] and microscopic simulations [12], have been used to forecast the EV battery
state evolution.

However, there is a literature gap on the macroscopic traffic modelling including EVs, describing coupled flows of EVs
and energy carried in their batteries. In [13] the authors used a second-order macroscopic traffic model to generate power
demand for charging, but only incorporate the information about the EV State of Charge (SoC) through splitting the vehicles
into discrete classes. In [14], a macroscopic electromobility model was proposed, coupling the EV traffic with their battery
dynamics, both while driving on the road, and while at a charging station. To the authors’ best knowledge, these two works
are the only ones so far that tackle the EV traffic and energy flows from the macroscopic modelling perspective. In this work,
we intend to extend and generalize the results of [14], in both the theoretical and the practical aspects.

First order traffic models have been studied in detail, and many efficient methods for finding their solutions in many
different situations have been proposed [15], [16]. Two of the most widely used numerical schemes for solving general partial
differential equations, Godunov scheme [17] and front-tracking [18], have been applied to the LWR model. The application
of the former results in the well-known Cell Transmission Model [19], whereas the second one has recently been used as
a basis for the Front-tracking Transition System Model (FTSM) [20]. Both of these schemes rely on solutions to Riemann
problems at discontinuities, whether in the traffic density (at the interface between cells or at fronts) or the flux function [21].
Discontinuities may also arise if additional constraints are imposed on the traffic density or flow due to e.g., moving bottlenecks
[22], or if there are on- or off-ramps [23].
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The GSOM (Generic second order modelling) [24] family of traffic models has seen active research lately. Apart from the
traffic density, these models include an additional advected property which may affect the traffic flow. Whereas the traffic
density dynamics are described by the well-known Lighthill-Whitham-Richards (LWR) model [25], [26], the dynamics and
nature of the additional property differ throughout the models of this family. A prominent example of these models is the
Aw-Rascle-Zhang (ARZ) model [27], [28], where the advected property is the traffic “pressure”. One particularly interesting
choice for the case studied here is to consider the SoC of EV traffic as the advected property, yielding the model proposed in
[14]. However, applying the two mentioned numerical schemes is much harder in the case of GSOM than in the case first-order
models. While it is possible to define Riemann solvers, Godunov schemes [29], and front-tracking [30] in some specific cases,
a general formulation, which would include all the additional elements required for modelling real-world road traffic, remains
difficult to devise. For the case of electromobility, which is studied here, the most relevant additional elements are flux and
battery discharge functions defined piecewise in space, and on- and off-ramp flows.

The main contribution of this work is in proposing and analysing a more general version of the Coupled Traffic and Energy
Model, first proposed in [14], allowing for generic continuous piecewise-linear flux functions, defining flux and battery discharge
functions piecewise in space, and introducing on- and off-ramp flows. We define and solve a generalization of the Riemann
problem, with ramp flows and possibly piecewise defined flux and battery discharge functions, and where the initial SoC data
is piecewise-linear instead of piecewise-constant as is standard. We then show that this Riemann-like problem solution is of
the same form as the initial data, with piecewise-constant traffic density and piecewise-linear SoC, and use this fact to extend
the FTSM [20] to include advected SoC and ramp flows. The extended model yields exact solutions in case all flux functions
are continuous and piecewise-linear, and we use it as the ground truth to develop and compare in simulations two cell-based
models, one based on the Godunov scheme, and one in which the SoC dynamics are simplified.

The rest of this paper is organized as follows. In Section II, we introduce the proposed coupled traffic and energy model,
and then in Section III discuss and solve the Riemann-like problem, which will be a key element of the proposed models.
Next, in Section IV, we discuss front-tracking solutions to the coupled traffic and energy model, and reformulate it in the
FTSM framework. The resulting extended model is then use to propose two cell-based discretizations in Section V, which are
then tested in simulations and compared to the exact solution in Section VI. Finally, in Section VII, we summarize the results
and outline some future work directions.

II. COUPLED TRAFFIC AND ENERGY MODEL

In this section, we derive and present the Coupled Traffic and Energy (CTE) model that captures the evolution of traffic
density, a conserved quantity, as well as an additional nonconserved quantity, which is advected by the vehicles in the traffic
flow and dissipated over time. In particular, the nonconserved quantity we study is the SoC of electric vehicles in traffic. We
first present the model of the traffic flow, and then augment it with the model of the SoC dynamics, which we assume to not
affect the traffic dynamics.

A. Traffic model

We model the dynamics of the traffic flow using the well-known LWR model [25], [26],
𝜕𝜌

𝜕𝑡
+

𝜕𝑞

𝜕𝑥
= 0, (1)

omitting arguments for readability, where 𝜌(𝑥, 𝑡) denotes the traffic density at position 𝑥 and time 𝑡, and 𝑞(𝑥, 𝑡) is the traffic
flow, given as a function of the traffic density,

𝑞(𝑥, 𝑡) = 𝑄(𝜌(𝑥, 𝑡)), (2)

where 𝑄(𝜌) is the flux function (also known as fundamental diagram) that describes this dependence. The speed of a vehicle
inside of the traffic flow at position 𝑥 and time 𝑡 is denoted 𝑣(𝑥, 𝑡), and given by

𝑣(𝑥, 𝑡) =
𝑞(𝑥, 𝑡)

𝜌(𝑥, 𝑡)
, (3)

which depends only on traffic density 𝜌(𝑥, 𝑡), since the traffic flow is also a function of it. We also write 𝑣(𝑥, 𝑡) = 𝒱(𝜌(𝑥, 𝑡)),
with 𝒱(𝜌) defined by 𝑄(𝜌) = 𝒱(𝜌)𝜌.

We may use the traffic density space-time profile 𝜌(𝑥, 𝑡) to reconstruct the trajectories of individual vehicles in the traffic
flow. Denote by 𝑥𝜉(𝑡) the trajectory of vehicle 𝜉, starting from some initial position at 𝑡 = 0, 𝑥𝜉(0) = 𝑥0

𝜉 . The trajectory of
vehicle 𝜉 then evolves according to

𝑥̇𝜉(𝑡) = 𝑣𝜉(𝑡) = 𝑣(𝑥𝜉(𝑡), 𝑡), (4)

and the vehicle moves at speed defined by the traffic density at its position. Due to the fact that the vehicle trajectories in the
LWR model do not intersect, each point in space and time (𝑥, 𝑡) uniquely corresponds to the trajectory of a single vehicle
𝜉(𝑥, 𝑡), for which 𝑥𝜉(𝑡) = 𝑥.
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B. Energy model

The discharge rate of EV batteries depends on a plethora of influences [10], but the main contributor is naturally their
motion. We denote the SoC of vehicle 𝜉 as 𝜀𝜉(𝑡) ∈ [0, 1], and approximate its discharge during driving as

𝜀̇𝜉(𝑡) = 𝒟𝜉(𝑣𝜉(𝑡)), (5)

where 𝒟𝜉(𝑣) models the battery discharge as a function of the vehicle speed. Assuming all vehicles 𝜉 are electric, we may
instead define the macroscopic SoC of all vehicles at different positions on the road 𝜀(𝑥, 𝑡) ∈ [0, 1],

𝜀(𝑥𝜉(𝑡), 𝑡) = 𝜀𝜉(𝑡). (6)

If additionally all vehicles have the same battery discharge dynamics,

𝒟(𝑣(𝑥𝜉(𝑡), 𝑡)) = 𝒟𝜉(𝑣𝜉(𝑡)), (7)

and always have a high enough SoC so that it does not affect their operation (i.e., so that they do not run low on battery), we
may describe the macroscopic evolution of 𝜀(𝑥, 𝑡) by substituting (7) and (6) into (5), yielding

d𝜀(𝑥𝜉(𝑡), 𝑡)

d𝑡
=

𝜕𝜀(𝑥, 𝑡)

𝜕𝑥
(𝑥𝜉(𝑡), 𝑡)𝑥̇𝜉(𝑡) +

𝜕𝜀(𝑥, 𝑡)

𝜕𝑡
(𝑥𝜉(𝑡), 𝑡) = 𝒟(𝑣(𝑥𝜉(𝑡), 𝑡)),

which holds for all vehicles 𝜉, and consequently, for all 𝑥 = 𝑥𝜉(𝑥,𝑡)(𝑡). Finally, substituting (4), and replacing 𝑥𝜉(𝑡) by 𝑥, we
recover the macroscopic SoC model,

𝜕𝜀

𝜕𝑡
+ 𝑣

𝜕𝜀

𝜕𝑥
= 𝑑, (8)

with the traffic speed 𝑣(𝑥, 𝑡) given by (3), and the macroscopic battery discharge rate 𝑑(𝑥, 𝑡) defined as

𝑑(𝑥, 𝑡) = 𝒟(𝑣(𝑥, 𝑡)). (9)

This model is an inhomogeneous linear transport PDE with speed varying in space and time as a function of traffic density.
Using the method of characteristics on (8), we may confirm that the SoC along trajectories of the vehicles given by (4) evolves
as (5), as was the initial assumption.

Equivalently, (8) can be written in terms of normalized energy density 𝜌𝜀 as
𝜕𝜌𝜀

𝜕𝑡
+

𝜕(𝑣𝜌𝜀)

𝜕𝑥
= 𝜌𝑑, (10)

which can be verified by expanding the left side of the equation, yielding(︂
𝜕𝜌

𝜕𝑡
+

𝜕𝑞

𝜕𝑥

)︂
𝜀+ 𝜌

(︂
𝜕𝜀

𝜕𝑡
+ 𝑣

𝜕𝜀

𝜕𝑥

)︂
= 𝜌𝑑,

and then substituting (1) and (8). In this case, the flow of normalized energy is given by 𝑣𝜌𝜀, and the dissipation of energy by
the inhomogeneous part 𝜌𝑑. Note that the energy density is normalized by the average battery capacity of the vehicles. This
may even include the internal combustion engine vehicles, counting their battery capacity as zero.

The battery discharge function 𝒟(𝑣) can take an arbitrary form, and many different battery models have been proposed
[9]–[12]. For simplicity, we will assume 𝒟(𝑣) is a polynomial function, with the constant term capturing the auxiliary power
consumption (e.g. for heating or air conditioning), the first order term mostly reflecting the change in potential energy due
to vertical displacement (climbing or descending) dominantly affected by road grade, and higher order terms capturing the
effects of resistive forces. The simplest way to model battery discharge rate is by assuming it is linearly proportional to vehicle
speed, yielding 𝒟𝜉(𝑥𝜉(𝑡))=𝐷1𝑥̇𝜉(𝑡) and 𝒟(𝑣) = 𝐷1𝑣, 𝐷1 < 0, in which case the spent energy depends only on the distance
travelled,

𝜀𝜉(𝑡2)− 𝜀𝜉(𝑡1) =

∫︁ 𝑡2

𝑡1

𝒟(𝑣𝜉(𝑡))d𝑡 = 𝐷1(𝑥𝜉(𝑡2)− 𝑥𝜉(𝑡1))

if 𝑣𝜉(𝑡) ≥ 0 for all 𝑡, and the range of the EV is − 1
𝐷1

.
A special form of the problem is for 𝒟(𝑣) = 0, in which case we model the advection of some quantity 𝜀 by vehicles

in traffic, and the model belongs to the GSOM family [24]. One particularly useful advected quantity is the macroscopic
total electric vehicle battery capacity 𝜀(𝑥, 𝑡), whose dynamics can be described by (8) or (10), with 𝜀 instead of 𝜀, and the
inhomogeneous part set to zero, 𝑑 = 0. This gives us an easy way to recover the total energy density on the road, as 𝜌𝜀𝜀.

III. RIEMANN-LIKE PROBLEM

The solution to Riemann problem, which is an initial value problem of a conservation law to piecewise-constant initial
conditions with a single discontinuity, is an important component in deriving many numeric schemes for finding conservation
law solutions (e.g. Godunov scheme, front-tracking). In this section, we study a generalization of the Riemann problem for
the CTE model (1), (8), allowing a more general form of initial conditions 𝜀(𝑥, 0).
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In particular, we are interested in the case when the flux function 𝑄(𝜌) is continuous and piecewise linear of the form

𝑄(𝜌) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑉1𝜌, 0 ≤ 𝜌 ≤ 𝜎1,

𝑄(𝜎1) + 𝑉2(𝜌− 𝜎1), 𝜎1 < 𝜌 ≤ 𝜎2,...
𝑄(𝜎𝑖−1) + 𝑉𝑖(𝜌− 𝜎𝑖−1), 𝜎𝑖−1 < 𝜌 ≤ 𝜎𝑖,

...
𝑄(𝜎𝑚𝑗

) + 𝑉𝑚(𝜌− 𝜎𝑚), 𝜎𝑚 < 𝜌 ≤ 𝜎𝑚+1,

0, 𝜌 > 𝜎𝑚+1,

(11)

with 𝑄(𝜎𝑚) + 𝑉𝑚(𝜎𝑚+1 − 𝜎𝑚) = 0, where 𝑉𝑖 denote the slopes of the function and 𝜎𝑖 its breakpoints, and assume that

(∀𝑗 < 𝑖) 𝜎𝑖𝑄(𝜎𝑗) > 𝜎𝑗𝑄(𝜎𝑖), (12)

i.e., that the traffic speed 𝒱(𝜌) is monotonically nonincreasing with 𝜌. This assumption holds trivially for the majority of
used flux functions, since they are typically taken to be concave, but also holds for some non-concave flux functions. Flux
functions of this form can represent all most commonly used fundamental diagrams, either exactly, as in the case of e.g. the
triangular fundamental diagram, or approximately, as in the case of smooth fundamental diagrams such as Greenshields’, with
an arbitrarily close fit as the number of breakpoints of 𝑄 increases.

