With this, N 2 ∞ (W ∞ (BLACK) H 1 ) = W ∞ (BLACK) H 1 ∩ N 3 ∞ , N 2

∞ ≡ {the rotationally invariant 3 d region between ZZ 1 (i 0 ) and x = Ψ(y)} ⊂ M (Γ).

6 The proof of the Zipping Lemma 5.1

In the present section we will focus on the closed subset

(6.0) f LIM M 2 (f ) ⊂ f W (complementary) ⊂ f X 2 , with W (complementary) = W (∞) (BLACK) + W (RED ∩ H 0 ).
For each of these W (complementary) we introduce a Γ-invariant splitting (already mentioned before) (6.1)

W (complementary) = N 2 ∞ (W )(easy part) ∪ N 2 ∞ (W )(difficult part),
s.t. we have (6.2)

p ∞∞ = N 2 ∞ ∩ f LIM M 2 (f ) ∈ ∂N 2 ∞ ∩ ∂N 2 ∞ .
Moreover, whenever q 1 , q 2 , . . . ∈ N 2 ∞ and lim q n = q ∞ ∈ f LIM M 2 (f ), then q ∞ = p ∞∞ . In this figure, the horizontal lines are BLUE, the vertical ones RED.

In (A) we present a piece of W ∞ (BLACK)

H 1 = N 2 ∞ ∪ ∂N 2 
∞ , which should be compared to figure 2.6, but be aware that, for typographical commodity's sake, the drawing is not everywhere realistic. The RED lines, dotted or plain do not make it to the y 1 , y 2 , . . . , y ∞ in real life. They rest with ∂(RED) in a BLUE line. The dotted piece [p ∞∞ , y ∞ ] is not realistic, the limit wall (S 1 × I) ∞ stops at p ∞∞ , and then goes higher, and similarly the RED walls do not go as far as the y 1 , y 2 , . . .. They actually only start from the various lines ZZ, upwards. Similarly, in real life the W ∞ (BLACK) H 1 never gets all the way to [B, A ∞ ] but stops at some ∂ 0 W ∞ (BLACK) H 1 (figure 2.6), parallel to [B, A ∞ ], located to the right of it. The lines ZZ's in (A) stand for "zigzags", i.e. continuous broken lines of successive red and blue arcs at the level of X 2 . For typographical reasons, the zigzags are only very schematically represented in (A); they appear more realistically in (B), as well as in the figures 2.5, 2.6. Normally, such a ZZ is a transversal intersection W (∞) ∩ ∂H 1 ⊂ M (Γ). The typical ZZ n in (A) goes from the line [B, A ∞ ], along the BLUE level x = x n to (x n , y n ), and from there on it really starts zigzagging infinitely many times to the p ∞∞ . Inside H 0 i , lim

n=∞ ZZ n = [A ∞ , p ∞∞ ] ⊂ S 2 ∞ .
In (B) we have . . . a 1 b 1 a 2 b 2 . . . ⊂ ZZ n . The x-arrow in the coordinate system corresponds to the increasing x's. The H 0 i mentioned above has δH 0 i = S 2 ∞ .

As drawn, figure 6.1.(A) is part of a 3 d rotationally symmetric larger object, with symmetry axis [B, A ∞ ). In terms of the figure 2.6, our W ∞ (BLACK) H 1 in figure 6.1 has been truncated at ZZ 1 = ∂H 1 1 and the ZZ i = ∂H 1 i ∩ W ∞ , for i = 1, 2, . . . are drawn too. All the bicollared H 1 i 's are attached to a same H 0 1 , with ZZ 1 farthest from S 2 ∞ = δH 0 1 . But, on par with figure 6.1, there is also a much denser figure than figure 6.1, at the target, taking into account all the H 0 j 's with g(∞) H 0 j = g(∞) H 0 1 . In this complete figure we have a doubly infinite family ZZ i (j), the zigzags from 6.1 being now the ZZ i [START_REF] Bessières | La conjecture de Poincaré: la preuve de R. Hamilton et G. Perelman[END_REF]. There is then a lowest ZZ 1 (i 0 ) ⊂ ∂H 1 i0 (MAX) (figure 2.6), with only finitely many zigzags between ZZ i (1) ≡ our ZZ 1 and this ZZ 1 (i 0 ) ≈ ∂H 1 i0 (MAX). (6.3) For each complete figure 6.1 there is a universal curve x = Ψ(y) inside the W ∞ (BLACK), serving as common boundary

∂N 2 ∞ ∩ ∂N 2 ∞ . See here figure 2.4-(B) too. 2 ∞ (W ∞ (BLACK) H 0 ) = W ∞ (BLACK) H 0 -N 2 ∞ . The N 2 ∞ (W (∞) (BLACK) H 0 ) touches (S 1 × I) ∞ ∪ S 2 ∞ exactly at p ∞∞ (W (∞) (BLACK)), while W (∞) (BLACK) ∩ ((S 1 × I) ∞ ∪ S 2 ∞ ) ⊂ N 2 ∞ (W (∞) (BLACK)); in figure 2.5 the N 2 
∞ is disconnected. We move next to W (RED ∩ H 0 ), a cylinder bounded by the circles S 1 = ∂W (RED) ∩ W (BLUE) and S 2 ∞ (BLUE) ∩ W (RED). This time there is no point p ∞∞ , but the S 1 above meets some figure 6.1.(A) and, compatibly with what we have already done before, we shall take now as definition

N 2 ∞ (W (RED ∩ H 0 )) = W (RED ∩ H 0 ) ∩ N 3 ∞ , with complement the N 2 ∞ (W (RED ∩ H 0 ))
. See here the figures 2.5, 2.6, and of course 6.1. In our figure 6.1, an infinity of pieces W (RED ∩ H 0 ) (actually their intersection with W ∞ (BLACK)), are being suggested). They typically go from a bending point of a ZZ n line (typically like q 1 figure 6.1 for ZZ 1 ), up to S 2 ∞ . Remember that pieces like the drawn [q 1 , y 1 ] are fakes, they are not physically there. This should make it clear that the N 2 ∞ (W (RED ∩ H 0 )) sees only finitely many double lines. But then, our rotationally invariant N 3 ∞ (and see here the figures 6.1, 2.5 and 2.6) also bites into some W (BLACK)'s. Generically, these live in 1 2 -planes E 2 containing the same axis of symmetry [B, A ∞ ) from 6.1, but different from the 1 2 -plane of W ∞ (BLACK) H 1 , and looking now away from [B, A ∞ ). At the source X 2 , W (BLACK) is glued to {a bloc W (RED ∩ H 0 ) ∪ W (BLUE), already glued together at the source X 2 }, along something like [a, s 2 , b], figure 2.6, and to this corner corresponds a {p ∞∞ -island} ⊂ W (BLACK). Here, the p ∞∞ of the island in question belongs to the same S 1 ∞ = S 2 ∞ ∩ (S 1 × I) ∞ to which the p ∞∞ in figure 6.1 belongs too. The latter p ∞∞ is like in the figures 2.5, 2.6 and the former like in figure 2

.4-(A).

There is an N 3 ∞ associated to the S 1 ∞ , both Γ-invariant and rotationally invariant. Compatibly with all the previous story, we take (6.5)

N 2 ∞ (of the p ∞∞ -island) = N 3 ∞ ∩ {p ∞∞ -island} .

In this discussion, we talk about a generic W (BLACK) resting on the corner [a, s 2 , b] from figure 2.6 and its {p ∞∞ -island} from figure 2.4-(A). In figure 6.1-(A) one sees infinitely many zigzags of equation x = ZZ(y), with ZZ n+1 (y) > ZZ n (y), all infinitely tangent to x = x ∞ at p ∞∞ , and converging to this x = x ∞ . The equation (6.5) above concerns the complete island. Inside the complete island, there are finitely many zigzags (in (6.5)) entering our island through its BLUE side. These are ZZ 1 = ∂H 1 i0 (MAX) (like in figure 2.6), ZZ 2 , . . . , ZZ ρ ; here ZZ ρ is the highest ZZ entering via BLUE and ZZ ρ+1 = {∂H 1 i (γ n ), like in figure 2.6 with respect to the corner [a, s 2 , b] ⊂ ∂W (BLACK), in that figure}. From here on, the ZZ ρ+2 , ZZ ρ+3 , . . . enter through the RED side of the island. [EXPLANATIONS. Consider an intersection ∂H 1 i (γ) ∩ H 0 k (γ ). There are infinitely many ∂H 1 's, cutting through the same H 0 , and closer to S 2 ∞ than our ∂H 1 i (γ). And there are finitely many only farther from S 2 ∞ = δH 0 . The former come with zig-zags entering through the RED side and the latter through the BLUE side.] We also have (6.6) {ZZ 1 , ZZ 2 , . . . , ZZ ρ+1 } ⊂ {N 2 ∞ (of the complete p ∞∞ -island) ⊂ W (BLACK)} = = {the regions of the points (x ≤ Ψ(y), y)} .

The (6.6) is no longer valid for the higher ZZ's, the purely linear piece of which can bite big into N 2 ∞ , while the (6.4) is obeyed by all the zigzags of the complete island.

We move finally to the {S-region} ⊂ W (BLACK), figure 2.4-(A). This corresponds to an immortal singularity which we call S ⊂ Sing M (Γ), reserving the name "S" for the double infinity of similar, much smaller S ⊂ Sing Θ 3 (f X 2 ), into which S explodes, like in figure 2.8-(C). Some explanations for figure 6.1-bis. We are here in the plane of a W (BLACK) from figure 2.8-(C), corresponding to y = y n and resting on the BLUE level x = x n . The figure is supposed to be the analogue of a complete figure 6.1-(A), for the case of the immortal S's. We have neither stressed the attaching zones of the various 2-handles to the present 0-handle nor have we used the trick of the oblique lines suggesting zigzags, like in figure 6.1-(A). Our W (BLACK) is cut transversally by an infinity of W (BLACK) * 's. Along our W (BLACK), at the intersection sites corresponding to z 1 , z 2 , . . . , z n it is W * which overflows (⇔ W subdued), while along the z n+1 , z n+2 , . . . it is the other way around. The depths "z", as drawn, are just a typographical convention.

Legend: (Figure 6.1-bis), we are here in the plane y = y n . The immortal singularities S of f X 2 are the various points p n∞ , p ∞n , and there are ∞ 2 of them. At p ∞∞ (S), for all Θ 3 , (Θ 3 ) , S ε , S ε , there is a Hole H(p ∞∞ (S)), inside our W (BLACK). The distinction overflows/subdued and N 2 ∞ /N 2 ∞ are independent of each other. So, do not look for complete agreement between (A) and (B). What is important, for the W (BLACK)'s, is that such a W is only subdued in a central, finite region. This is explicitly shown in (B).

All the ∂W , ∂W * 's live in the easy region W 3 ∞ . The (B) is a more symmetrical figure than (A). We can happily read here the (6.7). Finally, the distinction overflow/subdued only manifests itself, physically, at x = x ∞ . End of Explanations.

Both figures 6.1-bis-(A and B) live inside a plane W = W (BLACK). The "fake" BLACK limit position in (B) is an accumulation of W * 's branches NOT cutting through our W . Remember we are here in a train-track context. Figure 6.1-bis is now the analogue of 6.1 for the S-regions. Here there is no longer a previously defined N 3 ∞ to hang on to. So, for the whole large S ⊂ M (Γ) we will introduce now a universal surface

( * ) {x = Ψ(y, z)} ⊂ {x ≤ x ∞ , (y, z) ∈ S (figure 2.8-(C))} .
The "universal curve" drawn in the figure 6.1-bis-(A) is just a section (y = y n ) ∩ {UNIVERSAL SURFACE}.

All the 3 d box occurring in the RHS of the formula ( * ) above, will be referred to, again, as S. With this, we will take now

N 3 ∞ = {x ≤ Ψ(y, z), y, z} ⊂ S , N 2 ∞ (W (BLACK) | S) = W (BLACK) ∩ N 3 ∞ .
This N 3 ∞ , i.e. the universal surface from which it stems, is supposed to satisfy (6.4) as well as the (6.7), (6.8) below. The S is generated by two bicollared handles H 2 I , H 2 j and, for the double infinity of W (BLACK)'s stemming from them, we will have (6.7) ∂W (BLACK) ∩ S ⊂ N 3 ∞ ⊃ {the {attaching zones ∂H 2 i , ∂H 2 j } ∩ S} (see figure 2.8 for H 2 i , H 2 j ). (6.8) Consider some level (x = x ) = W (BLUE) cutting through S and, for expository purposes we will pretend that all the doubly infinite family of W (BLACK)'s makes it at least until x = x . Inside the large square S ∩ W (BLUE), there is a concentric smaller square W (BLUE) ∩ N 3 ∞ (figure 6.2), inheriting a finite square checker-board. Inside it, we make the choices overflowing/subdued which the figure 6.2 suggest and, afterwards, these choices are continued for → ∞. The "O(3)-lines" in figure 6.2 refer to our zipping strategy (5.38.1).

In the lemma which follows next, we consider a complementary wall V = W (∞) (BLACK). Then, going to the context (3.7), (3.8), for any arc L n = V ∩ W n (BLUE), we introduce the quantities

α(n) = dist (L n , S 2 ∞ ) , β n = # {points t in ∈ N 2 ∩ L n } < ∞ .
EXPLANATIONS. Remember that the points t in are the triple points produced by (W n (BLUE)∩V (BLACK))∩ {the red W (RED)'s}, on L n . We are, also here certainly far from S. And, as one can see on the figure 6.1, we have α(n) -→ 0 implies β n -→ ∞ .

Lemma 6.1. -Without loss of generality, there is a uniform bound P 0 s.t. for any pair (V, n ∈ Z + ) we should have (6.9) α(n) • β(n) < P 0 .

Proof. In the context of the figure 6.1, set α(n) = |x ∞ -x n | and t in = (x n , y i ). Here the x 1 , x 2 , . . . are given in the beginning, once and for all.

More precisely, we have infinitely many charts {V i } where the BLUE walls W 1 , W 2 , . . . live at levels x 1 , x 2 , . . ., and we will take the sequence x 1 , x 2 , . . ., given once and for all, independent of {V i }. Hence, α(n) ≡ |x ∞ -x n | will have a universal meaning. This comes with the following universal rule: we have the implication

{(x N , y i ) ∈ N 2 ∞ } =⇒ {(x N +1 , y i ) ∈ N 2 ∞ } .
[So, now the W (BLUE)'s are given and we will play on the moving the W (RED)'s closer and closer to their limit positions.] For any individual {V i }, we are free to push the vertical lines y = y 1 , y = y 2 , y = y 3 , . . . (see figure 6.1) closer and closer to the God-given y = y ∞ . With this, it may be assumed that there is a {V i } independent level n -1 such that, for j < n -1 we have β(j) = 0 and that the {V i }-independent quantity β(n -1) is positive, β(n -1) > 0. We define then the V i -independent

P 0 ≡ β(n -1) • |x ∞ -x n-1 | + 1 , which means that α(n -1) • β(n -1) < P 0 .
Next, consider the various triple points which are accounted for by β(n -1) (x n-1 , y 1 ), (x n-1 , y 2 ), . . . , (x n-1 , y q ), when q ≡ β(n -1) .

From now on, we will keep the values y 1 , y 2 , . . . , y q fixed, but we will allow ourselves to bring the next y's closer and closer to y ∞ . We move now from |x ∞ -x n-1 | to the next, smaller |x ∞ -x n |, and let here J = J (n) be the largest integer such that J (n) < P 0 • |x ∞ -x n | -1 ; since we already have β(n -1) < P 0 • |x ∞ -x n-1 | -1 , we clearly have here J (n) ≥ q ≡ β(n -1). With this, we will move all the vertical lines y q+1 , y q+2 , . . . closer to y ∞ , until we have achieved that, with J = J (n), we get (x n , y J +1 ), (x n , y J +2 ), . . . ∈ N 2 ∞ .

With β(n) ≡ J (n), it follows that β(n) < P 0 • |x ∞ -x n | -1 too, and also, by now, an obvious inductive process has been initiated.

[One may want to use heavier artillery in this little argument, and bring in the following items.

•) We are in a Γ-equivariant context.

••) If let's say for the same H 0 we have W ∞ (BLACK) H 0 (n) and W ∞ (BLACK) H 0 (n + 1), then the N 2 ∞ (n + 1) catches fewer triple points than N 2 ∞ (n). But we did not deem it necessary to invoke such arguments.] We are here in W (BLUE) , and we see here how the choice overflowing/subdued is made inside the {Square W (BLUE) } ∩ N 3 ∞ , which our present figure represents. The choice of our square is such that there are no intersection points W (m) ∩ W (n) * on the boundary of the square nor on the 0(3)-lines. Around each intersection point, the location of the fins (at x = x ∞ ) is suggested by the round lines, in LEGEND 1 .

The pattern suggested here is to be continuated consistently, for → ∞.

In the LEGEND 1 above, we have thickened the walls, as it is the case in real life.

We have here two main angles, all the lines of which are at 45 o , all of them 0(3)-lines, but then there are much more branches, each of them horizontal or vertical, resting on the main angles and going to infinity. These are also 0(3)-lines, and only few are represented here, for illustration. The main oblique 0(3) angles define the distribution of choices subdued/overflowing. Each overflowing site is surrounded by two curved lines, symbolizing the fins (which actually live much higher, at x = x ∞ , not at the level x = x of the figure). The additional 0(3) lines, which are either vertical or horizontal always cut through segments both the endpoints of which are subdued. After all the {W (n), W * (m)} have been zipped together, until they create an immortal singularity S at x = x ∞ , we start performing the zipping of W (BLUE) with these W (BLACK)'s, stopping momentarily the zipping in question when we meet the boundary of the square. Inside the S ∩ W (BLUE) of our figure, starting from the singularities which have been momentarily created at the boundary, the zipping continues among the zipping flow lines {W (n), W * (n)} ∩ S ∩ W (BLUE) -{the 0(3) lines} , with 0(3) moves at the lines in question.

We consider now a T i like in (3.7). The following lemma is pretty trivial and it will be largely improved later on. Lemma 6.2. -For each T i there is a quantity N = N (T i ) such that for all j > N we have t ij ∈ M 3 (f ). Moreover, we can (and will) always drive the zipping flow of f so that it should glue together V | t ij and W i | t ij before any action of W j (BLUE) | t ij ; (we refer here to the models (3.8)).

In the context of this lemma and of figure 6

.1, for V = N 2 ∞ ∪ N 2 ∞ , ∂N 2 ∞ ∩ ∂N 2 ∞ = {universal curve}, let (6.10) T i ∩ N 2 ∞ = [I(T i ) ∈ ∂N 2 ∞ ∩ ∂N 2 ∞ , p i∞ ] .
In agreement with (6.4), any t ij ∈ [I(T i ), p i∞ ] is actually a triple point, and not a ramification point.

Our next immediate aim is now to render explicitly precise the zipping strategy (5.38). As a preparation for that, we start with some reminders. To begin with, for the convenience of the reader, we have redrawn a generic zipping path

(x t , y t ) ∈ M 2 (f ) , 0 ≥ t ≥ -∞ ,
going from the singularities (let us say at t = -∞) to (x, y) ∈ M 2 (f ) (at, let us say t = 0), in the figure 6.3; this is, essentially, the same as figure 1.1 in [START_REF] Poénaru | Equivariant, locally finite inverse representations with uniformly bounded zipping length for arbitrary finitely presented groups[END_REF]. A schematical view of a zipping path, part of the acyclic part of the zipping (see (5.28.2)), for

(x, y) ∈ M 2 (f ), inside M 2 (f ) = M 2 (f ) ∪ Sing(f ).
Here, for the sake of the argument, imagine that the wall W 1 carries Holes, while W 2 , W 3 carry ditches. The arrow stands for the transversal orientations to the complementary walls, going from +ε to -ε. Since we have not specified the ± ε, we added the question marks. The point is that, with an n = n(W j ), where W j is non complementary and with n → ∞, (i.e. with dist (W j , limit wall) → 0), ditches only get filled between the levels ε -1 n and ε. At the triple point the W 1 , W 2 , W 3 meet transversally inside the smooth part of M (Γ). There are no ditches at the triple point and the special DITCH jumping step is required there (see Lemma 5.1).

As a preliminary for what is coming next, we go back now to the three cases from (3.8), which we will rewrite as follows:

(6.11) i) (V (BLACK), W i (RED), W j (BLUE)) , ii) (V (BLACK), W i (BLACK), W j (BLUE)) , iii) (V (RED), W i (BLACK), W j (BLUE)) (here V (RED) = W (RED) ∩ H 0 ) .
As a side remark, notice that

∂X 2 = {∂X 2 | W (BLACK, reduced)} + {∂X 2 | W ∞ (BLACK) H ε≤1 } .
It is only the last piece in the formula above which creates

∂X 2 ∩ M 2 (f ); this involves W ∞ ∩ (W (BLUE) + W (RED))
. See figures 2.5, 2.6, here.

In the figure 6.4 we have displayed a small area of (∞), corresponding, in principle, to some p i∞ attached to (6.11). Our policy for locating the fins is explicitly shown in figure 6.4. Except in (iii) 2 , (iii) 3 where the two branches are already glued in X 2 , in all the other drawings we are after the preliminary zipping V + W i ⇒ V ∪ W i and the wiggly line, living at some x(t ij ) < x ∞ , should suggest the flow line for the next zipping W j (BLUE) + V ∪ W i ⇒ W j ∪ V ∪ W i . Figure 6.4 is supposed to be compatible with the Lemma 6.3 below. Also, when conflicting arrows have been smeared along some wiggly line, that should mean that in real life one is to be chosen, but we do not yet know which. [The (iii) 3 is not explicitly drawn, but it will be explained what it should have represented.]

The next Lemma 6.3, which together with its proof makes (5.38) explicit, should be considered as an addition to the 2 d representation Theorem 2.1. It is well adapted for Θ 3 (f X 2 -H) and/or for S b ( M (Γ)-H). Lemma 6.3. -For the representation X 2 f -→ M (Γ) one can construct a zipping strategy (5.38), which is equivariant, and such that 1) For every (x, y) ∈ M 2 (f ) there is a zipping path λ(x, y) ⊂ M 2 (f ), not touching the 0(3)-sites, which has the property that for all g ∈ Γ, we have λ(g • (x, y)) = g λ(x, y) (this expresses the equivariance), and, moreover, s.t. there is a uniform bound M coming with λ(x, y) < M , ∀ (x, y) .

2) In terms of (5.28.1), (5.28.2), the zipping paths λ(x, y) only make use of the acyclic part of (5.28.2) and not of the 0(3)-part. Also, we will CUT (abstractly speaking, of course): M 2 (f ) ⊂ X 2 will come with cut arcs [α(∞), β] ⊂ X 2 , cutting transversally through it, and such that the following should happen. (6.12) We will always have

( * ) λ(x, y) ∩ [α(∞), β) = ∅ .
Then, with the • Σ (∞) * from (3.21), the following map will be injective

( * * ) π 1 • Σ (∞) * (cut) -→ π 1 Θ 3 (f X 2 -H) ,
where "cut" means cut by the cut arcs [α(∞), β)'s. In line with ( * * ) we will also have

π 1 (f LIM M 2 (f )(cut)) = 0.
( * * * ) Except for a discrete family, the 0(3) moves may either live inside the cut arcs accumulating on f LIM M 2 (f ), or inside the regions M 3 from (6.16) below and figure 6.5. In this case they accumulate on p ∞∞ , which also live at infinity.

We will come big to the cut arcs in the next Section VII. End of (6.12).

The figure 2.4-(B) presents some cut arcs [α(∞), β) ⊂ W (BLACK). Consider now, for any W (BLACK) the subsets f M 3 (f ) ∩ W ⊂ f M 2 (f ) ∩ W ⊂ W .
By resolving every triple point into two disjoined smooth lines, we can perceive f M 2 (f )∩W as the image of an immersion, which we will denote by

M 2 (f )∩W f -→ W , where the abstract M 2 (f )∩W resolves the f M 2 (f )∩W = f M 2 (f )∩W .
With this, we will have that (see figure 2

.4-(A)) ( * ) 0 π 1 (M 2 (f ) ∩ W (BLACK) -[α(∞), β)) = 0 .
[The FAKE LIM M 2 (f ) is NOT to be taken into account here, and it will be mute throughout this paper.] The ( * ) 0 is only part of a much more general, similar phenomenon, concerning the whole of the acyclic part f (Q) of the zipping (see (5.28.1)) and (5.28.2). We will come back to it in Section VII, in Lemma 7.1-bis.

3) At any triple point

t ij ∈ (V ∩ W i ∩ W j ) ∩ N 2 ∞
, the following things will happen 3.1. The zipping flow will perform the step

V + W i ⇒ V ∪ W i , before the V ∪ W i + W j ⇒ V ∪ W i ∪ W j .
(See here figure 5.8-(B)). This and the next item 3.2 allow us to treat the triple points as we did, in the ZIPPING LEMMA.

For this second zipping move

V ∪ W i + W j ⇒ V ∪ W i ∪ W j ,
one always gets to the site t ij via the road BLUE ∩ BLACK (i.e. W j ∩ V ), and never via the road BLUE ∩ RED.

4) Independently of the M from 1) and of the upper bound P 0 from (6.9), there is also a third uniform bound

P , s.t. ∀ (x, y) ∈ M 2 (f ), # {λ(x, y) ∩ [{{p ∞∞ islands} ⊂ W (∞) (BLACK)} + { S regions ⊂ W (BLACK)}] < P .
In plain English, for ∀ λ(x, y), the {number of p ∞∞ -islands and S-regions encountered} < P . And this is a consequence of the zipping strategy which was chosen in our TRILOGY I, i.e. in [START_REF] Poénaru | Equivariant, locally finite inverse representations with uniformly bounded zipping length for arbitrary finitely presented groups[END_REF].

5) We consider now the 1-skeleton of the 3-dimensional Y (∞) (2.6), i.e. the Y (∞) (1) = i, γ; λ ≤ 1 H λ i (γ) ⊂ Y (∞) .
Next, for the bicollared handles H λ i (γ) we consider the completions

H λ i (γ) = H λ i (γ) ∪ δH λ i (γ)
and, finally, we introduce the "ideal surface"

(6.13) δ ∞ Y (∞) (1) ≡ i, γ; λ ≤ 1 δH λ i (γ) ⊂ Y (∞) (1) f --→ M (Γ)
(where we rebaptize the g(∞) in (2.6), f so as to simplify the notations) , and here we have (see (2.10) and (2.14)) (1) ) ∂( M (Γ) (1) ) ≡ ∂{1-skeleton of M (Γ)} .

(6.14) Σ 1 (∞) = f (δ ∞ Y (∞)
We mean here Σ 1 (∞) = {Σ 1 (∞) without the BLACK contribution}.

In the formula (6.13), we also have (1) , but then we also find that (1) ) which should explain the occurring in (6.14); the ∂( M (Γ) (1) ) misses the δh 0 i ∩ h 1 and here (1) , with

f δH λ i (γ) = δh λ i , δh 0 i ⊂ f δ ∞ Y (∞)
δh 0 i - j h 1 j = δh 0 i ∩ ∂( M (Γ)
δh 0 i = δH 0 i (γ) ⊂ δ ∞ Y (∞)
δH 0 i (γ) ∼ = f (δH 0 i (γ)). The δ ∞ Y (∞) (1) ∩ X 2 splits X 2 into a main piece X 2 0 ⊃ int X 2 0 ⊃ M 2 (f )
and the rest, X 2 -X 2 0 which consists of the various pieces of W (∞) (BLACK) living on the other side of (∞), at the level of the figures 2.5, 2.6. There is also an intersection f δ ∞ Y (∞) (1) ∩ f (int X 2 0 ) = ∅, to be compared to the " " in (6.14). But this 5) is only a preliminary for what comes next. 6) Let (x, y) ∈ M 2 (f ) and let λ(x, y) be its zipping path from 1). This comes with (1) ) < ε, then we also have, for all (u t , v t ) ∈ λ(x, y) the estimates

λ(x, y) ⊂ int X 2 0 × int X 2 0 X 2 0 × X 2 0 Y (∞) (1) × Y (∞) (1) ⊃ δ ∞ Y (∞) (1) × δ ∞ Y (∞) (1) f ×f ----→ M (Γ) × M (Γ) . (6.15) Fix now a compact K ⊂ M (Γ); then, for any η > 0 there is an ε > 0 such that if f (x) = f (y) ∈ K and dist (f (x), f δ ∞ Y (∞)
( * ) min dist(u t , δ ∞ Y (∞) (1) ∩ int X 2 0 ) , dist(v t , δ ∞ Y (∞) (1) ∩ int X 2 0 ) < η and dist{f (u t )(= f (v t )), f δ ∞ Y (∞) (1) } ≤ η .
All our metric structures are descending here from the equivaraint metric of M (Γ) and, for any

(u, v) ∈ M 2 (f ) we have dist{f (u)(= f (v)), f δ ∞ Y (1) (∞) } = dist{f (u)(= f (v)), i,λ≤1 δ(h λ i )} ,
in M (Γ)}. This ends our item (6.15).

But then, here is still another way of reading (6.15), which should be useful. If, at level M (Γ), a double point (x, y) belongs to the given compact K and is at distance < ε from i;λ≤1 δ h λ i , then considered now inside

Θ 3 (f X 2 ), the image of the zipping path λ(x, y) is at distance < η from (∞) ⊂ Θ 3 (f X 2 ).
Or, again, now in a more impressionistic language, in appropriate topologies, we find that

lim n=∞ (x n , y n ) = ∞ implies that lim n=∞ λ(x n , y n ) = ∞ , too.
End of Lemma 6.3.

