This paper is the second part of a TRILOGY containing the complete proof that all finitely presented groups have the QSF property. The TRILOGY I is "Equivariant, locally finite inverse representations with uniformly bounded zipping length", by V. Poénaru, In Geom. Dedicata 167 pp. 99-121 (2013).

The present paper, which is TRILOGY II, completely supersedes the former version "Geometric simple connectivity and finitely presented groups" (2014) ArXiv:1404.4283[mathG. T.].

The main result proved here is that a certain very high dimensional space S u M (Γ), attached to the finitely presented group Γ, is geometrically simply connected (GSC). The S u M (Γ) is formally defined here in Section I and, the fact that S u M (Γ) ∈ GSC, proved in this TRILOGY II is the main step in our proof that all Γ ∈ QSF. The present TRILOGY II relies heavily on the TRILOGY I and TRILOGY III which clinches our program is already completed, in a new revised version. It relies heavily on the present TRILOGY II.

Finitely presented groups and geometric simple connectivity (GSC) by V. Poénaru This is a completely re-written, and hopefully more reader-friendly version of the earlier "Geometric simple connectivity and finitely presented groups" ArXiv/1404.4283[MathG.T.] from 2014 [START_REF] Poénaru | Geometric simple connectivity and finitely presented groups[END_REF], which it completely supersedes and replaces.

Introduction

This is the second of a series of three papers (The TRILOGY) and the big end result of this whole Trilogy is the following result: ALL FINITELY PRESENTED GROUPS HAVE THE QSF PROPERTY.

The present TRILOGY II is the main part of the proof of this result.

But, for completeness' sake, let me start by recalling what QSF ("quasi-simply filtered"), a notion introduced by S. Brick, M. Mihalik and the late J. Stallings [START_REF] Brick | Quasi-isometries and ends groups[END_REF], [START_REF] Brick | The QSF property for groups and spaces[END_REF], [START_REF] Stallings | Brick's quasi-simple filtrations for groups and 3-manifolds[END_REF] actually means. Definition 1.0. -A locally compact complex X (and from now on we will stay in the simplicial category, when the QSF is concerned), is said to be QSF if for every compact k i ⊂ X there is a finite simply-connected complex K (which is abstract i.e. NOT part of our X above) endowed with an injective map k j --→ K and also with a simplicial map K and which is such that we have the following "DEHN CONDITION" jk ∩ M 2 (f ) = ∅ . End of Definition 1.0.

Here M 2 stands for the double points set, i.e. if we have any map A g --→ B, then M 2 (g) ≡ {the subset of points x ∈ A s.t. # g -1 (g(xj)) > 1}. We will also use the notation M 2 (g) ≡ {the subset of those (x 1 , x 2 ) ∈ A × A s.t. x 1 = x 2 and g(x 1 ) = g(x 2 )} .

This comes with an obvious projection

(1.3) M 2 (g) Z/2Z
-----→ M 2 (g) .

In connection with Definition 1.0, S. Brick, M. Mihalik and J. Stallings proved the following Theorem 1.1. -(Brick, Mihalik and Stallings) 1) Let K 1 , K 2 be two finite complexes such that

Γ ≡ π 1 K 1 = π 1 K 2 .
Then K 1 is QSF iff K 2 is QSF. And, if this is the case, then we will say that the finitely presented group Γ is QSF.

2) If Γ = π 1 M 3 , where M 3 is a closed 3-manifold, then Γ is QSF iff π ∞ 1 M 3 = 0.

The 1) in the theorem above means that QSF is not just a topological notion, but also group-theoretical, a presentation independent property. Various notions, otherwise closely related to QSF, and see here the two parts survey [START_REF] Otera | Topics in Geometric Group Theory I[END_REF], [START_REF] Poénaru | Topics in Geometric Group Theory II[END_REF], do, not share this property, which singles it out.

At this point, I will restate the main result (for the whole Trilogy) of which our very present paper only provides one big chunck of the proof.

Theorem 1.2. -All finitely-presented groups Γ are QSF.