A. Basic case

We study the initial value problem of (1) and (8), with 𝑞(𝑥, 𝑡) given by (2), 𝑣(𝑥, 𝑡) by (3), 𝑑(𝑥, 𝑡) by (9), flux function (11),
and initial conditions

𝜌(𝑥, 0) =

{︃
𝜌−, 𝑥 < 0,

𝜌+, 𝑥 > 0,
(13)

𝜀(𝑥, 0) =

{︃
𝜀− + 𝜒−𝑥, 𝑥 < 0,

𝜀+ + 𝜒+𝑥, 𝑥 > 0,
(14)

Note that, contrary to standard practice for Riemann problems, we allow 𝜀(𝑥, 0) to take a more general piecewise-linear form
with a single discontinuity at 𝑥 = 0, defined by its left and right limits 𝜀− and 𝜀+, respectively, the SoC gradient upstream
of the discontinuity 𝜒−, and the SoC gradient downstream of the discontinuity 𝜒+. The initial traffic density is defined by the
constant traffic density upstream (𝜌−) and downstream (𝜌+) of the discontinuity, as is standard for the Riemann problem. The
solution to this Riemann-like problem for 𝑡 ≥ 0 is of the form

𝜌(𝑥, 𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜌1, 𝑥 < 𝜆1𝑡,

𝜌2, 𝜆1𝑡 < 𝑥 < 𝜆2𝑡,
...

𝜌𝑛, 𝜆𝑛−1𝑡 < 𝑥 < 𝜆𝑛𝑡,

𝜌𝑛+1, 𝑥 > 𝜆𝑛𝑡,

𝜀(𝑥, 𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜀1 + 𝜃1𝑡+ 𝜒1𝑥, 𝑥 < 𝜆1𝑡,

𝜀2 + 𝜃2𝑡+ 𝜒2(𝑥− 𝜆1𝑡), 𝜆1𝑡 < 𝑥 < 𝜆2𝑡,
...

𝜀𝑛 + 𝜃𝑛𝑡+ 𝜒𝑛(𝑥− 𝜆𝑛−1𝑡), 𝜆𝑛−1𝑡 < 𝑥 < 𝜆𝑛𝑡,

𝜀𝑛+1 + 𝜃𝑛+1𝑡+ 𝜒𝑛+1(𝑥− 𝜆𝑛𝑡), 𝜆𝑛𝑡 < 𝑥 < 𝜆𝑛+1𝑡,

𝜀𝑛+2 + 𝜃𝑛+2𝑡+ 𝜒𝑛+2(𝑥− 𝜆𝑛+1𝑡), 𝑥 > 𝜆𝑛+1𝑡.

(15)

An example solution to the Riemann-like problem is given in Fig. 1. In this case, the flux function, shown in Fig. 1a, is a
piecewise-linear approximation of the Greenshields fundamental diagram, and the traffic density solution is a rarefaction fan
from 𝜌− to 𝜌+. Note that for the initial value of SoC, we have 𝜒− < 0 and 𝜒+ > 0.

(a) Flux function 𝑞 = 𝑄(𝜌) (b) Traffic density solution 𝜌(𝑥, 𝑡) (c) SoC solution 𝜀(𝑥, 𝑡)

Fig. 1: Example solution of the Riemann-like problem.
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First, due to the fact that the dynamics of 𝜌(𝑥, 𝑡) do not depend on 𝜀(𝑥, 𝑡), the traffic density part of the solution is given as
the solution to the Riemann problem for (1), with 𝑞(𝑥, 𝑡) given by (2) and initial conditions (13), which is discussed in more
detail in [20]. The resulting traffic density 𝜌(𝑥, 𝑡) is piecewise-constant in space and time, and has 𝑛 fronts propagating at speed
𝜆𝑖. Here we define fronts as the boundary of the intervals that piecewise define 𝜌(𝑥, 𝑡) or 𝜀(𝑥, 𝑡), e.g., 𝑥 = 𝜆𝑖, 𝑖 = 1, . . . , 𝑛+1
in case of (15). The parameters of 𝜌(𝑥, 𝑡), 𝜌𝑖, 𝑖 = 1, . . . , 𝑛+ 1 and 𝜆𝑖, 𝑖 = 1, . . . , 𝑛 are given by

𝜌𝑖 =

{︃
𝜎̃𝑖−1, 𝜌− < 𝜌+,

𝜎̃𝑛+1−𝑖, 𝜌− > 𝜌+,
𝜆𝑖 =

{︃
𝑉𝑖−1, 𝜌− < 𝜌+,

𝑉𝑛−𝑖, 𝜌− > 𝜌+,

where 𝜎̃𝑖 and 𝑉𝑖 are the parameters of function 𝑄̃(𝜌),

𝑄̃(𝜌) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑄(𝜎̃0) + 𝑉0(𝜌− 𝜎̃0), 𝜎̃0 ≤ 𝜌 < 𝜎̃1,

𝑄(𝜎̃1) + 𝑉1(𝜌− 𝜎̃1), 𝜎̃1 ≤ 𝜌 < 𝜎̃2,
...

𝑄(𝜎̃𝑛−1) + 𝑉𝑛−1(𝜌− 𝜎̃𝑛−1), 𝜎̃𝑛−1 ≤ 𝜌 < 𝜎̃𝑛,

defined on [𝜎̃0, 𝜎̃𝑛], where 𝜎̃0 = min{𝜌−, 𝜌+}, and 𝜎̃𝑛 = max{𝜌−, 𝜌+}, as the upper concave envelope of 𝑄(𝜌) if 𝜌− > 𝜌+, or
the lower convex envelope of 𝑄(𝜌) if 𝜌− < 𝜌+, on the same interval [𝜎̃0, 𝜎̃𝑛]. It is straightforward to verify that 𝜌1 = 𝜌− and
𝜌𝑛+1 = 𝜌+. Furthermore, we define the column vector Σ̃

𝜌− 𝜌+
𝑄 = [𝜌1, . . . , 𝜌𝑛+1]

⊤ of traffic densities present in the solution to
the Riemann problem given 𝜌−, 𝜌+, and 𝑄, and write the length of this vector 𝑚̃

𝜌− 𝜌+
𝑄 = 𝑛+1. The resulting 𝜌𝑖 and 𝜆𝑖 satisfy

the Rankine-Hugoniot condition,
𝑄(𝜌𝑖+1)−𝑄(𝜌𝑖) = 𝜆𝑖(𝜌𝑖+1 − 𝜌𝑖), 𝑖 = 1, . . . , 𝑛, (16)

i.e., the front propagation speeds 𝜆𝑖 are equal to the slopes of the envelope 𝑄̃(𝜌). In the example presented in Fig. 1, 𝑄̃(𝜌)
corresponds to the upper concave envelope of 𝑄(𝜌) from 𝜌+ to 𝜌−, and it is shown in dashed red lines in Fig. 1a. The front
propagation speed of the three fronts corresponding to discontinuities in 𝜌(𝑥, 𝑡) (shown in Fig. 1b) are equal to the slopes of
different parts of 𝑄̃(𝜌), as indicated in Fig. 1a.

Second, the SoC part of the solution can be derived by looking at the evolution of 𝜀(𝑥, 𝑡) along the trajectories of individual
vehicles, given initial conditions (14). According to the derivation done in Section II-B, the SoC along the trajectories of
individual vehicles (4) evolves according to

d𝜀(𝑥𝜉(𝑡), 𝑡)

d𝑡
= 𝑑(𝑥𝜉(𝑡), 𝑡).

As a consequence, the SoC 𝜀(𝑥, 𝑡) is continuous along the trajectories 𝑥𝜉(𝑡) for all 𝑥𝜉(0), and 𝜀(𝑥, 𝑡) can only have
discontinuities where the trajectories of vehicles are parallel to one of the fronts.

The resulting SoC 𝜀(𝑥, 𝑡) is piecewise-linear in space and time, and has either 𝑛 or 𝑛 + 1 fronts, depending on whether
𝜆𝑛 = 𝜆𝑛+1 or not. The propagation speed 𝜆𝑛+1 is given as the traffic speed at density 𝜌+,

𝜆𝑛+1 = 𝑣+ = 𝒱(𝜌+).

In case 𝜆𝑛 = 𝜆𝑛+1, the part of 𝜀(𝑥, 𝑡) defined for 𝜆𝑛𝑡 < 𝑥 < 𝜆𝑛+1𝑡 vanishes, and 𝜀(𝑥, 𝑡) effectively has 𝑛 fronts. In the
example in Fig. 1, it can be seen that the description of 𝜀(𝑥, 𝑡) has one front more than that of 𝜌(𝑥, 𝑡), i.e., that there is no
discontinuity in 𝜌(𝑥, 𝑡) along 𝑥 = 𝜆𝑛+1 = 𝑣+𝑡 for 𝑡 > 0.

Due to assumption (12), the speed of vehicles at (𝑥, 𝑡) is never less than the slope of the characteristics of (1). Consequently,
the SoC is continuous across all fronts 𝑖 for which 𝜆𝑖 < 𝑣𝑖, where 𝑣𝑖 = 𝒱(𝜌𝑖). Therefore, the remaining parameters of 𝜀(𝑥, 𝑡),
𝜀𝑖, 𝜃𝑖, and 𝜒𝑖, 𝑖 = 1, . . . , 𝑛+ 2, are given by

𝜀𝑖=

⎧⎪⎨⎪⎩
𝜀−, 𝑖 = 1, . . . , 𝑛

𝜀−, 𝑖 = 𝑛+ 1, 𝜆𝑛+1>𝜆𝑛,

𝜀+, 𝑖 = 𝑛+ 2,

𝜒𝑖=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜒−, 𝑖 = 1,
#»𝜒𝑖−1, 𝑖 = 2, . . . , 𝑛,
#»𝜒𝑖−1, 𝑖 = 𝑛+ 1, 𝜆𝑛+1>𝜆𝑛,

𝜒+, 𝑖 = 𝑛+ 2,

𝜃𝑖=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑑−, 𝑖 = 1,

𝑑𝑖−𝜒𝑖(𝑣𝑖−𝜆𝑖−1), 𝑖 = 2, . . . , 𝑛,

𝑑𝑖−𝜒𝑖(𝑣𝑖−𝜆𝑖−1), 𝑖 = 𝑛+ 1, 𝜆𝑛+1>𝜆𝑛,

𝑑+, 𝑖 = 𝑛+ 2,

where 𝑑𝑖 = 𝒟(𝑣𝑖), and we recursively define

#»𝜒𝑖 =
𝑑𝑖+1 − 𝑑𝑖 + 𝜒𝑖(𝑣𝑖 − 𝜆𝑖)

𝑣𝑖+1 − 𝜆𝑖
.

B. Generalized case

In order to be able to model situations when there are zones of the road with different features, as well as when there are
ramp flows, we also study a more general case of the Riemann-like problem. First, we redefine functions 𝑄 and 𝒟 to allow
them to be defined piecewise in space and time,

𝑞(𝑥, 𝑡) = 𝑄(𝜌(𝑥, 𝑡), 𝑥, 𝑡), (17)
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𝑑(𝑥, 𝑡) = 𝒟(𝑣(𝑥, 𝑡), 𝑥, 𝑡), (18)

with the boundaries between zones where 𝑄(𝜌, 𝑥, 𝑡) and 𝒟(𝑣, 𝑥, 𝑡) are defined by different flux and dissipation functions
𝑄𝑗(𝜌) and 𝒟𝑗(𝑣) in different zones, with the boundaries between these zones propagating at constant speed. We denote these
boundary propagation speeds by Λ, and consider functions

𝑄(𝜌, 𝑥, 𝑡) =

{︃
𝑄−(𝜌), 𝑥 < Λ𝑡,

𝑄+(𝜌), 𝑥 > Λ𝑡,
𝒟(𝑣, 𝑥, 𝑡) =

{︃
𝒟−(𝑣), 𝑥 < Λ𝑡,

𝒟+(𝑣), 𝑥 > Λ𝑡,

in the generalized case of the Rieman-like problem. Furthermore, we assume that Λ < 𝑣+, allow the possibility of an off-
ramp flow 𝑟off− exiting the road immediately upstream of the boundary 𝑥 = Λ𝑡, and an on-ramp flow 𝑟on+ entering the road
immediately downstream of the boundary, with the SoC of the vehicles entering the road from the on-ramp evolving as

𝜀on(𝑡) = 𝜀on+ + 𝜃on+ 𝑡, 𝑡 ≥ 0.

On- and off-ramp flows are included in the generalized Riemann-like problem by adding a point source term to equations
(1) and (10),

𝜕𝜌

𝜕𝑡
+

𝜕𝑞

𝜕𝑥
= 𝛿(𝑥− Λ𝑡)(𝑟on+ − 𝑟off− ), (19)

𝜕𝜌𝜀

𝜕𝑡
+

𝜕(𝑣𝜌𝜀)

𝜕𝑥
= 𝜌𝑑+ 𝛿(𝑥− Λ𝑡)

(︀
𝑟on+ (𝜀on+ + 𝜃on+ 𝑡)− 𝑟off− 𝜀((Λ𝑡)−, 𝑡)

)︀
. (20)

Note that here we express the SoC dynamics in terms of normalized energy 𝜌𝜀, for ease of formulation of the influence of the
on-ramp flow. We assume that 𝑟off− is such that

𝑟off− = 𝑄−(𝜌)− Λ𝜌

has a solution on 𝜌 ∈ [0, 𝜎
𝑄−
𝑚𝑄− ], and that 𝑟on+ is such that

𝑟on+ = 𝑄+(𝜌)− Λ𝜌

has a solution on 𝜌 ∈ [0, 𝜎
𝑄+

𝑚𝑄+
], where 𝜎

𝑄±

𝑚𝑄± = sup supp𝑄± are the jam densities, i.e., the suprema of traffic densities for
which 𝑄±(𝜌) > 0.