Before going into the proof of this lemma, I will offer some comments. The regions concerned by 4) are the same as the ones in Lemma 6.1, but P, P 0 are independent of each other. With this, the M in 1) is the one from the uniformly bounded zipping length in [START_REF] Poénaru | Equivariant, locally finite inverse representations with uniformly bounded zipping length for arbitrary finitely presented groups[END_REF], and the uniform bound Λ(H - i ) < N in the Lemma 5.8 is, essentially, the (6.15.1)

N ∼ = kM + 2π max{diameter of Hole} + {the product

P • P 0 } ,
where k is some small controlled quantity, where P accounts for the number of special regions of type 4) in Lemma 6.3, which the zipping path λ(x, y) may have to cross, and P 0 (Lemma 6.1) accounts for the additional complications which each individual crossing may bring.

We have written " ∼ =" in the formula (6.15.1) above, since some additional ingredients may still have to be thrown in, before we can write "=". These come from the fact that in the formula (5.50), which defines the curve Λ(H - i ), the hole H i occurs twice and, moreover, both βC -(H i ) and γ i may involve the not yet defined process (zipping) -1 [XY ]. It is, anyway, the (zipping) -1 [XY ] which brings the contribution M (or some fixed multiple of it) into (6.15.1), and it is its passage through the special regions which counts, rather than the one of λ(x, y) which is only a first approximation of (zipping) -1 [XY ]. But the general idea should be clear: as long as we control the quantities M, P and P 0 , we have a good uniform bound for the lengths or the curves Λ(H - i ) from (5.50). [Also, in anticipation of things to come, for a zipping We come back now to figure 6.4. The drawings (i), (ii), (iii) 1 refer to triple points t ij , and they should illustrate the point 3.2) in Lemma 6.3. The (iii) 2 does not concern triple points at all. Then, there should be a (iii) 3 , which is not explicitly drawn, corresponding to a situation V (RED) ∪ W i (∞) (BLACK) glued already at the source, let us say for instance a RED portion of ∂H 1 i (γ n ) in figure 2.6 glued already at level X 2 | H 1 i . This does not correspond then to a triple point either. This drawing (iii) 3 should be like {(iii) 1 , without "t ij "}. Notice (and see here the figure 2.6), that the not explicitly drawn (iii) 3 should always live in the

N 3 ∞ . See the W (RED) = ∂H 1 i (γ n ), above. Figure 6.4.
We display here our policy for locating the fins, corresponding to the three cases (i), (ii), (iii) from (6.11) and (3.8). The page here is a W j (BLUE). Also, with the exception of (iii) 2 , all the other figures are created by the preliminary zipping of two complementary walls. The (iii) 2 in there from the very begining, in X 2 , created by the attachement of W (BLACK) to the rest.

An addendum to Lemma 6.3. -In the context of 3) the V, W i are both complementary walls without Holes but with DITCHES; the preliminary zipping from 3.1) can be performed simple-mindedly with these ditches completely filled. Also inside N 2 ∞ , N 3 ∞ the zipping is always simple-minded, with completely filled ditches and, a priori, at least, without restrictions for the order of operations. This is not so for N 2 ∞ . Next, remember that W (RED ∩ H 0 ) ∩ {p ∞∞ } = ∅; but for the other complementary walls, i.e. for the

W (∞) (BLACK)'s we find that (W (∞) ∩ LIM M 2 (f )) ∩ N 3 ∞ = N 2 ∞ (W (∞) ) ∩ LIM M 2 (f ) = {the points p ∞∞ , which are all isolated}.
When we are in the neighbourhood of a p ∞∞ , we have to work with completely filled ditches both for

W (∞) (BLACK) ∩ W (RED ∩ H 0 ) and for N 2 ∞ (W (∞) (BLACK)
). This opens potential dangers, taken care of by the fact that we make use of S ε ( M (Γ) -H) and/or S ε (M (Γ) -H). This also allows us to appeal to the Lemma 5.3, which functions exactly in the context S ε , and NOT in the context S ε . This figure refers to the figures 2.4, 2.5, 2.6, 6.1 and there is one such figure, both Γ-invariant and rotationally invariant (when appropriately extended), for each circle

S 1 ∞ . The S 1 ∞ × D 2 (H 0 ∩ H 1 ) is a very thin tubular neighbourhood of S 1
∞ , biting out of N 3 ∞ the doubly shaded region M 3 . All the zig-zags ending at S 1 ∞ are in the N 3 ∞ .

The proof of Lemma 6.3. -For every pair of adjacent handles {H 0 , H 1 } ⊂ Y (∞) we consider the corresponding circle at infinity

S 1 ∞ = S 1 ∞ (H 0 ∩ H 1 )
and then, at the level of M (Γ) and/or of Y (∞), a Γ-invariant tubular neighbourhood of it S 1 ∞ × D 2 (H 0 ∩ H 1 ), like in figure 6.5 and, using it, the following Γ-invariant region of the {1-skeleton of Y (∞)} | X 2 , (the notations are here like in figure 6.5) (6. [START_REF] Perelman | Ricci flow with surgery on three-manifolds[END_REF])

R 3 = H 0 ∩H 1 M 3 ∪ H 0 S 2 ∞ × [0, ε] ∪ H 1 (S 1 × I) ∞ × [0, ε] .
In (6.16) the three pieces in the RHS of the formula are glued along small pieces of the boundaries, staying with disjoined interiors.

At this point, I will also refer to the section 4 of [START_REF] Poénaru | Equivariant, locally finite inverse representations with uniformly bounded zipping length for arbitrary finitely presented groups[END_REF], TRILOGY I, the first paper of the present series, where in the 3 d context of Y (∞), a zipping strategy of uniformly bounded zipping length has been described; see here the lemma 4.1 in the paper [START_REF] Poénaru | Equivariant, locally finite inverse representations with uniformly bounded zipping length for arbitrary finitely presented groups[END_REF]. The essential part of the strategy in question was concentrated inside Y (∞) (1) . With this, our present proof will proceed in several steps.

Step I. We start with the following Claim (6.17

) -Let (x, y) ∈ M 2 f | M 3 ∩ X 2
where is over all the blocs {H 0 , H 1 } and which is such that (x, y) does not involve the H 2 's; these will be dealt with later in our proof. For this (x, y) ∈ M 3 , there is then a Γ-invariant, uniformly bounded zipping path (= strategy), [which stays confined inside R 3 ∩ X 2 (see here (6.16))] constructed like in [START_REF] Poénaru | Equivariant, locally finite inverse representations with uniformly bounded zipping length for arbitrary finitely presented groups[END_REF], and this construction is such that for our (x, y) ∈ M 3 the controlled zipping path can be chosen inside the R 3 from (6.16). This is certainly in agreement with 6) in our lemma.

Inside the doubly shaded M 3 , displayed in figure 6.5, there are no restrictions for the strategy in question: Ditches can be filled completely, no order is imposed for the zipping steps, a.s.o. Now, when we are inside the regions

S 2 ∞ × [0, ε], (S 1 × I) ∞ × [0, ε],
which should be understood as resting on M 3 but with interiors disjoined from it, then the zipping takes always the following form, for our presently discussed strategy in Step I, namely we zip together

( * ) W (of NATURAL COLOUR) ∩ W ∞ (BLACK) ,
and ditches should now be filled only partially (for the W ∞ (BLACK)'s), as soon as we are outside of the N 3 .

Notice, to begin with, that the way in which W ∞ (BLACK) occurs in the context of the ( * ) above, should be a good reason already for letting the security walls to overflow; see what is coming next too. Also, inside ((S 1 × I) ∞ × [0, ε]) ∩ (x < x ∞ ) when along each double line infinitely many triple points will be met, on the way, these will be ignored, for the time being. We CLAIM that, with these provisions, all the (ZIG-ZAG) ∩ M 3 can be zipped. This will make that a piece of R 3 is zipped too. But NEVER a zipping W ∞ (BLACK) ∩ W (BLUE) involving a triple point. End of Claim (6.17)

Proof. The idea here is to adapt the strategy from Lemma 4.1 in [START_REF] Poénaru | Equivariant, locally finite inverse representations with uniformly bounded zipping length for arbitrary finitely presented groups[END_REF], to our present 2-dimensional situation. This is made possible by the fact that in our present X 2 , the security walls W ∞ (BLACK) overflow, in particular the W ∞ (BLACK) H 0 in figure 2.5 extends on the H 1 side of ∂H 1 i (γ n ), thus catching a whole infinite RED/BLUE checkerboard, and then also something similar for W ∞ (BLACK) H 1 in the figure 2.6. Remember that this overflowing of the security walls W ∞ (BLACK) is one important instance where the present paper deviates from [START_REF] Poénaru | Equivariant, almost-arborescent representations of open simplyconnected 3-manifolds; a finiteness result[END_REF], which nevertheless stays, largely, very adaptable for our present purposes.

Here is an illustration of what this does for us. Consider a bloc h 1

A ∪ h 0 L ∪ h 1 B ⊂ M (Γ), covered by two blocs H 1 a ∪ H 0 ∪ H 1 b + H 1 α ∪ H 0 λ ∪ H 1 β ⊂ Y (∞)
, and which are such that, at the other end of (H 1 a , H 1 α ), a zipping of type W ∞ (H 1 a ) ∩ {very high level W (RED) α } has already started. Here is an illustration of how the zipping may start, and the little drawing below picks up a detail of figure 2.6.

Our aim now is to exhibit a 2-dimensional zipping flow line, abiding to (6.17), confined inside R 3 and going like this:

A -→ L -→ B .
The initial zipping above will reach a spot (W (RED) α ∪

∂W (RED)α W (BLUE) λ ) ∩ W ∞ (H 1 a )
, where from the obvious newly created singularity BLUE/BLACK, we continue with a zipping W (BLUE) λ ∩ W ∞ (H 1 a ). This will reach a spot W (BLUE) λ ∩ (W ∞ (H 1 a ) ∪ W (RED) a ), with the "∪" created by some short, N 3 ∞ -confined vertical zipping from a singularity s in a figure of type 2.6. We can continue now with a zipping W (BLUE) λ ∩ W (RED) a , until, in view of the circular nature of W (RED), we reach a spot W (BLUE) λ ∩ (W (RED) a ∪ W ∞ (H 0 )), with the "∪" created now by an N 3 ∞ -confined short vertical zipping from a singularity s in a figure 2.6. This zipping concerns the overflow of W ∞ (H 0 ) mentioned above. Next, we move with a zipping W (BLUE) λ ∩ W ∞ (H 0 ) from the side A of h 0 L to the side B. Notice that the last described move has happened close to p ∞∞ (W ∞ (H 0 )) and also that we move now from N 3 ∞ to N 2 ∞ . Several such moves, back and forth between N 3 ∞ and N 2 ∞ , in the neighbourhood of the p ∞∞ 's, will be part of the zipping flow story. For the convenience of the reader, in figure 6.5-bis we have presented in the form of a chart, that part of the proof of the claim (6.17), developed so far. And we have also presented it in a drawing with colours, figure 6.5-ter. Anyway, when continued, our zipping W (BLUE) λ ∩ W ∞ (H 0 ) will encounter (see figure 6.5-bis) a spot W (BLUE) λ ∩ (W ∞ (H 0 ) ∪ W (RED) b ), where the "∪" has been created, again by a vertical zipping from some s , in a figure 2.5. This will unleash a new zipping W (BLUE) λ ∩ W (RED) b , getting to a spot (W (BLUE) λ ∩ W ∞ (H 1 β )) ∩ W (RED) b , with the "∪" coming from a short, N 3 ∞ -confined horizontal zipping from some s , figure 2.6. So, by now we have managed to create a contact W ∞ (H 1 β ) ∩ W (RED) b and hence gotten from A to B. This ends our discussion of (6.17). From now on, using (6.17), the rest of the zipping of R 3 in Lemma 6.3 will always take place in a neighbourhood of controled diameter of R 3 , in a way which should be compatible with the zipping strategy for Y (∞)

g(∞)
-----→ M (Γ) in [START_REF] Poénaru | Equivariant, locally finite inverse representations with uniformly bounded zipping length for arbitrary finitely presented groups[END_REF]. All the λ(x, y)'s in 1) will be created this way, at least as far as R 3 is concerned. Notice that, inside R 3 , the zipping lengths of the λ(x, y) are controlled by [START_REF] Poénaru | Equivariant, locally finite inverse representations with uniformly bounded zipping length for arbitrary finitely presented groups[END_REF] (i.e. by TRILOGY I). The rest of the length control is easy, since it only concerns finite controlled tails coming out of R 3 .

Step II. We move now from R 3 to the zigzags occurring below, and for which one should see the figures 2.5, 2.6, 6.1,

R 3 ⊃ H 0 ∩H 1 M 3 ⊂ H 0 ∩H 1 N 3
∞ ⊃ {all the zigzags ZZ n } (see here figure 6.5) .

We will assume now that Step I has taken care of all the double points (ZZ n ∩W (∞) (BLACK))∩M 3 , leaving the W (BLACK)'s otherwise completely unzipped, as well as a lot of lines W (BLUE or RED)∩W ∞ (BLACK), so far.

The M 3 which, with the exception of the W (BLACK)'s, is by now completely zipped contains all the singularities, which at the present level of the construction control the double lines ( * )

ZZ n (union of BLUE and RED pieces glued in

X 2 ) ∩ W ∞ (BLACK) H ε ,
and hence all these ( * )'s can now be zipped. This brings to life the singularities involving {H 0 , H 1 }, and which correspond to the following double lines, inside N 3 ∞ (see figure 6.5),

( * ) 1 W (RED) ∩ W (∞) (BLACK) AND W (BLUE) ∩ W (∞) (BLACK) .
Concerning all the lines of type ( * ) 1 above. The bulk of them is contained in R 3 (6.16). We will show, next, what the M 3 plus the ZIG-ZAGS, just by themselves can do concerning them.

Step III. The little drawing below suggests the singularities which command the double lines in ( * ) 1 .

When one zips W (∞) (BLACK) ∩ W (RED) and W (∞) (BLACK) ∩ W (BLUE), one creates a singularity W (BLUE)/W (RED), from which one can zip, BLUE ∩ RED together, transversally to page.

Starting from the s r 's in the little drawing above we can zips the lines W (∞) (BLACK) ∩ W (RED) completely. So, by now the figure 6.4-(iii) 1 is certainly with us, but not necessarily glued to BLUE, which outside of the ZIG-ZAGS is still silent, so far. Moreover, all the singularities which command the double lines W (BLACK) ∩ ZZ n are all confined inside N 3 ∞ (see here, for instance, the figure 2.4-(B), where the lines in question are on the right side of the universal curve, and see figure 6.1 too). So, these singularities can be brought now to life and we can zip now all the double lines W (BLACK) ∩ ZZ n . It is only now that W (BLACK) enters our game. [Typically, the [a, s 2 , b] in the figure 2.6 but in a plane different from the one of W ∞ (BLACK) H 1 (of the figure in question), is a corner of the attaching zone of W (BLACK) to the rest of X 2 .] So, by now we have access to all the singularities commanding lines W (BLACK) ∩ W (RED), all of them in N 3 ∞ ; see figure 2.6. The W (BLACK) ∩ W (RED) can be zipped now, the 3.1) is established and 4), 5) are left to the reader, for the time being, at least. Concerning the 6), which we will read here as

( * ) 6) lim n=∞ (x n , y n ) = ∞ =⇒ lim n=∞ λ(x n , y n ) = ∞ ,
when it comes to this ( * ) 6) , consider the singularities s n , s n of X 2 , which in the figures 2.5, 2.6 command the double lines W ∞ (BLACK) ∩ (W (RED) + W (BLUE)). Here, in f X 2 , we have

dist(s or s , f LIM M 2 (f )) ∼ = dist(corresponding double lines, f LIM M 2 (f )) .
Our discussion coming with CLAIM 6.17 shows that all the singularities and double lines involved there, are essentially like above. This proves already a large chunk of our ( * ) 6) .

Step IV. The W (BLUE) which (outside the ZIG-ZAGS) has been mute so far will be glued now to the rest, taking care of 3.1, 3.2 in our Lemma 6.3, with the exclusion of the { S-regions} ⊂ W (BLACK) which are left for the next step. The zipping W (RED ∩ H 0 ) ∩ (W ∞ (BLACK) + W (BLACK)) has created by now all the figures 6.4.(iii) 1 . But our discussion has, by now also certainly taken us beyond N 3 ∞ . It may be assumed that on each circle W (RED) ∩ W (BLUE) the points of intersection with W ∞ (BLACK) are a dense enough system, such that each figure 6.4.(iii) 2 should be sandwiched between two 6.4.(iii) 1 's, with W ∞ (BLACK) in the position marked "W i (∞) (BLACK)", in figure 6.4.(iii) 1 . On each W ∞ (BLACK) the zippings ( * ) 1 from Step II have already been done and we can zip up now completely the W ∞ (BLACK)'s in agreement with 3.2) and also with 6). So, for each circle W (RED) ∩ W (BLUE), the figures 6.4.(iii) 1 for the various W ∞ (BLACK)'s, where W ∞ (BLACK) ∪ W (BLUE) is already zipped, in agreement with the canons of the ZIPPING LEMMA 5.1, create a complete system of singularities involving W (RED) and W (BLUE). Now we want to zip completely the W (BLACK)'s too. So, let us consider a generic line

∂W (BLACK) ∩ W (RED) ∩ N 2 ∞ , like for instance the [s 2 , a] ∩ N 2 ∞
, in the figure 2.6. Such a line, glued already at the source, will navigate vertically through an infinity of W (BLUE)'s. Then, for each given W (BLACK) and each W (BLUE) n , with n → ∞, one can navigate along W (BLUE) n ∩ W (RED), where ∂W (BLACK) rests on this W (RED), from a BLUE/RED singularity created on a site (iii) 1 to the site (iii) 2 concerned by our W (BLACK) and then complete the remaining zipping W (BLUE) n ∩ W (BLACK) through the corresponding p ∞∞ -island, in a manner compatible with 3.2) in our lemma. This goes along the arrows wiggly and/or double green (they anyway point in the same direction), from figure 6.4.(iii) 2 .

Here, the W (RED) ∩ W (BLUE) n is created by a singularity s , which is a distance from LIM M 2 (f ) comparable to dist(W (BLUE) n , LIM M 2 (f )). And this distance stays constant during the subsequent zipping

W (BLUE) n ∩ W (BLACK), see figure 2.6.
This ends the discussion of the proof of 6), which was started above. And the only pending item now are the S-regions for which we have still to show how the very important points 4) and 5) from the ZIPPING LEMMA, extend. (6.18) Continuing now our navigation along the W (BLUE) n ∩ W (BLACK), we go beyond the p ∞∞ -island, until we get to the right of the already zipped ZZ 1 = ∂H 1 i0 (MAX) in figure 2.6. This kind of thing goes on for all the {p ∞∞ -islands}. In order to finish the zipping of W (BLACK) and the proof of our lemma too, we still have to take care of the { S-regions} ⊂ W (BLACK). This is our STEP V to be developed next. We may assume that, at this stage in the game, for every S-region like in the figure 2.4-(A) or in 2.8-(C), the W (n), W (m) * have all been zipped already up to exactly x = x ∞ , and then an immortal singularity S(n, m) has been created. For each fixed W (BLUE) the zipping has temporarily stopped at the boundary of the square W (BLUE) ∩ N 3 ∞ (S) presented in figure 6.2. (6.19) Any point ∂{square above} ∩ (W (n) + W (m) * ) is, at this level, a singularity, created by the zipping of W (BLUE) -N 3 ∞ , and from these singularities, the zipping inside W (BLUE) ∩ N 3 ∞ will start, with a STOP at each of the 0(3)-lines system from figure 6.2.

In full agreement with 3.2) in our lemma, these things also establish the equation below, which tells us where to locate the fins inside the S-region

( * ) V = overflowing, W i = subdued.
This equation ( * ) may need some explanations. According to the (ii) in figure 6.4, which concerns us now, the location of the fins F ± on W OR W * , in the case of an encounter like the triple contact

t ∞ = {W (BLACK) ∩ W * (BLACK) ∩ S 2 ∞ } ,
obeys to the following rule. The W, W * are already zipped together when we come to t ∞ , when the action of W (BLUE) occurs. Corresponding to the t ∞ above there is a triple point, displayed in figure 6.2, let us say (and see figure 6.2 for a concrete vision)

t n = W ∩ W * ∩ W (BLUE) ,
with W overflowing and W * subdued. And it is V = W which gets the fins F ± at t ∞ , in agreement with our prescription ( * ) above. At this point, figure 6 Except for some changes of colour and the occurrence of the 0(3)'s, this is quite like the figure 5.6-(C). We see here a detail of W (BLUE) ∩ (S-region). Notice, also, that for each triple point in figure 6.2, the W (BLUE) has four Holes, but each of them corresponds, of course, to several triple points.

For what follows next, keep in mind the following items.

(6.20) When of the same colour then W n+1 is closer to the limit wall than W n , and (6.21) The two procedures for the geometrical realization of the zipping, for N 2 ∞ and for N 

n is [x n -ε n ≤ x ≤ x n + ε n ],
and with all this, our ditch is

q q × [-ε ≤ z ≤ ε] × b N +1 (q) ⊂ W (complementary) × [-ε, ε] × B N +1 , the union being over q ∈ (x ∈ [x n -ε n , x n + ε n ], y, z = 0) ⊂ W (complementary).
The shaded area [u, B, a, A] in the figure suggests the part of the DITCH which is filled, by the

{[(W n -H) ⊂ (y, z)] × [x n -ε n ≤ x ≤ x n + ε n ] × [the small b N +1 ]} ∪ {The DITCH filling material h(3)},
like in the process Z from (5.30). Here the b N +1 is glued to the outside by h(3). When the Hole H is forgotten, our whole figure is in the plane of W n , or at least its projection is. [Notation: By b N +1 ⊂ B N +1 we mean b N × I ⊂ B N × I, with I u coming from Θ 4 (x, y, z, u).]

We introduce now the triple points in the discussion too, and then some additional modulations with respect to the (6.20), (6.21) above become necessary. The discussion of 3), 4) in the ZIPPING LEMMA starts now and so we move back to the figure 5.6-(C) which, with other details and embellishments, occurs also as figures 5.6-(A) + 5.8-(B).

The triple points which are of interest for us now, are the

f M 3 (f ) ∩ N 2 ∞ = {t ij ∈ [I(T i ), p i∞ ]} .
So, we consider here the situation of a t in ∈ N 2 ∞ , after the initial zipping V + W i =⇒ V ∪ W i has already been performed and when W n (BLUE) -H encounters the line V ∩ W i . All the three cases (i), (ii), (iii) from (6.11) are concerned here, but it is essentially only the paradigmatic case (i) which will be dealt with in some detail. In terms of Θ 3 (X 2 ) f -→ M (Γ) and of the figure 5.3, what we have displayed in the figure 5.6-(A), inside the reference plane x = x 0 , is the superposition of the two independent contributions of U (x 0 ) ⊂ V (BLACK) ∪ W i (RED) and W (BLUE) -H, via the map f above.

[Our present discussion does not involve the p ∞∞ 's and so, the special refinements involving the H(p ∞∞ ), D 2 (H(p ∞∞ ))'s can be ignored here.] Like in the formula (5.27.3-bis), the DITCH is here something like 

U (x 0 ) × b N where {b N of (V + W i =⇒ V ∪ W i )} = {the b N in figure 5.4} ,
P 2 (A) = R 2 ∪ R 3 , P 2 (B) = R 1 , P 2 (D) = R 4 .]
In our figures, all these three pieces P 2 appear superposed to U (x 0 ). In real life, everything is smoothly thickened in dimension N + 5 (or N + 4, in the Variant I presently under discussion), and they live in the DITCH (see (5.27.3-bis)). Here, with b N ⊂ B N -1 2 B N we get the "official" ditch, namely

"DITCH" = x n -ε n ≤ x 0 ≤ x n + ε n U (x 0 ) × b N , (with x like in figure 5.2 or 5.6),
inside which live the smaller pieces like P 2 , the only ones to be used in the ZIPPING LEMMA, when we are in the neighbourhood of n ] zones, for partial ditch filling reasons. Then, for continuity reasons, at the triple points, the zipping flow performs the ditch-jumping, along arcs S j . This is suggested in our figure.

M 3 (f ) ∩ N 2 ∞ . So, the actual effective ditch, is (6.22) Θ N +4 (X 2 -H) I ⊃ DITCH ≡ xn -εn ≤ x0 ≤ xn + εn {U (x 0 ) -the square [ABCD]} × b N ⊃ ⊃    xn -εn ≤ x0 ≤ xn + εn (P 2 (A) + P (B) + P (D))    × 1 2 b N    This is the part of W (BLUE) n -H which,

There are two kinds of special BLUE 1-handles [XY ] namely real, like [AB], [AD], or fake, which will actually also need shadow arcs, like the [BC] or [DC] in the figure 5.6-(B).

There is also a second partition of the set of BLUE 1-handles, transversal to the partition real/fake, and independent of it. Namely, we can have the RED, respectively the BLACK [XY ], which in a figure like 5.6-(C) go across W (RED ∩ H 0 ), respectively across W (∞) (BLACK). We discuss first the easier case of the shadow arcs for the RED [XY ]'s. Of course, this was already done with a certain amount of detail in the ZIPPING LEMMA itself. Now we just have a reminder. At a first schematical level, in terms of the figure 5.6-(C), here is the definition of the shadow S j , in the RED case (6.23)

S j [AB] = [A, rim of the fin F + (p i∞ ), B] , S j [DC] = [D, rim of F -(p i∞ ), C] .
But, before going on, let us notice the following basic potential danger coming with the shadow arcs. At this point we will use the things said in the comment B after Lemma 5.1. So, we have [XY ] ⊂ C(H(completely normal)) and this C is a ∂h 2 (1). Now, normally, as a simple glance at figures 5.8 and 5.4 may immediately suggest, the shadow arcs S j [XY ] should cross the ditch filling material h(3) which, in terms of the geometric intersection matrix should, under "normal conditions", meaning unless some very special measures are being taken, come now with contacts

( * 1 ) (∂h 2 (1) ⊃)β[XY ] • δh 1 (3) = ∂h 2 (1) • δh 1 (3) = ∅ .
Remember, at this point, that X 2 supports two not everywhere well-defined flows, namely the collapsing flow with arrows ∂h 2 i (1) • δh 1 j (1), and the zipping flow. By itself, each of these two flows may not be terribly complicated, but then we certainly are bound to have transversal intersections of the following type: (6.24) {collapsing flow lines} {zipping flow lines} = ∅ inside X 2 , and what we are discussing now are the bad closed loops potentially created by the union of the two flows, once (6.24) is taken into account.

What the (6.24) might bring for us, are the following kind of contacts:

( * 2 ) ∂h 2 (3) • δh 1 i (RED) = 0
, completely normally produced by the zipping and ditch filling, BUT NOW, when there is also a collapsing flow trajectory,

-→ δh 1 i (RED) ∂h 2 (1)•δh 1 (1) -----------→ [XY ](BLUE) ,
(normal collapse, landing on [XY ] like in the lower part of figure 6.8), with an [XY ] occurring in ( * 1 ). End of item ( * 2 ).

Clearly, the combination of ( * 1 ) and ( * 2 ) would mean the doom, for our crucial property S b M (Γ) ∈ GSC. To prevent this disaster from happening, we have made use of the isotopic push + smearing from 5) in the ZIPPING LEMMA 5.1. This will avoid the ( * 1 ), altogether, and hence it will prevent the bad loops from existing. Notice here that the CUSHIONED ISOTOPIC PUSH has saved our day more than once, by now. So, the {cushioned isotopic push} + {the smearing} circumvents the otherwise mortal danger of the bad loops below In our figure

S j [BA] = [. . . → Y 2 → Y 1 → Y ]. Think here of the arc . . . → Y 2 → Y 1 → Y as consisting of points Y (x) with x 0 ≤ x ≤ x ∞ and Y 2 comes from x ∞ .
At x ∞ we go on the rim of the fin F + (p i∞ ). The Y 1 lives at x = x 0 , very close to the folding map from figure 5.9

[XY ](BA) = S j [XY ] .
The line [A, U, B] is, Θ 3 -wise, in the interior of W (RED) and should help vizualizing our action at Y ≈ A. In 3 d , Θ 3 wise, both the special BLUE arcs and the S j 's are NOT on the boundary; the triple point prevents that. But then, when we go high-dimensional, like for instance in figure 5.7-bis, then at level S b ( M (Γ) -H) I , the S j [XY ]'s live now, as they should, in the boundary

S j [XY ] ⊂ ∂S b ( M (Γ) -H) I .
For the BLUE h(1), pushed along the S j [XY ], we see here the CUSHION h(3)(BLACK/BLUE) from the figure 5.7-bis. And this CUSHION was there, all the time, between the BLUE h(1) undergoing the isotopic PUSH, which started at X + ε in figure 5.7-bis. This CUSHION protected h(1), from the rest of the world, all the time. End of Explanations.

After {h(3)(BLUE/BLACK)+h(3)(RED/BLACK), from B} has spilled out of the partially filled DITCH where it was living, and which is beyond us by now, we see in our figure 6.9 two other effective ditches which are empty at this same time m, to the point that the dotted lines [AB], [AR] (this points to C, figure 5.4) are ghostly, i.e. they are not physically present. The physical [U, u] points to C (see figure 5.4). So, before our isotopic pushing action reaches the corner A and then the smearing from figure 5.9 is performed, the volumes D 2 , D 3 are just empty ditches, to be filled with material now, when the PUSH + SMEARING have been already performed. The BLUE regions R 2 , R 3 grow out of the abstract [XY ] from figure 5.7-bis, which has been following the PUSH of its base. And so does the [XY ](BLACK) = [AD].

But now we have also realized the smearing, a folding map, bringing Y in the position from the figure 6.9.