The complete proof of Theorem 1.2 is the object of the Trilogy, of which part I, or TRILOGY I is [START_REF] Poénaru | Equivariant, locally finite inverse representations with uniformly bounded zipping length for arbitrary finitely presented groups[END_REF] while parts II and III (i.e. TRILOGY II and TRILOGY III) are, respectively the present paper and its sequel "All finitely presented groups have the QSF property". TRILOGY II and TRILOGY III, in preliminary versions, exist already as ArXiv texts, see [START_REF] Poénaru | Geometric simple connectivity and finitely presented groups[END_REF], [START_REF] Poénaru | All finitely presented groups are QSF[END_REF]. But these are superseded by the newly, completely re-written versions, the present text and another text to follow soon.

And I also hope that these new texts, which are re-written from scratch, should be more reader-friendly than those older ArXiv texts ArXiv/1404.4283[Math.GT], 2014, (Trilogy II), and ArXiv/409.7327[Math.GT], 2015, (Trilogy III).

I have strived to make these two new versions of TRILOGY II and III clearer, better organized and more precise, and also more self-contained too, than the older versions. So, the reader does no longer have to go or browse through all those older papers of mine, except of course for [START_REF] Poénaru | Equivariant, locally finite inverse representations with uniformly bounded zipping length for arbitrary finitely presented groups[END_REF] (TRILOGY I) and the survey [START_REF] Otera | Topics in Geometric Group Theory I[END_REF], [START_REF] Poénaru | Topics in Geometric Group Theory II[END_REF] which should be quite helpful too.

The two part survey [START_REF] Otera | Topics in Geometric Group Theory I[END_REF], [START_REF] Poénaru | Topics in Geometric Group Theory II[END_REF] offers both the introductory material for the Trilogy and a presentation of the main lines of the proof. The more recent survey [START_REF] Poénaru | On geometric group theory[END_REF] should also be a good preliminary for the TRILOGY, together with the [START_REF] Otera | Topics in Geometric Group Theory I[END_REF], [START_REF] Poénaru | Topics in Geometric Group Theory II[END_REF]. In this paper and in the next, I will freely quote and/or lean on Part I of the Trilogy [START_REF] Poénaru | Equivariant, locally finite inverse representations with uniformly bounded zipping length for arbitrary finitely presented groups[END_REF] and on the survey [START_REF] Otera | Topics in Geometric Group Theory I[END_REF], [START_REF] Poénaru | Topics in Geometric Group Theory II[END_REF]. But, otherwise, I have tried to make the new TRILOGY II and III independently readable of other references, as much as possible, at least.

The following result is a consequence of G. Perelman's proof of the Geometrization of 3-manifolds, which includes, of course, the proof of the 3 d Poincaré Conjecture [START_REF] Perelman | The entropy formula for the Ricci flow and its geometric applications[END_REF], [START_REF] Perelman | Ricci flow with surgery on three-manifolds[END_REF], [START_REF] Perelman | Finite extinction time for the solutions of the Ricci flow on certain three-manifolds[END_REF], [START_REF] Bessières | La conjecture de Poincaré: la preuve de R. Hamilton et G. Perelman[END_REF], [START_REF] Besson ; Après | Une nouvelle approche de la topologie de dimension 3[END_REF], [START_REF] Maillot | Flot de Ricci et géométrisation des variétés de dimension 3 (D'après R. Hamilton et G. Perelman[END_REF], [START_REF] Morgan | Recent progress on the Poincaré Conjecture and the classification of 3-manifolds[END_REF], [START_REF] Morgan | Ricci Flow and the Poincaré Conjecture[END_REF], [START_REF] Bessières | Geometrization of 3-manifold[END_REF], [START_REF] Morgan | The Geometrization Conjecture[END_REF]. Using the Ricci flow, one gets the following reult Theorem 1.3. (G. Perelman) -If M 3 is a closed 3-manifold then we have

(1.4) π ∞ 1 (π 1 M 3 ) = 0 (⇔ π ∞ 1 M 3 = 0) ,
and hence, via Theorem 1.1 we also have π 1 M 3 ∈ QSF.