The traffic density solution to this Riemann-like problem is given in two parts: zone 𝑥 < Λ𝑡, with flux function 𝑄−(𝜌),
from 𝜌− to 𝜌′−, and zone 𝑥 > Λ𝑡, with flux function 𝑄+(𝜌), from 𝜌′+ to 𝜌+. We denote the parameters of these solutions by
superscript 𝑄− and 𝑄+, respectively. Traffic densities at the boundary 𝜌′− and 𝜌′+ are given as maximizers of

maximize
𝜌′
−,𝜌

′
+

𝑄+(𝜌
′
+)− 𝑟on+ − Λ𝜌′+

s.t. 𝑄+(𝜌
′
+)− 𝑟on+ −𝑄−(𝜌

′
−) + 𝑟off− = Λ(𝜌′+ − 𝜌′−)

𝑉
𝑄−
𝑖 < Λ, 𝑖 = 0, . . . 𝑛𝑄− − 1,

𝑉
𝑄+
𝑖 > Λ, 𝑖 = 0, . . . 𝑛𝑄+ − 1,

(21)

maximizing the flow over the boundary between the two flux functions, under specified constraints. The first constraint is a
modification of the Rankine-Hugoniot condition (16), with added terms 𝑟on+ and 𝑟off− representing ramp flows. The second and
third constraints ensure that the solutions to Riemann-like problems in zones described by 𝑄−(𝜌) and 𝑄+(𝜌) only have fronts
within their respective zones. Additionally, we assume that 𝑟off− is such that there exist at least one pair (𝜌′−, 𝜌

′
+) for which all

constraints are satisfied.
Alternatively, the ramp flows can be defined as additional constraints, in which case 𝑟on+ and 𝑟off− are optimization variables.

For example, the case when we want to model that a ratio of 𝛽off
− of the mainstream flow leaves the road via an off-

ramp is captured by imposing 𝑟off− = 𝛽off
− 𝑄−(𝜌

′
−) as an additional constraint. Similarly, the case when the mainstream flow

is prioritized and only as much on-ramp flow enters the road as can be supported by road capacity is captured by imposing
𝑟on+ = min{𝑟on,max

+ , 𝑞max
+ −𝑄+(𝜌

′
+)}, where 𝑟on,max

+ is the maximum on-ramp flow in case it is not restricted by the conditions
on the road, and 𝑞max

+ is the capacity of the road. Note that in this case, solving (21) can be more complex than in the case
when 𝑟on+ and 𝑟off− are given as constants, depending on the type of additional constraints. For simplicity, in this work, we
assume that on- and off-ramp flows are given as piecewise-constant inputs to the system, although they may be externally
defined to depend on the traffic state in some way, resulting in constant 𝑟on+ and 𝑟off− in generalized Riemann-like problems.

The solution 𝜌(𝑥, 𝑡), 𝜀(𝑥, 𝑡) is again in form (15), with different parameters. The parameters of 𝜌(𝑥, 𝑡) are given by the
parameters of the solutions in zones described by 𝑄−(𝜌) and 𝑄+(𝜌),

𝜌𝑖 =

{︃
𝜌
𝑄−
𝑖 , 𝑖 = 1, . . . , 𝑛𝑄− + 1,

𝜌
𝑄+

𝑖−𝑛𝑄−−1
, 𝑖 = 𝑛𝑄− + 2, . . . , 𝑛+ 1,

𝜆𝑖 =

⎧⎪⎨⎪⎩
𝜆
𝑄−
𝑖 , 𝑖 = 1, . . . , 𝑛𝑄− ,

Λ, 𝑖 = 𝑛𝑄− + 1,

𝜆
𝑄+
𝑖 , 𝑖 = 𝑛𝑄− + 2, . . . , 𝑛,
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with 𝑛 = 𝑛𝑄− +𝑛𝑄+ +1, as explained in more detail in [20]. Following the notation from Section III-A, the column vector of
𝜌
𝑄−
𝑖 , 𝑖 = 1, . . . , 𝑛𝑄− + 1, is given by Σ̃

𝜌− 𝜌′
−

𝑄− , and the column vector of 𝜌
𝑄+
𝑖 , 𝑖 = 1, . . . , 𝑛𝑄+ + 1 by Σ̃

𝜌′
+ 𝜌+

𝑄+
. The parameters

of 𝜀(𝑥, 𝑡) are

𝜀𝑖=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜀−, 𝑖 = 1, . . . , 𝑛𝑄− + 1,
#»𝜀 −, 𝑖 = 𝑛𝑄− + 2, . . . , 𝑛,
#»𝜀 −, 𝑖 = 𝑛+ 1, 𝜆𝑛+1>𝜆𝑛,

𝜀+, 𝑖 = 𝑛+ 2,

𝜒𝑖=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜒−, 𝑖 = 1,
#»𝜒𝑖−1, 𝑖 = 2, . . . , 𝑛,
#»𝜒𝑖−1, 𝑖 = 𝑛+ 1, 𝜆𝑛+1>𝜆𝑛,

𝜒+, 𝑖 = 𝑛+ 2,

where #»𝜀 − is defined as
#»𝜀 − =

(𝜌𝑛𝑄−+1(𝑣𝑛𝑄−+1 − Λ)− 𝑟off− )𝜀− + 𝑟on+ 𝜀on+
𝜌𝑛𝑄−+2(𝑣𝑛𝑄−+2 − Λ)− 𝑟off− + 𝑟on+

, (22)

and #»𝜒𝑖 are redefined to

#»𝜒𝑖 =

⎧⎨⎩
𝑑𝑖+1−𝑑𝑖+𝜒𝑖(𝑣𝑖−𝜆𝑖)

𝑣𝑖+1−𝜆𝑖
, 𝑖 = 1, . . . , 𝑛𝑄− , 𝑛𝑄− + 2, . . . , 𝑛+ 1,

𝑑𝑖+1𝜌𝑖+1(𝑣𝑖+1−𝜆𝑖)−(𝑑𝑖−𝜒𝑖(𝑣𝑖−𝜆𝑖))(𝜌𝑖(𝑣𝑖−𝜆𝑖)−𝑟off− )−𝑟on+ 𝜃on
+

𝜌𝑖+1(𝑣𝑖+1−𝜆𝑖)
2 , 𝑖 = 𝑛𝑄− + 1.

(23)

The expressions for 𝑣𝑖 and 𝑑𝑖 now depend on whether the zone that they describe is upstream or downstream of the boundary
𝑥 = Λ𝑡,

𝑣𝑖 =

{︃
𝑄−(𝜌𝑖)

𝜌𝑖
, 𝑖 = 1, . . . , 𝑛𝑄− + 1,

𝑄+(𝜌𝑖)
𝜌𝑖

, 𝑖 = 𝑛𝑄− + 2, . . . , 𝑛+ 1,
, 𝑑𝑖 =

{︃
𝒟−(𝑣𝑖), 𝑖 = 1, . . . , 𝑛𝑄− + 1,

𝒟+(𝑣𝑖), 𝑖 = 𝑛𝑄− + 2, . . . , 𝑛+ 1.
.

IV. FRONT-TRACKING TRANSITION SYSTEM MODEL WITH ADVECTED ENERGY

Having solved the Riemann-like problem of the CTE model in the previous section, we are now able to tackle the more general
case and formulate the front-tracking solution and the front-tracking transition system form of the model. In this section, after
specifying all aspects of the studied CTE model, we first provide its front-tracking solution, and then, based on that solution,
formulate the Front-tracking Transition System Model with advected energy (FTSM+E), with equivalent behaviour. This model
is an extension of the FTSM given in [20], including the advected energy and on- and off-ramp dynamics. We first present
the transition system states, and then its transitions.

We study the CTE model (1), (8), where 𝑞 is given by (17), 𝑣 by (3), and 𝑑 by (18). Let the initial conditions 𝜌(𝑥, 0) and
𝜀(𝑥, 0) be

𝜌(𝑥, 0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜌1, 𝑥 < 𝑥𝜌
1,

...
𝜌𝑖, 𝑥𝜌

𝑖−1 < 𝑥 < 𝑥𝜌
𝑖 ,

...
𝜌𝑁𝜌 , 𝑥 > 𝑥𝜌

𝑁𝜌−1,

𝜀(𝑥, 0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜀1, 𝑥 < 𝑥𝜀
1,

𝜀2 + 𝜒2 (𝑥− 𝑥𝜀
1) , 𝑥𝜀

1 < 𝑥 < 𝑥𝜀
2,

...
𝜀𝑖 + 𝜒𝑖

(︀
𝑥− 𝑥𝜀

𝑖−1

)︀
, 𝑥𝜀

𝑖−1 < 𝑥 < 𝑥𝜀
𝑖 ,

...
𝜀𝑁𝜀−1 + 𝜒𝑁𝜀−1

(︀
𝑥− 𝑥𝜀

𝑁𝜀−2

)︀
, 𝑥𝜀

𝑁𝜀−2 < 𝑥 < 𝑥𝜀
𝑁𝜀−1,

𝜀𝑁𝜀 , 𝑥 > 𝑥𝜀
𝑁𝜀−1,

(24)

with piecewise-constant traffic density and piecewise-linear SoC. We allow different zones of the road to have different traffic
and energy dynamics, by defining the flux function 𝑄 and discharge function 𝒟 piecewise in space and time,

𝑄(𝜌, 𝑥, 𝑡) = 𝑄𝜉(𝑥,𝑡)(𝜌), 𝒟(𝑣, 𝑥, 𝑡) = 𝒟𝜉(𝑥,𝑡)(𝑣) (25)

where 𝜉(𝑥, 𝑡) ∈ Z denotes the unique identifier of each zone, given by the identifier function

𝜉(𝑥, 𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜉𝐾1 , 𝑥 < 𝑥𝜉,𝐾
1 + Λ𝜉,𝐾

1 (𝑡− 𝑇𝐾),
...

𝜉𝐾𝑖 , 𝑥𝜉,𝐾
𝑖−1 + Λ𝜉,𝐾

𝑖−1(𝑡− 𝑇𝐾) < 𝑥 < 𝑥𝜉,𝐾
𝑖 + Λ𝜉,𝐾

𝑖 (𝑡− 𝑇𝐾),
...

𝜉𝐾𝑁𝜉,𝐾 , 𝑥 > 𝑥𝜉,𝐾
𝑁𝜉,𝐾−1

+ Λ𝜉,𝐾
𝑁𝜉,𝐾−1

(𝑡− 𝑇𝐾),

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
, 𝑇𝐾 < 𝑡 < 𝑇𝐾+1, (26)

with (∀𝐾)𝑇𝐾+1 > 𝑇𝐾 , 𝜉𝐾𝑖 ̸= 𝜉𝑘𝑖+1, , 𝑖 = 1, . . . , 𝑁 𝜉,𝐾 − 1, each flux function 𝑄𝜉(𝜌) is defined as (11) and satisfies (12), and
there are no further constraints on discharge functions 𝒟𝜉(𝑣).

Additionally, each zone defined by (26) potentially has traffic flow exiting the road via an off-ramp at its upstream boundary
at piecewise-constant rate 𝑟off,𝐾

𝑖 , and traffic flow entering the road via an on-ramp at its downstream boundary at piecewise-
constant rate 𝑟on,𝐾𝑖 , with piecewise-linear SoC of the entering vehicles 𝜀on,𝐾𝑖 + 𝜃on,𝐾𝑖 (𝑡− 𝑇𝐾) defined by 𝜀on,𝐾𝑖 and 𝜃on,𝐾𝑖 .
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A. Front-tracking solution

Front-tracking [31] is a numerical approach for finding approximate solution to conservation laws, long used in traffic
modelling [22], [32]. It relies on tracking the behaviour of the discontinuities (fronts) of the solution, while its behaviour
between the discontinuities is described analytically or using other numerical methods. The method consists of approximating
the flux function as piecewise-linear, approximating the initial conditions as piecewise-constant, solving the Riemann problems
at all discontinuities, using the solution to describe the propagation of fronts, and finally, solving new Riemann problems that
arise from collisions of two fronts. Note that the only step where approximations are introduced is at the beginning, after
which the front-tracking method yields exact solutions to the approximated problem. Therefore, we are able to tune the level
of approximation by choosing e.g., the number of flux function breakpoints and initial value discontinuities. In the case we
study, both the flux functions and the initial conditions are such that no approximations need to be made, and front-tracking
produces the exact solution.

Furthermore, considering the solution to the generalized Riemann-like problem presented in Section III-B, we see that the
solution to the CTE model around a discontinuity, with piecewise-constant initial traffic density (13) and piecewise-linear SoC
(14), also consists of piecewise-constant traffic density and piecewise-linear SoC (15). Therefore, we are also able to quantify
the form of the solution to the model given a more general form of initial conditions (24) through the following Theorem.