Let us go back now, for a minute, to the figure 5.7-bis. This figure is also at time m, before any pushing action of h 2 (1)(BLUE) has started. It is a reminder, on the one hand of the fact that our S j [XY ] really lives in high dimensions, inside ∂S b ( M (Γ) -H) and that, on the other hand, what one sees in figure 6.9 when the push along S j [BA] = S j [XY ] has been completed on the surface, has depth too. This push sends the X + ε from figure 5.7-bis into the area (α, α , α ) from figure 6.9. The BLUE regions R 2 , R 3 in figure 6.9 grow out of the {α α α } ⊂ {pushed BLUE h(1)} , after the smeering (= the folding map) has been performed.

From the viewpoint of their time of first occurrence in the process Z, we have, with the time arrow left → right:

(6.25) h(1) < h(3)(complementary/complementary) < h(3)(c/N c) .
In the figure 6.9, once the push is finished (see the 5) in Lemma 5.1), then the arches

[α, α ], [β, β ] are contained in [A U U A 0 ], while the [α , α ], [β , β ], (figure 6.9) are essentially contained in [A A A 0 A 0 ].
Once the pushing has extended the X from figure 5.7-bis to the (α α α ), proceeding along S j [XY ], what the smearing does now, is to lean [XY ] on S j [XY ] and then blend it into it. This realizes the diffeomorphisms (5.31.3), (5.31.4), final result of the ministep pushing + smearing. The fact that now, with the smearing [XY ] = S j [XY ], all happening inside h(1) so as to preserve GSC, the Y has reached the position from figure 6.9, has as consequence that the shaded R 2 , R 3 can be sent by now into the interiors of their respective ditches. And here, we will proceed like in the figures 5.10, 5.11-bis. The impact of pushing + smearing on h(1) (which, internally, stays GSC, without acquiring new arrows to the outside world) has already been discussed. I claim that the same pushing + smearing does not induce any changes on the matrix ∂h 2 (1) • δh 1 (3). This follows from the following geometrical facts. Notice, to begin with, that inside the bands h(3)(BLACK/RED) which occur along the S-wound from (5.27.3-ter), the respective 1-handles h 1 (3) are transversal to the band in question, like it is suggested in the figure 5.11. And then also, something similar happens for the new, green-shaded h(3)-material in the figures 5.10, 5.11-bis. It has its δh(3) new untouched by anything foreign, while its ∂h(3) new may rest on the outside world of older things.

Then, as long as we follow the S j [B, A], the h(3)(BLACK/RED), encountered at the scar at end B (figure 5.4) is pushed isotopically along (actually pushed in front) by the BLUE h(1), making that the h(1) in question is living on top of its CUSHION, never having a chance to come into contact with h(3). Same holds for the smearing step.

Next, follow the actions from figures 5.10, 5.11-bis, when we start filling those empty ditches D 3 , D 2 mentioned above.

New h(3) (coloured green) occurs now. And it only touches the h(1) with its ∂h(3) and NOT with its δh(3). See the comments above.

So there is then no contact And in the context of the little triangle above, there are no arrows the other way around. Of course each of these h(3) packages above has its own internal arrows too. All these arrows respect the following general role (when C/C means complementary/complementary, and C/N means complementary/non complementary

∂ 2 h(1) • δh 1 (3),
( * * ) h(3)(C/C or C/N C)(new) -→ h(3)(C/C or C/N )(old) ,
and NEVER the other way around. An illustration of this is h All these things make that the GSC condition is satisfied for the S b M (Γ). End of (6.26) With this we end our EXPLANATIONS and we move now to the BLACK [XY ]'s, for which we have to construct the shadow arcs S j [XY ]. For this, some preliminaries will be necessary. Lemma 6.3 has provided us, for any (x 0 , y

(3) 1 → h(3) 2 ,
0 ) ∈ M 2 (f ) ⊂ (X 2 -H) × (X 2 -H) with a zipping path λ(x 0 , y 0 ) ⊂ M 2 (f ) ≡ M 2 (f ) ∪ Diag(Sing(f ))
. So far, it has not mattered much whether X 2 × X 2 was meaning the usual product, with (x, y) = (y, x) when x = y, OR the symmetric product, with (x, y) = (y, x).

For what comes next, it will be convenient to work rather with the symmetric product, which allows us to perceive a continuous map

M 2 (f ) ∪ Sing(f ) 2 -----→ M 2 (f ) ∪ Diag(Sing(f )) ,
such that, for (x, y) ∈ M 2 (f ), we have 2 -1 (x, y) = {x and y}, and which, outside of the singularities, covers exactly twice its image. We will also think now (see figure 6.3) of the zipping strategy λ(x 0 , y 0 ) as being a subset of M 2 (f ) ≡ M 2 (f ) ∪ Diag(Sing(f )), forgetting the parametrization by (x t , y t ) ∈ λ(x 0 , y 0 ), for a short while. Here is how this goes. To be more precise, because of the triple points our map 2 is more than double valued. When outside of the triple points, if

x, y ∈ M 2 (f ) is coming with (x, y) ∈ M 2 (f ), then 2(x) = (x, y) = 2(y), while for a triple point (x, y, z) ∈ M 3 (f ) we have now 2(x) = 2(y) = 2(z) = (x, y, z) ∈ M 3 (f )/(Z/3Z), thought of now as a unique point in M 3 (f ).
Claim (6.26.1) -Given the λ(x, y) ⊂ M 2 (f ), there is a commutative diagram of continuous maps, illustrated in figure 6.10

{Some Tree} ≈ λ -1 / / λ ⊂ M 2 (f ) ⊂ ((X 2 -H) × (X 2 -H))/(Z/2Z), I 2 (see fig. 6.10) O O λ -1 / / M 2 (f ) ≡ M 2 (f ) ∪ Sing(f ) ⊂ X 2 -H , 2 O O λ = zipping path, in M 2 (f ), with λ -1 = 2 • λ -1
easily vizualizable in the figure 6.3 and coming with the feature a), b) below. [But before a) and b) can be developed, in order to keep our maps λ -1 , λ -1 continuous, a further convention will be established: when we are at the level of ( * )

M 2 (f ) ⊂ ((X 2 -H) × (X 2 -H))/(Z/2Z) ,
then, when we get to triple points, let's say to (p, q, r) ∈ M 3 (f ), there the three pairs (p, q), (q, r), (r, p), points in ( * ) above, are identified into a single point. With this, the first line in the diagram above makes now sense.] a) We start from λ -1 , which is, essentially, a homeomorphism on its image, having the feature that the composite map 2 • λ -1 has as its image our λ ⊂ M 2 (f ). This defines then our map λ -1 . The λ -1 consists of finitely many successive continuous pieces on each of which, individually, either the natural time flows on I and on λ go in the same direction OR in opposite direction (a time reversal). See figure 6.10. On the tree λ this flow is meaningless.

b) λ -1 (0) = x 0 , λ -1 (1) = y 0 . We will sometimes write λ -1 = λ -1 (x 0 , y 0 ). End of (6.26.1)

The claim (6.26.1) is easily visualizable in the figures 6.3, 6.10, with the λ -1 readable as a continuous path λ -1 (x, y)(t) = λ -1 (t), t ∈ I, going from x to y or from y to x. Also, in a very imprecise and rather metaphorical manner, if one thinks of the zipping path λ(x 0 , y 0 ) as a continuous path in M 2 (f ), parametrized by 0 ≥ t ≥ -∞, with λ(x 0 , y 0 ) (t = -∞) = singularity, and λ(x 0 , y 0 ) (t = 0) = (x 0 , y 0 ), then λ -1 can be thought of as a path, twice as long, going from x 0 to y 0 .

(6.27) Let lim n=∞ (x 0 (n), y 0 (n)) = ∞, in X 2 ×X 2 .
Then, with appropriate uniform estimates, and measured in the metric from the 6) in Lemma 6.3, we also have lim

n=∞ λ(x 0 (n), y 0 (n)) = ∞ (⇔ lim n=∞ (λ -1 (x 0 (n), y 0 (n)) = ∞).
For given (x 0 , y 0 ) ∈ M 2 (f ) the zipping path λ(x, y) involves only a finite initial portion of the process Z in (5.30), call that Z | [0, m], with m = m(x 0 , y 0 ).

We go now high-dimensional and we introduce the notations (6.28) Θ N +4 ≡ Θ N +4 (X 2 -H) I -{DITCH} = S 0 like in (5.33), and

Θ N +4 1 ≡ Θ N +4 ∪ {h(2) + h(3)} | [0, m],
glued together like in S b and coming with -------------------→ the embedding Z in (5.33)

Θ N +4 1 -
S b ( M (Γ) -H) I .
The reason for denoting now the S 0 from (5.33) by Θ N +4 is to stress that it is a regular neighbourhood of X 2 -H; we will thus consider for it the canonical retraction Θ N +4 p -→ X 2 -H.

In a simplest possible context, the little drawing (A) below should be an illustration for In (B) the q ∈ M 3 (f ) and the singularity of the green tree Im λ -1 are superposed, for purely typographical convenience. They are really distinct items. This appears clearly in (C), which is a simplified and more easily readable version of (B). Also, in (C) the map I 2 --→ {tree Im λ -1 ≈ λ} should be obvious. In (B), the black λ -1 (x, y) makes sense as a continuous path in X 2 -H, while the green λ -1 (x, y) does NOT. This comes together with 2 • λ -1 (I) = λ = Im λ -1 .

λ -1 = 2 • λ -1 , i.e. for λ -1 (t) = 2 • λ -1 (t) for ∀ t ∈ Tree:
In a similar vein as in (6.28) we also introduce now the (N + 3)-manifold Θ N +3 2 ≡ ∂ Θ N +4 -that piece of ∂ Θ N +4 which stays hidden behind the ditch-filling material h(3), glued to it, when we go to 

Θ N +4 j -→ S u ( M (Γ) -H) (5.
[u, v, w, u , v , w ] | ε -1 n , ε . Lemma 6.4. -With N sufficiently high, for each u ∈ X 2 -H, the fiber Φ(u) ≡ p -1 (u) ∩ Θ N +3 2 is connected. Proof. Ignoring the discrete set Sing(f ) ⊂ X 2 -H, the fiber of (6.29) Θ 3 (X 2 -H) p --→ X 2 -H u
is a compact tree with a single branching point, and at this stage exactly the ends of the tree live on the boundary. The map p from Θ N +4 p --→ X 2 -H factorizes through (6.29), and with N high enough these ends get connected at the level of p

-1 (u) ∩ ∂ Θ N +4 . When in the diagram u ∈ X 2 -H Θ 3 (X 2 -H) p o o Θ N +4 o o ⊂ ∂Θ N +4 , O O p (with Θ N +4 ≡ Θ 4 (Θ 3 (X 2 -H), R) × B N ), one moves first from (p ) -1 (u) ⊂ Θ 3 (X 2 -H) to p -1 (u) ⊂ Θ N +4
which is clearly connected and then to the equally connected p -1 (u) ∩ ∂Θ N +4 , then finally the contribution of that {. . .} occurring in the definition of Θ N +3 2 where it gets deleted (and which should be visualizable in figure 4.2) does not make here any difference. The codimension of Φ(u) in the very high-dimensional Θ N +3 2 is two, while {. . .} is formally 1-dimensional, in the sense that it is the very thin regular neighbourhood of a 1-dimensional set. We use here two facts. On the one hand, the codimension of a generic u ∈ X 2 -H in X 2 -H is two. Then, the DITCH and the {h(1) living in the DITCH} are formally 1-dimensional. End of Proof.

The proof above takes place in the context of the following diagram

Θ N +3 2 ⊂ ∂Θ N +4 ⊂ Θ N +4 ) ) p / / X 2 -H , Θ 3 (X 2 -H) p 8 8
where from Θ n+3 2 laks the piece which is hidden behind the ditch-filling material, by the very definition of the Θ n+3 2 . We consider next the following commutative diagram, with j like in (5.33), with j 1 an inclusion map (with some ambiguities, to be sorted out later, at the level of the {BLUE 1-handles [XY ]} | [0, m], and with a j 2 which factorizes through S b ( M (Γ) -H) I (6.30)

X 2 -H f Θ N +4 p o o j1 / / j $ $ Θ N +4 1 = Θ N +4 ∪ ({h(1) and h(3)}|[0, m])
Here the first ditch jumping step occurs .

j2≡J (5.33)|Θ N +4 1 t t f X 2 -H S u ( M (Γ) -H) I . q o o
This diagram should be completed with the following more precise version of it, with j 1 thought now as a simple-minded inclusion map, and with the [Z] treating now the special BLUE 1-handles like in the ZIPPING LEMMA, taking thus care of the ambiguities in the (6.30). So we will re-write now things in the form (6.31)

Θ N +4 Z j1 / / Θ N +4 1 j2=J •[Z] [Z] t t S b ( M (Γ) -H) I J / / S u ( M (Γ) -H) I .
Here [Z] is the obvious extension of the Z (5.30). The combination of (6.30) and (6.31) makes that we will be able to talk about embeddings into S ε ( M (Γ) -H), in the context of the lemma 6.5 below.

[REMARK. The point here is that using the simple-minded inclusion

Θ N +4 ⊂ j1 Θ N +4 1
, and its likes, are NOT ENOUGH for getting the S j [XY ], for that the whole process Z is needed too. It is in that sense that (6.30) is not quite well defined for j 1 .] With all this, we look now at the map [0, 1]

λ -1 (x0,y0)
---------→ X 2 -H from the CLAIM (6.26.1) and, from now on, whenever there is no danger of confusion, the image λ -1 (x 0 , y 0 ) (I) of this map, will be denoted just by λ -1 (x 0 , y 0 ). This can be lifted then from X 2 -H to an embedding λ -1 (x 0 , y 0 ) ⊂ ∂Θ N +4 1 . Because of Lemma 6.4, we can take this embeding as being of the form

λ -1 (x 0 , y 0 ) ⊂ Θ N +3 2 .
In Section V the S j [XY ] for the special BLUE arcs of the RED type, like [AB] in figure 5 

(6.32) (zipping) -1 [XY ] ⊂ ∂ Θ N +4 1
, connecting X and Y , but which we will normally consider in ∂S ε ( M (Γ) -H), as we shall see, with the following features.

(6.32.1) Notice, to begin with, that for the [XY ] under scrutiny, let us say the fake [BC] in figure 5.6-(C), one of the endpoints, call it the X, corresponds to some double point, typically for X = B, (X(BLUE), X(BLACK)) ∈ M 2 (f ) (but then the same thing is not necessarily so for Y too). By Lemma 6.3 to this double point corresponds a zipping path λ, coming with 2 λ = λ -1 (with the length λ being measured in

M 2 (f ) ⊂ ((X 2 -H) × (X 2 -H)/Z/2Z) ,
and the length λ -1 being measured in

M 2 (f ) ⊂ (X 2 -H) ,
and with this we will have the estimate below, with some universal constants C 1 , C 2 (themselves determined essentially, by our former P 0 (6.9) and by P in Lemma 6.3)

(zipping) -1 [XY ] ≤ C 1 • λ -1 (X(BLUE), X(BLACK)) + C 2 .
End of (6.32.1) (6.32.2) We can make use of the diagrams (6.30) and (6.31) and, without loosing the feature (6.32.1), transport the (zipping) -1 [XY ] from (6.32) to (zipping

) -1 [XY ] ⊂ ∂S ε ( M (Γ)-H).
And this is the (zipping) -1 we care about now. In terms of (5.15) we may ask that, whenever it makes sense, the (zipping) -1 [XY ] should be localized inside 2b N +1 ⊂ B N +1 . This condition will be particularly important when λ -1 enters a neighbourhood of p ∞∞ ∈ W (∞) (BLACK), and it will allow us then to invoke Lemma 5.3, when that will be needed, inside the proof of the present lemma. [Actually, for Lemma 5.3 what counts is the small b N +1 ⊂ 2b N +1 . The additional condition of using 2b N +1 -b N +1 too will help us, a bit later, to stay compatible with GSC, as we shall see.]

The 2b N +1 is here like in the figure 5.2-(D) and see here also the IMPORTANT COMPLEMENT TO LEMMA 5.3. The fact that we are in 2b N +1 -b N +1 makes that the (zipping) -1 [XY ] avoids both the ditches W (complementary)/W (non-complementary) and the corresponding ditch-filling material h(3) too. The net result is

( * ) (zipping -1 ([XY ])) ∩ h(3) = ∅ .
End of (6.32.2).

(6.32.3) In the context of (6.32.2) we also have the following. If

lim n=∞ X(n) = ∞ = lim n=∞ Y (n) then we also have lim n=∞ ((zipping) -1 [X(n), Y (n)]) = ∞.
Here, starting with the endpoints, various uniform estimates can be also imposed. The convergence which is meant above is the following one, more mundane than in (6.27), namely the following: For every compact K ⊂ S ε ( M (Γ) -H), there is an n 0 ∈ Z + s.t., when n > n 0 then we also have (zipping

) -1 [X(n), Y (n)] ⊂ ∂S ε -K.
Before going into the proof of this lemma we give a comment.

Comment (6.32.4). Ideally, the (zipping) -1 [XY ] should cover the λ -1 (x 0 , y 0 ), where (in our specific case) (x 0 , y 0 ) = (X(BLUE), X(BLACK)). This means the following.

Both (zipping) -1 [XY ] and λ -1 (x 0 , y 0 ) are arcs parametrized by [0 ≤ t ≤ 1]. With this, in terms of the diagram (6.32.4)

I λ -1 (x0,y0) / / X 2 -H f X 2 -H S ε ( M (Γ) -H) o o I , (zipping) -1 [XY ]
o o and here we think of λ -1 and of zipping -1 as having the same source, the arc I and, moreover, in the diagram above points parametrized by the same t ∈ I, should live in the same spot in f X 2 -H. But this ideal plan will have to be subjected to quite some modifications, as it will be seen in the proof below. Now, concerning our continuous path ( * )

I (zipping) -1 [XY ] ------------→ ∂S ε ( M (Γ) -H) ,
at least for expository purposes, two different policies may be used; when it comes to zipping W (complementary) / W (non-complementary) then our description will stay close to Θ 3 (X 2 -H) (but keeping in mind how it fits in figure 4.2, Section IV) and then (because of the PARTIAL filling of DITCHES) the distinction between (z = ε -1 n , z = ε), and z = ±ε will be important, when we go back and forth between N 2 ∞ and N 2 ∞ . But, when we will deal with zipping W (complementary)/W (complementary), then the distinction above will become irrelevant. On the other hand, in this situation, the double points for λ or for λ -1 will be now, with a z which can happily be z = +ε, on the two sides of ( * * ) {the S(wound), like in (5.39.3)} -{contribution of non-complementary wall} .

(Remember, the (C/C)-zipping does NOT involve any partial DITCH filling.)

A typical transition between the first regime and the second one will happen at the border x = Ψ(y) of M 3 in figure 6.5, when we move to [v, u] in that figure. And, concerning the change in z-policy, Lemma 5.3 will have to be invoked then. End of (6.32.4).

Proof of Lemma 6.5. In order to make the exposition easier, we will forget about the map "2" from (6.26.1), and revert to a more impressionistic and/or heuristic viewpoint (already mentioned before), where the λ -1 (x 0 , y 0 ) is conceived now as a path in (X 2 -H)×(X 2 -H), defined by λ -1 (x 0 , y 0 )(t) = λ(x 0 , y 0 )(-t), the t going here from t = 0 to t = -∞. Our (zipping) -1 [XY ] will cover, essentially, this λ -1 (x 0 , y 0 ), actually not quite so, as we shall see. But anyway, with this change of viewpoint, the (zipping

) -1 [XY ] should live now in ∂ Θ N +4 1 × ∂ Θ N +4 1 and/or in ∂S ε ( M (Γ)-H) × ∂S ε ( M (Γ)-H).
It is only for expository purposes that we move from λ -1 to λ -1 , but still is the λ -1 which our process (zipping) -1 will be essentially trying to mimick. This being said, for expository purposes it may be convenient to talk about points in (X 2 -H) × (X For our λ -1 (t) with λ -1 (0) = (BC), there is a last time t 0 < 0, such that, while we have λ

-1 | [0, t 0 ] ⊂ N 3 , at t 0 , the λ -1 enters N 3 ∞ . For the same 0 ≥ t ≥ t 0 , the (X t , Y t ) ∈ (zipping) -1 [BC] is a continuous path in ∂S ε ( M (Γ) -H) × ∂S ε ( M (Γ) -H) (the level we consider now), such that X 0 = B, Y 0 = C, covering λ -1 | [0, t 0 ]
modulo the prescription which will be given in (6.33) below, and such that, outside of the encountered triple points we should have (6.32.5)

z(X t (BLUE)) ∈ ε, ε - 1 n , z(Y t (BLACK)) = -ε ,
where the "z" makes sense by factorizing the map p in ), then it makes use of the already defined S j [X Y ] (which goes to the fins). With these things, at least for the part [0, t 0 ] of (zipping) -1 , the (6.32.1) to (6.32.3) in our lemma are well satisfied.

X 2 -H through Θ 3 (X 2 -H) ⊃ W (∞) (BLACK)×[-ε ≤ z ≤ ε],
Here is also how the (6.32.5) and the "covering λ -1 | [0, t 0 ]" mentioned just before (6.32.5) is to be married with (6.32.5). We are here in the realm of W (∞) (BLACK) × [-ε, ε] and, by squeezing [-ε, ε] to a point, we can return to λ -1 (I) ⊂ X 2 -H.

Sor far, we were in N 3 ∞ , but when we get inside N 3 ∞ , at t = t 0 , then the W (BLUE) does no longer carry Holes, we can move freely inside -ε ≤ z ≤ ε, and we can realize, immediately beyond t 0 , the following condition (6.34) z(X t0-0 ) = z(Y t0-0 ) ∈ {± ε} , without loosing continuity.

One should notice here that, because of Lemma 5.3, which puts no restriction on z ∈ [-ε, ε], realizing (6.34) stays compatible with the (6.32.3) in our Lemma 6.5. Keep in mind, also, that we are working here with S ε and NOT with S ε . Also, all this is to be lifted to ∂S ε ( M (Γ) -H).

The transition at t = t 0 which we talk about here is to be compared to what happens in figure 6.1, when the line x = x n crosses the universal curve, moving from N 2 into N 2 .

[Comment. Several times in our argument we will need to move back and forth between conditions (6.32.5) and (6.34). Every time this happens, we have to be within the juridiction of Lemma 5.3 and the appropriate version of Lemma 6.4. And also, this concerns the zipping C/N C.]

By now we have

(6.35) (X t0-0 , Y t0-0 ) ∈ M 2 (f ) with a λ -1 (X t0-0 , Y t0-0 ) which is essentially the λ -1 | [t 0 , -∞] (in our heuristic view).
It is, from now on, this λ -1 (X t0-0 , Y t0-0 ) which has to be lifted to

∂ Θ N +4 1 × ∂ Θ N +4 1
, or rather to ∂S ε ( M (Γ) -H) × ∂S ε ( M (Γ) -H), respecting (6.32.1) + (6.32.3). The λ -1 consists of successive pieces in

λ -1 ∩ N 3 ∞ , λ -1 ∩ N 3 ∞ . The pieces λ -1 ∩ N 3 
∞ can belong to one of the following three types:

I) W ∞ (BLACK) H 0 ∩W (BLUE), II) W ∞ (BLACK) H 1 ∩W (RED-H 0 ) and III) W ∞ (BLACK) H 1 ∩ W (RED ∩ H 0 ) ⊂ H 0 ,
which is the very short piece [u, v], barely visible in the figure 6.5. There, it stretches from M 3 to S 2 ∞ . Notice that the pieces I, II are long, while III is very short (but it goes through infinitely many triple points). From a different viewpoint, I and II are complementary/non-complementary, while III is complementary/complementary.

Just before we get to the piece I above we are still inside M 3 ⊂ N 3 ∞ , and then (6.34) can be changed into (6.32.5). Then, the piece I can be treated just like we did with the piece [0, t 0 ] above, and nothing more will be said concerning it.

For the piece III we make use of (5.39.1) to (5.39.3) and then, by invoking Lemma 5.3 (now possible because of (5.39.1) to (5.39.3)), just before going to II we may again change (6.34) into (6.32.5), and proceed with II like with I. So, for I and II we will worry about the branches z = +ε and z = -ε independently of each other. (This is Θ 3 (X 2 -H) viewpoint, of course.)

LEGEND: •) The R 1 , R 2 , R 3 are our DITCHES for W n (BLUE -H) ••) ------= new S (5.39.1) • • •)
We suggest here that S is slightly thickened, with a red side towards W (RED ∩ H 0 ) and a black one, towards W ∞ (BLACK). So there are two parallel copies of S, the S(RED) and the S(BLACK). Here S means splitting surface and/or S-wound. Do not mix up S with S j of S j [XY ]. This accompanies the procedure for case III, W ∞ (BLACK) H 1 ∩ W (RED ∩ H 0 ). The C here is C(x n ). Compare this with figure 5.4, and see for it, also figure 6.12. For purely typographical conveniency (and also to make the drawing more readable), we pretended here that b N We discuss now in more detail the trickier case III. And here we will make use of the figure 6.11, which should be compared to 5.4. This figure is part of an x-movie for x 0 ≤ x ≤ x ∞ and it lives exactly at the x-time It should also be understood here that one reads the figure 6.11 like in the LAST COMMENT ON ZIPPING, at the very end of Section V, but with those refinements (5.39.1) to (5.39.3) thrown in too. Also, our III goes through infinitely many triple points, like the ones in the figures 5.6-(B), 5.6-(C), and every time our λ -1 crosses transversally another (W n (BLUE) -H), coming with n → ∞. This then also means that λ -1 goes by infinitely many BLACK [XY ]'s and RED [X Y ]'s, each of them being a special BLUE 1-handle of our W n (BLUE) -H; see here again those figures 5.6-(C) and 5.8-(B). And see (6.32.4) for λ -1 (x 0 , y 0 ). Anyway, in view of our high dimensions, these [XY ], [X Y ]'s can be ignored. Even more importantly, as the figures 6.11, 6.12 show us, the [XY ]'s by now have become S j [XY ]'s. When the supplementary N dimensions are concerned, for our λ -1 , λ -1 we proceed like it will be explained now, in agreement with the ( * * ) with which the (6.32.4) ends, taking advantage of the "metrical adjustment" (5.39.1) to (5.39.3). Figure 6.11 (and 6.12) where we can see C = C(x n ) is part of an x-movie, with x 0 ≤ x ≤ x ∞ , and we have (6.36)

x n = x(W n (BLUE -H)). The W n (BLUE) has a thickness x n -η n ≤ x ≤ x + η n .
λ -1 (x) = πC(x) , λ -1 (x) = π(C(BLACK)(x), C(RED)(x))
where for the first formula we have

C(x) ∈ ∂S ε ( M (Γ) -H) ⊂ S ε ( M (Γ) -H) π --→ X 2 -H λ -1 (x) ,
and something similar for the second one.

Here x is the parameter of λ -1 (x), λ -1 (x), with (x, y, z) like in the figure 6.11. End of (6.36).

The (6.36) is the (zipping) -1 along the III above. Also, and from another standpoint, while the beginning of our proof was rather concerned with the zipping together of W ∞ (BLACK) and W (BLUE -H) and then in the context of figure 5.8-(B) and of the DITCHjumping, the action was along W (BLUE -H), now we go TRANSVERSALLY through W (BLUE -H), USING THE HOLE, and hence happily avoiding those special BLUE 1-handles. More importantly still, going through the available (Hole) n ⊂ W n (BLUE) , one can lift the corresponding arc λ -1 ∩ N

3

∞ to an arc of (zipping) -1 [XY ], staying compatible with (6.32.1) to (6.32.3), there where (6.32.2) makes sense. We zip now complementary walls together (keeping attention to (5.39.1) to (5.39.3)). There is no question now of 2b N b N , either.

The discussion is now really high-dimensional, and the distinctions (6.32.5)/(6.34) are rather irrelevant. In terms of figure 5 A detail of figure 6.5. We see here W ∞ (BLACK)(x, y), W (RED ∩ H 0 )(x, z), W (BLUE)(y, z). When the zipping flow looks like crossing transversally W (BLUE) it actually goes through a Hole (= VOID).

Notice that without Holes (like the C(H ± i ) in figure 5.6-(C)), the (6.36) would tell us that zipping -1 [XY ] would go transversally through all the W n (BLUE ∩ H 0 ), n = 1, 2, . . ., which of course would be disastruous. As things stand, the disaster is avoided by using the Holes, as already explained. Here, the n → ∞, of course.

We proceed here making use of (5.39.1) to (5.39.3), and particularly of the ( * * ) from (6.32.4); we have

(((zipping) -1 [XY ]) | {the W ∞ (BLACK) H 1 ∩ W (RED ∩ H 0 ) in III above}) ∩ ∩ {W (BLUE -H) contribution, meaning the BLUE 1-arcs BLACK[XY ],
and RED[X Y ] too} = ∅ .

Remark. The III) goes through infinitely many triple points, like the one in figure 5.6-(B), for instance and each time our (zipping) -1 crosses another W n (BLUE -H), with n → ∞. Also, our N is high, and so we can make our lift disjoined from the curves C(H). This discussion of the cases I, II, III has concerned N 3 ∞ , and we move now to the λ -1 ∩ N 3 ∞ 's, which may be either of type

W (∞) (BLACK) ∩ (W (BLUE) + W (RED ∩ H 0 )) or W (RED ∩ H 0 ) ∩ W (BLUE).
We may assume the arcs λ -1 ∩ N 3 confined inside the M 3 (see figure 6.5 and (6.16)) and, as soon as we enter such a piece λ -1 ∩ N 3 ∞ we change again (6.32.5) into (6.34).

We start by lifting our

λ -1 ∩ N 3 ∞ to Θ 3 (X 2 -H) × Θ 3 (X 2 -H)
, thus disregarding the fact that our arc, even if of very short length may go to uncontrollable many points where X 2 is not a smooth 2-manifold.