Concerning this very last result, the simple-connectivity at infinity of the universal covering spaces for closed 3-manifolds was a long-standing Conjecture, a close kin of the 3 d Poincaré Conjecture. But "π ∞ 1 = 0" is a rather odd notion and (1.4) is a somehow isolated result, since it is known that in any dimension n ≥ 4 there are closed n-manifolds which are both K(π, 1)'s and which also come with π ∞ 1 M n = 0 (see M. Davis [START_REF] Davis | Groups generated by reflections and aspherical manifolds not covered by Euclidean spaces[END_REF]).

[Remember, also, that M n is a K(π, 1) iff M n is contractible.] Some remarks: A) Personally, I believe that "Γ ∈ QSF" is the good correct substitute for the more hazardprone notion "π ∞ 1 Γ = 0". And, of course, both notions are really group-theoretical, they are presentationindependent. B) Perelman's proof of Theorem 1.3 is consequence of the full geometrization Conjecture of 3-manifolds, making it a really highly-nontrivial result. It actually requires the whole machinery of proof of the Geometrization Conjecture, meaning a bit more than what is necessary for the Poincaré Conjecture itself. Theorem 1.2 implies, of course, Theorem 1.3, but the techniques of its proof, into which we will give a first very schematical glimpse in the next paragraphs of the present section, are completely independent of the techniques via which Theorem 1.3 was proved. Grisha Perelman used the Ricci flow, as already said. But then, more recently, the powerful technology developed in connection with the Waldhausen Conjecture by I. Agol, D. Wise, F. Haglund and others [START_REF] Agol | The virtual Haken conjecture[END_REF], [START_REF] Wise | The structure of groups with a quasi-convex hierarchy[END_REF], [START_REF] Haglund | A combinatorial theorem for special cube complexes[END_REF], provided an alternative proof of Theorem 1.3, independent again, of course, of the technology for Theorem 1.2.

To the best of my knowledge, the only way to get Theorem 1.3 are either the very powerful technology of Perelman and/or of Agol, Wise and all, OR one can view the Theorem 1.3 as a very very special case of Theorem 1.2. Which also means that our Theorem 1.2 cannot, by any means, be trivial or easy. But then, also, it applies to ALL finitely presented groups. Keep here also in mind that in the context of Misha Gromov's theory of random groups [START_REF] Gromov | Random walk in random groups[END_REF], fundamental groups of 3-manifolds are very rare objects, indeed. If you pick up a finitely presented group at random, there is very very little chance that it should be the fundamental group of a 3-manifold. And, I believe, it is also very unlikely that it will come with π ∞ 1 = 0. And, because our Theorem 1.2 functions in the very austere, rarefied ambient world of completely general (f.p.) groups, there are no specific group properties which our technology can hang on to. The only thing we can use is the following MANTRA:

"Discrete symmetry with compact fundamental domain".

But then, having a result which is both highly non-trivial and also completely general, true for all groups, goes against the standard wisdom. There is here a tension for which I have suggested a solution in [START_REF] Poénaru | On geometric group theory[END_REF]. That will require some mathematics still to come. I will anyway come back to this issue in the end of the section.

Tautologically, for every finitely presented group and, except if and when explicitly mentioned, no other groups will ever be considered here, there is a finite presentation.

This can take many forms, the most well-known being the standard combinatorial presentation, via generators and relations (or relators) ( Of course, also, any finite simplicial complex K s.t. π 1 K = Γ is a presentation for Γ too. The very austere, combinatorial presentation (1.5) will never occur as such in this paper. We need more manageable presentations, than that. To my mind, the big interest of (1.5) is its connection to the algorithmically unsolvable problems of mathematical logic. The interested reader might look here at the references [START_REF] Novikov | On the algorithmically unsolvable word problem in group theory[END_REF], [START_REF] Boone | Decision problems about algebraic logical systems as a whole and recursively enumerable[END_REF]. But, anyway, all this is another story.

In the proof of the QSF Theorem 1.2, while we deal with completely general Γ's, we have to be very choosy when it comes to their presentations. To the combinatorial (1.5) we will attach a geometric presentation M (Γ), a compact space, which will be a singular 3-manifold coming with π 1 (M (Γ)) = Γ. Actually, when Γ happens to be the fundamental group of a smooth 3-manifold M 3 , then quite naturally it will turn out that M (Γ) is essentially M 3 itself. Later, in this paper, we will be able to explain why exactly 3-dimensional presentations are necessary for our present purpose. And very soon we will explain also how the M (Γ) looks like.