Theorem 1. Consider the CTE model (1), (8), where 𝑞 is given by (17), 𝑣 by (3), and 𝑑 by (18), with initial conditions (24),
and functions 𝑄(𝜌, 𝑥, 𝑡) and 𝒟(𝑣, 𝑥, 𝑡) given by (25), according to identifier function 𝜉 given as (26). Then the solution to the
model consists of piecewise-constant traffic density 𝜌(𝑥, 𝑡) and piecewise-linear SoC 𝜀(𝑥, 𝑡) for 𝑡 ≥ 0, of the form

𝜌(𝑥, 𝑡)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜌𝑘1 , 𝑥 < 𝑧𝑘1 + 𝜆𝑘
1(𝑡− 𝑡𝑘),

...
𝜌𝑘𝑖 , 𝑧𝑘𝑖−1 + 𝜆𝑘

𝑖−1(𝑡− 𝑡𝑘) < 𝑥 < 𝑧𝑘𝑖 + 𝜆𝑘
𝑖 (𝑡− 𝑡𝑘),

...
𝜌𝑘𝑛𝑘+1, 𝑥 > 𝑧𝑘𝑛𝑘 + 𝜆𝑘

𝑛𝑘(𝑡− 𝑡𝑘),

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
, 𝑡𝑘 < 𝑡 < 𝑡𝑘+1, (27)

𝜀(𝑥, 𝑡)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜀𝑘1+𝜃𝑘1 (𝑡−𝑡𝑘), 𝑥<𝑧𝑘1+𝜆𝑘
1(𝑡−𝑡𝑘),

𝜀𝑘2+𝜃𝑘2 (𝑡−𝑡𝑘)+𝜒𝑘
2

(︀
𝑥−𝑧𝑘1−𝜆𝑘

1(𝑡−𝑡𝑘)
)︀
, 𝑧𝑘1+𝜆𝑘

1(𝑡−𝑡𝑘)<𝑥<𝑧𝑘2+𝜆𝑘
2(𝑡−𝑡𝑘),

...
𝜀𝑘𝑖 +𝜃𝑘𝑖 (𝑡−𝑡𝑘)+𝜒𝑘

𝑖

(︀
𝑥−𝑧𝑘𝑖−1−𝜆𝑘

𝑖−1(𝑡−𝑡𝑘)
)︀
, 𝑧𝑘𝑖−1+𝜆𝑘

𝑖−1(𝑡−𝑡𝑘)<𝑥<𝑧𝑘𝑖 +𝜆𝑘
𝑖 (𝑡−𝑡𝑘),

...
𝜀𝑘𝑛𝑘+𝜃𝑘𝑛𝑘(𝑡−𝑡𝑘)+𝜒𝑘

𝑛𝑘

(︀
𝑥−𝑧𝑘𝑛𝑘−1−𝜆𝑘

𝑛𝑘−1(𝑡−𝑡𝑘)
)︀
, 𝑧𝑘𝑛𝑘−1+𝜆𝑘

𝑛𝑘−1(𝑡−𝑡𝑘)<𝑥<𝑧𝑘𝑛𝑘+𝜆𝑘
𝑛𝑘(𝑡−𝑡𝑘),

𝜀𝑘𝑛𝑘+1+𝜃𝑘𝑛𝑘+1(𝑡−𝑡𝑘), 𝑥>𝑧𝑘𝑛𝑘+𝜆𝑘
𝑛𝑘(𝑡−𝑡𝑘),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, 𝑡𝑘<𝑡<𝑡𝑘+1, (28)

where 𝜒𝑘
1 = 𝜒𝑘

𝑛𝑘+1 = 0,

(∀𝐾)(∀𝑗∈{1, 2, . . . , 𝑁 𝜉,𝐾−1})
(︁(︀
∃𝑘 s.t. 𝑡𝑘=𝑇𝐾

)︀
,
(︁(︀
∀𝑘 s.t. [𝑡𝑘, 𝑡𝑘+1]∩[𝑇𝐾, 𝑇𝐾+1] ̸=∅

)︀
∃𝑖 s.t. 𝑧𝑘𝑖 =𝑥𝜉,𝐾

𝑖 , 𝜆𝑘
𝑖 =Λ𝜉,𝐾

𝑖

)︁)︁
, (29)

we have

𝜃𝑘𝑖 =

{︃
𝑑𝑘𝑖 , 𝑖 = 1 ∨ 𝑖 = 𝑛𝑘 + 1,

𝑑𝑘𝑖 − 𝜒𝑘
𝑖 (𝑣

𝑘
𝑖 − 𝜆𝑘

𝑖−1), 𝑖 = 2, . . . , 𝑛𝑘,
(30)

𝑣𝑘𝑖 and 𝑑𝑘𝑖 denote

𝑣𝑘𝑖 =
𝒬𝜉𝑘𝑖

(𝜌𝑘𝑖 )

𝜌𝑘𝑖
, 𝑑𝑘𝑖 = 𝒟𝜉𝑘𝑖

(𝑣𝑘𝑖 ),

and 𝜉𝑘𝑖 is the value of the identifier function 𝜉(𝑥, 𝑡) in zone 𝑥 ∈ [𝑧𝑘𝑖−1 + 𝜆𝑘
𝑖−1(𝑡− 𝑡𝑘), 𝑧𝑘𝑖 + 𝜆𝑘

𝑖 (𝑡− 𝑡𝑘)] for 𝑡𝑘 < 𝑡 < 𝑡𝑘+1.

Proof. The statement of the Theorem follows from the application of front-tracking. First, let 𝑡0 = 0−, 𝑡1 = 0, and
𝑇𝐾0 ≤ 0 < 𝑇𝐾0+1. Then, the initial front positions 𝑧0𝑖 are given as the values of the set {𝑥𝜌

1, . . . , 𝑥
𝜌
𝑛𝜌−1}∪{𝑥𝜀

1, . . . , 𝑥
𝜀
𝑛𝜀−1}∪

{𝑥𝜉,𝐾0

1 , . . . , 𝑥𝜉,𝐾0

𝑛𝜉,𝐾0−1
} sorted in an ascending order, 𝑧0𝑖 > 𝑧0𝑖−1, 𝑖 = 2, . . . , 𝑛0. Initial states 𝜌0𝑖 , 𝜀0𝑖 , and 𝜒0

𝑖 , for 𝑖 = 1, . . . , 𝑛0+1,
are defined as

𝜌0𝑖 =

{︃
𝜌(𝑧0𝑖−, 0), 𝑖=1, . . . , 𝑛0,

𝜌(𝑧0𝑖−1+, 0), 𝑖=𝑛0 + 1,
𝜀0𝑖 =

{︃
𝜀(𝑧0𝑖+, 0), 𝑖=1,

𝜀(𝑧0𝑖−1+, 0), 𝑖=2, . . . , 𝑛0 + 1,
𝜒0
𝑖 =

⎧⎨⎩0, 𝑖=1 ∨ 𝑖=𝑛0 + 1,
𝜕𝜀(𝑥,0)

𝜕𝑥

⃒⃒⃒
𝑥=𝑧0

𝑖 −
, 𝑖=2, . . . , 𝑛0.

First, for 𝑘 = 0, at each front 𝑧𝑘𝑖 , we solve a Riemann-like problem with 𝜌− = 𝜌𝑘𝑖 , 𝜌+ = 𝜌𝑘𝑖+1, 𝜀− = 𝜀𝑘𝑖 + 𝜒𝑘
𝑖 (𝑥

𝑘
𝑖 − 𝑥𝑘

𝑖−1)
if 𝑖 > 1 or 𝜀− = 𝜀𝑘𝑖 if 𝑖 = 1, 𝜀+ = 𝜀𝑘𝑖+1, 𝜒− = 𝜒𝑘

𝑖 , and 𝜒+ = 𝜒𝑘
𝑖+1. The form of each solution is (15), which agrees with the

form of the overall solution (27), (28). If 𝜉(𝑧𝑘𝑖 −, 𝑡𝑘) = 𝜉(𝑧𝑘𝑖 +, 𝑡𝑘), the parameters of the solution are given in Section III-A.
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Otherwise, for 𝜉(𝑧𝑘𝑖 −, 𝑡𝑘) ̸= 𝜉(𝑧𝑘𝑖 +, 𝑡𝑘), we define 𝐼𝑘𝑖 through 𝑧𝑘𝑖 = 𝑥𝜉,𝐾𝑘

𝐼𝑘
𝑖

+ Λ𝜉,𝐾𝑘

𝐼𝑘
𝑖

(𝑡𝑘 − 𝑇𝐾𝑘), where 𝐾𝑘 is defined through
𝑇𝐾𝑘 < 𝑡𝑘 < 𝑇𝐾𝑘+1, and the remaining parameters of the Riemann-like problem are

Λ = Λ𝜉,𝐾𝑘

𝐼𝑘
𝑖

, 𝑄−(𝜌) = 𝑄
𝜉
𝐾𝑘

𝐼𝑘
𝑖

(𝜌), 𝑄+(𝜌) = 𝑄
𝜉
𝐾𝑘

𝐼𝑘
𝑖

+1
(𝜌), 𝒟−(𝑣) = 𝒟

𝜉
𝐾𝑘

𝐼𝑘
𝑖

(𝑣), 𝒟+(𝑣) = 𝒟
𝜉
𝐾𝑘

𝐼𝑘
𝑖

+1
(𝑣),

the parameters of off-ramp flows 𝑟off− defined for zone 𝜉𝐾𝑘

𝐼𝑘
𝑖

, and the parameters of on-ramp flows 𝑟on+ , 𝜀on+ , and 𝜃on+ defined

for zone 𝜉𝐾𝑘

𝐼𝑘
𝑖

+ 1. In this case, the parameters of the solution are given in Section III-B. The parameters of the solutions to

the Riemann-like problem at each discontinuity determine the updated states 𝜌𝑘+1
𝑖 , 𝜀𝑘+1

𝑖 , and 𝜒𝑘+1
𝑖 , for 𝑖 = 1, . . . , 𝑛𝑘+1 + 1,

which define the solution 𝜌(𝑥, 𝑡) and 𝜀(𝑥, 𝑡) for 𝑡𝑘 < 𝑡 < 𝑡𝑘+1, until time 𝑡𝑘+1 when either 𝑡𝑘+1 = 𝑇𝐾𝑘+1 or two fronts
collide,

𝑧𝑘𝑗 + 𝜆𝑘
𝑗 (𝑡

𝑘+1 − 𝑡𝑘) = 𝑧𝑘𝑗+1 + 𝜆𝑘
𝑗+1(𝑡

𝑘+1 − 𝑡𝑘), 𝜆𝑘
𝑗 > 𝜆𝑘

𝑗+1, 𝑗 ∈ {1, . . . , 𝑛𝑘}.

At time 𝑡𝑘+1, a new set of Riemann-like problems are solved, with parameters defined by 𝜌(𝑥, 𝑡𝑘+1−), 𝜀(𝑥, 𝑡𝑘+1−), and
with functions 𝑄(𝜌, 𝑥, 𝑡𝑘+1+) and 𝒟(𝑣, 𝑥, 𝑡𝑘+1+). These solutions define the new parameters 𝜌𝑘+2

𝑖 , 𝜀𝑘+2
𝑖 , and 𝜒𝑘+2

𝑖 , for
𝑖 = 1, . . . , 𝑛𝑘+2 + 1, and the process repeats.

Statement (29) ensures that the discontinuities of the identifier function 𝜉(𝑥, 𝑡) always correspond with some fronts.
The form of 𝜀(𝑥, 𝑡) given by (28) only allows discontinuities in space at the position of the fronts 𝑧𝑘𝑖 + 𝜆𝑘

𝑖 (𝑡− 𝑡𝑘),
𝑡𝑘 < 𝑡 < 𝑡𝑘+1. Additionally, due to the nature of the solutions to the Riemann-like problem studied in Section III, 𝜀(𝑥, 𝑡)
can only have discontinuities at the position of those fronts for which 𝑣𝑘𝑖 = 𝜆𝑘

𝑖 and 𝑣𝑘𝑖+1 = 𝜆𝑘
𝑖 . Therefore, for all fronts 𝑖 for

which 𝑣𝑘𝑖 < 𝜆𝑘
𝑖 and 𝑣𝑘𝑖+1 < 𝜆𝑘

𝑖 , we have

𝜀𝑘𝑖 + 𝜃𝑘𝑖 (𝑡− 𝑡𝑘) + 𝜒𝑘
𝑖 (𝑧

𝑘
𝑖 + 𝜆𝑘

𝑖 (𝑡− 𝑡𝑘)− 𝑧𝑘𝑖−1 − 𝜆𝑘
𝑖−1(𝑡− 𝑡𝑘)) = 𝜀𝑘𝑖+1 + 𝜃𝑘𝑖+1(𝑡− 𝑡𝑘), 𝑡𝑘 < 𝑡 < 𝑡𝑘+1.