Since with our high N comes a natural embedding Θ 3 (X 2 -H) ⊂ ∂S ε ( M (Γ) -H), this automatically takes care of (6.32.2). Once we are inside N 3 ∞ we do not have to worry about DITCHES, Holes and partial DITCH fillings, nor about the [X Y ] which may be in the way. We can certainly impose something like (6.32.5), at the moment we leave N 3

∞ for the next N 3 ∞ . There are clearly no problems with (6.32.1), and because of Lemma 5.3, not with (6.32.3) either. This ends our proof of Lemma 6.5.

We finally can go to the S j [XY ] for the BLACK [XY ]'s. Here are two typical cases, connected to figures 5.6-(C), 5.8-(B):

(6.37) {S j [AD] , in the case of variant I in 5.8-(B)} = S j [AB] ∪ B (zipping) -1 [BC] ∪ C S j [CD] ,
and then also

{S j [AD] , in the case of variant II} = (zipping) -1 [AD] .
End of (6.37).

With this, the pushes and smearing are now like in the RED case [XY ] = [BA] which was explained at length in the context of figure 5.8, in the ZIPPING LEMMA 5.1. So, we start from the Y ≈ A in the figure 6.9 and we want to build now the S j ([XY ] = [AD]). For this, imitating at a higher level what we have already done for the [XY ] = [AB] in the ZIPPING LEMMA, starting from figure 5.7-bis and ending with figure 6.9, we start now from that figure 6.9, and push isotopically the abstract [Y X] = [AD], to which, à la figure 5.7-bis the R4 is attached at D, along the S j [AD] above, ALL THE TIME CUSHIONED like in figure 6.9 by a CUSHION h(3)(BLACK/BLUE), the same filling material h(3) which, in terms of figure 5.8-(B) has just reached the triple point t in . To the extent to which the λ -1 (x) goes back in the Z-time, we risk here, a priori, to get into conflict with (6.26). There is a priori a risk of our (zipping) -1 touching to stuff partaining to older zipping.

So here is what we do.

•) To begin with, whenever that makes sense, our S j [AD] will live in 2b N +1 -b N +1 . In terms of the geometric interaction matrix, this will make sense that the ( * ) at the end of (6.32.2) is satisfied. Just like the isotopic pushing and smearing, our (zipping) -1 carries with it its CUSHIONING. And our 2b N +1 -b N trick avoids UNWANTED arrows like It is here that our 2b N +1 b N +1 saves the day for GSC.

Of course, also, for every finite time [0, m < ∞] in the zipping process, a whole chain

b N 2b N 3b N . . . K(n)b N ,
with the total chain of very small diameter, may be necessary.

••) Of course also, our moving arc S j [AD] will have to cross various wounds and scars from the past (since we go back in time). There we have now contacts h(3)(complementary/non-complementary) -→ h(3)(complementary/complementary).

These are compatible with what the first diagram in (6.26) says. And as already said, this is also compatible with GSC. All this takes care of the S j [AD].

Finally, here comes a little complement to the (6.37) above.

As another typical case, along with (6.37), look now at figure 6.7, which we will discuss now. We have, to begin with, a main flow, along W (BLUE)/W ∞ (BLACK) H 1 , and which makes use of To stay with the same kind of argument, we will stop now the discussion of the proof of the Zipping Lemma 5.1 and move to the CONSTRUCTIONS OF THE ARCS γ i , FROM LEMMA 5.8. Notice that, if it would only be a matter of having (5.50) + (5.50.1), then we could proceed just like in the standard textbooks of algebraic topology, and take some simple-minded arc joining α C -(H i ) to η β C -(H i ) inside ∂S u (M (Γ) -H). This could be just some arc of type [XY ]. But then, we also insist of having (5.50.3) and this without violation of (5.50.2). All this can be happily satisfied if, forgetting about the standard textbooks, we use Lemma 6.5 and take (6.37)

γ i = (zipping) -1 [XY ]
, with [XY ] like just above.

So, now we have the closed loops Λ(H - n ) in (5.50) too.

Remark. When we had an [XY ] which was an actual special BLUE 1-handle, like it was the case for the Now, when it comes to our arcs γ i from (6.37), there is absolutely no contribution to the geometric intersection matrices. Notice that there is quite a good reason that the arcs γ i are defined using the ZIPPING FLOW, more precisely the process (zipping) -1 .

For our purposes, there are two basic properties which these arcs γ i have to have, namely the following two: i) BOUNDED LENGTH and ii) NOT curraling at finite distance, but at the infinity of S ε ( M (Γ) -H), i.e. γ i i→∞ / / ∞ .

And the ZIPPING has the features i), ii), and hence can deliver what we need.

A FINAL COMMENT. The structure of our X 2 is such that lim 

(n) = ∞ (⇒ lim n=∞ zipping -1 (n) = ∞).
And this leads in turn to lim Λ n = ∞, of course.

Compactification

This section contains the proof of the COMPACTNESS LEMMA 5.7. Our action will happen mostly downstairs, at level S u (M (Γ) -H). Of course, Lemma 5.7 (see the (5.47-REAL LIFE)) mentions both S b (M (Γ) -H) and S u (M (Γ) -H), but then, via η everything will be happily transferred on S u (M (Γ) -H).

Many of the things we will say make sense on S b ( M (Γ) -H) too, and at least for reason of smoothness of exposition, the S b ( M (Γ) -H) will be mentioned too. But, very importantly, we work here throughout with S ε and never with S ε , because we will want to be able to invoke the Lemma 5.3.

Inside the σ 1 (∞) from (2.19) we consider the more mundane σ 2 (∞) defined below

(7.1) σ 1 (∞) ⊃ σ 2 (∞) ≡ {limit walls} ⊂ M (Γ) . The σ 2 (∞) is a connected graph (7.2) σ 2 (∞) = circles (S 2 ∞ ∩ (S 1 × I) ∞ ) ∪ arcs (∂ Hex ∞ ∩ (S 2 ∞ ∪ (S 1 × I) ∞ )) ,
where remember that S 2 ∞ (BLUE), (S 1 × I) ∞ (RED), Hex ∞ (BLACK) are the limit walls of the respective colours.

The vertices of σ 2 (∞) are the {p ∞∞ (∞)(proper)} (see figures 2.7 and 7.1), which are the intersections of the three kinds of limit walls and the {p ∞∞ (∞)(S)} from figure 2.8-(C); they are produced by the two pairs of BLACK limit walls associated to our S ⊂ Sing ( M (Γ)). The p ∞∞ (∞)'s are accumulation points of p ∞∞ 's, which occur inside the interiors of the edges of σ 2 (∞). When one moves from σ 2 (∞) to σ 1 (∞), then one has to add more vertices, namely the endpoints of the lim LIM living inside σ 2 (∞), figure 2.7.

We also have The set defined in (7.3) is a collection of arcs, like in the figure 7.1. In this same connection, we introduce the closed subset (7.4)

(7.3) σ 1 (∞) ∩ Θ 3 (f X 2 )(II) (see (3.12)) = σ 2 (∞) ∩ Θ 3 (f X 2 )(II) ⊂ • (∞) ∪ S p ∞∞ (S) × (-ε, ε), i.
σ(∞) ≡ σ 2 (∞)-int (∞) with the contribution of p ∞∞ (S) restored int Σ(∞) * = σ 2 (∞) -Θ 3 (f X 2 )(II) ⊂ M (Γ) .
The little arcs [x ∞ , y ∞ ] in figure 7.1 are typical connected components of this σ(∞). More complicated such are gotten by assembling, at the level of figure 2.7, dotted lines in σ 2 (∞) -Θ 3 (f X 2 )(II) and lim LIM's.

A remark concerning Figure 7.1. Our figure above is an enlarged, detailed version of that part of figure 2.4, which concerns H 2 . Then there should also be a figure 7.1-bis (not drawn explicitly), concerning the W ∞ (BLACK) H 0 's rather than W (BLACK)'s and 7.1-ter, concerning the W ∞ (BLACK) H 1 's. The 7.1-bis is again on an S 2 ∞ (BLUE) background, there is no longer the Hex ∞ (BLACK), but a lim LIM line. The 7.1-ter, drawn on a background (S 1 × I) ∞ similarly has a lim LIM line, and then continues without one on the S 2 ∞ (BLACK) background.

At this point we go back to the "surfaces"

(∞) * ⊃ ∂ (∞ * ) , int (∞) * from (3.21)
, their behatted versions from (3.22) and to the cut arcs from (6.12).

And, with the cut arcs deleted, we have

(7.5) (∞) * (cut) ≡ (∞) * -{cut arcs} ⊂ (∞) ∧ * (cut) ≡ (∞) ∧ * -{cut arcs} .
Notice that, once the cut arcs avoid the zipping paths λ(x, y)'s, they also are s.t.

(7.6) (Λ(H - n )(5.50) ∩ (cut arcs) = ∅ .
The system of cut arcs is Γ-equivariant and it functions also downstairs, at level X 2 /Γ. It should be stressed that these arcs do not correspond to any physical deletion or puncture. We will shortly come back big to the cut arcs.

Since in this section the "surfaces" mentioned above, and all the similar avatars, all living inside Σ 1 (∞) = {the union of the limiting positions of the compact walls} ⊂ M (Γ)(or M (Γ))} will play a big role, for the benefit of the reader, we have gathered together a list of those useful objects, so that he should not have to go back, all the time, to items like (3.21), (3.14.1) which will be superseded by the next (7.6.1), our list of avatars of Σ 1 (∞), definitive from now on, is: 

ε CONTEXT. •) { (∞) * = f LIM M 2 (f ) × [-ε, ε], with all the p ∞∞ × [-ε, ε]'s present} ⊂ (∞) ∧
* (the hat meaning here that the fins are thrown in too) (∞) ≡ {the same as (∞) * , without the contribution of the p ∞∞ (S)}. Notice that the "⊂" here is not quite an inclusion, once the

••) ∂ (∞) * = {(f LIM M 2 (f )×{±ε})∪ p∞∞(ALL) p ∞∞ ×[-ε, ε]} "⊂" ∂ (∞) ∧ * = ∂ (∞) * - F diam F +
F diam F ⊂ ∂ (∞) * is being deleted at level ∂ (∞) ∧ * . • • •) • (∞) * = f LIM M 2 (f ) × (-ε, ε) - p∞∞(ALL) p ∞∞ × (-ε, ε) ⊂ • (∞) = {same as • (∞) * BUT ONLY with the contribution of p ∞∞ (S)'s deleted} ⊂ (int (∞) * ) ≡ f LIM M 2 (f )×(-ε, ε) ⊂ int (∞) ∧ * ≡ (∞) ∧
* -{outer boundary}. So, we have here the inclusions

• (∞) * • (∞) int (∞) * int (∞) ∧ * .
We will denote by int and, now without those additional identifications

∂ (∞) ∧ * = R0 ∂R 0 .
End of (7.6.1)

We will also use the following notation (7.6.1-bis)

• (∞) ∧ * ≡ int • (∞) * ∪ fins = R0 int R 0 = (∞) ∧ * -∂ (∞) ∧ * ,
an object devoid of any p ∞∞ contributions and which is not to be mixed up with the larger

• (∞) ∧ .
[Of course, the second and third term in (7.6.1-bis) occur already in (7.6.1), but this R0 int R 0 is so important, that a more compact notation will be sometimes coming in handy.] In • • •) from (7.6.1) we had

• (∞) * • (∞)
, the first object being (as already said), devoid of any p ∞∞ contributions, and the second one of the p ∞∞ (S)'s only. Extending this last inclusion, we will have a second one, with fins added, (7.6.1-ter)

• (∞) ∧ * • (∞) ∧ ≡ • (∞) from • • •), plus fins .
Coming back to (7.6.1) the reader will have remarked, already, that all the avatars are subsets of (∞) ∧ * . One should also keep in mind that the (∞) ∧ * and the cut arcs (about which much will be said soon), have NOTHING TO DO WITH EACH OTHER.

Also, ALL our avatars proceed from

f LIM M 2 (f ) ⊂ 1 (∞) = S 2 ∞ (∞) ∪ (S 1 × I) ∞ ∪ Hex ∞ ,
but, actually only the first two terms contribute to f LIM M 2 (f ). When in (7.6.1) we write things like "× [-ε, ε]" or "× (-ε, ε)", the product factor is transversal to 1 (∞) in Θ 3 (f X 2 ) I . So, objects like the 

• (∞) • ( 
• (∞) ∧ * = (∞) ∧ * ∩ Θ 3 (f X 2 ) I and, similarly, • (∞) ∧ = (∞) ∧ * ∩ Θ 3 (f X 2 ) I .
A priori, these two (∞)-objects would aspire to be singularities-free. But then we have the double infinity of little squares S (corresponding to each S) present in (∞) ∧ * and hence also in our two friends from (7.6.1.1).

2) We will start with an Important Remark. It is possible to render (∞) ∧ * , and all the objects deriving from it free of immortal singularities (the S's), by extending the zipping together of W (BLACK) and W (BLACK) * from x = x ∞ to x = x ∞ + η, η > 0 (very small). That trick will be useful later, but in our discussion of the COMPACTNESS LEMMA we have to leave things as they are now. [Here, for each immortal singularity S ⊂ W (BLACK) ∩ W (BLACK) * (see figure 2.8-(C) or 6.2, when S ⊂ (x = x ∞ )), we zip to x = x ∞ + η(S), where η = η(S) decreases slowly to zero when we approach Hex ∞ .] So (later on) we can achieve

• (∞) ∧ * ∩ {immortal singularities S of Θ 3 (f X 2 ) I } = ∅, and 
• (∞) ∧ ∩ {immortal singularities S of Θ 3 (f X 2 ) I } = ∅. 3) Our object Θ 3 (f X 2 ) ( ) or S ( )
n M (Γ) have INFINITIES which can be of two kinds, namely: Either God-given infinity = the infinity of Γ itself, OR man-made infinity = the infinity created during our various constructions, and for both kinds we have

(7.6.1.2) infinities of Θ 3 (f X 2 ) = infinities of S u M (Γ), and infinities of Θ 3 (f X 2 ) = infinities of S u M (Γ).
When one moves downstairs, from M (Γ) to M (Γ), the God-made infinities of course vanish but S ( ) u M (Γ) inherits the man-made infinities. 4) This chapter will actually rather concentrate on Θ 3 (f X 2 ) and on S u M (Γ). [Remember that there are the main objects, the Θ 3 (f X 2 ), S u M (Γ) are merely the derived ones.] With this, we have Remark. We will really need S u M (Γ) ∧ but NOT S u M (Γ) ∧ , hence not R 0 × {∞} in the context of S u M (γ) ∧ either. 5) Consider now the Θ 3 (f X 2 )(II) and the section through it in figure 3.2. No fins exist here. We have:

•) In the neighbourhood of x ∈ p ∞∞ (proper) × (-ε, ε), both Θ 3 (f X 2 ) I and (∞) ∧ * look locally normal, 3 d manifold and 2 d submanifold, even without any deletion (of p ∞∞ × [-ε, ε] present). Moreover, when fins are taken into account, if appropriate metric controls are performed, concerning the sizes of the fins, when approaching the points p ∞∞ × {±ε}, then in a C ∞ manner, when leaning on an edge p ∞∞ (proper)

× [-ε, ε], any R 0 ⊂ Σ(∞) ∧
* is a normal rectangle. See figure 7.0 for an idea of what is going on. We speak here smooth-wise, C ∞ , language. Here, the (∞) ∧ * ⊃ R 0 is normal, BUT Θ 3 (f X 2 ) ( ) is still NOT normal at ±ε. ••) When we move from p ∞∞ (proper) to p ∞∞ (S), provided we take the immortal sigularities S off from (∞) ∧ * , the same things are true, as in the case of p ∞∞ (proper).

The only difference is that, in the neighbourhood of x ∈ p ∞∞ (proper) × (-ε, ε), the Θ 3 (f X 2 ) I (without deletions) is a normal 3-manifold, while this is NOT so for x ∈ p ∞∞ (S) × (-ε, ε). But this does NOT concern Σ(∞) ∧ * , and so it is O.K. We can happily replace here the Θ 3 (f X 2 )(II) by Θ 3 (f X 2 ). We see here a detail of (∞) ∧ * , at its most complicated. We see, mostly, a piece of S 2 ∞ (BLUE), with a piece of σ 2 (∞) (or actually of σ 1 (∞), since no lim LIM is present here) occurring as dotted lines. The figure is, actually, an enlarged thickened detail of figure 2.7. The coordinate system corresponds to BLACK = (x, y), RED = (x, z), BLUE = (y, z). The details W ∞ (BLACK) from figure 2.7 give rise to figures similar to this one, except that there, instead of a pair of points p ∞∞ (∞), we have just one, endpoint of an arc lim LIM; see the figure 2.7. The present line [∂, p n∞ , p n+1∞ , p ∞∞ ] occurs in figure 2.4-(A) too. Notice how the p ∞∞ 's accumulates on p ∞∞ (∞). [See here also figure 3.1 in [START_REF] Poénaru | Equivariant, almost-arborescent representations of open simplyconnected 3-manifolds; a finiteness result[END_REF].] A small piece of the "surface" of infinite genus int (∞) * is visible here. This is smooth except for ramification points along the p ∞∞ (proper) × (-ε, ε). These ramifications are of type {figure Y }×R, embeddable in R 3 . When fins get included, and we move from (∞) * to (∞) ∧ * , then additional ramification points of the same type are to be included. Often, we will find it convenient to embed the (∞) ∧ * inside (∞) * , via the trick already used in this drawing of crushing each fin on its diameter into (∞) * . The means truncation for typographical reasons.

From the viewpoint of figure 7.1, the dotted lines are the σ 2 (∞), thickly dotted in figure 2.7. The thick line as well as the dotted p ∞∞ × [-ε, ε) are all in ∂ (∞) ∧ * . In this section we are very interested in the accumulation pattern of the closed loops Λ(H - i ) (5.50). And they cannot accumulate on

lim LIM = σ 1 (∞) -σ 2 (∞). Remember that LIM ≡ (S 2 ∞ ∪ (S 1 × I) ∞ ) ∩ W ∞ (BLACK) and their limit position is lim LIM ⊂ S 2 ∞ ∪ (S 1 × I) ∞ .
Now, there are no Holes on W ∞ (BLACK), and the γ i ⊂ Λ(H - i )'s are lines of (zipping) -1 . They accumulate on ∂ (∞) ∧ * and NOT on lim LIM, which will be essentially mute in our present story. Then, σ(∞)(7.4) = σ 2 (∞) -p ∞∞ × [-ε, ε] and, importantly, we have 

(∂ (∞) ∧ * ∪ σ(∞))/Γ ⊂ M (Γ)
is also a closed subset. We would not have the closure property without throwing in the σ(∞), reason to mention it. End of (7.6.1.4). A detail of figure 2.4-(A), without any M 2 (f ) drawn in. Like in (6.12), for each W (BLACK) there are cut arcs [β, α(∞)) like in (6.12), some of which are drawn here too.

The cut arcs serve for the following two related purposes. Firstly, they will be essential for the π 1injectivity issues to be soon developed, and then, connected with this, they are important for all the part of the zipping flow which is necessary for the map β (5.36), with its β[XY ], and then for the Λ(H - n )'s in (5.50). This part of the zipping flow will be driven so as to accumulate on (∞) ∧ * (cut), avoiding the cut arcs, which only see 0(3)'s.

We consider now the following commutative diagram of inclusion maps (7.7)

• (∞) ∧ (cut) α / / Θ 3 (f X 2 -H(normal)) • (∞) ∧ * (cut) α / / c 1 O O Θ 3 (f X 2 -H) . c 1 O O Here • (∞) ∧ , respectively • (∞) ∧ *
, are like in (3.14.1), respectively in (3.21); see here also (7.6.1) and (7.6.1-bis). This also means the following items concerning (7.7):

In the first line, all the p ∞∞ (S)'s are deleted here, but NOT the p ∞∞ (proper)'s. NO D 2 (H(p ∞∞ )) is deleted, either. We mean p ∞∞ (S) × (-ε, ε), . . . In the second line, ALL the H's, including the H(p ∞∞ ) i.e. ALL the p ∞∞ × (-ε, ε)'s and the corresponding D 2 (H)'s are deleted now.

In the context of this diagram, we have the Lemma 7.1. -The following maps inject

(7.8) π 1 • (∞) ∧ * (cut) α * / / π 1 Θ 3 (f X 2 -H) (upstairs)
and, the finally important one

(7.8.1) π 1 • (∞) ∧ * (cut)/Γ (πα) * / / π 1 (π Θ 3 (f X 2 -H) ) (downstairs)
where, of course π(Θ 3 ) = Θ 3 /Γ. [Something similar is probably true for (7.7) but it does not concern us here, when we work with S u .]

Proof. Both upstairs and downstairs, the proofs are easy applications of Van Kampen, independent of each other. One proves first the π 1 -injectivity at the local level of the individual 0-handles and 1-handles. For the 2-handles the cut arcs are necessary for taking care of those W (BLACK complete) not carrying Black Holes. Finally, one glues together all the local data, and we invoke Van Kampen again.

Of course this is only a sketch which would need some more details. But we do not need to do that because, among other things, the next lemma will vastly superseeds the Lemma 7.1, which it implies. This next lemma is valid both upstairs at level M (Γ) and downstairs at level M (Γ). Among other things, it fixes the important connection between the cut arcs (β, α(∞)) and the 0(3)'s of the zipping flow in X 2 .

And then also, as just said, it will vastly supersede the Lemma 7.1 too. Several birds are killed here with one stone. Lemma 7.1-bis. -In this lemma we will consider

(7.9.0) f LIM M 2 (f ) = (Σ W (∞) (BLACK) ∪ Σ W (RED ∩ H 0 )) ∩ (Σ S 2 ∞ ∪ Σ(S 1 × I) ∞ ) . Notice that f LIM M 2 (f ) ∩ Σ Hex ∞ = ∅.
Already in the figures 2.4-(B), 2.5, 2.6 and then in the various figures which will follow soon in the proof of the present lemma, the lines in (7.9.0) appear cut by cut arcs, all just potential for the time being. Notice also here that we have here

M 2 (f ) ⊂ X 2 ⊃ LIM M 2 (f ) and f M 2 (f ) ⊂ f (X 2 ) ⊃ f LIM M 2 (f ) ,
but when it comes to any individual Wall W , then there is no difference between W ∩M 2 (f ) and

W ∩f M 2 (f ) NOR between W ∩ LIM M 2 (f ) and W ∩ f LIM M 2 (f ).
From all this collection of potential cut arcs, one can select a subcollection of effective cut arcs, the only ones to be used, such that the following should happen.

0) The family of cut arcs is Γ-invariant.

1) The following two requirements, which a priori are independent of each other, are satisfied both upstairs at the level Θ 3 (f X 2 -H) → M (Γ) and downstairs at level Θ 3 (πf X 2 -H) → M (Γ).

(7.9-A) Each connected components of f LIM M 2 (f )(cut) and of Σ(∞) * (cut), with Σ(∞) * like in (7.6.1) is contractible, and hence comes with π 1 = 0, implying (7.8), (7.8.1) from Lemma 7.1.

(7.9-B) Every double point (x, y) ∈ M 2 (f ) can be joined to the singularities by a zipping path, avoiding the cut arcs. This will imply the ( * ) in (6.12). The ( * * ) in (6.12) is implied by the (7.9-A) above. We move now to the 0(3)'s, part of issue (7.9-B).

The location of the 0(3)'s, i.e. the exact location of the 0(3) sites, is fixed by the zipping strategy unrolled in Lemma 6.3. This strategy is supposed to satisfy (7.9-B), i.e. agree with the cut arcs (α(∞), β). And the location of the cut arcs themselves is chosen so as to satisfy (7.9-A) too.

2) We formulate this next condition upstairs in M (Γ), but it is also supposed to hold downstairs in M (Γ). Except for a discrete family of them, the sites of the 0(3)-moves of the zipping flow inside the f X 2 ∩ Θ 3 (f X 2 ) ⊂ S u (M (Γ) -H) are EITHER inside the 3 d region M 3 ⊂ R 3 from (6.16) and from figure 6.5, OR if not, then they are exactly the intersections

Σ(cut arcs (β, α(∞))) ∩ [M 2 (f ) ∩ (Σ W (∞) (BLACK) ∪ Σ W (RED ∩ H 0 ))].
It will follow from these things that, when we will compactify the S u (M (Γ) -H) I into S u (M (Γ) -H) ∧ I , in our next Lemma 7.2, then the acyclic part of the zipping flow, the only on which contributes to the curves

Λ(H - n ) from Lemma 5.8, CAN ONLY ACCUMULATE on the ∂ Σ(∞) ∧ * (cut) ⊂ S u (M (Γ) -H) ∧ I , with ∂ Σ(∞) ∧
* like in (7.6.1).

Proof. We start by making completely explicit the structure of f LIM M 2 (f ) ⊂ f X 2 , on each wall W and also draw the potential cut arcs, some marked (I) and some (II). The (I)'s will certainly be effective cut arcs and some of the (II) will be promoted so too. We have, of course (7.9.1)

f LIM M 2 (f ) ⊂ Σ(W (∞) (BLACK) ∪ Σ W (RED) ∩ H 0 ) ∩ Σ 1 (∞) .
In the figure 7.2.1 and in the next one, we see green arcs (= ------). Their status, potential or effective, will be decided later and later too, the (I) or (II) accompanying them will be explained. In the figure 7.2. 1-(A andB) the contribution of the

Σ 1 (∞) ∩ W ∞ (BLACK) ⊂ f LIM M 2 (f )
is represented red and blue dotted lines. One can read that, when we localize to the W ∞ (BLACK)'s, which are 2-by-2 disjoined, we have (7.9.1-bis)

π 1 f LIM M 2 (f ) ∩ W ∞ (BLACK) = 0 .
Through each black fat point p n∞ ∈ ∂W (RED ∩ H 0 ) seable in figure 7. We see here a W (BLACK) (shaded black) resting on four 0-handles H 0 γ (i) and four 1-handles H 1 γ (j). This figure could live upstairs in M (Γ) or downstairs in M (Γ). The figure is to be compared to 2.4-(A). To simplify things, we assume here that we are far from S's (the singularities of M (Γ)/ M (Γ)). They will be discussed separately. The set (7.9.3)

LEGEND (inside W (BLACK)(shaded)):

p ∞∞ = a piece of f LIM M 2 (f ) ∩ W (BLACK)   S 2
f LIM M 2 (f ) = W ∞ (BLACK) + W (RED ∩ H 0 ) + W (BLACK) ∩ Σ 1 (∞)
(where the contribution Σ 1 (∞) comes exclusively from S 2 ∞ ∪ (S 1 × I) ∞ ), is represented in the figures 7.2.1, 7.2.2, 7.2.3. The only common piece of the three kinds of walls occurring in (7.9.3) (inside the bracket on the RHS) is

(7.9.4) [W (∞) (BLACK)] ∩ [W (RED ∩ H 0 )] = {arcs (W (RED ∩ H 0 ) ∩ W (∞) (BLACK)) ,
explicitly seen in figure 7.2.2}.

In the figures 7.2.1, 7.2.2, 7.2.3 we have suggested, in green lines marked "(I)" (β-------

(I)
α(∞)), a first family of cut arcs, exactly one for each W (RED∩H 0 ) and for each W (BLACK) (and none for W ∞ (BLACK)). There will certainly be EFFECTIVE, not just potential.

In our discussion of f LIM M 2 (f ), so far, in the context (7.9.3) we have ignored the contribution W (BLACK) ∩ W (BLACK) * brought by the immortal singularities S from figure B,C). When we take this into account too, then we find the following final piece of f LIM M 2 (f ) (7.9.5) S {the doubly infinite grid from figures 2.8-(C) and 6.2} ∩

S 2 ∞ ⊂ f LIM M 2 (f ) .
We will ignore for a short while the (7.9.5), and forgetting the (7.9.5) we should notice the following fact 

π 1 ({f LIM M 2 (f )} | W ) = 0 .
End of (7.9.6)

Now, when we include the contribution (7.9.5), this introduces for each immortal S, a doubly infinite family of NON-TRIVIAL generators for π 1 (f LIM M 2 (f ) and We will introduce, downstairs to begin with, enough cut arcs (β, α(∞)) so that, using them to cut the edges of G we get a G(cut) which is contractible (or each connected component of which is contractible). We can get another collection of cut arcs upstairs, which is equivariant, such that each component of G(cut) is contractible. These arcs, of course π -1 (of the cut arcs (β, α(∞)) of G). All these are called primordial cut arcs (β, α(∞)). They are all effective of course.

• (∞) * ).
Going back to the proof of Lemma 6.3 and to the R 3 from (6. [START_REF] Perelman | Ricci flow with surgery on three-manifolds[END_REF]), upstairs at level M (Γ), starting from the singularities of type s, s in figure 7.2.6, the zipping in step I (Lemma 6.3) can be performed using exactly as 0(3)-sites {the intersections (f M 2 (f ) ∩ R 3 ) ∩ {primordial arcs (β, α(∞))}, i.e. which we should call R 3 (cut)}}+{some unavailable q n ∈ M 3 like in figure 7.2.5}. All this is equivariant and works downstairs as well as upstairs.

So, ignoring the W (BLACK)'s for the time being we zip all the ZIG-ZAGS ∩ M 3 in the M 3 's. This proceeds like in step I of the proof of Lemma 6.3, guided by Trilogy I [START_REF] Poénaru | Equivariant, locally finite inverse representations with uniformly bounded zipping length for arbitrary finitely presented groups[END_REF]. And, whatever 0(3)'s we may need in the process, are like in the figure 7.2.5.

We know already that (7.9-A) is already with us. Then, as we shall also see, once we make use of the {singularities s , s in figure 7.2.6} | M 3 's, which are by now zipped, via the Claim (6.17), the (7.9-B) | R 3 is with us too.

Then, like in Step II from the proof of Lemma 6.3 we zip all the zig-zags ZZ n ∩ N 3 ∞ . We are now in N 3 -M 3 and only a discrete family of 0(3) may be met. But before we go on, I will make some remarks.