We will give now a hint on how the proof of Theorem 1.2 goes. The main actor of the play will be a very high-dimensional "thickening" of M (Γ) which will denote by (1.6) S u ( M (Γ)) , which is a locally finite simplicial complex, let us say a manifold with singularities, and there are good technical reasons why such singularities should be there; this will become clear in due time. More specifically, there are very good reasons for not thickening further, and become non singular. But then, also, our not yet well-defined (1.6) is not coming with a straightforward inclusion M (Γ) ⊂ S u ( M (Γ)), reason for the quotation marks above. The road from M (Γ) to S u ( M (Γ)), which will be explained in full detail in the next two sections II, III, is quite long and indirect. And, as intermediary objects, it even uses spaces which are NOT LOCALLY FINITE. All this is also part of the reasons for the quotation marks in the "thickening" above. But then, our S u ( M (Γ)) certainly comes equipped with the following structure, very important for our whole approach.

(1.7) There is a free action Γ × S u ( M (Γ)) -→ S u ( M (Γ)) s.t. π 1 (S u ( M (Γ))/Γ) = Γ. Our "S u " is actually a functor, as we shall see. It makes sense as S u M (Γ) and also as S u M (Γ). We have

S u M (Γ) = (S u M (Γ)) ∼ and S u M (Γ) = S u M (Γ)/Γ
and this last formula is a fact to be proved, NOT a new definition. It is important that the S u M (Γ) can be defined directly downstairs, not as a mere quotient of S u M (Γ) via Γ. We can proceed directly downstairs because the functor S u has good properties of localization and globalization (glueing together local pieces). Would we just use S u M (Γ) ≡ S u M (Γ)/Γ as a definition, we would loose important insights. End of (1.7)

The third section of the present paper will describe explicitly the S u ( M (Γ)) in its full complexity. For right now, it will suffice to give a very approximative and schematical description of the road map from Γ to S u ( M (Γ)), forgetting important refinements, right now. We start with a 3-dimensional presentation i.e. with a compact singular 3-manifold M (Γ) s.t. π 1 M (Γ) = Γ. Of course M (Γ) comes with the natural free action Γ × M (Γ) → M (Γ).

But to get rid of those, so-called undrawable singularities which M (Γ) has, we thicken it to a 4 d object Θ 4 ( M (Γ), R), depending on a chosen desingularization R. [All these notions, undrawable singularity, desingularization, will be carefully defined.] But the R-dependence makes that we loose the Γ-action. To restore the Γ-symmetry, we have to multiply with a factor B N , with high N . So keep in mind the following:

Generally speaking, when one goes from M (Γ) to Θ 4 ( M (Γ), R), with a generic desingularization R, then one looses the action of Γ. The Θ 4 ( M (Γ), R) does not possess this symmetry. [The Θ 4 ( M (Γ), R) will be explicitly defined, a bit later, in this section.] Now, fortunately for us, when one goes from Θ 4 ( M (Γ), R) to Θ 4 ( M (Γ), R) × B N (N ≥ 1), then the R-dependence disappears, and the Γ-action is restored, as we shall see.

Of course, one might also start with a desingularization of M (Γ), downstairs, and then take Θ 4 ( M (Γ), R) ≡ Θ 4 (M (Γ), R) ∼ , which is now clearly Γ-equivariant. But more general R's may be imposed on us, making the more general discussion necessary. And then, also, that factor "×B N ", with high N (our additional dimension, additional with respect to the four of Θ 4 ) will be very much needed. It is there, in B N , that the main action will take place, in this paper.

Actually, for technical reasons, more is needed, and finally we get to the following (1.7.0) S u M (Γ) (only approximatively defined now) = {Θ 4 ( M (Γ), R) × B N , and the ×B N washes away the R-dependence} + {other necessary refinements, leaving us with a final object which continues to be mildly singular, but which is no longer a regular neighbourhood of M (Γ) and does not even contain it}. Also, the final, correctly defined S u M (Γ), will turn out to be of dimension N + 5 and NOT N + 4. That is a little subtelty to be disclosed much later. End of (1.7.0) Also, in due time, we will come back to all these things, with more details. Now we only have a first preview.