Substituting (30), we get that 𝜀𝑘𝑖+1 = #»𝑒 𝑘
𝑖 and 𝜒𝑘

𝑖+1 = #»𝜒𝑘
𝑖 , with #»𝜀 𝑘

𝑖 given by

#»𝜀 𝑘
𝑖 =

(𝜌𝑘𝑖 (𝑣
𝑘
𝑖 − 𝜆𝑘

𝑖 )− 𝑟off,𝑘
𝑖 )(𝜀𝑘𝑖 + 𝜒𝑘

𝑖 (𝑧
𝑘
𝑖 − 𝑧𝑘𝑖−1)) + 𝑟on,𝑘𝑖+1 𝜀

on,𝑘
𝑖+1

𝜌𝑘𝑖+1

(︀
𝑣𝑘𝑖+1 − 𝜆𝑘

𝑖

)︀ , (31)

similarly to (22), and #»𝜒𝑘
𝑖 by

#»𝜒𝑘
𝑖 =

𝑑𝑘𝑖+1𝜌
𝑘
𝑖+1

(︀
𝑣𝑘𝑖+1 − 𝜆𝑘

𝑖

)︀
−
(︀
𝑑𝑘𝑖 − 𝜒𝑘

𝑖

(︀
𝑣𝑘𝑖 − 𝜆𝑘

𝑖

)︀)︀ (︁
𝜌𝑘𝑖
(︀
𝑣𝑘𝑖 − 𝜆𝑘

𝑖

)︀
− 𝑟off,𝑘

𝑖

)︁
− 𝑟on,𝑘𝑖+1 𝜃

on,𝑘
𝑖+1

𝜌𝑘𝑖+1

(︀
𝑣𝑘𝑖+1 − 𝜆𝑘

𝑖

)︀2 , (32)

similarly to (23), for all such fronts. For ease of notation, we will omit superscript 𝑘 in further text wherever unambiguous.

B. FTSM formulation

The presented procedure of finding the front-tracking solution to the CTE model can be formulated as a transition system,
forming a version of the FTSM. As opposed to the FTSM in [20], the model now also captures the SoC dynamics, and on-
and off-ramp flows, and must therefore be augmented by the states and transitions related to them. Furthermore, all transitions
need to be modified in order to account for the newly added states. In particular, the new states related to each zone are SoC at
its upstream end 𝜀, and the slope of the SoC in it 𝜒. Flux functions are now generalized to also describe the energy dynamics
of some zone of the road, through the discharge function 𝒟, as well as flow 𝑟on entering the road from an on-ramp at the
upstream end of the zone, with initial SoC 𝜀on and rate of change of SoC 𝜃on, and flow 𝑟off exiting the road via an off-ramp
at the downstream end of the zone. Finally, a new SoC advection transition ∪𝑖 ensures that the SoC dynamics are modelled
correctly. For completeness, in the remainder of this section, the entirety of the FTSM+E will be presented, including the parts
from the FTSM presented in [20].

The set of states 𝒳 = (𝑛, 𝑡, 𝑧, 𝜌, 𝜀, 𝜒̄, 𝑄̄) is composed of:
∙ Number of active fronts: 𝑛 ∈ N,
∙ Time: 𝑡 ∈ R≥0,
∙ Front positions: 𝑧 ∈ R

𝑛max , 𝑧𝑖 ≤ 𝑧𝑖+1 for 𝑖 = 1, . . . , 𝑛max − 1,
∙ Traffic densities: 𝜌 ∈ R

𝑛max+1
≥0 ,

∙ SoC at upstream end of the zone: 𝜀 ∈ R
𝑛max+1,

∙ SoC slope: 𝜒 ∈ R
𝑛max+1,

∙ Generalized flux functions: 𝑄 ∈ 𝒬𝑛max+1, where 𝒬 is a set of generalized flux functions.
Each generalized flux function can be described by a quintuple 𝑄* = (𝑉,Σ,𝒟,Λ±, 𝜉), consisting of:

∙ Slopes and breakpoints: (𝑉,Σ) ∈ ℒ,
∙ Discharge function: 𝒟 ∈ R

R,
∙ Ramp flows: (𝑟on, 𝑟off) ∈ R

2
≥0 ,
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∙ Initial on-ramp SoC: 𝜀on ∈ R,
∙ Rate of change of on-ramp SoC: 𝜃on ∈ R,
∙ Boundary speeds: Λ± ∈ R

2,
∙ Identifier: 𝜉 ∈ Z,

where the set of feasible slopes and breakpoints is
ℒ=

{︀
𝑉 ∈R𝑚,Σ∈R𝑚+1

>0 : 𝜎1<𝜎2<. . .<𝜎𝑚+1, (∀𝑗 < 𝑖) 𝜎𝑖𝑞
𝜎
𝑄*,𝑗 > 𝜎𝑗𝑞

𝜎
𝑄*,𝑖, (𝑖 = 1, . . .𝑚) 𝑞𝜎𝑄*,𝑖 ≥ 0, 𝑞𝜎𝑄*,𝑚+1 = 0

}︀
,

𝑞𝜎𝑄*,1=𝑉1𝜎1, 𝑞𝜎𝑄*,𝑖=𝑞𝜎𝑄*,𝑖−1+𝑉𝑖(𝜎𝑖 − 𝜎𝑖−1), 𝑖=2, . . . ,𝑚+1.

Same as in case of the FTSM presented in [20], we denote the traffic flow, given traffic density 𝜌, as 𝑞 = 𝑄*(𝜌) and
calculate it like 𝑄𝑗(𝜌) in (11), with 𝑉𝑗,𝑖 and 𝜎𝑗,𝑖 given in 𝑉 and Σ, respectively. Boundary speeds Λ± = (Λ−,Λ+) represent
the propagation speed of the upstream and downstream boundary of the region of 𝑄*. The unique identifier 𝜉 is used to
differentiate between different flux functions, as well as to define the precedence when determining the propagation speed of
the boundary between regions with different flux functions, e.g.., the propagation speed of the boundary between flux functions
𝑄𝑖 ̸= 𝑄𝑖+1, is given by

𝜆𝑖 =

{︃
Λ+
𝑖 , 𝜉𝑖 > 𝜉𝑖+1,

Λ−
𝑖+1, 𝜉𝑖 < 𝜉𝑖+1.

Flux functions from [20] are generalized to include the discharge function 𝒟, as well as potential on- and off-ramp flows.
For traffic density 𝜌 and flux function 𝑄*, battery discharge rate is given as 𝑑 = 𝒟(𝑄*(𝜌)/𝜌). The on-ramp flow 𝑟on enters
the road immediately downstream of the upstream boundary of the zone described by generalized flux function 𝑄*, and the
off-ramp flow 𝑟off leaves the road immediately upstream of the downstream boundary of the zone. The SoC of the traffic
entering the road is given by 𝜀on at current time 𝑡, and as time progresses, it changes at rate 𝜃on, such that it is 𝜀on + 𝜃on𝜏 at
time 𝑡+ 𝜏 .

Given the current state 𝑋𝑘 ∈ 𝒳 of the transition system with time 𝑡𝑘, the traffic density 𝜌(𝑥, 𝑡) and SoC 𝜀(𝑥, 𝑡), describing
the state of the system for 𝑡𝑘 < 𝑡 < 𝑡𝑘+1 can be reconstructed based on 𝑧𝑘1 , . . . , 𝑧

𝑘
𝑛𝑘 , 𝜌𝑘1 , . . . , 𝜌

𝑘
𝑛𝑘+1, 𝜀𝑘1 , . . . , 𝜀

𝑘
𝑛𝑘+1, and

𝜒𝑘
1 , . . . , 𝜒

𝑘
𝑛𝑘+1, according to (27) and (28), with 𝜃𝑘𝑖 given by (30), ensuring that 𝜒𝑘

1 = 𝜒𝑘
𝑛𝑘+1 = 0 for all 𝑘 by enforcing

𝜒0
1 = 𝜒0

𝑛0+1 = 0 in the initial conditions.
As was the case for the FTSM [20], the model behaviour is described by defining its transitions 𝑋

∘−→ 𝑋 ′,where ∘ denotes
any transition, 𝑋 is the current state, and 𝑋 ′ its successor state. In additions to passage of time 𝜏(𝑡end), front interaction −𝑖,
internal Riemann ∼𝑖, and boundary Riemann /𝑖 transitions, which were a part of the FTSM [20], we need one additional
transition to describe the energy dynamics: SoC advection transition ∪𝑖. Furthermore, all transitions need to be reformulated
to include the updates of 𝜀 and 𝜒.

The model dynamics can be split into the continuous and discrete part, corresponding to the hybrid system flow and jump
behaviour, respectively, with the flow behaviour of the system described entirely by the passage of time transition, and all
other transitions constituting jump behaviour. We ensure that the transition system model is deterministic by defining transition
guard sets that form a partition of 𝒳 . All guard sets 𝒢∘ are defined by some combination of the following conditions:

(𝜀𝑗+1=
#»𝜀 𝑗)∧(𝜃𝑗+1=

#»

𝜃 𝑗)∧(𝜒𝑗+1=
#»𝜒 𝑗), if (𝑣𝑗>𝜆𝑗)∧(𝑣𝑗+1>𝜆𝑗), 𝑗=1, . . . , 𝑛, (⋆∪)

(𝑧𝑗 < 𝑧𝑗+1) ∨

(︃
(𝑧𝑗 = 𝑧𝑗+1) ∧

(︂
(𝜆𝑗 < 𝜆𝑗+1) ∨

(︁
(𝜆𝑗 = 𝜆𝑗+1) ∧ (𝑄𝑗 ̸= 𝑄𝑗+1)

)︁)︂)︃
, 𝑗=1, . . . , 𝑛−1, (⋆−)(︂

(𝜌𝑗 ̸=𝜌𝑗+1)∧
(︁

Σ̃
𝜌𝑗 𝜌𝑗+1

𝑄𝑗
=[𝜌𝑗 𝜌𝑗+1]

⊤
)︁)︂
∨
(︁
( #»𝜀 𝑗 ̸=𝜀𝑗+1)∨(𝜒𝑗 ̸=𝜒𝑗+1)∨(𝜃𝑗 ̸=𝜃𝑗+1)

)︁
, if 𝑄𝑗 = 𝑄𝑗+1, 𝑗=1, . . . , 𝑛, (⋆∼)

(𝜌𝑗 = 𝜌′−(𝜌𝑗 , 𝜌𝑗+1, 𝑄𝑗 , 𝑄𝑗+1)) ∧ (𝜌𝑗+1 = 𝜌′+(𝜌𝑗 , 𝜌𝑗+1, 𝑄𝑗 , 𝑄𝑗+1)), if 𝑄𝑗 ̸= 𝑄𝑗+1, 𝑗=1, . . . , 𝑛, (⋆/)

where 𝜌′−(𝜌𝑗 , 𝜌𝑗+1, 𝑄𝑗 , 𝑄𝑗+1) and 𝜌′+(𝜌𝑗 , 𝜌𝑗+1, 𝑄𝑗 , 𝑄𝑗+1) are given as the optimizers from the generalized Riemann problem
solution described in Section III-B. For example, as will be discussed below, the passage of time transition can only be taken
if all of the listed conditions are satisfied, therefore we say that it has the lowest priority. We present the transitions in order
of increasing priority (from requiring all conditions (⋆) to be satisfied in order to be taken, to requiring the fewest conditions),
omitting the states that do not change from the description.

1) Passage of time transition 𝜏(𝑡end): The first transition we describe is the passage of time, capturing the continuous
dynamics of the system, and modelling the propagation of fronts between their interactions, or until the externally provided
goal time 𝑡end. This transition is taken if the state 𝑋 is in guard set

𝑋 ∈ 𝒢𝜏 = {𝑋 ∈ 𝒳 |(⋆∪), (⋆−), (⋆∼), (⋆/), 𝜏 ∈ [0, 𝜏*]} .
The transition is defined by

(𝑡, 𝑧,𝑄, 𝜀)
𝜏(𝑡end)−−−−→ (𝑡′, 𝑧′, 𝑄′, 𝜀′)

𝑡′ = 𝑡+ 𝜏*, 𝑧′ = 𝑧 + 𝜆𝜏*, 𝜀′ = 𝜀+ 𝜃𝜏*, 𝜀on′ = 𝜀on + 𝜃on𝜏*
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where 𝜆 =
[︀
𝜆1 . . . 𝜆𝑛

]︀⊤
, with the wave-speeds 𝜆𝑖 given by

𝜆𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑄𝑖+1(𝜌𝑖+1)−𝑄𝑖(𝜌𝑖)

𝜌𝑖+1−𝜌𝑖
, 𝜉𝑖 = 𝜉𝑖+1, 𝜌𝑖 ̸= 𝜌𝑖+1

𝑣𝑖, 𝜉𝑖 = 𝜉𝑖+1, 𝜌𝑖 = 𝜌𝑖+1

𝜆+
𝑖 , 𝜉𝑖 > 𝜉𝑖+1,

𝜆−
𝑖+1, 𝜉𝑖 < 𝜉𝑖+1,

and 𝜃 =
[︀
𝜃1 . . . 𝜃𝑛+1

]︀⊤
, given by (30). The update of 𝑄 is given through the update of the initial on-ramp SoC 𝜀on of

each of the generalized flux functions. The maximum time shift 𝜏* is the minimum of the time for which condition (⋆−) is
first violated,

𝜏*𝑧 =min

{︂
𝑧𝑖+1 − 𝑧𝑖
𝜆𝑖 − 𝜆𝑖+1

⃒⃒⃒⃒
𝑧𝑖+1≥𝑧𝑖, 𝜆𝑖>𝜆𝑖+1, 𝑖=1, . . . , 𝑛− 1

}︂
and the time to specified goal time 𝜏*end = 𝑡end − 𝑡, 𝜏* = max {0,min {𝜏*𝑧 , 𝜏*end}}, so if 𝑡 ≥ 𝑡end, we have 𝑋 ′ = 𝑋 .