A) Not all the cut arcs nor all the M 3 's necessarily contain 0(3)-sites, the situation described in figure 7.2.5 is a maximal one. B) When it comes to W (BLACK), W (RED ∩ H 0 ) (which does not even contain p ∞∞ 's), the 0(3)-sites are far from the p ∞∞ 's.

C) The zipping flow enters in the definition of the curves Λ(H - n ) from the Lemma 5.8, but IT ONLY ENTERS THROUGH ITS ACYCLIC PART (see (5.28.2)). And we will also want the Λ(H - n )'s from Lemma 5.8 to accumulate (in a sense to be made completely explicit in the next Lemma 7.2) on the simply connected

• (∞) * (cut).
At the end of Step II in the proof of Lemma 6.3 we create on the W ∞ (BLACK)'s figures like 7.2.6 which I will discuss now. To begin with, remember that each zig-zag, by now all of them zipped (or glued), is an infinite staircase ending, at infinity, at a p ∞∞ = p ∞∞ (proper). In each zig-zag, a horizontal segment is BLUE and a vertical one is RED. In figure 7.2.6 we also have BLUE and RED double lines not yet zipped. Along the zig-zag we have singularities s, s , like in the figures 2.5, 2.6 and 7.2.6. A BLUE double line may start at an s or at an s , while a RED one always starts at an s . Now we start Step III and according to 3.1 in Lemma 6.3 we start by zipping the RED ∩ BLACK lines from the s 's, ignoring for the time being the triple points of type

( * ) W (RED) ∩ W ∞ (BLACK) ∩ W (BLUE) ,
where we may either have W (BLUE) ⊂ ZZ or an unzipped W (BLUE) occurring in our ( * ). This operation certainly needs 0(3)'s of type {b n in figure 7.25}, produced by the mechanism

G π G(cut) π c

G G(cut) . c

When for ( * ) one has zipped W (RED) ∩ (W (BLUE) ∩ ZZ), this creates a (double) singularity like σ in figure 7. [START_REF] Poénaru | On the equivalence relation forced by the singularities of a non degenerate simplicial map[END_REF], from where we zip completely W (RED∩H 0 )∩W (BLUE) with the 0(3)'s suggested in figure 7.2.2 (see the cut arcs there).

Then, like in Step IV from the proof of Lemma 6.3, we finally zip now the W (BLUE)'s not already zipped inside the zig-zags. In the beginning, this creates double points W (RED) ∩ {W (BLUE), not ZZ} too, which are to be treated just like the others before, above. All this is true fro the W (BLUE)'s starting at s 's or at s's, and then no W (RED) will be met. And the glueing of the W (BLUE) may require 0(3)'s of type a n or c n , in the figure 7.2.5.

Very importantly, all the zipping of the

{W ∞ (BLACK), W (RED), W (BLUE)} | R 3 (6.16)
can be performed, using exactly the following ingredients:

•) The primordial cut arcs, already discussed.

••)

The corresponding 0(3)'s, plus possibly additional ones, inside the M 3 's.

When we move next to the W (BLACK)'s and to the special discussion which is required by the immortal S's, then more {cut arcs} + {0(3)'s} may occur. But, contrary to the G → G discussion, what comes next is a disjoined union of local discussions, where there will be no difficulty in achieving (7.9-B) beyond what we did already. [The (7.9-A) is already with us and there is only occasional question of it.] For the complete zipping of the W (BLACK)'s (Step IV continued) we apply now the same procedure and the cut arcs from the figure 7.2.3 should more than suffice for all the necessary 0(3)'s.

We end by discussing Step V, i.e. the contribution of the immortal S's. And here there is a double infinity of cut arcs, for each S.

In this connection, the cut arcs, all (I), are generated by the 0(3)-lines in figure 6 

n W n (BLACK) ∪ m W * m (BLACK) ∩ S 2 ∞ = n W n ∪ m W * m ∩f LIM M 2 (f ) .
Concerning the interaction between ( * * ) and ( * * * ), one infinity out of the double infinity of cut arcs is suggested in figure 7.2.4. And, when it comes to the S which produces the figures 2.8-(C) and 6.2, the BLACK limit positions do not contribute to the • (∞) ∧ * (see (7.6.1.1)) and the contribution of S to the

• (∞) ∧ * is exactly (7.9.9) (∞) * S = n W n ∪ m W * m ∩ (the f LIM M 2 (f ) from ( * * * ) ×[-ε, ε] = = N 2 n W n ∪ m W * m ∩ f LIM M 2 (f ) ⊂ S 2 ∞ S .
And then, this is traversed by the infinity of p ∞∞ (S)'s, two of them for each W n (BLACK) and each W * m (BLACK), to which the cut arcs ( * * ), defined by the 0(3)-lines in the figure 6.2 should also be added.

Dynamically speaking, here is how all this occurs. After all the W n (BLACK) ∩ W m (BLACK) * have been zipped, stopping just after x = x ∞ + η (after which we get train-track), and this step does not create 0( 3 A final remark. Among our things which cut the f LIM M 2 (f ) and/or the Σ(∞) * there is the contribution of the p ∞∞ (ALL)'s, which is there anyway, and the cut arcs which may or may not be there. Their existence is subjected to the following requirements which fixes when they actually do exist.

•) The π 1 = 0 condition from (7.8), (7.8.1), (which we re-inforce to (7.9-A)). Here

(f LIM M 2 (f )) | Θ 3 (f X 2 -H) and
• (∞) * (from (7.6.1)) are anyway already cut by the p ∞∞ (ALL) (or p ∞∞ (ALL)×[-ε, ε], but then we need to add to this the cut arcs (α(∞), β) too, the arcs (I) and a selected family of arcs (II), also.

But see then, also, what is coming next.

••)

We need actually more than simple-connectivity, we need 0), 1), 2) in our Lemma 7.1-bis.

• • •)

We also have to satisfy the following condition (7.9.10) {The accumulation points of the 0(3) sites} ⊂ f LIM M 2 (f )}, when NOT points of the set {p ∞∞ (ALL)}, should be EXACTLY the set of intersection points

f LIM M 2 (f ) ∩ {cut arcs} .
The point here is that we do not want the cut arcs to prevent the zipping flow. End of

• • •). ••••) Putting together •), ••) and • • •),
we see that the family of cut arcs (II) effectively used is not supposed to be super abundent.

Our proof of the Lemma 7.9.1-bis was conducted so that the various requirements

•), ••), • • •), • • ••) should all be happily satisfied.
This ends the proof of Lemma 7.1-bis.

The effect of the (7.9.10) above is that, in the next Lemma 7.2 we have the very desired item 3), with a (7.14) which contains the correct ∂ ∞ (cut). 

* -∂ (∞) ∧ * = int • (∞) * ∪ fins (7.10) int • (∞) * ∪ fins ⊂ Θ 3 (f X 2 -H) I smooth embedding ----------------→ ∂S u ( M (S) -H) I .
Starting from (7.10), one has the following fact 

u (M (Γ) -H) ∧ I ≡ S u (M (Γ) -H) I ∪ [(∂ (∞) ∧ * ∪ σ(∞)) /Γ].
We will introduce here the notations

(7.12) ∂ ∞ ≡ ∂ (∞) ∧ * ∪ σ(∞) /Γ ⊃ ∂ ∞ (cut) ≡ ∂ (∞) ∧ * ∪ σ(∞) (cut)/Γ ,
so that we have also

(7.13) S u (M (Γ) -H) ∧ I = S u (M (Γ) -H) I ∪ ∂ ∞ .
[Here are some explanations. Inside ∂(∞), the ∂Σ(∞) ∧ * is concerned by the cuts we have just discussed, but not so the σ(∞) part. Our reason for dragging σ(∞) along in (7.12) is that the ∂(∞) should be a closed subset of M (Γ) and/or of M (Γ).] 1) Provided we take the metrically correct definition for the H(normal), leading to (5.8), the S u (M (Γ) -H) ∧ I above is exactly the closure of S u (M (Γ) -H) I ⊂ {the compact metric space M (Γ) × B L , L large} .

2) The space S u (M (Γ)-H) ∧ I is hence compact, and so is also the

∂S u (M (Γ)-H) ∧ I ≡ ∂S u (M (Γ)-H) I ∪ ∂ ∞ . 3) Let Λ n = Λ(H - n
), be like in the Lemma 5.8. For every subsequence Λ i1 , Λ i2 , . . . of Λ 1 , Λ 2 , . . ., there is a sub-sub-sequence Λ j1 , Λ j2 , . . . and also a closed continuous curve

(7.14) Λ ∞ ⊂ ∂ ∞ (cut) ⊂ ∂ ∞ = ∂S u (M (Γ) -H) ∧ I -∂S u (M (Γ) -H) I ,
which is such that we have

(7.15) lim n=∞ Λ jn = Λ ∞ , uniform convergence in S u (M (Γ) -H) ∧ I . [Remark. The set ∂(∞) -∂(∞)(cut) ⊂ ∂(∞)
is an infinite collection of short arcs not accumulating at finite distance. And ∂(∞)(cut) is collection of compact pieces, accumulating at infinity.]

Part II. From variant I to real life. -4) Proceeding in the style of (3.27) (but now with (M (Γ) -H) instead of M (Γ)), one can glue p ∞∞ × [-ε, ε] and the rims of fins, some of these things added ad hoc. Also, when it comes to

(7.16) R0 R 0 × [0, ∞] (and we may call this "∞", now "1") ⊃ ∂ (∞) ∧ * ∪ σ(∞) ⊃ ∂ ∞ to S u (M (Γ) -H) I , thereby producing a compactification S u (M (Γ) -H) ∧ of boundary ∂S u (M (Γ) -H) ∧ = ∂S u (M (Γ) I -H) ∪
S u (M (Γ) -H) ∧ , then ∂Σ(∞) ∧ * × [0, 1] gets crushed into ∂Σ(∞) ∧ * × {0} = ∂Σ(∞) ∧
* .] 5) With this, the analogue of 3) above remains valid, i.e. for every subsequence Λ i1 , Λ i2 , . . . of the

Λ 1 = Λ(H - 1 ), Λ 2 = Λ(H - 2 ), .
. . there is a sub-sub-sequence Λ j1 , Λ j2 , . . . and a closed continuous curve Λ ∞ ⊂ ∂ ∞ , which is such that we have

lim n=∞ Λ jn = Λ ∞ , uniform convergence inside S u (M (Γ) -H) ∧ .
The Λ jn , Λ ∞ are here the same as in 3), coming with embeddings into (∂S u ) ∧ which factorize via

S u (M (Γ) -H) ∧ I ⊂ ∂S u (M (Γ) -H) ∧ .
Of course, in this part II, all throughout, we have talked about S u (REAL-LIFE).

Remark. What we have here is an extension of the HAT CONSTRUCTION from Lemma 3.1. BUT, while the hat construction from Section III concerned closure in M (Γ) × B L , now we are concerned with closures in the compact space M (Γ) × B L , and hence we deal with COMPACTIFICATIONS. In the context of Lemma 3.1 we were working upstairs in M (Γ), but now we are definitely working downstairs in M (Γ).

Proof. Inside the already compact M (Γ), the X 2 /Γ ⊂ M (Γ) naturally compactifies to its closure, which is

( * ) (X 2 /Γ) ∧ = (X 2 /Γ) ∪ Σ 1 (∞) = {limit walls} from (2.14) .
Here the {H(normal)} accumulate on the {ideals Holes} ⊂ Σ 1 (∞), when the correct metric choices have been made, while {H(p ∞∞ )} accumulates on {p ∞∞ (∞)} ⊂ σ 2 (∞) (7.1). The 1) + 2) follow from the things.

Concerning 3), it follows from (5.50.3) that the Λ n 's can only accumulates on ∂ ∞ , more precisely we will have

(7.16.1) lim n=∞ dist(Λ n , ∂ ∞ ) = 0 .
We will prove now the 3) and for the sake of rigour of our exposition, we will be now more pedantic than we usually are. From (5.50.2), which is essentially a consequence of the uniformly bounded zipping length, established in [START_REF] Poénaru | Equivariant, locally finite inverse representations with uniformly bounded zipping length for arbitrary finitely presented groups[END_REF], there is a uniform bound N such that Λ n ≤ N . Here, the Λ n 's are closed curves living inside the smooth (N + 3)-manifold ∂S u (M (Γ) -H), which may be assumed, without loss of generality to be C ∞ , and . . . is the length thereby calculated; so the ∂S u (M (Γ) -H) has a metric structure d, and the length is measured with respect to it. Remember how this comes about. To begin with, M (Γ) has a metric d which is riemannian on each of its smooth 3-cells, with compatibilities on the common 2-faces. This d lifts as a Γ-equivariant metric on M (Γ) and from there on it lifts on our various objects of interest, like Y (∞), X 2 and S ( )

ε ( M (Γ)) and S ( ) ε ( M (Γ) -H).
Only quasi-isometry classes count here, and we may assume that, on S u ( M (Γ) -H) our d is a Γ-invariant riemannian metric. This descends, afterwards, on S u (M (Γ) -H), the object with which we work now. Now, by adding well-chosen internal zigzags for each individual Λ n we may assume that for all n's, we have strict equality Λ n = L. These zigzags are internal reparametrizations which do not change the image and we may assume that there are uniform upper and lower bounds M 1 , δ 1 such that

(7.16.2) # (zigzags of Λ n ) ≤ M 1 , dist (two consecutive zigzags) ≥ δ 1 .
These kind of bounds are our own artefacts, and in order to be able to implement them we need the uniformly bounded zipping length.

From now on, our Λ n 's are parametrized by arc-length, and so with a universal L > 0 they are given by maps

(7.17) R + ⊃ [0, L] Λn∈ C ∞ ---------→ ∂S u (M (Γ) -H) , such that for x, y ∈ [0, L], length of Λ n | [x, y] = |x -y| .
CLAIM (7.17.1). -Our Λ n 's may be chosen such that there are two universal constants

C 1 , C 2 , indepen- dent of n, such that C 2 d(Λ n (x), Λ n (y)) ≥ |x -y| ≥ C 1 d(Λ n (x), Λ n (y)) , ∀ n .
Proof. One may happily take C 1 = 1. That is so because, clearly, we have

(|x -y| =) length Λ n | [x, y] ≥ dist(Λ n (x), Λ n (y)) ,
but then we also want the other inequality, the first one. The meaning of the first inequality is that the amount of contorsions that Λ n can have, is uniformly bounded; one may express this also in terms of control of grad Λ n . Now, our Λ n consists of three pieces,

namely the α C -(H n ) = ∂H - n , ηβ C -(H n
) and the γ n (see (5.50)). The infinitely many H - n 's come in infinite families, each corresponding to an ideal hole (see (5.8)), with all the α C -(H n )'s in one family looking more or less like the boundary of the corresponding ideal hole; one can happily assume that here everything is fairly round, without uncontrolled contorsions.

Next, we consider the zipping paths λ(x 0 , y 0 ). The zipping paths λ have actually been constructed in the last section of [START_REF] Poénaru | Equivariant, locally finite inverse representations with uniformly bounded zipping length for arbitrary finitely presented groups[END_REF], where we also forced for them a uniformly bounded length. Each λ comes with accidents, seable in figure 6.3, namely singularities (in Sing(f )) and triple points (in M 3 (f )). The construction in [START_REF] Poénaru | Equivariant, locally finite inverse representations with uniformly bounded zipping length for arbitrary finitely presented groups[END_REF] can be easily seen to come with the following features, all consequences of the TRILOGY I [START_REF] Poénaru | Equivariant, locally finite inverse representations with uniformly bounded zipping length for arbitrary finitely presented groups[END_REF]. i) There is a uniform upper bound for the number of accidents which each λ sees. There is also a uniform lower bound for the distance between them.

ii) Between two accidents we can take our λ's to be essentially straight, i.e. with a uniformly bounded grad λ. All this means that, just like for α C -(H n ), there is no uncontrollably much contorsion coming with λ(x 0 , y 0 ). The β C -(H n ) consists of a piece which is essentially a shifted copy of α C -(H n ), and see here the figure 5.6-(A), plus a piece like λ. The γ n is also essentially like λ. Incidentally, we have talked here about Sing(f ) and not about the immortal singularities; these are branching points of spaces and not contorsions of λ. All these kind of things go, afterwards for (zipping) -1 too. End of Proof.

At this point, we choose an infinite, increasing sequence of finite subsets

F 1 ⊂ F 2 ⊂ F 3 . . . ⊂ [0, L] which is such that ∞ i F i is dense in [0, L], i.e. i F i = [0, L].
Via the classical diagonal argument we get the following item: (7.17.2) There exists a subsequence Λ j1 , Λ j2 , . . . of Λ i1 , Λ i2 , . . . which is such that the Λ j1 , Λ j2 , . . ., when restricted to

∞ 1 F i converges uniformly.
[For completeness's sake, we will prove this (7.17.2). Let us start by fixing two sequences, the ε 1 > ε 2 > . . . > ε n > 0 with lim n=∞ ε n = 0 and then the positive integers

N 1 < N 2 < . . . < N n < . . . with lim n=∞ N n = ∞.
Since F 1 is finite, we can find a subsequence {Λ in }(1) ⊂ {Λ i1 , Λ i2 , . . .} such that we should have

( * -1) For all x ∈ F 1 , if Λ ip , Λ iq ∈ {Λ in }(1) come with p, q > N 1 , then |Λ ip (x) -Λ iq (x)| < ε 1 . [The set {Λ in (x ∈ F 1 )
}, has to accumulate on the compact set ∂ ∞ . So, out of it we can pick up a convergent sequence.] Next, for F 2 ⊃ F 1 we can find a second subsequence {Λ in }(2) ⊂ {Λ in }(1), verifying ( * -1), with the same (ε 1 , N 1 ) (now for F 2 ).

Continuing this indefinitely for F 1 ⊂ F 2 ⊂ F 3 ⊂ F 4 ⊂ . . ., we find the sequence of nested subsequences of {Λ i1 , Λ i2 , . . .}, which we call generically {Λ in }(p):

( * -2) {Λ in }(1) {Λ in }(2) {Λ in }(3) . . . ,
where for each p the subsequence {Λ in }(p) is good for F p . Good means here satisfying the (ε 1 , N 1 ) condition for the subsequence in question, for all x ∈ F p . We construct now a subsequence

( * -3) {{Λ in (1)}} ∈ {Λ in }(1) -{Λ in }(2), {{Λ n (2)}} ∈ {Λ in }(2) -{Λ in }(3), . . .
The subsequence ( * -3) is contained in each of the sequences of the set of nested subsequences ( * -2) and hence it satifies the (ε 1 , N 1 )-condition for each F i . Call our subsequence from ( * -3) {{Λ in }}(1). [So keep in mind, this is a whole sequence of Λ in 's.] We move next from (ε 1 , N 1 ) to (ε 2 , N 2 ) (in the same context as in ( * -1)). Proceeding like for ( * -2) we find a sequence of nested subsequences of {{Λ in }}(1) (replacing now the {Λ i1 , Λ i2 , . . .} from ( * -2))

[Λ in ](1) [Λ in ](2) [Λ in ](3) . . .
where for each p, the sequence [Λ in ](p) satisfies the (ε 2 , N 2 )-condition for F p . Another application of the diagonal argument produces a sub-sub-sequence (our sequence of Λ's are always decreasing), {{Λ in }} [START_REF] Besson ; Après | Une nouvelle approche de la topologie de dimension 3[END_REF] satisfying the ( * -1) for ∞ 1 F i and for (ε 2 , N 2 ). Continuing in the same vein we produce the nested set of sub-sub-sequences ( * -4)

{{Λ in }}(1)

good for (ε 1 , N 1 )
⊃ {{Λ in }}(2)

good for (ε 2 , N 2 ) ⊃ . . . with {{Λ in }}(n) good for ∞ 1 F i , with (ε n , N n ).
We choose now

( * -5) Λ j1 ∈ {{Λ in }}(1) -{{Λ in }}(2), Λ j2 ∈ {{Λ in }}(2) -{{Λ in }}(3), . . .
Here, for each p, the subsequence of ( * -5)

{Λ jp , Λ jp+1 , . . .} ⊂ {{Λ in }}(p)
and hence it is good for

∞ 1 F i with (ε p , N p ). But this also means that ( * -5) converges uniformly on ∞ 1 F i .
End of the Proof of (7.17.

2).]

We will put now this (7.17.2) to use, so as to get to the Claim (7.17.3) below, and then beyond. But, in order to be able to present it properly, some conventions will have to be fixed first.

If x ∈ ∞ 1 F i , we let x n ≡ Λ jn (x), x ∞ ≡ lim x=∞
x n (given by the (7.17 We can state now properly the following claim, Claim (7.17.3). -With the C 1 , C 2 from (7.17.1), for each pair x, y ∈ i F i , we have the inequalities

C 2 d(x ∞ , y ∞ ) ≥ |x -y| ≥ C 1 d(x ∞ , y ∞ ) , for x, y ∈ I F i .
Proof. For any fixed n, the (6.17.1) tells us that we do have (with x n = Λ jn (x), y n = Λ jn (y), same j n ), that

C 2 d(x n , y n ) ≥ |x -y| ≥ C 1 d(x n , y n ) ,
and since d(x ∞ , y ∞ ) = lim x=∞ d(x n , y n ), our Claim (7.17.3) is proved by taking the limit.

Let now α ∈ [0, L] be some arbitrary point, for which we choose a sequence x(n)

∈ i F i s.t. lim m=∞ x(m) = α, in [0, L]. So, the sequence x(1), x(2), . . . is Cauchy in [0, L] ⊂ R + . Via (7.17.1), the sequence x(1) n , x(2) n . . ., with x(m) n = Λ jn (x(m)), is then Cauchy in ∂S u (M (Γ)-H) I ⊂ ∂S u (M (Γ)-H) ∧ .
We also have, via (7.17.2) that, for all m's

( * ) lim n=∞ x(m) n = x(m) ∞ , uniformly in m. It follows that x(1) ∞ , x(2) ∞ , . . . ∈ ∂ ∞ is itself Cauchy, inside the compact space ∂ ∞ ,
where it has a limit lim

m=∞ x(m) ∞ ≡ α ∞ ∈ ∂ ∞ .
[Here are some details. Choose x(k), x( ) very close to α. Then we have, to begin with, that

( * * ) |x(k) ∞ -x( ) ∞ | ≤ |x(k) ∞ -x(k) N | + |x(k) N -x( ) N | + |x( ) n -x( ) ∞ | .
Here we have, for the middle term

|x(k) N -x( ) N | ≡ |Λ j N (x(k)) -Λ j N (x( ))| ,
where, by the Claim (7.17 Let now x (m) be another sequence in F i ⊂ [0, L] with the same limit lim m=∞ x (m) = α. We claim that, we have then (7.17.4) lim

m=∞ x(m) ∞ = lim m=∞ x (m) ∞ ,
i.e. the α ∞ does not depend on the particular sequence in i F i which approximates the α ∈ R + . Which also means that the map α → α ∞ is well-defined.

Proof. With m, n ∈ Z + we have

d(x(m) ∞ , x (m) ∞ ) ≤ d(x(m) ∞ , x(m) n ) + d(x(m) n , x (m) n ) + d(x (m) n , x (m) ∞ ) .
Because of the uniform convergence in (7.17.2), if n is large enough, then independently of m, the two extreme terms in the RHS of the inequality above are < ε. We fix, from now on, such a large n. The middle term is also controlled now, since x(m) n ≡ Λ jn (x(m)), x (m) n ≡ Λ jn (x (m)) and hence, by (7.17.1), the

d(x(m) n , x (m) n ) is controlled by |x(m) -x (m)|, which goes to zero when m → ∞.
So, by now we have defined a new map

[0, L] ----→ Λ∞ ∂ ∞ ⊂ ∂S u (M (Γ) -H) ∧ I , by Λ ∞ (x) = x ∞ when x ∈ ∞ 1 F i and Λ ∞ (α) = α ∞ when α ∈ [0, L] - ∞ 1 F i . Each individual Λ jn is a
closed curve, i.e. it comes with Λ jn (0) = Λ jn (L). There is no harm in choosing, at the very beginning, the

F i ⊂ [0, L] s.t. it contains both 0 and L. Then ( * ) Λ ∞ (0) ≡ 0 ∞ = lim n=∞ 0 n = lim n=∞ Λ jn (0) = lim n=∞ Λ jn (1) = lim n=∞ 1 n = 1 ∞ ≡ Λ ∞ (L) .
So Λ ∞ is a closed curve too. [In ( * ) the middle equality expresses that Λ jn is closed.] Claim (7.17.5). -The map Λ ∞ is continuous i.e. it defines a continuous closed curve in ∂ ∞ (cut).

Proof. Our claim follows, once we show that, for every α, β ∈ R + , for our α ∞ = Λ ∞ (α) we have, by analogy with (7.17.1), the double inequality (7.17.6)

C 2 d(Λ ∞ (α), Λ ∞ (β)) ≥ |α -β| ≥ C 1 d(Λ ∞ (∞), Λ ∞ (β)) .
For α, β ∈ F i this (7.17.6) is just our (7.17.3) above. For the general case, we take x(m), y(m)

∈ F i with lim m=∞ x(m) = α , lim m=∞ y(m) = β .
The (7.17.3) tells us now that, at

i F i level we have ( * ) C 2 d(x(m) ∞ , y(m) ∞ ) ≥ |x(m) -y(m)| ≥ C 1 d(x(m) ∞ , y(m) ∞ ) .
Here, we plug in the definition of Λ ∞ , i.e. we take

lim m=∞ x(m) ∞ = α ∞ = Λ ∞ (α) , lim m=∞ y(m) ∞ = β ∞ = Λ ∞ (β) .
If we let now m → ∞ in the context of ( * ), we get our desired (7.17.6). End of Proof.

In order to complete the proof of 3) in our lemma, it remains to show that Λ jn converges uniformly to Λ ∞ (i.e. to prove the (7.15)).

By our diagonal argument, already used in (7.17.2), we know that {Λ jn } converges uniformly, on F .

Hence, for any ε > 0, there exists an

N ∈ Z + such that, if x ∈ ∞ 1 F i and m, n ≥ N , then d(Λ jm (x), Λ jn (x)) < ε.
We denote x n ≡ Λ jn (x) and we know now that there is an x ∞ such that, with a possible minor modification of ε, we have

d(x n , x ∞ ) < ε. Here x ∞ = lim n=∞ x n , with x m = x m (x), x ∞ = x ∞ (x)
, and uniform convergence

for the present x ∈ ∞ 1 F i .
and this will allow us to write, along with (3.27.1), (7.18.0)

∂ (∞) ∧ * = R0 ∂R 0 × {0} , (∞) ∧ * = R 0 ×{0} = R 0 × {0} ,
and because we want the final S u (M (Γ) -H) ∧ ⊂ M (Γ) × B L to be a closed subset, the σ(∞) will be thrown in too. End of (7.18.0)

Then, finally, in the REAL LIFE context, we have the formula

(7.19) Θ 3 (f X 2 -H) ≡ Θ 3 (f X 2 -H) I ∪ R0 int R 0 × [0, ∞) .
We move on now to the higher level of the transformation VARIANT I ⇒ REAL LIFE:

(7.20) S ε ( M (Γ) -H) I =⇒ S ε ( M (Γ) -H),
where M (Γ) may be happily changed to M (Γ).

This will happen via the following successive steps (like in Section III).

(7.21) Consider, to begin with, the following inclusions

∂S b ( M (Γ) -H) I ⊃ int • (∞) * ∪ fins ⊂ Θ 3 (f X 2 -H) I ⊂ ∂S u ( M (Γ) -H) I
which induce the following inclusions, now at infinity

{infinity of S b } ⊃ ∂ (∞) ∧ * ⊂ {infinity of S u } .
For the first inclusion in the formula (7.21), see here the figure 7.1-bis (which is not drawn) and which should be the 7.1 for W ∞ (BLACK).

Starting from these things, and totally disregarding the Θ 3 (f X 2 -H) I part when dealing with S b , and making use just of the thickened complementary walls, we add, in both cases, i.e. to S ε , the --------------------

R0 (int R 0 )×[0 ≤ u < ∞)
→ int • (∞) * ∪ fins = R0 int R 0 .
[Remember that this extends to

R0 R 0 (∞) ∧ * .]
Our first step towards the S u ( M (Γ) -H) will be to go from the S u ( M (Γ) -

H) I to ( * ) S u ( M (Γ) -H) I ∪ int • (∞) * ∪ fins ⊂ ∂S u ( M (Γ) -H) I R0 (int R 0 × [0, ∞)) .
End of (7.21)

The S u ( M (Γ) -H) I is a smooth manifold, while the RHS of ( * ) is not, hence the next step. [Everything said above also makes sense for S b .] 

S ε ( M (Γ) -H) ≡ [S ε ( M (Γ) -H) (provisional)] × [0, 1]
, with compensating discs present, a definition which will get some modulations, afterwards. Anyway, we have now a canonical embedding, which extends the one in (7.10)

R0 int R 0 × [0, ∞) ⊂ Θ 3 (f X 2 -H) ⊂ [S u ( M (Γ) -H) (provisional)] × {1} ⊂ ⊂ ∂S u ( M (Γ) -H) ,
and something similar for ε = b, with the Θ 3 left out.

So we have now the following embedding which certainly is not codimension zero, when read from the first to the fourth term

S ε ( M (Γ) -H) I ⊂ (S ε ( M (Γ) -H) (provisional)) ⊂ ∂S ε ( M (Γ) -H) ⊂ S ε ( M (Γ) -H) (now, REAL LIFE) .
At face value, what we should find now is a copy of ∂ ∞ × [0, 1] living at the infinity of S u ( M (Γ) -H). But then, via a very simple passage to the quotient at infinity, we can crush every x × [0, 1], when x ∈ ∂ ∞ , into x, and hence replace the ∂ ∞ × [0, 1] (where the factor [0, 1] is here the same as in the beginning of our present (7.23)) by the old ∂ ∞ . This little passage to the quotient happening at infinity will be understood to be always there, from now on. End of (7.23).

All these things were developed upstairs, at level M (Γ) and they are Γ-equivariant. So, one way or another, they make sense downstairs for M (Γ) too. And most of our forthcoming action is actually taking place there. (7.24) What will follow now is a useful, alternative description of that basic piece which was added when going from the variant I to real life. Start with the inclusion

( * 1 ) A ≡ int • (∞) * ∪ fins ∪ R0 int R 0 × [0, ∞) ⊂ B ≡ (∞) ∧ * R0 R 0 × [0, ∞], where each ∂R 0 × [0, ∞] is crushed into the corresponding ∂R 0 × {0} = ∂R 0 ⊂ ∂ (∞) ∧ * .
Notice that it is the A in ( * 1 ) above which has been added during the step (7.21), and which lives now inside ∂S u ( M (Γ) -H), and/or (when "/Γ" included) inside ∂S u ( M (Γ) -H).

Similarly (with "/Γ" is included) the B will soon be housed inside the compactification ∂S u ( M (Γ)-H) ∧ . But the point we want to make here is that we have a diffeomorphism

( * 2 ) (∞) * × [0, ∞], with each x ∈ ∂ (∞) * , the x × [0, ∞) crushed into x = DIFF B [End of ( * 2
).] (The complete proof of this will follow much later on.)

What this diffeomorphism does, in the neighbourhood of the p ∞∞ × [-ε, ε] is suggested in figure 7.3. In the neighbourhood of the trickier 1 2 D 2 (F )'s, i.e. the fins, things will be clarified in (7.52) below, and see here the figure 7.7 too.

The B ∪ σ(∞) ⊂ ∂S u (M (Γ) -H) ∧ is a closed subset. In terms of (7.52), the diffeomorphism occurring in ( * 2 ) is exactly D -1 . At this point, for expository reasons we will move for a while from the REAL LIFE VERSION, back to VARIANT I. When we will come to the MAIN LEMMA 7.7 below, then we will have to go back again to the REAL LIFE S u . So, next we consider (7.24.0)

f X 2 -H(completely normal) -H(p ∞∞ ) = f X 2 -(H -{BLACK Holes}) = = n (W n (BLUE) -H) + n (W n (RED -H 0 ) -H) ∪ ∪ n W (∞) (BLACK) n -{BLACK Holes} -H(p ∞∞ (all)) ∪ n W (RED ∩ H 0 ) n ,
and here we draw the separation line between W (RED ∩ H 0 ) n and the rest of W (RED) n at x = x ∞ + y n with y n > 0 and lim n=∞ y n = 0. With this

• (∞) * ⊂ n (W (∞) (BLACK) n -{BLACK Holes} -H(p ∞∞ )) ∪ n W (RED ∩ H 0 ) n .
For each x ∈ • (∞) * (where, remember, p ∞∞ (all)×(-ε, ε) is deleted) there is a locally defined transversal parameter (-ε, ε) to the • (∞) * (see here the list of AVATARS (7.6.1) with which this Section VII starts), inside the corresponding

W × (-ε, ε) ⊂ Θ 3 (f X 2 -H) I . Here, the ε = ε(x) is a C ∞ function of x ∈ • (∞) * .
And the (-ε, ε) and (-ε, ε) are orthogonal to each other.

Next, in the same spirit as in the REFRESHER list of AVATARS from (7.6.1), we will write now

• (∞) = f LIM M 2 (f ) × (-ε, ε) - p∞∞(S) p ∞∞ × (-ε, ε) ⊃ • (∞) * , (∞) ∧ * = (f LIM M 2 (f ) × [-ε, ε]) (∞) * ∪ fins ; int (∞) ∧ * int • (∞) * ∪fins ⊃ • (∞) * = (∞) ∧ * -∂ (∞) ∧ * .
Our ε(x) was defined over

• (∞) * , but then it will be assumed that it is extended to another positive function Here the factor [-ε 0 , ε 0 ] transversal to (∞) ∧ * is usually an arc, but can well be a figure Y too. Since it may be awkward to talk about C ∞ functions over (∞) ∧ * , we only ask that ε 0 be continuous (i.e. C 0 ). And it is only the restriction ε 0 | • (∞) ∧ (see (7.6.1.1)) which is C ∞ . We also ask for the following condition: ε 0 (x) < ε(x). Then, making use of the (7.24.1), we can define the following neighbourhood of Σ(∞) ∧ * (7.25)

N 3 ≡ (∞) ∧ * × (-ε 0 , ε 0 ), with the ∂ (∞) ∧ * × (-ε 0 , ε 0 ) crushed into ∂ (∞) ∧ * = ∂ (∞) ∧ * × (ε 0 = 0)
and in the same vein, removing now the contribution of ∂Σ(∞) ∧ * altogether (7.25.1) [START_REF] Otera | Asymptotic topology of groups, connectivity at infinity and geometric simple connectivity[END_REF], with all the holes and with all the D 2 's removed}.

(N 3 ) ≡ N 3 -∂ (∞) ∧ * × (ε 0 = 0) ⊂ Θ 3 (f X 2 -H) I = = {Θ 3 (f X 2 ) (3.
[Here is the exact meaning fo (7.25). For p ∈ • (∞) ∧ * (7.6.1) add the transverse factor (-

ε 0 , ε 0 ) to f LIM M 2 (f ) × (-ε, ε) in Θ 3 (f X 2 -H) . For p ∈ ∂ (∞) ∧ * , the (-ε 0 , ε 0 ) is reduced to a point called (ε 0 = 0), so that ∂ (∞) ∧ * = ∂ (∞) ∧ * × (ε 0 = 0) ⊂ N 3 .] With this N 3 ⊂ Θ 3 (f X 2 -H) I ≡ Θ 3 (f X 2 -H) ∪ ∂ ∞ ,
which lifts to the S u (. . .) ∧ , ∂S u (. . .) ∧ 's in diagram (7.26) below. The (N 3 ) (7.25.1) lives in Θ 3 (f X 2 -H) I . Finally, in the context of (7.25.1) we have

(N 3 ) = (∞) ∧ * -∂ (∞) ∧ * int • (∞) * ∪fins (like in (7.6.1) = • (∞) ∧ * , ×(-ε 0 , ε 0 ) ,
where, remember, over the diameter of fins the transversal factor is not an arc but a figure Y . Remember here that p∞∞(ALL)

p ∞∞ × [-ε, ε] ⊂ ∂ (∞) * . Also, like in • • •) from (7.6.1), we have int (∞) * = f LIM M 2 (f ) × (-ε, ε).
It should be understood that (7.24.1) to (7.25.1) are Γ-equivariant and the notations N 3 , (N 3 ) will be happily used when everything is quotiented by Γ and (∞) ∧ * is replaced by (∞) ∧ * /Γ. This kind of thing will be current practice in this section. So "Γ" may be then even when not written; watch the context.

These objects enter the following commutative diagram, where the middle r is the obvious retraction, the other r is its restriction to (N 3 ) , all the other maps are inclusions and, from now on we will normally work downstairs. So, the notation "Θ 3 (f X 2 -H) I " will be often used instead of Θ 3 (πf X 2 -H) I = Θ 3 (f X 2 -H) I /Γ, with the π like in (2.24). And here is our diagram:

(7.26) ∂S u (M (Γ) -H) ∧ I - • σ(∞) via S u (M (Γ)-H) ∧ I / / ∂ S u (M (Γ) -H) ∧
the REAL-LIFE guy

N 3 i O O r / / (∞) ∧ * ((3.22
) and (7.6.1))

(N 3 ) O O r 3 3 inclusion map / / Θ 3 (f X 2 -H) I /Γ .
Here σ(∞) is like in (7.4) and 

Θ 3 (f X 2 -H) I /Γ ⊂ ∂S u (M (Γ) -H) I ⊂ ∂S u (M (Γ) -H) ,
compatible with the rest of (7.26).

Lemma 7.3. -In the context of the diagram (7.26), the following map injects

(7.27) π 1 N 3 (cut) i * ---→ π 1 [∂S u (M (Γ) -H) ∧ I - • σ(∞)] .
Proof. We will start with an extension of Lemma 7.1. We will introduce the following non-locally finite space

(7.27.1) [Θ 3 (f X 2 -H(normal))] I ≡ {the Θ 3 (f X 2 -H(normal)) I , with the contribution p ∞∞ (S) restored}.
Remember that the p ∞∞ (proper)'s had never been removed from Θ 3 (f X 2 ) I . So, all the p ∞∞ 's are now back, in (7.27.1). Next, we claim that, proceeding again like in the proof of the Lemma 7.1-bis (which itself implies Lemma 7.1, remember) we can also prove the following fact. The following map, when α is like in 7.7, injects

(7.28) π 1 ((int(Σ(∞) * ) ∪ (fins-rims))(cut) α * ---→ π 1 [Θ 3 (f X 2 -H(normal))] I .
Here ALL the p ∞∞ × (-ε, ε) are back, on both sides (we have here Σ(∞) * , not

• Σ(∞) * ).
We then move to the following diagram of inclusions, which commutes

(7.29) (int(Σ(∞) * ) ∪ (fins-rims))(cut) = homotopy equivalence Σ(∞) ∧ * (cut) α γ / / N 3 (cut) i (from (7.27)) [Θ 3 (f X 3 -H(normal))] I β / / ∂S u (M (Γ) -H) ∧ I - • σ(∞) .
Remark. The contribution of the p ∞∞ 's to N 3 is exactly

p ∞∞ (ALL) × [-ε, ε] × (ε 0 = 0) ⊂ ∂ (∞) * × (ε 0 = 0)
. Do not mix up here ε and ε 0 . Then, in going to (N 3 ) (from N 3 ) NO contribution of p ∞∞ is left alive. End of Remark.

Here γ is a homotopy equivalence, according to (7.28) the απ 1 -injects and so, it suffices for our lemma to show that β * is injective in π 1 too. So, let us start with the following homotopy equivalence (7.29.1)

Θ 3 (f X 2 -H) I --------→ inclusion i0 S u (M (Γ) -H) I ∼ = Θ 4 (Θ 3 (f X 2 -H) , R) × B N +1 .
The Θ 4 is here a smooth non-compact 4-manifold and we obviously have

(7.30) ∂S u (M (Γ) -H) I = Θ 4 × S N -1 ∪ ∂ Θ 4 × S N -1 ∂ Θ 4 × B N ,
from which we can perceive the arrow λ below, lifting the i 0 from (7.29.1) and which is a π 1 -isomorphism, since N 1 and π 1 S N -1 = 0:

(7.30.1) Θ 3 (f X 2 -H) I λ ---→ ∂S u (M (Γ) -H) I .
[Here one starts with Θ 3 ⊂ Θ 4 = Θ 4 × (p ∈ S N -1 ), which produces then a lift Θ 3 -→ Θ 4 × S N -1 .]

The arrow λ enters now into the following commutative diagram too

(7.30.2) Θ 3 (f X 2 -H) I / / λ (7.30.1) [Θ 3 (f X 2 -H(normal))] I β ∂S u (M (Γ) -H) I / / ∂S u (M (Γ) -H) I ∪ ∂ (∞) ∧ ∪ ∪ p∞∞(all) p ∞∞ (all) × [-ε, ε] = ∂S u (M (Γ) -H) ∧ I - • σ(∞) .
In this last diagram, when moving from λ to β, the relevant homotopical fact is that, at the level of both of the horizontal lines, the full p ∞∞ (all) contribution is being restored at the targets of the maps in question. It follows from these things that, via β * , the π

1 [Θ 3 (f X 2 -H(normal))] I completely catches the π 1 (∂S u (M (Γ) -H) ∧ I - • σ(∞)).
We go back to the Λ n = Λ(H - n ), n = 1, 2, . . . from the Lemma 5.8 considered now inside ∂S u (M (Γ) -H) I ⊂ S u (M (Γ) -H) I ⊂ ∂S u (M (Γ) -H) where they are null-homotopic, because of (5.50.1). The MAIN LEMMA following now will be the key to the COMPACTNESS LEMMA 5. Proof. To begin with, for further use, here is a more formal restatement of our lemma:

(P 1 ) ∀ Λ n ∃ a cobounding disk D 2 n s.t. ∀ {K compact} ⊂ ∂S u (M (Γ) -H) we have # {n s.t. D 2 n ∩ K = ∅} < ∞.
The next statement is the negation of (P 1 ): for which we choose the following system of cobounding D 2 n 's. If Λ i ∈ , then choose D 2 i like in ( * ) above, and then choose any cobounding disk for the Λ i ∈ . This system is in contradiction with (NON P 1 ) hence the implication

(NON P 1 ) ∃ K ⊂ ∂S u (M (Γ)-H) s.t
(NON P 1 ) =⇒ # = ∞ .
So start now with the infinite system = {Λ h1 , Λ h2 , . . .} and the fact that is infinite, clearly implies our (P 2 ). This proves the desired implication (NON P 1 ) =⇒ (P 2 ) .]

So, we will assume now the (P 2 ) and from this we will deduce, eventually, an absurd conclusion. This will prove then our desired (P 1 ). The subsequence which is provided by (P 2 ), and to which all our attention will be devoted, from now on will be denoted by (7.31.1)

{Λ h1 , Λ h2 , . . .} ⊂ {Λ 1 , Λ 2 , . . .} ⊂ ∂S u (M (Γ) -H) I .
Notice that, since at the level of N 3 , from which all the (N 3 n ) 's are derived, the ∂Σ(∞) ∧ * × (-ε 0 , ε 0 ) is crushed onto ∂Σ(∞) ∧ * × (ε 0 = 0), NO trace of ∂Σ(∞) ∧ * is left alive in (N 3 n ) . So (7.33.1) is certainly NOT surjective, nor is the lower r in (7.26). We see here some typical details of (∞) ∧ * containing, in fat lines, some possible pieces of Λ ∞ (7. A belated COMMENT on the Lemma 6.3.

The zipping flow, as described by Lemma 6.3 travels, largely along the security walls W ∞ (BLACK) H ε . It is important here that, (contrary to what had happened in [START_REF] Poénaru | Equivariant, almost-arborescent representations of open simplyconnected 3-manifolds; a finiteness result[END_REF]), we have now p ∞∞ (W ∞ ) ∈ int W ∞ . Most importantly, also, W ∞ (BLACK) H 0 bites big into the infinite structure which comes with ∂H ∧ I (γ n ) ∩ H 0 ; see figure 2.5. End of Comment.

From now on, when the contrary is not specifically spelled out, we are downstairs at level M (Γ) = M (Γ)/Γ, even when the notations may say otherwise.

From now on, not only are we downstairs at level M (Γ) (and not M (Γ)), but we are also, decidedly, in the REAL LIFE CONTEXT. We have int

• (∞) * ∪ fins ∪ R0 int R 0 × [0, ∞) which was added to S u (M (Γ) -H) I during (7.21) ⊂ (7.34) ⊂ ∂S u (M (Γ) -H) ⊃ {the K from (P 2 )} .
Our present problem is that, generically speaking K ∩ • (∞) * = ∅, which is bad, but then also, as a redeeming factor, there certainly is an η > 0 such that

(7.35) 0 < η < d(K, ∂ ∞ ), in ∂S u (M (Γ) -H) ∧ .
In the context of (7.32.2) and (7.33), it is only those ε n 's which come with 2 ε n < η, which will be considered from now on. The next lemma is a variation on the same themes as in the Lemma 7.3, and hence some repetitions will be unavoidable. It expresses the basic π 1 -injectivity which we need now. Sublemma 7.4.3. -The following inclusion is π 1 -injective, hence a loop in the LHS which is null-homotopic in the RHS, is already so in the LHS:

(7.36) (∞) ∧ * × {∞} this is R 0 R0×{∞} (cut) -→ ∂S u (M (Γ) -H) ∧ - • σ(∞) ⊂ ∂S u (M (Γ) -H) ∧
(see (7.24) too, and also figure 7.7 and (7.6.1)).

Proof. To begin with, we have the following commutative diagram of inclusion maps among smooth manifolds of high dimensions ≥ N + 3

∂S u (M (Γ) -H) I a / / ∂S u (M (Γ) -H) . S u (M (Γ) -H) I (7.23) 4 4 / / S u (M (Γ) -H)
The indices of the handles involved here are much smaller than N + 3, and hence the vertical arrows are π 1injective. The lower horizontal arrow, as described by (7.21) to (7.23) is clearly a homotopy equivalence. Here the upper horizontal arrow is π 1 -injective; it also enters as the first vertical arrow in the next commutative diagram (7.36.1)

∂S u (M (Γ) -H) I a cI / / ∂S u (M (Γ) -H) ∧ I - • σ(∞) b (∞) ∧ * (cut) (via N 3 (cut)) i • γ (7.29) o o ∂S u (M (Γ) -H) cII / / S u (M (Γ) -H) ∧ REALLIFE = • σ(∞) R0 R 0 × {∞}(cut) = (∞) ∧ * (cut) , our (7.36) o o trivial π1-isomorphism O O
where γ is like in (7.29) and i like in (7.26). Also, we just saw that the a is π 1 -injective, while i • γ has been shown to be so in the context of Lemma 7.3. The c I is the addition of the ∂ (∞) ∧ * on top of the already existing int( (∞) * ∪ fins), while the c II is the addition of the ∂

(∞) ∧ * ∪ R0 R 0 × {∞} on top of the already existing int • (∞) * ∪ fins ∪ R0 int R 0 × [0, ∞) (see the (7. 34 
)). And these additions do not come with modifications of π 1 . It follows that we have the implication:

a is π 1 -injective =⇒ b is π 1 -injective.
The second arrow on the last line of our diagram (7.36.1) is the one from (7.36) and it follows from everything said that it is π 1 -injective. End of Proof.

We introduce now the following extension of the N 3 from (7.25) (7.37)

X 3 ≡ N 3 ∪ (∞) ∧ * R 0 × [0, ∞] ⊃ R0 R 0 × {∞} ⊃ ∂ (∞) ∧ * . Since N 3 = (∞) ∧ * × (-ε 0 , ε 0 ), our X 3 is actually equal to (∞) ∧ * × (-ε 0 , ε 0 ) ∪ R0 R 0 × [0, ∞] ,
where the union is made along (∞) ∧ * × {0}. Of course, when one writes here R 0 × [0, ∞], this is meant with every x × [0, ∞], for x ∈ ∂R 0 , crushed into a point. With this kind of reading, which is constantly used from now on, we have

N 3 ⊃ (∞) ∧ * ⊂ R0 R 0 × [0, ∞] .
End of (7.37).

For the convenience of the reader, we rewrite here the diagram (7.31.3), with some embellishments added, and this will be used in our next discussions

{Λ n } ⊂ ∂S u (M (Γ) -H) I ⊂ S u (M (Γ) -H) I ∼ = Θ 4 (Θ 3 (πf X 2 -H) , R)    p 1 × B N ⊂ ∂S u (M (Γ) -H) (REAL LIFE) ↑ K (from NON P1), a compact (7.38) Θ 3 (πf X 2 -H) i / / e e id % % Θ 4 (Θ 3 (πf X 2 -H) , R) ⊃ {p 1 Λ n } p2 Θ 3 (πf X 2 -H) ⊃ {p 2 • p 1 Λ n } .
Here, the lower commutative diagram stems from the fact that (as explained in Section V and with more details in [START_REF] Gabai | Valentin Poénaru's Program for the Poincaré Conjecture[END_REF], [START_REF] Poénaru | The collapsible pseudo-spine representation theorem[END_REF]) the Θ 4 (Θ 3 , R) is a regular neighbourhood of Θ 3 . The p 1 is the obvious projection while p 2 is the retraction coming with Θ 4 (. . . , R), when viewed as a regular neighbourhood. Also (Θ 3 ) is here (Θ 3 I ) . The little, very schematical drawing below, should help reading (7.38): The point here is that, generally speaking, for our REAL-LIFE S u we are bound to find K ∩ (S u ) I = ∅ and hence also p 1 (K ∩ (S u ) I ) = ∅, p 2 • p 1 (K ∩ (S u ) I ) = ∅, all of them both mysterious and interesting for us.

As far as precise METRIC STRUCTURES are concerned, what we do have so far, is the "riemannian" metric d on M (Γ), which then lifts canonically to M (Γ), Y (∞), X 2 , in an equivariant manner. With this, the Θ 4 , S ( ) ε 's are clearly metrizable, and that was enough for everything we did until now. At this point we stick for a short while at the level of the Θ 3 (f X 2 -H) I ⊂ M (Γ) where in its normal isotopy class, this embedding will be made precise, so that the closure inside M (Γ) should be exactly the following

(7.39) Θ 3 (f X 2 -H) = Θ 3 (f X 2 -H) ∪ ∂ ∞ compact ⊂ M (Γ) .
And here we have a natural canonical diagram,

Θ 3 (f X 2 -H) i / / Θ 4 (Θ 3 (f X 2 -H) , R) p2 / / Θ 3 (f X 2 -H) ⊃ p 2 p 1 (Λ n ) .
We have a PROPER inclusion

(7.40) int • (∞) * ∪ fins ⊂ Θ 3 (πf X 2 -H)
and the only places where our (Θ 3 ) , from which all the contributions of the p ∞∞ 's are deleted, fails to be a smooth 3-manifold, are the immortal singularities ∞ and so it will be while we prove that S u M (Γ) ∈ GSC. But once that is done, for further purposes the S(m, n)'s can happily be moved off S 2 ∞ to x = x ∞ + η, η > 0. From the viewpoint of the W (m)(BLACK), the S(m, n)'s are the p m∞ 's in figure 2 . With this our metric structure for Θ 3 is fixed and (7.39) is with us. But before we go to Θ 4 and to (S u ) I we will continue for while with Θ 3 (πf X 2 -H) ⊂ M (Γ). We define, for any α > 0, (7.41) U α ≡ {the α-neighbourhood of {limit walls}, in M (Γ)} .

S(m, n) = (W (m)(BLACK) × [-ε m , ε m ] ∩ W * (n)(BLACK) × [-ε n , +ε n ]) ∩ ∩ S 2 ∞ (BLUE) ⊂ S ⊂ Sing M (Γ) , with (m, n) ∈ Z × Z .
A number of important neighbourhoods will be needed for what comes next. Not only the U α just introduced, but also the V β , U β . Figure 7.6 can serve as a good illustration, helping to keep track of them. The formal definitions for V β , U β are the (7.43), (7.44) 

below. Consider next int • (∞) * ∪ fins int (∞) * ∪ (fins -rims) ⊂ (∞) ∧ * ∪ σ(∞) ⊃ ∂∞ .
(see the LIST OF AVATARS (7.6.1), in the beginning of this section) 

(∞) ∧ * (N 3 ) ⊃ (N 3 n ) (7.33), with r n ≡ r | (N 3 n ) .
U β ≡ {the β-neighbourhood of ∂ ∞ in M (Γ)} ⊃ V β = U β ∩ int • (∞) * ∪ fins . Remember here that ∂ ∞ = (∂ (∞) ∧ * ∪ σ(∞))/Γ ⊂ M (Γ).
It should be understood here that, with the η > 0 from the (7.35), the U β 's useful for us will be the ones coming with (7.45) 0 < β η , which will make sure that in the context of (7.31.3), p 2 p 1 K ∩ U β = ∅. In the rest of this section whenever things like β and/or β(α) will be used, it should be understood that β is always small enough such that (7.45) is verified. This will keep us safely away from things like 

(7.46) K ∩ {W (complementary) × [-ε, ε] -f LIM M 2 (f ) × {± ε}} = ∅ ,
×[-ε, ε], W n 2 ×[-ε n , ε n ] where ε n -----→ n→∞ 0.
Concerning the DITCHES, remember that they are not drilled inside the thickened 3 d complementary walls themselves, but inside the

B N +1 × [-ε ≤ z ≤ ε]
making big use of the SUPPLEMENTARY (n + 1) dimension, see here the figure 4.2. 

N 3 n rn ---→ (∞) ∧ * .
The present figure is supposed to live inside M (Γ), and it should help for vizualizing the various neighbourhoods (7.52.2-bis) The equality here in (7.52.2) is rendered possible by the additional identifications of type

U α ⊃ U β(α) ∩ Θ 3 (πf X 2 -H) ⊃ U 3 (α) (defined in (7.48.1) below), U β(α) ∩ Θ 3 (πf X 2 -H) ⊃ V β(α) ⊂ int • (∞) * ∪ fins . The smaller V γ(β) ⊂ V β(α) mentioned
∞ is in int ( (∞) * ∪ fins). Also V β(α) = U β ∩ int ( (∞) * ∪ fins). The Θ 3 (πf X 2 -H) is shaded. This figure is in a plane R 2 ⊂ M (Γ) transversal to
R 0 ∩ 1 2 D 2 (F ) = R 0 ∩ 1 2 D 2 (F ), between the R 0 × [0, 1], R 0 × [0, 1]
, when parts of those rectangles cover fins. The LHS, i.e.

R 0 × [0, ∞], diffeomorphic via D to (∞) * × [0, ∞],
is certainly not a simple union among common boundaries.

(7.52.3) When we consider the obvious map R ∞ , defined below

(∞) ∧ * ∪ R0 R 0 × [0, ∞] D ≈ / / (∞) * × [0, ∞] projection π / / / / (∞) * × {∞} , R∞≡π•D O O
then with this comes a commutative diagram on the lines of (7.26), but now with χ 3 in (7.37) thrown in too, namely the following

(7.52.4) ∂S u (M (Γ) -H) ∧ χ 3 = N 3 ∪ (∞) ∧ * (∞) ∧ * ∪ R0 R 0 × [0, ∞] (retraction) R=R∞•r / / 9 × inclusion j 4 4 (∞) * × {∞} R inclusion i g g ∂ (∞) ∧ * c 1 O O identity / / ∂ (∞) ∧ * , c 1 O O
where the map r is of source

χ 3 is id of (∞) ∧ * ∪ R 0 × [0, ∞) ⊂ χ 3 and r | N 3 is the natural retraction (7.52.5) N 3 r / / (∞) ∧ * ⊂ (∞) ∧ * ∪ R0 R 0 × [0, ∞] , r / / O O
and where the inclusion i is equal to

(∞) * × {∞} ⊂ (∞) * × [0, ∞] D -1 ----→ ≈ (∞) ∧ * ∪ R 0 × [0, ∞] ⊂ χ 3 j --→ ∂S u (M (Γ) -H) ∧ .
Of course, also, R ∞ is like in (7.52.3). End of (7.52.4).

Sublemma 7.4.6. -1) In the context of (7.52) there is a natural canonical injection

(∞) ∧ * ⊂ (∞) * × [0, ∞] (the image by D of (∞) ∧ * ⊂ (∞) ∧ ∞ ∪ R0 R 0 × [0, ∞], suggested in green in the RHS of figure 7.7),
and which sends the

(∞) * ⊂ (∞) ∧ * into the horizontal (∞) * × {0} ⊂ (∞) * × [0, ∞],
and also sends

At the level of Θ 3 (πf X 2 -H) , the two maps 

Λ jn p2 p1 + + Θ 3 (πf X 2 -H) ∩ N 3 → j ∂S u (M (Γ) -H) ∧ Λ jn ρ1 p2 p1
/ / (∞) ∧ * ⊂ (∞) ∧ * ∪ R0 R 0 × [0, ∞] ⊂ ∂S u (M (Γ) -H) ∧ ,
then the following two maps

Λ jn ρ1 p2 p1 ------→ ∂S u (M (Γ) -H) ∧ and Λ jn r ρ1 p2 p1 -------→ ∂S u (M (Γ) -H) ∧
are clearly homotopic. What the map r (a retraction) does on N 3 is to contract homotopically each fiber (-ε 0 , ε 0 ) to its center ε 0 = 0.

Next, when we apply the diffeomorphism Putting together everything said, so far, in this proof, we can connect p 2 p 1 Λ jn to R ρ 1 p 2 p 1 Λ jn by a homotopy in ∂S u (M (Γ) -H) ∧ . End of Proof.

D to (∞) ∧ * ∪ R0 R 0 × [0, ∞] ⊂ X 3 , then our r ρ 1 p 2 p 1 Λ jn ⊂ (∞) ∧ * ∪ R0 R 0 × [0, ∞]
We go back now to the metrical structures from (7.39) and, to begin with we move from dimension three to four.

We will fix now the metric structure on Θ 4 = Θ 4 (Θ 3 (πf X 2 -H) , R). Here, as we already know, Θ 3 = Θ 3 (πf X 2 -H) ⊂ M (Γ), which induces a metric on Θ 3 ; we have Sing Θ 3 Sing M (Γ) and, as we also know, the R-dependence of Θ 4 is washed away when we multiply by (× B N ). So, we may as well assume that there is a desingularization R on M (Γ) which induces our R in Θ 3 , so that we have a natural inclusion (7.53.2) Θ 4 (Θ 3 , R) ⊂ {Θ 4 (M (Γ), R), which is compact} .

The Θ 4 (M (Γ), R) is a regular neighbourhood of M (Γ), i.e. it comes with the standard diagram M (Γ) ---------→ inclusion Θ 4 (M (Γ), R) ---------→ retraction M (Γ). We will endow Θ 4 (M (Γ), R) with a metric structure, call it d, compatible with the inclusion of (M (Γ), its d). We can define (see (7.39))

Θ 4 (Θ 3 , R) ∪ ∂ ∞ = Θ 4 (Θ 3 , R) ∪ Θ 3 (Θ 3 ∪ ∂ ∞ )
, where Θ 3 = Θ 3 (πf X 2 -H) , and we will want now to fix the precise metric structure of Θ 4 (Θ 3 , R) so that the closure inside Θ 4 (M (Γ), R) in Θ 4 (M (Γ), R) should be, exactly, (7.53.3)

Θ 4 (Θ 3 , R) = Θ 4 (Θ 3 , R) ∪ ∂ ∞ ⊂ Θ 4 (M (Γ), R) ,
a formula which should be compared to the (7.39). Actually, the (7.53.3) IS THE CORRECT compactification of Θ 4 (Θ 3 , R).