2) SoC advection transition ∪𝑖: This transitions results from the fact that 𝜀(𝑥, 𝑡) is continuous in space wherever 𝑣𝑖 < 𝜆𝑖

and 𝑣𝑖+1 < 𝜆𝑖, and it is taken when the state is in guard set

𝑋 ∈ 𝒢∪𝑖 =
{︀
𝑋 ∈ 𝒳 |¬(⋆∪)𝑖, (⋆∪)𝑗 , 𝑗 < 𝑖, (⋆/), (⋆∼), (⋆−)

}︀
.

where by ¬(⋆∪)𝑖 we signify that the 𝑗 = 𝑖-th condition in (⋆∪) is violated. For all transitions ∘ ∈ {∪,−,∼, /}, we write
𝑋 ∈ 𝒢∘ if 𝑋 ∈ 𝒢∘𝑖

for all 𝑖. The transition can be described by

(𝑛, 𝑧, 𝜌,𝑄, 𝜀, 𝜒)
∪𝑖−→ (𝑛′, 𝑧′, 𝜌′, 𝑄′, 𝜀′, 𝜒′)

𝑛′=𝑛+ 1, 𝑧′=
[︀
𝑧1 . . . 𝑧𝑖 𝑧𝑖 𝑧𝑖+1 . . . 𝑧𝑛

]︀⊤
,

𝜌′=
[︀
𝜌1 . . . 𝜌𝑖 𝜌𝑖+1 𝜌𝑖+1 . . . 𝜌𝑛+1

]︀⊤
, 𝑄′=

[︀
𝑄1 . . . 𝑄𝑖 𝑄𝑖+1 𝑄𝑖+1 . . . 𝑄𝑛+1

]︀⊤
.

𝜀′=
[︀
𝜀1 . . . 𝜀𝑖

#»𝜀 𝑖 𝜀𝑖+1 . . . 𝜀𝑛
]︀⊤
, 𝜒′=

[︀
𝜒1 . . . 𝜒𝑖

#»𝜒 𝑖 𝜒𝑖+1 . . . 𝜒𝑛+1

]︀⊤
,

where #»𝜀 𝑖 is given by (31), and #»𝜒 𝑖 by (32).
3) Front interaction transition −𝑖: A front interaction transition is taken when the state is in guard set

𝑋 ∈ 𝒢−𝑖
=
{︀
𝑋 ∈ 𝒳 |¬(⋆−)𝑖, (⋆−)𝑗 , 𝑗 > 𝑖, (⋆∼), (⋆/)

}︀
,

i.e., when two fronts collide. In case of −𝑖, the position of fronts 𝑖 and 𝑖 + 1 becomes equal, 𝑧𝑖 = 𝑧𝑖+1 while their distance
is decreasing, 𝜆𝑖 > 𝜆𝑖+1, or their distance remains zero away from boundaries between different generalized flux functions,
𝜆𝑖 = 𝜆𝑖+1 and 𝑄𝑖 = 𝑄𝑖+1. The front interaction transition corresponds to removing one front and one zone,

(𝑛, 𝑧, 𝜌,𝑄, 𝜀, 𝜒)
−𝑖−→ (𝑛′, 𝑧′, 𝜌′, 𝑄′𝜀′, 𝜒′)

𝑛′=𝑛− 1, 𝑧′=
[︀
𝑧1 . . . 𝑧𝑖 𝑧𝑖+2 . . . 𝑧𝑛

]︀⊤
,

𝜌′=
[︀
𝜌1 . . . 𝜌𝑖 𝜌𝑖+2 . . . 𝜌𝑛+1

]︀⊤
, 𝑄′=

[︀
𝑄1 . . . 𝑄𝑖 𝑄𝑖+2 . . . 𝑄𝑛+1

]︀⊤
,

𝜀′=
[︀
𝜀1 . . . 𝜀𝑖 𝜀𝑖+2 . . . 𝜀𝑛+1

]︀⊤
, 𝜒′=

[︀
𝜒1 . . . 𝜒𝑖 𝜒𝑖+2 . . . 𝜒𝑛+1

]︀⊤
,

If 𝑄𝑖 ̸= 𝑄𝑖+2, this transition is likely to cause condition (⋆/) to be violated, and thus be followed by transition /𝑖.
4) Internal Riemann transition ∼𝑖: This transitions results from conditions corresponding to those of the Riemann problem

given in Section III-A, and it is taken when the state is in guard set

𝑋 ∈ 𝒢∼𝑖
=
{︀
𝑋 ∈ 𝒳 |¬(⋆∼)𝑖, (⋆∼)𝑗 , 𝑗 > 𝑖, (⋆/), 𝑄𝑖 = 𝑄𝑖+1

}︀
,

The transition can be described by

(𝑛, 𝑧, 𝜌,𝑄, 𝜀, 𝜒)
∼𝑖−→ (𝑛′, 𝑧′, 𝜌′, 𝑄′, 𝜀′, 𝜒′)

𝑛′=𝑛+𝑚− 2, 𝑚= 𝑚̃
𝜌𝑖 𝜌𝑖+1

𝑄𝑖
𝑧′=

[︀
𝑧1 . . . 𝑧𝑖−1 𝑧𝑖1

⊤
𝑚−1 𝑧𝑖+1 . . . 𝑧𝑛

]︀⊤
,

𝜌′=
[︁
𝜌1 . . . 𝜌𝑖−1 Σ̃

𝜌𝑖 𝜌𝑖+1

𝑄𝑖,𝑊

⊤
𝜌𝑖+2 . . . 𝜌𝑛+1

]︁⊤
, 𝑄′=

[︀
𝑄1 . . . 𝑄𝑖−1 𝑄𝑖1

⊤
𝑚 𝑄𝑖+2 . . . 𝑄𝑛+1

]︀⊤
,

𝜀′=
[︀
𝜀1. . . 𝜀𝑖−1 𝜀𝑖1

⊤
𝑚−1 𝜀𝑖+1 . . . 𝜀𝑛

]︀⊤
, 𝜒′=

[︀
𝜒1 . . . 𝜒𝑖−1 𝜒𝑖1

⊤
𝑚−1 𝜒𝑖+1 . . . 𝜒𝑛

]︀⊤
.

Depending on 𝜌𝑖 and 𝜌𝑖+1, the number of active states can decrease (if 𝜌𝑖 = 𝜌𝑖+1), increase, or stay the same. Note that
this transition only updates the traffic density part of the state in accordance to the solution of the Riemann problem from
Section III-A, and is therefore very likely to cause condition (⋆∪) to be violated. Therefore, the SoC dynamics of the system
will be handled by transition ∪ after other transitions modelling traffic density dynamics are executed.
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5) Boundary Riemann transition /𝑖: This transition can occur at interfaces between zones with different generalized flux
functions and reflects the traffic density part of the solution from Section III-B. It is taken when the state is in guard set

𝑋 ∈ 𝒢/𝑖
=
{︁
𝑋 ∈ 𝒳 |¬(⋆/)𝑖, (⋆/)𝑗 , 𝑗 > 𝑖,𝑄𝑖 ̸= 𝑄𝑖+1

}︁
.

The transition can be described by

(𝑛, 𝑧, 𝜌,𝑄, 𝜀, 𝜒)
/𝑖−→ (𝑛′, 𝑧′, 𝜌′, 𝑄′, 𝜀′, 𝜒′)

𝑛′=𝑛+𝑚− +𝑚+ − 2, 𝑚− = 𝑚̃
𝜌𝑖 𝜌′

−
𝑄𝑖
, 𝑚+ = 𝑚̃

𝜌′
+ 𝜌𝑖+1

𝑄𝑖+1
, 𝑧′=

[︀
𝑧1 . . . 𝑧𝑖−1 𝑧𝑖1

⊤
𝑚−+𝑚+

𝑧𝑖+1 . . . 𝑧𝑛
]︀⊤
,

𝜌′=
[︁
𝜌1 . . . 𝜌𝑖−1 Σ̃

𝜌𝑖 𝜌′
−

𝑄𝑖

⊤ Σ̃
𝜌′
+ 𝜌𝑖+1

𝑄𝑖+1

⊤ 𝜌𝑖+2 . . . 𝜌𝑛+1

]︁⊤
, 𝑄′=

[︀
𝑄1 . . . 𝑄𝑖−1 𝑄𝑖1

⊤
𝑚− 𝑄𝑖+11

⊤
𝑚+

𝑄𝑖+2. . . 𝑄𝑛+1

]︀⊤
,

𝜀′=
[︀
𝜀1 . . . 𝜀𝑖−1 𝜀𝑖1

⊤
𝑚− 𝜀𝑖+11

⊤
𝑚+

𝜀𝑖+2 . . . 𝜀𝑛+1

]︀⊤
, 𝜒′=

[︀
𝜒1 . . . 𝜒𝑖−1 𝜒𝑖1

⊤
𝑚− 𝜒𝑖+11

⊤
𝑚+

𝜒𝑖+2 . . . 𝜒𝑛+1

]︀⊤
,

where densities 𝜌′− = 𝜌′−(𝜌𝑖, 𝜌𝑖+1, 𝑄𝑖, 𝑄𝑖+1) and 𝜌′+ = 𝜌′+(𝜌𝑖, 𝜌𝑖+1, 𝑄𝑖, 𝑄𝑖+1) are obtained by solving the optimization problem
(21), with 𝜌− = 𝜌𝑖, 𝜌+ = 𝜌𝑖+1, 𝑄− = 𝑄𝑖, and 𝑄+ = 𝑄𝑖+1, including potential traffic flows to an off-ramp 𝑟off𝑖 and from an
on-ramp 𝑟on𝑖+1. Note that this transition is likely to cause condition (⋆∪) to be violated, and thus be followed by a number of
transitions ∪𝑗 and −𝑗+1 for some 𝑗, until condition (⋆∪) is ultimately satisfied.

V. MODEL DISCRETIZATIONS

While the formulation of the FTSM+E is intrinsically grid-free and event-based, i.e., not relying on space discretization and
sampling in time, it is often convenient to acquire the finite-dimensional discrete-time state, e.g., in case we want to implement
a discrete-time control law. It is nonetheless possible to use a simple instantiation of the FTSM+E as a Riemann problem
solver to formulate a Godunov-like scheme for discretization of the model (1) and (10) (or equivalently, (19) and (20), in case
there are on- and off-ramps) in space and time.

In this section, we present two cell-based discretizations of the CTE model. The first one is based on the direct implementation
of the Godunov-like scheme, relying on the solutions to the generalized Riemann-like problem presented in Section III. The
second one, approximated CTE model, uses a simplifying assumption that all EVs in a single cell discharge their batteries at
the same rate every time step.

A. Implementation of a Godunov-like scheme

The Godunov scheme [17] is a well-known numerical scheme for finite-volume approximation of PDEs, which relies on
splitting the space into cells, assuming the state is constant in each cell, solving Riemann problems at the cell boundaries, and
then updating the discrete-time cell state according by averaging the Riemann problem solutions over the cells. Note that here
we use a slight modification of the Godunov scheme, which we call Godunov-like, since state 𝜀 is not conserved, even in case
𝑑 = 0 (when there is no battery discharge). Instead, we formulate a Godunov scheme for discretizing the traffic density 𝜌 and
the normalized energy 𝜌𝜀, from which we may readily acquire 𝜀.

We discretize the space into cells of length 𝐿 and time into time steps 𝑇 , and assume that 𝐿 > (𝑉max − 𝑉min)𝑇 , where
𝑉max and 𝑉min are the maximum and minimum slopes of all flux functions considered in the studied case, respectively. This
condition ensures that the Courant-Friedrichs-Levy condition holds, as well as that fronts originating from the upstream and
the downstream cell boundary at some time 𝑡 cannot collide by time 𝑡+ 𝑇 . With a slight abuse of notation, the state of cell
𝐼 at time step 𝑘 consists of its traffic density 𝜌𝑘

𝐼
and its SoC 𝜀𝑘𝐼 . We assume that the flux and discharge function can be

piecewise-defined in space (due to e.g., varying road geometry) and time (due to e.g., traffic control measures such as Variable
Speed Limits), but that the boundaries between zones where different functions 𝑄𝑗(𝜌) and 𝒟𝑗(𝑣) describe the traffic and SoC
dynamics must coincide with the cell boundaries, yielding Λ = 0. Therefore, the traffic density and SoC dynamics in each cell
𝐼 are described by a single generalized flux function, which we denote 𝑄𝑘

𝐼
. Additionally, we assume that on- and off-ramp

positions also coincide with cell boundaries, and ascribe on- and off-ramp flows to the generalized flux function upstream and
downstream of that boundary, respectively. The on-ramp flow entering the road at the upstream end of cell 𝐼 is written 𝑟𝑘on,𝐼 ,
and we write its SoC 𝜀on,𝑘𝐼 , and the off-ramp flow exiting the road from the downstream end of cell 𝐼 is 𝑟𝑘off,𝐼 .