In terms of (7.38), for each x ∈ Θ 3 (πf X 2 -H) there is a fiber p -1 2 (x) ⊂ Θ 4 (Θ 3 , R), which topologically speaking, is either of the form x × [-1, +1], when x is a smooth point, or x × {a finite tree with a single vertex at x}, when x ∈ Sing Θ 3 . We denote by p -1 2 (x) the diameter of p -1 2 , measured in (Θ 4 (M (Γ), R), d). We will impose that (7.54) lim n=∞ d(x n , ∂ ∞ ) = 0 =⇒ lim p -1 2 (x n ) = 0.

Our fixing of p -1 2 (x) can also be thought of as a fixing of the embedding (7.53.2), inside its allowed isotopy class.

With all this, (Θ 4 (M (Γ), d)) induces a metric, which we call again d, on the Θ 4 (Θ 3 , R), coming with the correct compactification (7.53.3).

We will move now to S u (M (Γ) -H) I ∼ = Θ 4 (Θ 3 (M (Γ) -H) , R) × B N (this is a schematical way of presenting the (3.25), but it is good enough for us now) and for this object we have been working so far, with a generic metric, which was defined only up to quasi-isometry.

We will think of this (S u ) I as living inside

(7.55) Θ 4 (M (Γ), R) × R N ⊃ Θ 4 (M (Γ), R) × {0} ⊃ Θ 4 (Θ 3 (πf X 2 -H) , R) ∪ ∂ ∞ × {0} ,
where the O ∈ R N is the origin of R N . [Right here, we have written explicitly "πf X 2 ", but in all our present story of the proof of the MAIN LEMMA 7.4, we are consistently downstairs, at level M (Γ), and the "π" should be always understood, even when it is not explicitly written.] The (S u ) I needs a factor B N ⊂ R N but we will not take it centered at 0, but rather so that we should have 0 ∈ ∂B N , with {0} = {s} ≡ {the SOUTH POLE of S N -1 = ∂B N } and {n} ≡ {the NORTH POLE of S N -1 } diametrally opposite to it. The reason for this choice will be explained soon.

With this, the canonical embedding Θ 4 (Θ 3 (πf X 2 -H) , R) ⊂ ∂S u (M (Γ) -H) I , mentioned already several times, becomes

Θ 4 (Θ 3 (πf X 2 -H) , R) = Θ 4 (Θ 3 (πf X 2 -H) , R) × ({0} = {s}) ⊂ ⊂ Θ 4 (Θ 3 (πf X 2 -H) , R) × S N -1 ⊂ ∂S u (M (Γ) -H) I .
Here is now our PROGRAM for what will follow next. We want to fix an explicit metric on S u (M (Γ) -H) I , compatible with the embedding inside the Θ 4 (M (Γ), R) × R N from (7.55), where the space in (7.55) is endowed with its obvious product metric below (7.56) {the metric d on Θ 4 , already mentioned} × {euclidean metric on R N } , such that the following requirements should be fulfilled: We will implement now this program.

To begin with, we may assume that (7.56.4) Λ jn ⊂ Θ 4 × S N -1 ⊂ ∂(S u ) I .

From this, arranging things so that we should have (7.56.3) is easy. We will come back to the issue of (7.56.3).

We start with the {Λ jn from (7.31.2)}, which does converge uniformly to Λ ∞ ⊂ ∂ ∞ , inside ∂S u (M (Γ) -H) I and hence then in the REAL-LIFE ∂S u (M (Γ) -H) too. The metric on Θ 4 (Θ 3 (πf X 2 -H) , R) is by now already fixed and, whatever our choice of x × B N 's will be, the {p 1 Λ jn } has to converge uniformly to Λ ∞ , in Θ 4 (Θ 3 (f X Putting together these things, it is not hard to find a sequence of positive numbers ε 1 > ε 2 > . . . converging to zero and also a sub-sub-sequence of the original {Λ jn }, which we will call again Λ jn , such that (7.57)

ε n+1 < d(p 1 Λ jn , ∂ ∞ ) ≤ d(p 1 Λ jn , Λ ∞ ) < ε n .
These will be the Λ jn 's from the Sublemma 7.4.2. But in (7.57) there is the p 1 (not wanted) and, also we still have to get the ε n 's from (7.32.1).

Next, we will finally fix the metric structure on S u (M (Γ) -H) I . For this new smaller η, we continue with a β abiding to (7.45) i.e. 0 < β η. We introduce now the subset of M (Γ), see figure 7.6 too,

U β ∩ Θ 3 ≡ U β ∩ Θ 3 (πf X 2 -H) .
In the figure 7.6, this subset of M (Γ) is the shaded part of U β(α) . Without loosing anything of what we already have, simply by a convenient enlargement of K we can also ask for the following feature, which will be necessary: With β n small enough, we will have, as direct consequences of (7.60), that K ∩ (p 2 p 1 ) -1 (U βn ∩ Θ 3 ) = ∅ and also K ∩ (p 2 p 1 ) -1 r -1 N (αn) V γ(βn) = ∅ . The next lemma is a direct consequence of the various things said above.

Sub-sub-lemma 7.4.6. -1) In the context of (7.59), we can fix the sequence α n → 0 so that, for m high enough, the following should happen, at the level ∂S u (M (Γ) -H) I , and then Θ 4 (Θ 3 (πf X 2 -H) , R) too, (7.62) Λ jm ⊂ p -1 1 p -1 2 (U βn ∩ Θ 3 ) , i.e. also p 1 Λ jm ⊂ p -1 2 (U βn ∩ Θ 3 ) .

Next, making use of (7.56.3), we also have the following two items:

•) The Λ jm ⊂ ∂S u (M (Γ) -H) I avoids the {n} ∈ S N -1 , AND also, we have Then, taking ∂B N -{n} = R N -1 , the map p 1 | Λ jn is the obvious canonical projection

Λ jn ⊂ Θ 4 (Θ 3 (πf X 2 -H) , R) × R N -1 p1 --→ Θ 4 (Θ 3 (πf X 2 -H) ≈ Θ 4 × {s} ⊂ Θ 4 × R N -1 .
2) The following two maps Λ jn

The natural embedding from (7.38)

) ) ∂S u (M (Γ) -H) ∧ Λ jn R ρ1 p2 p1 Proof. We want to prove 2). We consider now the p 2 | Λ jn and in what follows next we will invoke the ••) in 1). (7.63) Making use of this last fact, one can find a homotopy [Λ jn , p 1 Λ jn ] which avoids the compact K, in ∂S u (M (Γ) -H) ∧ .

We will come back to this issue (7.63), with more details, after the present lemma has been unrolled completely. (7.64) We move now to the p -1 2 U βn ⊂ Θ 4 (Θ 3 (πf X 2 -H) , R) and to the p 2 p 1 Λ jn ⊂ Θ 3 (πf X 2 -H) )∩U βn (see (7.62) above). There is a homotopy [p 1 Λ jn , p 2 p 1 Λ jn ] ⊂ p -1 2 (Θ 3 ∩ U βn ), which makes use of the union of fibers

z ∈ U βn p -1 2 (z) ⊂ Θ 4 .
Remember at this point that through our (∞) * go the cut arcs [α(∞), β), which are avoided by the zipping flow. Without any loss of generality, it may be assumed that we also have This ENDS the proof of the Sub-sub-lemma 7.4.7. But then, the compactness Lemma 5.7 is by now proved, see below.

Our MAIN LEMMA 7.4 is then, by now proved too. As we shall see below this implies then the compactness lemma.

Also, in the very end of Section V we have shown the implication COMPACTNESS LEMMA =⇒ GSC THEOREM.

More precisely, via the compactness lemma we can go from the S b M (Γ) ∈ GSC (see 11) in the ZIPPING LEMMA) to S u M (Γ) ∈ GSC, from which the S u M (Γ) ∈ GSC follows. Before giving the explicit proof of the compactness lemma, I will offer some FINAL COMMENTS CONCERNING THE MAIN LEMMA 7.4. Our MAIN LEMMA 7.4 certainly has a certain π ∞ 1 = 0 flavour, but this is deceptive. The lemma in question has nothing to do with the issue of π ∞ 1 Γ, as I will explain, and certainly NO CLAIM concerning π ∞ 1 Γ has been made in this paper, fortunately so, since generically π ∞ 1 Γ = 0. The whole argument in this section, in particular in connection with the MAIN LEMMA 7.4, had to do with ∂S u (M (Γ) -H) ⊂ {the smooth compact manifold Θ 4 (M (Γ), R) × B L , L high} , and these objects do not know, neither about the Γ-actions nor about M (Γ) and its asymptotic topology, where one has to look for the mysterious π ∞ 1 Γ. For getting to those items one would have to go to the universal covering spaces, and that is NOT what our discussion has been all about in the present section.

Next, in a more technical vein, the spaces (N 3 ) and (N 3 n ) , which live inside the non compact Θ 3 (πf X 2 -H) I are neither compact, nor with compact complements, so they are not the kind of neighbourhoods of infinity which the π ∞ 1 -issue is all about. Anyway, what we have dealt with in this section is the man-created infinity of S u (M (Γ) -H) and NOT the God-created infinity of M (Γ). Now that we have our MAIN LEMMA we shall give proof of the compactness lemma, noting that we only have to deal with the C -(H n )'s, for the other C(H)'s things are trivial. 
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 6 Figure 6.1.

Figure 6 .

 6 Figure 6.1-bis

Figure 6

 6 Figure 6.2.

Figure 6

 6 Figure 6.3.

- 1 [

 1 XY ], the quantity P • P 0 controlls the sum of the lengths of the S j [X Y ](RED), for the special BLUE 1-handles [X Y ] encountered by the zipping -1 [XY ].]

Figure 6

 6 Figure 6.5.

Figure 6 .

 6 Figure 6.5-bis. In this diagram, when we meet "∩", we zip.

Figure 6 .

 6 Figure 6.5-ter

  .6 below is the analogue of the figure 5.6-(C) for this (V = W (BLACK), W * i (BLACK), W (BLUE) ) triple point situation. The important thing here is that figure 6.6 can be treated EXACTLY like we did in the ZIPPING LEMMA for figure 5.6-(C). The present special "BLUE" arcs (which are actually now W * (BLACK)) are to be treated exactly like the [A, B], [A, D] in figure 5.6-(C). This ends the proof of Lemma 6.3, and we continue with the discussion of the ZIPPING LEMMA 5.1.

Figure 6

 6 Figure 6.6.

2 ∞∂N 2 ∞

 22 are separated by {the universal curve} = ∂N 2 ∞ ∩ . This may be crossed at will by the zipping flow lines going along the L n = M 2 (f ) ∩ W n ; figure 6.6.1 illustrates these things.

Figure 6 . 6 . 1 .∂N 2 ∞

 6612 Figure 6.6.1.

  and where the factor (I u) is ignored. And, of course, the figures 5.4 and 5.6-(A) are coherent with each other. In both the figures 5.6-(A)n 5.6-(B), and then in 5.8-(B) too, the positive x-direction looks away from the observer. In the figure 5.6-(A), outside of the [ABCD], the shaded piece P 2 (A) (which is double), P (B), P (D), are pieces of W n (BLUE) -H, confined inside the thin bands [ε -1 n , ε]. [Notational remark. Here is how the notations from figure 5.6-(A), just mentioned, and the ones of 5.6-(C) are supposed to fit together:

.

  in the neighbourhood of the triple point, lives inside the DITCH    The second inclusion here is the operation of SENDING IN THE DITCH. The reason for excluding the square [ABCD] in (6.22) is, of course, that the metrizability requirement for S b does not allow to have there a ditch housing the special BLUE 1-handles β[XY ] = {[AB], [AD]}; this has been explained, already earlier.

Figure 6 . 7 .

 67 Figure 6.7. In the plane of W (BLUE) n .

  , would be a barrier, on par with the non-metrizability barrier and the Stallings barrier.

Figure 6 . 8 .

 68 Figure 6.8. A bad loop, which the isotopic push from the ZIPPING LEMMA avoids.

Figure 6 .

 6 Figure 6.8 suggests how "under normal conditions", meaning in the absence of our cushioned isotopic push, bad loops might appear creating havac. The important point in this present discussion is that the cushioned isotopic push prevents arrows of the following type in the grand GEOMETRIC INTERSECTION MATRIX ∂h 2 (1) -→ δh 1 (3) , while arrows ∂h 2 (3) -→ δh 1 (1) are certainly there. In connection with figure 5.6-(C) we have this special BLUE 1-handles, the RED [A, B] and the BLACK [CD]. Let us look now with a bit more details into what the (5.31.2) does for the easier RED [XX] = [AB]. When, for our [XY ] = [AB], the pushing + smearing S m =⇒ S m+ 3 4 (5.31.2), has been completed, we get to figure6.9, which we will explain now. The notations in figure6.9 are the same as in figure5.4. The A from figure6.9 is the same as the A in the figures 5.4, 5.6-(C). So for [XY ] = [BA], the push along S j [XY ] of R 1 from the figure 5.6-(C), plus the smearing, have now reached the A. That is what we see in figure 6.9.

Figure 6 . 9 .

 69 Figure 6.9. The (PUSH + CUSHION) have reached here A. Compare this with figure 5.7-bis. The smearing has also been performed by now.

  as claimed. The new h(3) occurring in green in the figures 5.10, 5.11-bis concern the h(3) (complementary/non complementary) occurring at A in figure 5.6-(C) while the h(3)(C/C) from figure 6.9 comes from B. And, what we get now in terms of the geometric incidence matrix, takes the form below, and we refer here to (6.25) (6.26) h(1) h(3)(complementary/complementary) o o h(3)(complementary/non-complementary), o o O O which we complete with h(3)(BLACK/BLUE) initial h(3)(BLUE/(RED and BLACK)), from D 2 , D 3 l l r r {h(3)(RED/BLACK) from the scar at A, fig. 5.11-bis} End of (6.26).

  in the figure 5.11-bis. When it comes to h(3)(C/C), the various S-wounds are hit at their S-scars ⊂ S-wound by the flows h(3)(C/N C). The various wounds hit by the same trajectory of h(3)(C/N C) do not interact with each other in the diagram with which our (6.26) starts. But then, inside a same given wound S, we may find arrows, produced by the normal way in which our CUSHIONING functions: early scar (like at B in figure 5.6-(A)) → a later scat (at A, in the same figure 5.6-(A)).

Figure 6 .

 6 Figure 6.10-(A)

Figure 6 .

 6 Figure 6.10-(B)

Figure 6 .

 6 Figure 6.10-(C)In (C) at the triple point (p, q, r) ∈ M 3 (f ), we find

  .6-(C) has been explained in detail. Now we turn to the much trickier BLACK [XY ]'s, like [AD] in the same figure.

Lemma 6 . 5 .

 65 -For each BLACK special BLUE arc [XY ] (like the real [AD] or the fake [BC], in the figure 5.6-(B)), there is a continuous path

  2 -H)/(Z/2Z). Keep in mind that, in the discussion which follows [XY ] = [BC] (figure 5.8-(B)), the zipping is like in variant I of the figure in question and λ -1 = λ -1 (B(BLUE), B(BLACK)). [As a final remark, once our arguments will have bee completely unrolled in the framework of the impressionistic/heuristic viewpoint of time reversal along the zipping path, the reader should have no trouble of coaching them in the more accurate frame work of the CLAIM (6.26.1).]
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 6 Figure 6.11.

1 2 B

 2 N (RED). Actually, b N = 1 2 B N (RED).

Figure 6 . 12 .

 612 Figure 6.12. An enlarged detail of the figure 6.11. Like in figure 6.11, by "C" we will mean a generic point C ∈ ∂S.

  .6-(C) we may use any of the four Holes and, IMPORTANTLY, the Holes are used now so as to avoid going through W (BLUE). If we think in terms of H - 1 , figure 5.6-(C), there is a Hole in W (BLUE) through C(H - 1 ) ⊃ [B , A, B, B ] but we can happily go through W ∞ (BLACK) and W (RED ∩ H 0 ). Figure 6.13, which develops a detail of figure 6.5, might be helpful for understandng what goes on.

Figure 6

 6 Figure 6.13.

{h( 3 )

 3 (new) of the form h(3) (C/N C and C/C coming from the CUSHION)} → → {older h(1) + h(3) from the already stable portion in the geometric intersection matrix}.

  S j [AB], S j [CD]. Afterwards, we bifurcate with W (BLUE)/W (RED) towards [XY ], OR continue along W (BLUE)/W ∞ (BLACK) H 1 , and in this case one certainly needs S j [AB]. If we bifurcate towards BLACK[XY ], then we will turn to W (BLUE)/W (BLACK) and then use S j [Ω 1 , Ω 2 ], or continue along W (RED ∩ H 0 ). [Side Remark. For the [XY ] in figure 6.7 there is a possible S j [XY ] which makes use itself of S j [Ω 1 Ω 2 ] and which stops at [AB] ∪ S j [AB](RED).]

  [AB], [AD] in the figures 5.6-(B) and 5.8-(B) then the j[XY ] = β[XY ] contributed to the final geometric intersection matrix (of the S b M (S)). But this is so even ever for the contribution of the S j or (zipping) -1 of the fake 1-handles like [BC], [DC] in the same figure. [Of course, as such, these arcs have nothing to do with the geometric intersection matrix, but their (zipping) -1 contributes to the real β[XY ]'s.]

  n=∞ , ∂(ideal Hole (n)) = ∞ and hence also lim n=∞ C n (= ∂Hole (n)) = ∞. This contributes big to the fact that lim n=∞ zipping

  e. the int (∞), as defined in (3.14.1), with the contribution of the p ∞∞ (S)'s restored (the one of the p ∞∞ (proper) was never deleted) = int (∞) * (3.21).

( 7 . 6 . 1 )

 761 THE LIST OF THOSE AVATARS OF 1 (∞) = {limit positions of the compact walls, inside M (Γ) (or M (Γ))}, which are MEANINGFUL IN THE S ( )

F

  rim F , (F ≡ fin). See here figure 3.1-(B).

•

  (∞) * ∪ fins the • (∞) * with the contribution of fins-rims added .• • • •)We will use big the R0 int R 0 (where it is understood that we have identifications between pieces of int R 0 , int R 0 which cover opposite sides of the same fin) = int• (∞) * ∪ fins = (∞) ∧ * -∂ (∞) ∧ * ,and here in • • • •) all traces of p ∞∞ 's are gone. Notice that, in line with the end of • • •), we have Σ(∞) ∧ * -∂ (∞) ∧ * int (∞) ∧ * (where the contribution of p ∞∞ (ALL) is present). • • • • •) Finally, with the same kind of identification like in the • • • •) above, we have R0 R 0 = (∞) ∧ *

  ∞) * are, locally, like R × I or like {figure Y } × I or like {figure X} × I, the Y corresponding to the p ∞∞ (proper) and the X to the singularities S of f X 2 . [Remember that each immortal singularity S ⊂ M (Γ) creates ∞ × ∞ such immortal S's.] Hence, the • (∞), • (∞) * are, essentially, surfaces. Lemma 7.0. -1) we have (7.6.1.1)

( 7 . 6 . 1 . 3 )

 7613 The man-made infinity ofΘ 3 (f X 2 ) = ∂ (∞) ∧ * ∪ R0 R 0 × {∞},and here for every x ∈ ∂R 0 , the x × [0, ∞] gets crushed into x = x × {0} ∈ ∂ (∞) ∧ * . [Think here, for instance of x ∈ p ∞∞ × [-ε, ε].] Anticipating, we speak here in terms of S u M (Γ) ∼ .
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 7 Figure 7.0.

Figure 7

 7 Figure 7.1.

( 7 .

 7 6.1.4) The ∂ (∞) ∧ * ∪ σ(∞) ⊂ M (Γ) is a closed subset, and as a consequence of this

Figure 7

 7 Figure 7.2.

2 . 1 -

 21 (A, B) goes a circle S 2 ∞ ∩ W (RED) (the W (RED) which continues, inside the W (RED ∩ H 0 )). See here figure 7.2.2 too.

Figure 7 .

 7 Figure 7.2.1.

Figure 7 .

 7 Figure 7.2.3.

  β--------(I or II) α(∞) = cut arc (potential).

( 7 . 9 . 6 )

 796 Inside each individual W , concerned, in the figures 7.2.1, 7.2.2, 7.2.3, just with the arcs (α(∞), β) of type (I), in those figures, we have already that

Figure 7 .

 7 Figure 7.2.4.

  .2, and so we define them by the rule, ( * * ) For each double line BLACK/BLUE we have (cut arcs) ∩ {the double line BLUE/BLACK in question} ≡ {the 0(3)-line from figure 6.2} ∩ {(W (BLACK) or W (BLACK) * ) ∩ W (BLUE), which is a transversal central (cut arc) W (BLACK) on BLUE background page}. And the ∞ × ∞ grid in figure 2.8-(C) is, localized at S, the ( * * * )

  )'s, what is still left on the various double lines ( * * * * ) m W n (BLACK) ∪ m W * m (BLACK) ∩ W (BLUE) k , where m, n ∈ Z and k → ∞. By "zip" we mean here the acyclic part of the zipping process, since there are the 0(3)'s too. Typically, each individual connected piece of the zipping ( * * * * ) is a tree starting with its trunk at a singularity (created by the previous zipping steps I to IV of the proof of Lemma 6.3) on ∂S. All the other endpoints of the tree are 0(3)'s and all the ( * * ) effectively occur, explaining why the cut arcs in the figure 7.2.3 are all of type (I). What we get is exactly something like in the figure 7.2.7.

Figure 7 . 2 . 7 .

 727 Figure 7.2.7. An acyclic zipping line of ( * * * * ). Here the green circle (= •) is an 0(3)-site.

Lemma 7 . 2 .

 72 Part I, (for the Variant I). -0) With our high N 1, we get a more or less canonical embedding of (∞) ∧

( 7 . 11 )

 711 One can glue (∂ (∞) ∧ * ∪ σ(∞)) /Γ (see here (3.22) and (7.4)) to the infinity of S u (M (Γ) -H) I . This way one gets the following space S

1 F 1 F

 11 .2)), i.e. x ∞ = lim x=∞ Λ jn (x) = lim x=∞ x n , uniform convergence for ∀ x ∈ ∞ i . So, keephere in mind that here x n and x ∞ are functions of x ∈ ∞ i .

1 F

 1 .1), the RHS is ≈ |x(k) -x( )| ≤ ε. Then, by the uniform convergence ( * ), the two extreme terms are also ≤ ε for large N , independently of k, . This implies that our sequence {x(n) ∞ } is Cauchy. The little drawing below should illustrate what is going on. Here x(k) jn ≡ Λ jn (x(k)) and x(k) ∞ ≡ Λ ∞ (x(k)), and the x(1), x(2), x(3), . . . are points in ∞ i . Then, in the same vein, α ∞ = lim x=∞ Λ jn (∞) and x m (∞) = lim x=∞ Λ jn (x(m)). End of Details.]

  along the following map, which is the restriction of the(3.24) 

( 7 . 22 )

 722 By taking a transversally compact regular neighbourhood around the added pieces one gets a smooth(N + 4)-dimensional space S ε ( M (Γ) -H) (provisional). Here S u ( M (Γ) -H) (provisional) is a transversally compact thickening of Θ 3 (f X 2 -H) ≡ {the smooth Θ 3 (f X 2 ) I withall Holes (⊃ H(p ∞∞ (all))) deleted and with the compensating D 2 's too, no prime ( ) is necessary right here} ∪ R0 (int R 0 × [0, ∞), added along int ( • (∞) * ∪ fins), which it houses . But at the level of S ε ( M (Γ) -H) (provisional) (ε = u OR b), the int ( • (∞) * ∪ fins) has been pushed now towards the interior of our S ε ( M (Γ) -H) (provisional), and we want to bring it back to the boundary, where it should belong. Of course, our S ε ( M (Γ) -H) (provisional) is (for ε = u), essentially the S u (2) (3.29), with H deleted. (7.23) So, like in Section III, we introduce the next, real-life object, which is now of dimension N + 5,

Figure 7 . 3 .

 73 Figure 7.3.

•

  σ(∞) ≡ σ(∞) -∂ σ(∞) and the lower retraction r is the restriction of the higher one. Also,∂S u (M (Γ) -H) ∧ I -• σ(∞) = ∂S u (M (Γ) -H) I ∪ ∂ (∞) ∧ * .In connection with the lower r, we also have the following commutative diagram, both of the lower arrows of which are inclusions(N 3 ) r (lower r in (7.26)) / / (∞) ∧ * . • (∞) * ∪ (fins -rims) = int• (∞) * ∪ fins (see (7.6.1)) * ∪ (fins -rims) all the p ∞∞ × (-ε, ε)'s are deleted. Then, in connection with the formula (7.26), the (∞) ∧ * lifts to an embedding into both (∂S u ) ∧ I and (∂S u ) ∧ . In this context, we have the inclusions

7 .

 7 The MainLemma 7.4. -For each Λ n there exists a singular disk D 2 n ⊂ ∂S u (M (Γ) -H) cobounding Λ n , such that lim n=∞ D 2 n = ∞ (we are here in the REAL LIFE context) .

Figure 7

 7 Figure 7.4.

  [START_REF] Otera | Asymptotic topology of groups, connectivity at infinity and geometric simple connectivity[END_REF]. The shaded area is a thin neighbourhood of ∂ ∞ . Otherwise, this figure is a microscopic detail of figure 7.1. Also, for each of these objects (N 3 n ) we find that (and see here••••) in (7.6.1) too) int 0 (∞) * ∪ fins = (N 3 n ) | (ε 0 = 0) .In a different vein now, we can get a fairly clear picture of what ∂ ∞ looks like, by contemplating the figures 7.1, 7.1-bis, 7.1-ter, where its worst complicated details are suggested. The figures 7.1-bis, 7.1-ter here mentioned in the beginning of this section, but NOT drawn explicitly. A useful image to have in mind for∂ ∞ = ∂ (∞) ∧ * ∪ σ(∞), is provided by figure 7.1, namely ∂ (∞) ∧ * ∪ {arcs like [x ∞ , y ∞ ] which rest on ∂ (∞) ∧ * ,see figure 7.1}. The figure 7.4 displays another kind of pieces of ∂ ∞ , which are less obvious in the figure 7.1.

Figure 7

 7 Figure 7.5.

  The square S(m, n) has exactly its four curves living in (∞) ∧ * -∂ (∞) ∧ * and it sees two holes H(m), H(n), pertaining to W (m), W * (n). They live above S 2 ∞ (BLUE) at levels x ∞ + x(m), x ∞ + x(n), where x(m), x(n) are positive; the lower boundaries of H(m), H(n) are at x ∞ + x(m), x ∞ + x(n). At this stage in the game, m,n S(m, n) ⊂ S 2

  .8-(A, B) and from the viewpoint of W (n)(BLACK), they are the p n∞ 's in the same figure. The holes H(m) or H(n) above are the BLACK Holes but then, each W (BLACK) also carries two holes H(p ∞∞ (S)), occurring when the W (BLACK) crosses the boundary of S, see here figure 5.1. The W (m) × [-ε m , ε m ] contains the infinitely many little squares S(m, n), |n| → ∞, which accumulate on the two (p ∞∞ (S)(W (m)) × [-ε m , ε m ] ⊂ ∂ ∞ . The only specific metric fixing which our Θ 3 needs, is to take lim n=∞ x(m) = 0 = lim m=∞ x(n)

r ( 7

 7 * ∪ fins has NO contribution whatsoever from the p ∞∞ 's, while int (∞) * ≡ f LIM M 2 (f )× [-ε, ε) ⊃ p∞∞(ALL)p ∞∞ × (-ε, ε); see (3.21) and (7.6.1). Everything in this diagram (7.42) lives in M (Γ), and in its context let us also define, for any β > 0, the sets(7.43) V β ≡ the β-neighbourhood of ∂ ∞ inside int • (∞) * ∪ fins , and (7.44)

Figure 7 . 6 .

 76 Figure 7.6. The factor (-ε n , ε n ) of N 3 n is parallel to [-α, α], but their numerical value are independent of each other. Eventually, we will think in terms of an ε n < α s.t. (N 3 n ) ⊂ U α . Do not mix up the [-ε n , ε n ] with the [-ε, ε] in the figure. They have nothing to do with each other and stand for direction transversal to each other. Also, we have:

S 2 ∞

 2 . It also accompanies the Sublemma 7.4.4 below. Sublemma 7.4.4. -The sizes of the Holes can be chosen so that, without contradicting anything said so far, the following should happen too (7.48) There is a continuous monotonically decreasing function α ∈ [0, ∞) β -→ [0, ∞), such that lim α=0 β(α) α = 1 , and β(α) ≤ α , (i.e. here α → 0 and β(α) -→ α → 0 0 too), Here, for the equality on the LHS, notice that on the LHS of figure 7.7 one can read, exactly the equality in question. And see, also, the (7.55.2-bis), below. The commutativity of our diagram can be read on figure 7.7. The two vertical/oblique arrows are inclusions. The right one should be obvious, while the left one combines the individual R 0 ×{∞} ⊂ R 0 ×[0, ∞] with (7.52.1).

3 3 are

 33 connected by the homotopy ρ t from the Sublemma 7.4.5. When we go next, from the lower arrow in the diagram above to the Λ jn r ρ1 p2 p1

1 / 1 O O i 4 4 To the D r ρ 1 p 2 p 1 Λ

 11441 ends up in the (∞) ∧ * ⊂ (∞) * × [0, ∞] (see the RHS of figure 7.7).So, by now we got toD r ρ 1 p 2 p 1 Λ jn ⊂ (∞) ∧ * ⊂ (∞) * × [0, ∞] ,coming with the commutative diagram(∞) * × [0, ∞] j • D -/ ∂S u (M (Γ) -H) ∧ . (∞) * × {∞} c jn ⊂ (∞) ∧ * above, we apply now the natural projection (∞) * × [0, ∞] π (∞) * ×{∞}, given by the arrows in the RHS of the figure 7.7, which is again a homotopical transformation. So, by now we have connected via homotopy, theΛ jn ρ1 p2 p1 / / ∂S u (M (Γ) -H) ∧ and the Λ jn π•D•r ρ1 p2 p1 ----------→ ∂S (M (Γ) -H) ∧ .Here, of course, π• D • r ρ 1 p 2 p 1 = R ∞ r ρ 1 p 2 p 1 = R ρ 1 p 2 p 1, with D a diffeomorphism and π a homotopical retraction.

( 7 .( 7 . 56 . 2 )

 77562 [START_REF] Poénaru | On the Handles of index one of the product of an open simply-connected 3-manifold with a high-dimensional ball[END_REF].0) In view of everything already said, what we want to do now is to fix, for every x ∈ Θ 4 (Θ 3 (πf X 2 -H) , R), and its corresponding fiber x ∈ B N ⊂ S u (M (Γ) -H) I , the x × B N . And, via {the (7.54)} + {the x × B N , as fixed by (7.58) below (see the end of that item) and by figure7.7 below}, we will haveIf Θ 3 x n -→ ∂ ∞ , then (p 1 • p 2 ) -1 (x) B N -→ 0 .End of (7.56.0) Our requests are the following. (7.56.1) Reinforcing what was said before, in connection with the Lemma 7.2, of which, actually, it is exactly Part I which interests us right now, inside (7.55) we should find thatS u (M (Γ) -H) I = S u (M (Γ) -H) I ∪ ∂ ∞ = S u (M (Γ) -H) ∧ I .Remember that our Λ jn 's live inside ∂S u (M (Γ) -H) I and once the metric on S u (M (Γ) -H) I is completely and explicitly fixed, any natural extension of it to S u (M (Γ) -H), the REAL LIFE guy, will be OK. The (7.31.1 and 2) are a purely ∂S u (M (Γ) -H) I affair, and we want that with our by now fixed d, not only the (7.31.1 and 2) should be with us but that, moreover, the Sublemma 7.4.2 should be verified too. So, fulfilling our PROGRAM should provide a complete proof for the sublemma in question. (7.56.3) For the {Λ jn from (7.31.2)} ⊂ ∂S u (M (Γ) -H) I and hence for {our Λ jn from the Sublemma 7.4.2} too, we should have {Λ jn } ∩ [Θ 4 (Θ 3 (πf X 2 -H) , R) × {n}] = ∅.

2 -

 2 H) , R) ∪ ∂ ∞ .The p 1 Λ jn 's are disjoined from ∂ ∞ , and hence0 < d(p 1 Λ jn , ∂ ∞ ) ≤ d(p 1 Λ jn , Λ ∞ ) .[Some pedantic explanations. Here ∂ ∞ Λ ∞ and p 1 Λ jn are all three compact, to begin with. And we haved(p 1 Λ jn , ∂ ∞ ) ≡ min x ∈ p 1 Λ jn , y ∈ ∂ ∞ d(x, y) , d(p 1 Λ jn , Λ ∞ ) ≡ min x ∈ p 1 Λ jn , z ∈ Λ ∞ d(x, z) ,with the situation suggested by the little schematical drawing below, where clearly, d(x, y) < d(x, z).]

( 7 . 58 )

 758 Modulo some smooth interpolations, we have the following.If y ∈ Θ 4 (Θ 3 (πf X 2 -H) , R) is such that ε n+1 < d(y, ∂ ∞ ) < ε n ,then we will take y × B N = ε n , and see here the figure7.8 for an illustration. This takes care of (7.56.0). With this precise metric fixing, since we have that, in the situation when n → ∞, lim y × B N = 0 , when lim(y, ∂ ∞ ) = 0 , the condition (7.56.1), i.e. the correct compactification, is verified. End of (7.58).

Figure 7 . 8 . 3 N

 783 Figure 7.8.This figure illustrates the(7.58). We see here some ε n -neighbourhoods of ∂ ∞ in Θ 4 (M (Γ), R) × R N and also a generic y s.t. ε n+1 < d(y, ∂ ∞ ) < ε n . Here ε n is like in(7.57). Also in view of (7.56.4), we may assume that d(x, y) = y × B N = ε n , as the figure suggests.

R 0 ×

 0 [0, ∞]which, via D in (7.50), we will think of asK ∩ ( (∞) * × [0, ∞]). Now, if x ∈ K ∩ ( (∞) * × [0, ∞]) and we consider the projection dual to our π (which is (∞) * × [0, ∞] π --→ (∞) * × {∞}), namely (∞) * × [0, ∞] π -1 ----→ (∞) * × {0} ,then the arc [π -1 (x), π(π -1 (x))], i.e. the generic arrow in figure7.7, contains the sub-arc [π -1 (x), x] ⊂ [π -1 (x), π(π -1 (x))], which for appropriate x is exactly K ∩ [π -1 (x), π(π -1 (x))] (or at least it contains it).And the doubly shaded area in the RHS of figure 7.7 is supposed to be the following union over allx ∈ K ∩ (∞) * × [0, ∞] : x [π -1 (x), x]. So, the doubly shaded area in figure7.7 stands for a subset of (∞) * × [0, ∞] which completely contains the K ∩ (∞) * × [0, ∞] . End of (7.61).

•• )

 ) The 0 = {s} ∈ S N -1 is the level of ∂ ∞ (see figure 7.7).

5 5 are

 55 connected by a homotopy which avoids K.

( 7 . 2 jn

 72 67) R ρ 1 p 2 p 1 Λ jn ⊂ (∞) * × {∞} (cut) .Invoking now the π 1 -injectivity from the Sublemma 7.4.3, we can find a singular diskd 2 n → ( (∞) * × {∞})(cut), such that ∂d 2 n = R ρ 1 p 2 p 1 Λ jn .With this, we may take nowD = [Λ jn , R ρ 1 p 2 p 1 Λ jn ] ∪ d 2 n .

  THE PROOF OF THE COMPACTNESS LEMMA 5.7. What we need to show in the context of(5.47-REAL LIFE) is that η • β | n C -(H n ) and α | n C -(H n )are connected by a PROPER homotopy. The MAIN LEMMA 7.4 tells us thatΛ n = {α C -(H n ) • γ n η β C -(H n )} ⊂ ∂S u (M (Γ) -H)which are such that the Λ n 's comes with lim n=∞ Λ n = ∞ are, at the same time, cobounded by singular disks D 2 n also coming with lim n=∞ D 2 n = ∞. In view of the dumb-ball geometry of Λ n , these D 2 n 's can be viewed as

  33)}. The hidden piece above can be visualized, in the context of the toy model, in figure 4.2.(B) where it is the curved surface

  . for every system of D 2 n 's cobounding the Λ n 's, we have # {n s.t.D 2 n ∩ K = ∅} = ∞.From now on, K denotes a generic, arbitrary compact subset of ∂S u (M (Γ) -H). Sublemma 7.4.1. -The statement (NON P 1 ) implies the following (P 2 ) ∃ K and ∃ an infinite subsequence Λ h1 , Λ h2 , . . . ⊂ {Λ n }, s.t. ∀ cobounding systems D 2 h1 , D 2 h2 , . . ., we have D 2 hi ∩ K = ∅, ∀ i.

	[At the risk of being pedantic, we will prove this implication here. Define	⊂ {Λ 1 , Λ 2 , Λ 3 , . . .} by
	( * ) Λ i ∈	⇐⇒ ∃ a cobounding disk D 2 i for Λ i , s.t. D 2 i ∩ K = ∅, where K is the compact space which
	has occured in (NON P 1 ), and which is given.		
	Next, let hi ∩ K = ∅. D 2	≡ {Λ 1 , Λ 2 , . . .} -, which means that Λ hi ∈	⇐⇒ ∀ cobounding D 2 hi of Λ hi are such that
	We have here two possible cases, either #	< ∞ or #		= ∞. Start by assuming that #	< ∞ and
	look at the disjoined partition		
		{Λ 1 , Λ 2 , . . .} =	+	,

  ,W 2 are generic notations and the thickenings should be W 1

	Some more notations will be necessary for what will follow next. In the context of (7.24), we consider
	the decomposition	
	Θ 3 (πf X 2 -H) ≡	thickened complementary DITCH-carrying walls W 1 -H(p ∞∞ ) -{the BLACK Holes}
	∪	thickened non-complementary walls carrying the completely normal Holes W 2 -
	(7.47)	-{completely normal Holes} ;
	here W 1	

which are bound to occur, possibly close to f LIM M 2 (f ) × {± ε} BUT, with our restriction (7.45), certainly NOT closer than η (7.35).

  in our drawing, is like in 4) from the forthcoming Sublemma 7.4.5 and the formula(7.51). The pair of points (••) drawn at the level of W (∞) should suggest, very schematically, the trace of the zipping flow. Together with the C -(H n )'s they are the contribution of {p 2 p 1 Λ n } ⊂ Θ 3 (πf X 2 -H) , at the level of this figure. Our figure should also illustrate that, asymptotically at least, i.e. for high enough n's, we have {p 2 p 1 Λ n } ⊂ U 3 (α) (shaded in this figure). The U 3 (α) is defined, formally in (7.48.1) below. The shaded piece of the dotted S 2 ∞ between a pair of red points in ∂

In order not to overcomplicate our drawings, we have refrained from drawing explicitly most of the red lines of type W (RED -H 0 ). This concerns (A).

We see here a W ∞ (BLACK) H 1 . The shaded part ( ) is a piece of W (BLACK) living in a parallel plane, disjoined from W ∞ (BLACK) H 1 . The interesting details inside it are not drawn here, but in the figure 7.2.3. The present points s are like the s's in the figure 2.6. This concerns (B). The figure 7.2.2 we have represented the cylinder W (RED), actually its piece W (RED ∩ H 0 ) (and there are two of them for each W (RED)). We see here the interaction of W (RED∩H 0 ) with the W (∞) (BLACK)'s and with the W (BLUE)'s. The S 2 ∞ ∩ W (RED) is contained in the INTERIOR of W (RED ∩ H 0 ) ⊂ W (RED). Also, inside the same W (RED), to the present W (RED ∩ H 0 ) corresponds also a different W (RED ∩ H 0 ), ghostly companion of the present one.

We see here, in figure 7.2.2, that (7.9.2)

and we also see the f M 2 (f )∩W (RED∩H 0 ). For the meaning of σ see figure 7.2.6. Each line W (∞) (BLACK)∩ W (RED∩H 0 ) rests on a level W (BLUE) possibly the ∂W (RED) ⊂ W (BLUE), and also meets S 2 ∞ ∩W (RED)

We see here the contribution of a singularity S at the level of an individual W (BLACK).

LEGEND: (• = p n∞ (S)) is an immortal singularity of f X n . = a wall W (BLACK) * cutting transversally through W (BLACK) (and W (BLUE)'s). ALL THE GREEN CUT ARCS HERE, ARE IN FAMILY (I). Notice, also, that the immortal p n∞ 's, also called "S", only sees W (BLACK)'s and W (BLUE)'s.

We can complete now (7.9.6), taking into account the S-regions too. We find then that we have the following (7.9.7) When we add to (7.9.6) the contribution of the S's as explained in the figure 7.2.4, then the (7.9.6) becomes now true in full generality, with the contribution of (7.9.5) included too. End of (7.9.7) Notice that (7.9.7) only takes care of the issue

But this does not take care of the more global (7.9.7) to which we turn now. Our f LIM M 2 (f ) is carried by the following kinds of walls (7.9.8) W ∞ (BLACK) H 0 or H 1 , W (BLACK), W (RED ∩ H 0 ) (of which there are two for each W (RED)) .

Among these categories of walls, the only non-void intersections are W (RED ∩ H 0 ) ∩ {W ∞ (BLACK) AND W (BLACK)}.

So, to settle (7.9.7) we have to consider the intersections of type (7.9.9) f LIM M 2 (f ) ∩ {a connected component of the union of guys in (7.9.8)}, OR dually

Before we look into that, let us make the following remarks:

•) So, each W (RED ∩ H 0 ) in a W (RED) has a ghostly companion, another W (RED ∩ H 0 ), in the same W (RED). The B, B in figure 7.2.3 are in two such W (RED ∩ H 0 ), ghost W (RED ∩ H 0 ), same W (RED) but two different figures 7.2.2. The B, B in the same figure 7.2.3 belong to two W (RED ∩ H 0 ) which are not even in the same W (RED).

is concerned, this consist of parallel lines of generators, going from one boundary S 1 ∞ to the other, finitely many W (BLACK)'s (and the typical ones are like [CC ] in figure 7.2.3), and INFINITELY many W ∞ (BLACK) H 1 's. The typical such arc is [p ∞∞ , p ∞∞ ] in figure 7.2.1-(B). IMPORTANTLY, these are isolated connected components of (7.9.9), as the figure just quoted tells us. So, in the further discussions of (7.9.7) we may as well forget about them. To these, one should also add short arcs W ∞ (BLACK) H 0 's concentrated each at a boundary S 1 ∞ , and which we will ignore (see here figure 7.2.1-(A)).

• • •)

We look now at the individual (7.9.10)

Here is the composition of (7.9.10). To begin with, each of the finitely many S ⊂ S 2 ∞ produces a connected component of (7.9.10), an ∞ × ∞ grid of (W (BLACK)'s) ∪ (W (BLACK) * 's).

For the next item we take a clue from figure 2.7. And now we see the following infinite tangle of lines inside our S 2 ∞ , namely the following (7.9.10-bis) Finitely many circles S 1 ∞ , each coming with an infinite family of concentric other, smaller circles S 2 ∞ ∩ W (RED ∩ H 0 ). Then infinite families are joined by stacks of parallel BLACK arcs, infinitely many W (BLACK)'s and infinitely many W ∞ (BLACK)'s.

Getting now more global, notice that S 2 ∞ ∪ (S 1 × I) ∞ is looking very much like the 1-skeleton of M (Γ) and/or of M (Γ).

Corresponding to each cycle of that 1-skeleton, replicated at the level of our (Σ S 2 ∞ ) ∪ (Σ(S 1 × I) ∞ ), we see infinitely many (7.9.11) Cycles of unions of ((S 2 ∞ and W (BLACK))'s cutting through this (Σ

With this, what is in the way of (7.9.9) from being a union of contractible connected component, i.e. in the way for (7.9-A) are three items, namely, (7.9.12) The cycles coming from S ∩ S 2 ∞ , inside any S 2 ∞ the cycles coming from (7.9.10-bis) and then the additional cycles (7.9.11). Claim (7.9.13). -By using as effective cut arcs all the green arcs in the figures 7.2.4 we can kill the first cycles in (7.9.12). Similarly by using as effective enough green arcs from the figures 7.2.2 we can kill the cycles in the second family. Finally, by using enough green arcs from the figures 7.2.3, or similar cut arcs through lines W (BLACK) ∞ ∩ (S 1 × I) ∞ , occurring in figures which we have not explicitly drawn, but WITHOUT W (BLACK)'s being present, we can kill all the additional cycles too. [The cut arcs used for the additional cycles will reoccur in our discussion of (7.9-B), under the name of primordial cut arcs (β, α(∞)), see here what will be following next.] This ends the Claim (7.9.13) and by now we have our (7.9-A) far, and we can move to (7.9-B).

So, we look now into the 0(3)'s which occur inside the zipping flow Something similar to what we did for the W ∞ (BLACK)'s in figure 7.2.5, can be done for W (RED ∩ H 0 ) and W ∞ (BLACK) too, in the context of figures 7.2.2, 7.2.3 respectively, adding more arcs (II).

We also allow for a discrete, possibly void family of 0(3)'s to escape this kind of process and stay away both from the cut arcs and from the regions M 3 . A W ∞ (BLACK) H 0 with glued zig-zags. The RED and BLUE double lines are not yet glued. We are at the beginning of Step III in the proof of Lemma 6.3. The zig-zags are glued here because they are part of ∂H 1 i (γ)'s which, when H 1 i (γ) is incident to the present H 0 (of W ∞ (BLACK)) are already glued to W ∞ (BLACK) H 0 at level X 2 , before any f . Finally, for the purpose of choosing the locations of the 0(3)'s, we will start by fixing the effective cut arcs which may be in addition to the ones already used for (7.2.7), and, for that purpose we need to go back to Lemma 6.3 and to its proof. We start with Step I of the proof in question, and to the zipping of all the (7.9

downstairs, obvious image of the upper zipping. Ignoring for a time the 2-handles, we only retain the handles H 0 , H 1 of M (Γ) and of M (Γ). At the downstairs level of M (Γ), the H 0 , H 1 and their incidence relations induce a graph G. At the level of M (Γ) there is a similar graph which we denote G and we have a covering map G π --→ G. [Careful here, G is not necessarily the universal covering space of G. But we have here a Galois covering of group Γ.]

Explanations: We start by writing the last formula in an equivalent but more detailed form:

Here, in the RHS, via (7.17.1), the first term is controlled by |α -x|. Similarly, via (7.17.6), the third term is controlled by |α -x| too. The middle term concerns F i x, when we already know that we have uniform convergence. By now 3) is proved and, from here on the rest of the proof of our Lemma 7.2 is left to the reader. End of Proof of Lemma 7.2.

We go back now to the construction

which was already presented in Section III so that we should be able to state there the GSC Theorem, in its full glory.

But, in the meanwhile, the Holes ("-H") and the S ( ) b also appeared, and we want to inject them now in too, in the context of (7.18). And, for the comfort of the reader, there will also be now a certain amount of repetition, with respect to what we have said already earlier.

We may happily assume that the following item proceeds the (7.18), namely the TRANSFORMATION below. 

It should be kept in mind here that, later on, at the completed (compactified) level, we will also add

We can apply the Lemma 7.3, which poduces then for us sub-sub-sequence jn which cobounds it inside the REAL LIFE ∂S u (M (Γ) -H) ∧ , and which avoids the K. This last item will disprove the (P 2 ) and hence it will prove (P 1 ). The various discussions which will follow now will take place in the context of the diagram below

-There is a sub-sub-sequence of the Λ j1 , Λ j2 , . . ., of (7.31.2), which we will denote again Λ j1 , Λ j2 , . . ., and for which we can find a sequence of positive numbers

converging to zero, such that, for all n's we have

The distances are computed here in the metric of S u (M (Γ) -H) ∧ and, since we will have to be quite specific about it, this otherwise quite straightforward lemma will be proved only later on.

In the meanwhile, with an ε 0 like in (7.24.1), we consider a sequence of continuous functions defined on (∞) ∧ * , which are C ∞ when restricted to • (∞) ∧ ((7.6.1-bis)) and converging uniformly to zero (7.32.2)

Once we have this sequence, then like in (7.25.1) we can define "neighbourhoods"

modelled after the (7.25), (7.25.1), so that we have (N 3 0 ) = {the (N 3 ) from (7.25.1)}, and also

By analogy with the lower retraction r from (7.26) we also have now an infinite sequence of such retractions, starting with r 0 = r,

with which come also the following features.

We start by considering the following piece of Θ 3 (πf X 2 -H) , and we make use here of the notations from (7.47)

(For U β(α) see the figure 7.6.) And keep in mind here that

In terms of the figure 7.6, the ( * ) corresponds to the shaded pieces

Next, we introduce the full shaded part of U β(α) in figure 7.6, formally defined as

[This formula may look forbidding, but here is what it says, in plain English. Let us look at the U p(α) which, in figure 7.6, is most to the left of the page. Then U 3 (α) | {this U β( * ) } is the shaded part of (this) U β(α) . And then, to the right of the vertical line at -ε we have the term ∪

W1

, i.e. the contribution of N 1 (β(α))W 1 , already mentioned, while to the left we have the contribution of the terms

. There is really nothing mysterious here.] Taking W (n) ∩ W 1 ⊂ N 1 in the formula above means that the n's come with n ≥ n 0 (α),

where

With all this, and without contradicting anything said so far, we can fix the H (completely normal) so that we should have the (7.48.2) below. [And here one has to notice that those W 2 (n)'s which come with

] With all these things, we have as punch-line of our sublemma This takes care of the first inclusion in (7.48.2) and the second one follows from β(α) ≤ α.

The V γ 's occurring in figure 7.6 are part of the discussion which follows afterwards, in the next Lemma 7.4.5. In the context of (7.42) + (7.43), we consider now, for

i.e. for the lower retraction in (7.26) (and see the (7.33.1) too), the r -1 n V β ⊂ (N 3 n ) . We remind here the reader that no trace of ∂ (∞) ∧ * is left alive in (N 3 n ) . Hence (N 3 n ) does NOT contain anything like p ∞∞ × (-ε, ε). See how N 3 is defined in (7.25) and (N 3 n ) in (7.33). And, once more, please do not mix up the

and occurring in the definition of (∞) ∧ * , and the transversal factor [-ε n , ε n ] from

i.e., removing now ALL the contribution of

with the contribution of the fins included .

They have nothing to do with each other.

We consider now an α > 0 which we can make arbitrarily small. We let then the index n of (N 3 n ) be n = N (α) with lim α=0 N (α) = ∞, so that for small α we should have

and also the estimate: dist((N 3 N (α) ) , Σ 1 (∞)(≡ limit position for the compact walls in M (Γ))) < β(α).

Sublemma 7.4.5. -1) There is a homotopical retraction ρ t for all t ∈

) , with the features below. 2) In the context of (7.48.2) we have

3) Points which are very close to ∂ ∞ , when moved by ρ t , continue to stay sufficiently close to ∂ ∞ .

4) There exists a continuous function

see the notation from (7.33), (7.33.1). Here V γ(β) is suggested in the figure 7.6, and (r -1

Proof. Starting with (7.47), we use a horizontal retraction which brings all the term [(thickened noncomplementary walls W 2 ) -(the completely normal Holes)] into (thickened complementary walls W 1 ); this part can be guessed from the figure 7.6. Next, we continue to retract vertically, towards (∞) ∧ * , staying close to the vertical counter-image (r -1 ∂ (∞) ∧ * ) ⊂ N 3 , see (7.26). This again should be visualized on the figure 7.6. End of Proof.

Retain here that, for α → 0, the

can be brought very close to ∂ ∞ via a homotopical retraction over ρ t .

We rephrase now the ( * 2 ) in (7.24), in the useful form below (7.52) There exists a diffeomorphism, with (∞) * like in •) from (7.6.1),

and, in the present section, whenever we write things like (∞) * ×[0, ∞], it should be understood that every We develop now some features of (7.52). To begin with, we have R 0 × {∞} (without additional identifications, just the lateral edges of R 0 's are glued together when necessary in the RHS of (7.52.1)), and this comes with a natural embedding

In the RHS of figure 7.7 the only visible contributions of ∂ (∞) ∧ * are the individual points a, c, e, while the

* is hidden from view in our too schematical drawing. (7.52.2) We have a commutative diagram

gotten by inverting the arrows in the RHS of figure 7.7.

2) For high enough n and N (α), meaning also for small α, we have

and the composite map )

Here ρ 1 is like in the Sublemma 7.4.5, and R like in (7.52.4).

[Here is, more in detail, how the two maps in the diagram are to be conceived. The upper map in (7.53.1-*) is the composition

Then, the lower map in the same diagram is the following composition, where one should keep in mind that

3) In the context of 3) above, when it comes to p 2 p 1 Λ jn (from (7.53.1)), it is only the X 3 (cut) which is concerned, of course.

4) And, with this we also have: From the combination of Lemmas 7.3 and 7.4.3 with the π 1 -injectivity of the map b in diagram (7.36.1), follows the following fact. The map

Proof of 2). To begin with, keep in mind that

• r , with r like in (7.52.5).

We define now ε n ≡ √ 2 ε n , and these will be the actual ε n which are occurring in the Sublemma 7.4.2, i.e. in the (7.32.1).

Let now x ∈ Λ jn , with y ≡ p 1 (x) ∈ p 1 Λ jn . By (7.57) we have that ε n+1 < d(y, ∂ ∞ ) < ε n , which combined with the choice made in (7.58), implies that y × B N = ε n . We also have x ∈ y × B N and so, combining the second inequality in (7.57) with (7.58), we have

Next, by (7.57), as already noticed, we have

, we have then, again by Pythagora, that

[Figure 7.8.1 should illustrate ( * ) and ( * * ).]

Putting all these things together, we get finally that

which prove the Sublemma 7.4.2. The triangle in (B) concerns the inequality ( * * ). The two edges ending in the red point in (A) are longer than the present two edges ending in the green point. So d(x, ∂ ∞ ) ≤ d(x, Λ ∞ ). Also, we apply once more Pythagora.

With this the item (7.56.2) in our program has been fulfilled. For the item (7.56.3) one notices that, inside the smooth (N + 3)-manifold ∂S u (M (Γ) -H) I , the Θ 4 (Θ 3 (πf X 2 -H) , R) × {n} is a smooth submanifold of codimension (N + 3) -4 = N -1 1. We think here, of course, in terms of

We are free to budge the curves Λ jn ⊂ ∂S u (M (Γ) -H) I via a small isotopy, and so they can avoid the Θ 4 (Θ 3 (πf X 2 -H) , R) × {n}.

End of (7.64).

[We have here p 1 Λ jn (x) ∈ p -1 2 (p 2 p 1 Λ jn (x)), and the homotopy ( * )

uses the fiber p -1 2 (p 2 p 1 Λ jn (x)).] With high enough n, since p 2 p 1 Λ jn ⊂ U 3 α(n) ⊂ U β(αn)=βn , we may invoke the (7.60) and both p 2 p 1 Λ jn and its p -1 2 -fiber are close to ∂ ∞ . By now, we have p 2 p 1 Λ jn ⊂ U βn ∩Θ 3 . Also, with our j n which is supposed to be very high, the homotopy [p 1 Λ jn , p 2 p 1 Λ jn ] avoids K, by which we mean the various incarnations of K, via p 1 or p 2 p 1 , at the level of (7.31.3). [we use here

The point here is that, if n is high enough, then the homotopy ( * ) stays close to ∂ ∞ and hence avoids K. And then the same kind of thing will be true for what will follow next. (7.65) With all this, the next homotopy

which uses the ρ t from (7.50), also avoids the compact K. At the end of this homotopy, we find

with the (N 3 N (αn) ) like in (7.49), with the α from (7.49) changed to our very high α n . The ρ t stays far from K because it is confined inside U βn , which avoids K (see (7.60)).

2) In the context of (7.37) + (7.38) we move now to the REAL LIFE context, and we write ( * )

see here (7.51) and also (7.53)

and see here (7.52.4) .

At this point notice the following item. Our R = R ∞ • r makes use of π (see (7.52.3)). Via things already said, and in particular because of the feature (7.61) concerning the position of K with respect to π, the next homotopy

stays away from K too. [In terms of the RHS of figure 7.7, the R ρ 1 p 2 p 1 Λ jn is contained in the red (∞) * × {∞}, while ρ 1 p 2 p 1 Λ j2 is contained in the white part, outside both of the red and the shaded area. Then the arrow π do the trick.] By now we have constructed a chain of homotopies

Putting all these things together clinches the proof of our sublemma. End of Proof for the Sublemma 7.4.6.

Before going on, we will say some words concerning this sublemma and also come back to the reasons of not centering our B N ⊂ R N at {0} = {s} but rather take

We have, essentially and certainly sufficiently accurately for the present purposes,

Moreover, via a simple-minded isotopy, we can always arrange so that

We have used this already in (7.56.4). Then, by (7.60) and ( 7.62), we also have (for high n)

all this with Λ jn AVOIDING {n} ∈ S N -1 (by (7.56.3)) and also with 

are closed to ∂ ∞ , which lives at s = 0 and, hence any R N -1 -linear homotopy connecting them is also thinly close to s = 0 and hence avoids K. This is the context of (7.63) in our sub-sub-lemma. So we can move to the next item, which is developed in the REAL LIFE context. And it certainly would NOT work just with VARIANT I.

Sub-sub-lemma 7.4.7. -For n high enough, the

This contradicts the statement (P 2 ), and hence it proves the MAIN LEMMA 7.4.

Proof. By (5.50.1), we know already that Λ jn is null-homotopic inside ∂S u (M (Γ) -H) I . Hence, it is also null-homotopic inside the ∂S u (M (Γ) -H) ⊂ ∂S u (M (Γ) -H) ∧ . But the problem, of course, is that the generic singular disk cobounding Λ jn may happily cut through K.

So, here is how we produce our desired D In most of the present paper, the main character is the space S u M (Γ), with all the ∂ (∞) ∧ living at infinity, and hence absent from the real object S u M (Γ). This deletion was essential for unrolling the ZIPPING FLOW in high dimensions. And then, using the S u M (Γ) ∧ , a compact space we have managed to show that S u M (Γ) ∈ GSC.

As an easy consequence of this we have S u M (Γ) ∈ GSC, the main result of TRILOGY II. And, from here on, the S u M (Γ), which was an immensly useful tool disappears from the scene, and the main hero is now S u M (Γ). If, for simplifying the exposition we ignore the fins, we find now at infinity the f LIM M 2 (f ) × {±ε} ∪ p ∞∞ (S) p ∞∞ × [-ε, ε], the p ∞∞ (proper) × [-ε, ε) having been healed.

In our big S u M (Γ) story, it was essential that all the immortal singularities S should live at x = x ∞ . That meant infinite accumulation on the p ∞∞ (S) × [-ε, ε], which had forced us to delete them.

Finally, the S u M (Γ) which still has a big role in front of it (and not only in TRILOGY III, but beyond too) has, as man-made infinity, exactly

Of course, there is also the God given infinity of S u M (Γ), coming from Γ itself. End of TRILOGY III.