The Riemann-like problems solved in the Godunov-like scheme at time step 𝑘 are defined by initial conditions (13) with
𝜌− = 𝜌𝑘

𝐼
, 𝜌+ = 𝜌𝑘

𝐼+1
, (14) with 𝜀− = 𝜀𝑘𝐼 , 𝜀+ = 𝜀𝑘𝐼+1 𝜒− = 𝜒+ = 0, by discharge and flux functions, and by potential on- and
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off-ramp flows defined by 𝑄𝑘

𝐼
and 𝑄𝑘

𝐼+1
. We denote the solution to the Riemann-like problem at the boundary between cell

𝐼 and cell 𝐼 + 1 at time step 𝑘 as 𝜌(𝑥, 𝑇 ; 𝐼, 𝑘), 𝜀(𝑥, 𝑇 ; 𝐼, 𝑘), and we have

𝜌(𝑥, 𝑇 ; 𝐼, 𝑘)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜌′1, 𝑥 < 𝜆′
1𝑇,

...
𝜌′𝑖, 𝜆′

𝑖−1𝑇 < 𝑥 < 𝜆′
𝑖𝑇,

...
𝜌′𝑛′+1, 𝑥 > 𝜆′

𝑛′𝑇,

𝜀(𝑥, 𝑇 ; 𝐼, 𝑘)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜀′1+𝜃′1𝑇, 𝑥 < 𝜆′
1𝑇,

𝜀′2+𝜃′2𝑇+𝜒′
2 (𝑥− 𝜆′

1𝑇 ) , 𝜆′
1𝑇 < 𝑥 < 𝜆′

2𝑇,
...

𝜀′𝑖+𝜃′𝑖𝑇+𝜒′
𝑖

(︀
𝑥− 𝜆′

𝑖−1𝑇
)︀
, 𝜆′

𝑖−1𝑇 < 𝑥 < 𝜆′
𝑖𝑇,

...
𝜀′𝑛′+𝜃′𝑛′𝑇+𝜒′

𝑛′

(︀
𝑥− 𝜆′

𝑛′−1𝑇
)︀
, 𝜆′

𝑛′−1𝑇 < 𝑥 < 𝜆′
𝑛′𝑇,

𝜀′𝑛′+1+𝜃′𝑛′+1𝑇, 𝑥 > 𝜆′
𝑛′𝑇.

Parameters 𝜌′𝑖, 𝜆
′
𝑖, 𝑛

′, 𝜀′𝑖, 𝜒
′
𝑖, and 𝜃′𝑖 are obtained from the FTSM+E solution 𝑋 ′ at time 𝑡 = 𝑇 , for initial state 𝑋0 defined by

𝑛0 = 1, 𝑡0 = 0, 𝑧0 = 0, 𝜌0 =
[︁
𝜌𝑘
𝐼

𝜌𝑘
𝐼+1

]︁⊤
, 𝜀0 =

[︀
𝜀𝑘𝐼 𝜀𝑘𝐼+1

]︀⊤
, 𝜒0 = 02, 𝑄 =

[︁
𝑄𝑘

𝐼
𝑄𝑘

𝐼+1

]︁⊤
.

Due to the structure of the initial conditions, finding 𝑋 ′ consists simply of taking some number of transitions ∪𝑖, −𝑖, ∼𝑖, and
/𝑖 until we reach state 𝑋0′ ∈ 𝒢𝜏 . Afterwards, all states 𝑋0′′ , 𝑋0′ 𝜏(𝑡end)−−−−→ 𝑋0′′ , ∀𝑡end > 0 will be 𝑋0′′ ∈ 𝒢𝜏 , and we acquire

𝑋 ′ as 𝑋0′ 𝜏(𝑇 )−−−→ 𝑋 ′, by advancing time to 𝑡′ = 𝑇 .
Finally, the updated traffic density 𝜌𝑘+1

𝐼
and SoC 𝜀𝑘+1

𝐼 , acquired by applying the Godunov-like scheme can be expressed as

𝜌𝑘+1
𝐼

= 𝜌𝑘
𝐼
+

𝑇

𝐿

(︁
𝑞𝑘
𝐼− − 𝑞𝑘

𝐼+

)︁
, (34)

𝜌𝑘+1
𝐼

𝜀𝑘+1
𝐼 = 𝜌𝑘

𝐼

(︁
𝜀𝑘𝐼 + 𝑑𝑘𝐼𝑇

)︁
+

𝑇

𝐿

(︁
𝜑𝑘

𝐼− − 𝜑𝑘

𝐼+

)︁
, (35)

where the battery discharge 𝑑𝑘𝐼 is given by

𝑑𝑘𝐼 = 𝒟𝑘
𝐼

(︃
𝑄𝑘

𝐼
(𝜌𝑘

𝐼
)

𝜌𝑘
𝐼

)︃
, (36)

and we define

𝑞𝑘
𝐼− =

∞∫︁
0

𝜌(𝑥, 𝑇 ; 𝐼 − 1, 𝑘)− 𝜌𝑘
𝐼
d𝑥 =

𝑛′∑︁
𝑖=2

(𝜌′𝑖 − 𝜌𝑘
𝐼
)(max{0, 𝜆′

𝑖} −max{0, 𝜆′
𝑖−1})𝑇,

𝑞𝑘
𝐼+

=

0∫︁
−∞

𝜌𝑘
𝐼
− 𝜌(𝑥, 𝑇 ; 𝐼, 𝑘)d𝑥 =

𝑛′∑︁
𝑖=2

(𝜌𝑘
𝐼
− 𝜌′𝑖)(min{0, 𝜆′

𝑖} −min{0, 𝜆′
𝑖−1})𝑇,

𝜑𝑘

𝐼− =

∞∫︁
0

𝜌(𝑥, 𝑇 ; 𝐼 − 1, 𝑘)𝜀(𝑥, 𝑇 ; 𝐼 − 1, 𝑘)− 𝜌𝑘
𝐼
(𝜀𝑘𝐼 + 𝑑𝑘𝐼𝑇 )d𝑥 = . . .

=

𝑛′∑︁
𝑖=2

(︂(︂
𝜀′𝑖 +

(︂
𝜃′𝑖 + 𝜒′

𝑖

max{0, 𝜆′
𝑖} −max{0, 𝜆′

𝑖−1} − 2𝜆′
𝑖−1

2

)︂
𝑇

)︂
− (𝜀𝑘𝐼 + 𝑑𝑘𝐼𝑇 )

)︂
(max{0, 𝜆′

𝑖} −max{0, 𝜆′
𝑖−1})𝑇,

𝜑𝑘

𝐼+
=

0∫︁
−∞

𝜌𝑘
𝐼
(𝜀𝑘𝐼 + 𝑑𝑘𝐼𝑇 )− 𝜌(𝑥, 𝑇 ; 𝐼, 𝑘)𝜀(𝑥, 𝑇 ; 𝐼, 𝑘)d𝑥 = . . .

=

𝑛′∑︁
𝑖=2

(︂
(𝜀𝑘𝐼 + 𝑑𝑘𝐼𝑇 )−

(︂
𝜀′𝑖 +

(︂
𝜃′𝑖 + 𝜒′

𝑖

min{0, 𝜆′
𝑖} −min{0, 𝜆′

𝑖−1} − 2𝜆′
𝑖−1

2

)︂
𝑇

)︂)︂
(min{0, 𝜆′

𝑖} −min{0, 𝜆′
𝑖−1})𝑇.

It is also possible to paralelize the process of finding 𝑞𝑘
𝐼± and 𝜑𝑘

𝐼± by constructing initial conditions that take all cells into
account, essentially taking (24) with 𝜌0𝑖 = 𝜌𝑘

𝐼
, 𝜀0𝑖 = 𝜀𝑘𝐼 , 𝜒0

𝑖 = 0, 𝑖 = 𝐼 , with cell boundaries 𝑥𝜌,0
𝑖 = 𝑥𝜀,0

𝑖 = (𝑖− 1)𝐿, and with
𝑄0

𝑖 reflecting 𝑄𝑘

𝐼
.

B. Approximated CTE model

The approximate CTE model presented here is based on the discretization of the CTEC model introduced in [14]. Since it
is also based on a Godunov-like scheme, this model has the same structure as the Godunov-like scheme using FTSM+E, thus
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all its states are defined the same way. The expressions for the updated traffic density 𝜌𝑘+1
𝐼

and SoC 𝜀𝑘+1
𝐼 are (34)–(35), same

as for the Godunov-like scheme. The difference is only in how 𝑞𝑘
𝐼−, 𝑞𝑘

𝐼+
, 𝜑𝑘

𝐼−, and 𝜑𝑘

𝐼+
are defined:

𝑞𝑘
𝐼− = 𝑞𝑘

𝐼−1+
− 𝑟𝑘off,𝐼−1 + 𝑟𝑘on,𝐼 , (37)

𝑞𝑘
𝐼+

= min
{︁
𝑄𝑘

𝐼
(min{𝜌𝑘

𝐼
, 𝜎𝑘

max,𝐼}), 𝑄
𝑘

𝐼+1
(max{𝜌𝑘

𝐼+1
, 𝜎𝑘

max,𝐼+1})− 𝑟𝑘on,𝐼+1 + 𝑟𝑘off,𝐼

}︁
, (38)

𝜑𝑘

𝐼− = (𝑞𝑘
𝐼−1+

− 𝑟𝑘off,𝐼−1)(𝜀
𝑘
𝐼−1 + 𝑑𝑘𝐼−1𝑇 ) + 𝑟𝑘on,𝐼𝜀

𝑘
on,𝐼 , (39)

𝜑𝑘

𝐼+
= 𝑞𝑘

𝐼+
(𝜀𝑘𝐼 + 𝑑𝑘𝐼𝑇 ), (40)

with battery discharge 𝑑𝑘𝐼 defined by (36), and where by 𝜎𝑘
max,𝐼 we denote the critical density of 𝑄𝑘

𝐼
(𝜌), i.e., the density at

which it achieves its maximum value.
As will be shown in the simulations, the approximate model given here achieves similar results to the one based on the

Godunov-like scheme using FTSM+E, despite being significantly numerically simpler and more straightforward to implement.
Due to the properties of the Godunov scheme, the traffic density dynamics of this approximate model, given by (37) and (38),
are exactly the same as that of the Godunov-like scheme using FTSM+E, and the only discrepancy is due to the simplified
definition of (39) and (40). Essentially, the approximate model assumes that all EVs in each cell travel at the same speed
𝑄𝑘

𝐼
(𝜌𝑘

𝐼
)/𝜌𝑘

𝐼
during the entirety of the time step, which ignores the possibility that they change their speeds as they enter zones

of with different traffic densities. In case there are no on- or off-ramps, the approximate CTE model (34)–(35), (37)–(40)
simplifies to

𝜌𝑘+1
𝐼

= 𝜌𝑘
𝐼
+

𝑇

𝐿

(︁
𝑞𝑘
𝐼−1

− 𝑞𝑘
𝐼

)︁
,

𝜌𝑘+1
𝐼

𝜀𝑘+1
𝐼 = 𝜌𝑘

𝐼

(︁
𝜀𝑘𝐼 + 𝑑𝑘𝐼𝑇

)︁
+

𝑇

𝐿

(︁
𝑞𝑘
𝐼−1

(︁
𝜀𝑘𝐼−1 + 𝑑𝑘𝐼−1𝑇

)︁
− 𝑞𝑘

𝐼

(︁
𝜀𝑘𝐼 + 𝑑𝑘𝐼𝑇

)︁)︁
,

𝑞𝑘
𝐼
= min

{︁
𝑄𝑘

𝐼

(︁
min{𝜌𝑘

𝐼
, 𝜎𝑘

max,𝐼}
)︁
, 𝑄𝑘

𝐼+1

(︁
max{𝜌𝑘

𝐼+1
, 𝜎𝑘

max,𝐼+1}
)︁}︁

.

VI. SIMULATION EXAMPLE

Finally, we demonstrate the use of the model through an illustrative simulation example comparing three simulation models:
1) FTSM+E proposed in this work (grid-free and event-based), given in Section IV-B,
2) Godunov-like scheme using FTSM+E (discretized in space and time), given in Section V-A, and
3) Approximated CTE model, given in Section V-B.

These models are ordered by exactness, from exact (for continuous piecewise-linear flux functions) to more approximate, and
by numerical burden, from the most complex to the simplest. We first describe the simulation scenario, and then proceed to
compare the solutions acquired from the three considered simulation models.

A. Scenario

We compared the three simulation models on a synthetic example involving elements that showcase all of the features of
FTSM+E. The simulation scenario is sketched in Fig. 2. Simulations were executed on a 100 km road, and the total simulation
time is 𝑡end = 1 h. The road is split into four zones: flat road from 𝑥 = 0 km to 𝑥 = 50 km, uphill road with 𝛼up = 5% slope
from 𝑥 = 50 km to 𝑥 = 70 km, downhill road with 𝛼down = −5% slope from 𝑥 = 70 km to 𝑥 = 90 km, and flat road from
𝑥 = 90 km to 𝑥 = 100 km. There is a single off-ramp, at 𝑥 = 50 km, at the boundary between the flat zone and the uphill
zone, and a single on-ramp at 𝑥 = 90 km, at the boundary between the downhill zone and the flat zone.

Due to different driving behaviours on steep uphill and downhill slopes, these zones will be described by different flux
functions than the one that describes the flat road, as shown in Figure 3. We assume that the traffic flow follows the Greenshields
flux function,

𝑄flat(𝜌) = 𝑉

(︂
𝜌

𝑃
−
(︁ 𝜌

𝑃

)︁2)︂
,

Fig. 2: A sketch of the simulation scenario. Initial traffic density is illustrated by the concentration of EVs, and their initial SoC is indicatively
colour-coded (warmer is higher). Vertical dashed red lines denote boundaries between zones with different road grade.
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where the free flow speed is 𝑉 = 100 km/h in case of the flat road, and the jam density is 𝑃 = 60 veh/km, resulting in critical
density of 𝜎max = 30 veh/km. We assume that the uphill and downhill zone flux functions are a scaled-down version of the
flat road flux function, and follow the expressions used in [33], yielding

𝑄up(𝜌) = (1 + 3𝛼up − 150𝛼2
up)𝑄flat(𝜌) = 0.775𝑄flat(𝜌),

𝑄down(𝜌) = (1− 5𝛼down − 100𝛼2
down)𝑄flat(𝜌) = 0.5𝑄flat(𝜌).

The flux functions were approximated as continuous and piecewise-linear, with 𝑚 = 15 equally spaced breakpoints between
𝜌 = 0 and 𝜌 = 𝑃 . Since the 𝑄up(𝜌) < 𝑄flat(𝜌) and 𝑄down(𝜌) < 𝑄up(𝜌) for 0 < 𝜌 < 𝑃 , both of these zones will act as
stationary bottlenecks.

Crucially, the uphill and downhill road segments will also translate into very different parameters of the battery discharge
function. We assumed the battery discharge rate depends on the EV speed according to a third order polynomial,

𝒟*(𝑣) = 𝐷0 +𝐷*
1𝑣 +𝐷2𝑣

2 +𝐷3𝑣
3.

In order to better illustrate the changes in SoC, we used quantities that are twice as large as the ones derived similarly to the bat-
tery discharge model in [9], assuming a 40 MWh battery capacity. Parameters 𝐷0 = −3.5·10−2 1/h, 𝐷2 = −3.28 · 10−6 km2/h3,
and 𝐷3 = −4.29 · 10−7 km3/h4 do not depend on the slope of the road, and will therefore be the same for 𝒟flat(𝑣), 𝒟up(𝑣), and
𝒟down(𝑣). Parameter 𝐷*

1 models the energy expended to overcome an uphill road, or energy recovered from regenerative braking
on a downhill road, thus it takes different values for the three cases, 𝐷flat

1 = −1.67 · 10−3 km/h2, 𝐷up
1 = −1.2 · 10−2 km/h2,

and 𝐷down
1 = 8.68 · 10−3 km/h2. Note that, as expected for such a steep uphill, 𝐷up

1 is almost an order of magnitude larger
than 𝐷flat

1 , whereas for the considered steep downhill 𝐷down
1 is positive, meaning that the SoC of the vehicles on this road

segment will be increasing in time for all but very low 𝑣.
We split the road into 𝑛cell = 10 cells of 𝐿 = 10 km length and adopt 𝑇 = 0.1 h time step, respecting the CFL conditions.

The initial conditions of the FTSM+E, 𝜌(𝑥, 0) and 𝜀(𝑥, 0), were purposefully selected to illustrate the model features, and
are shown in Figure 4. Since the cell-based simulation models can only represent piecewise-constant SoC, the initial 𝜀0𝐼 were
calculated as averages of 𝜀(𝑥, 0) over their corresponding cells. The inflow into the first cell for the cell-based simulation
models, 𝑞𝑘

0+
and 𝜑𝑘

0+
, were selected to mirror the behaviour of the FTSM+E, essentially assuming that 𝜌(𝑥, 𝑡) = 𝜌(0, 0), and

𝜀(𝑥, 𝑡) = 𝜀(0, 0) + 𝑑(0, 0)𝑡, for 𝑥 < 0. During the simulation, the off ramp flow at 𝑥 = 90 km was set to 𝑟off = 400 veh/h,
and on-ramp flow at 𝑥 = 50 km to 𝑟on = 800 veh/h, with the SoC of the EVs entering the road via the on-ramp described by
𝜀on = 0.5 and 𝜃on = 0.4 1/h, resulting in the SoC of the on-ramp EVs being 0.5 at 𝑡 = 0 h and 0.9 at 𝑡 = 1 h.

B. FTSM+E solution

The FTSM+E simulation results are shown shown colour-coded in Figure reffig:ftsm, displaying the traffic density in
Figure 5a, and the SoC in Figure 5b. Each zone defined by the fronts on its borders in Figure 5a is the same colour, whereas
the zones in Figure 5b can have gradients in 𝑥 and 𝑡, as expected from the form of the solution (27)–(28).

The vertical dashed red lines indicate positions where there is a boundary between zones described by different flux functions.
At two of these boundaries, we also have off-ramp (𝑥 = 50 km) and on-ramp (𝑥 = 90 km) flows. The vertical dashed white
lines indicate the boundaries of the cells, and horizontal dashed white lines the time steps that are used for the cell-based
discrete-time models. Although these have no influence on the FTSM+E dynamics, they will be used to calculate average cell
traffic density and SoC, which will be compared with those of the other models.

Fig. 3: Flux functions describing the traffic flow on flat,
uphill, and downhill road.

Fig. 4: Initial conditions 𝜌(𝑥, 0) and 𝜀(𝑥, 0).
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(a) Traffic density 𝜌(𝑥, 𝑡).

(b) State of charge 𝜀(𝑥, 𝑡).
Fig. 5: The full FTSM+E solution for the given scenario.
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It can be seen that the solution involves a large number of fronts, mostly as a result of having a fairly close approximation of
the continuous flux function (see Figure 3), with a large number of breakpoints. This allows for a very detailed representation
of both 𝜌(𝑥, 𝑡) and 𝜀(𝑥, 𝑡), with no diffusion. The only place where there is a loss of information due to averaging SoC is
at the on-ramp, due to the impossibility of representing two distinct groups of vehicles at the same position. Elsewhere, we
may recover the SoC profile of individual EVs over time if we follow their trajectories, 𝜀𝜉(𝑡) = 𝜀(𝑥𝜉(𝑡), 𝑡). For example, in
Figure 5b, it is possible to visually follow the trajectories of vehicles that were in 𝑥 ∈ [10, 20] km at 𝑡 = 0, since their SoC is
lower than that of the EVs upstream and downstream of them, 𝜀(𝑥, 0) = 0.5 − 0.01(𝑥 − 10), 𝑥 ∈ [10, 20]. At 𝑡 = 1 h, these
vehicles occupy 𝑥 ∈ [64.13, 66] km, and their SoC ranges approximately from 0.12 to 0.06.

As expected, the bottleneck at 𝑥 = 70 km causes a new zone of congestion to arise around 𝑡 = 0.3 h. Furthermore, the
traffic flow from the on-ramp at 𝑥 = 90 km also causes some lighter congestion to persist upstream of it throughout the
simulation, since the initial traffic density in 𝑥 ∈ [80, 90] km is equal to the critical density. Finally, following the trajectories
of the vehicles traversing the downhill road segment, it can be seen that their SoC does indeed increase in time, although this
increase might not be obvious in Figure 5b.

C. Simulation model comparison

We can now compare the considered simulation models. A qualitative comparison of the simulation results is given in
Figures 6 and 7, with cell-averaged discrete-time traffic density shown colour-coded in Figure 6, and cell-averaged discrete
time SoC in Figure 7. The cell-averaged traffic density in Figure 6a is calculated by averaging the FTSM+E traffic density
𝜌(𝑥, 𝑡) over space

𝜌𝑘
𝐼
=

1

𝐿

𝐼𝐿∫︁
(𝐼−1)𝐿

𝜌(𝑥, 𝑘𝑇 )d𝑥,

whereas the cell-averaged SoC in Figure 7a is calculated by averaging the FTSM+E SoC 𝜀(𝑥, 𝑡) over the vehicles in the cell

𝜀𝑘𝐼 =
1

𝜌𝑘
𝐼
𝐿

𝐼𝐿∫︁
(𝐼−1)𝐿

𝜌(𝑥, 𝑘𝑇 )𝜀(𝑥, 𝑘𝑇 )d𝑥.

(a) FTSM+E (b) Godunov-like using FTSM+E (c) Approximate CTE

Fig. 6: Cell-averaged traffic densities for the three compared models.

(a) FTSM+E (b) Godunov-like using FTSM+E (c) Approximate CTE

Fig. 7: Cell-averaged SoC for the three compared models.
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(a) Average relative error in 𝜌 (b) Average relative error in 𝜀 (c) Minimum and maximum values of 𝜀

Fig. 8: Quantitative comparison of the three used simulation models.

As expected, the cell-averaged traffic density of the Godunov-like scheme using FTSM+E and the approximated CTE model,
shown in Figures 6b and 6c, are exactly the same. They are also very similar to the one corresponding to the exact FTSM+E
solution, although a lot of the finer details of the traffic density spacetime profile is lost by averaging. The two cell-based
models differ in how their SoC dynamics is defined, although they exhibit a very similar behaviour in the presented simulation
example. Their SoC does deviate noticeably from its cell-averaged FTSM+E solution counterpart, and even more so from the
exact FTSM+E solution.

A more quantitative comparison is given in Figure 8. First, we compare the average relative errors of the cell-averaged
FTSM+E solution and the two cell-based models, with the exact FTSM+E solution taken as ground truth. Here the average
relative errors are defined as

err𝑘𝜌 =
1

𝑛cell

𝑛cell∑︁
𝐼=1

𝐼𝐿∫︀
(𝐼−1)𝐿

⃒⃒⃒
𝜌(𝑥, 𝑘𝑇 )− 𝜌𝑘

𝐼

⃒⃒⃒
d𝑥

𝜌𝑘
𝐼

,

err𝑘𝜀 =
1

𝑛cell

𝑛cell∑︁
𝐼=1

𝐼𝐿∫︀
(𝐼−1)𝐿

⃒⃒⃒
𝜌(𝑥, 𝑘𝑇 )𝜀(𝑥, 𝑘𝑇 )− 𝜌𝑘

𝐼
𝜀𝑘𝐼

⃒⃒⃒
d𝑥

𝜌𝑘
𝐼
𝜀𝑘𝐼

,

and their comparison is given in Figures 8a and 8b. It can be seen that most of the error comes from averaging, since the
cell-averaged FTSM+E solution seems to be consistently better by only about 0.025 after the first time step. Since the initial
traffic density was in the form that can be accurately represented by 𝜌0

𝐼
, we can see that its error at 𝑡 = 0 is zero. However,

due to the initial SoC containing linear parts with non-zero slope, the error in SoC is greater than zero from the start.
Finally, an important property of the FTSM+E solution is that it preserves the SoC information on a practically per-vehicle

basis, whereas some information is lost due to averaging in case of cell-based models. To illustrate this, in Figure 8c we show
a comparison of the minimum and maximum SoC sampled at times 𝑡 = 𝑘𝑇 . It can be seen that, at least in this example, all
cell-averaged models demonstrate a significantly narrower range of SoC compared to the exact FTSM+E solution, with the
cell-averaged FTSM+E solution achieving only slightly better results than the two cell-based models. In this example, this is
due to the fact that there was a cell with low traffic density and low SoC in the initial conditions. The EVs from this cell were
immediately absorbed into the nearby traffic, and the information about their SoC was effectively lost.

VII. CONCLUSION

In summary, in this work we study a macroscopic EV traffic model that includes the flows of energy carried in their batteries,
consisting of a conservation law coupled with an advection equation. We define and solve a generalized form of Riemann
problem for this model, allowing for piecewise linear initial SoC, piecewise-defined flux function, and on- and off-ramp flows.
Based on this solution, we formulate FTSM+E, which can be used to obtain exact solutions for the specific case when flux
functions are continuous and piecewise-linear. Finally, we use an illustrative simulation example to compare the proposed
FTSM+E, which is grid-free and event-based, with two cell-based discrete-time simulation models: one based on applying a
Godunov-like scheme using the Riemann problem solutions, and another using approximate expressions for the SoC dynamics.
The proposed FTSM+E is shown to be able to provide very detailed solutions, practically at the level of single vehicles,
whereas the cell-based simulation models provide a good approximation, at the cost of loss of information due to averaging. It
is notable that the approximated CTE model achieves a comparable performance to the model where the Godunov-like scheme
is applied rigorously, in spite of significantly lower numerical complexity.

The proposed models are intended to be used for electromobility control, i.e., controlling the behaviour of the EVs and the
broader coupled transportation and power system, in order to achieve some control goals. While in this work no control laws
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were discussed, the proposed models can be used to predict the effect of various control actions and design control laws. The
more complex and exact FTSM+E can be used for detailed analysis, and also to provide a ground truth for designing model
approximations, whereas the simpler approximated models are more suitable for real-time control implementation.

Apart from designing control laws, there are also many other directions this work could be extended. Notably, the on- and
off-ramp flows discussed here were only defined in rather simplistic terms, as piecewise-constant in time and not depending
on the local traffic state. In the FTSM+E framework, the most straightforward way of remedying this is through introducing
another type of transitions, which would ensure that the traffic state and flows around on- and off-ramps follow some chosen
logic, e.g., through defining splitting ratios towards off-ramps. Furthermore, although the charging station implementation of
the CTEC model from [14] was not explicitly considered in this work, it is not hard to also express this part of the model in
a similar front-tracking framework.

Finally, this work can be seen as the first step towards studying more general second-order macroscopic traffic models in
the front-tracking framework. In particular, the well-known ARZ model has many similarities with the model studied in this
work, with the crucial difference being that in the case of ARZ the advected quantity also affects the traffic dynamics, resulting
in full coupling between the two states. In case of the CTE model, we were able to find exact solutions, assuming the flux
functions were continuous and piecewise-linear, but this is not likely to be possible in the general case. Instead, we will need
to introduce approximations and quantify how they affect the discrepancy of the model from the exact solution.
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