All this having been said the main result of the present TRILOGY II will be the following theorem, stated here rather impressionistically, but then rigorously stated again, in its full glory, in section III.

The GSC Theorem 1.4. -The cell-complex S u M (Γ) from (1.6) and (1.7.0) is GSC.

Admitedly, the Theorem 1.4 as just stated is not a very precise thing, but at the level of the present introductory section, this should be enough.

And before the complete, mathematically correct version of the GSC Theorem 1.4 can be presented, some technical material will have to be put into place.

Notice, at this point, that if the action of Γ on S u M (Γ) would be co-compact, then Theorem 1.4 would immediately imply Theorem 1.2. But then, that action is NOT co-compact, life cannot be all that simple. So, as we just said, the action of Γ on S u M (Γ) is certainly NOT CO-COMPACT. And so, besides TRILOGY I [START_REF] Poénaru | Equivariant, locally finite inverse representations with uniformly bounded zipping length for arbitrary finitely presented groups[END_REF] and the very present TRILOGY II, our complete Trilogy will also need a third paper, the TRILOGY III. This will contain the proof of the IMPLICATION (1.7.1)

{S u M (Γ) is GSC} =⇒ {Γ is QSF} .
One should think of this (1.7.1) as yet another virtue of our "S u " coming together with the equivariance and the functoriality, already mentioned earlier.

We will elaborate now a bit more on (1.7.1). The QSF property of Brick, Mihalik and Stallings, see Definition 1.1 above has among its ancestors the concept of Dehn-exhaustibility which, in the smooth category is the following item.

The smooth manifold V is, by definition, Dehn-exhaustible if for any compact k ⊂ V there is a smooth connected and compact bounded manifold M , coming with π 1 M = 0 and with dim M = dim V , and with a commutative diagram (to be compared to (1.2))

k j i / / V M f > >
where i is the standard embedding, j injects too and f is a smooth immersion satisfying the Dehn-condition jk ∩ M 2 (f ) = ∅. This notion also makes sense for cell-complexes. And it is also certainly related to the classical Dehn lemma, proved by Papakyriakopoulos [START_REF] Papakyriakopoulos | On Dehn's lemma and the asphericity of knots[END_REF]. It first occurred in my papers [START_REF] Poénaru | Killing handles of index one stably and π ∞ 1[END_REF], [START_REF] Poénaru | Almost convex groups, Lipschitz combing, and π ∞ 1 for universal covering spaces of 3-manifolds[END_REF], [START_REF] Poénaru | Geometry à la Gromov for the fundamental group of a closed 3-manifold M 3 and the simple connectivity at infinity of M 3[END_REF] as well as in Andrew Casson's work [START_REF] Gersten | Casson's idea about 3-manifolds whose universal cover is R 3[END_REF]. But, when one moves from spaces to groups Γ, then just like for GSC, Dehnexhaustibility is NOT presentation-independent. A slightly weaker property than presentation-independence holds nevertheless [START_REF] Otera | Asymptotic topology of groups, connectivity at infinity and geometric simple connectivity[END_REF], and one can still talk of GSC and Dehn-exhaustibility in the group theoretical context.

From my old paper [START_REF] Poénaru | Killing handles of index one stably and π ∞ 1[END_REF] one can extract the following result (explicitly proved in [START_REF] Poénaru | Killing handles of index one stably and π ∞ 1[END_REF] for dim V = 3).

The Stabilization Lemma 1.4.1. -Let V be a smooth open manifold such that for some p ≥ 1, the V × B p is GSC. Then V itself is Dehn-exhaustible.

We have quoted this result here just an illustration; our present Trilogy II does not use it. But it will re-appear in Trilogy III.

In all this discussion, "GSC" stands, of course for the very important, classical notion of "geometrically simply-connected". It will be reviewed in the development of Definition 1.5 below and more about it is to be found in the references [START_REF] Poénaru | Some remarks on geometric simple connectivity[END_REF], [START_REF] Poénaru | A glimpse into the problems of the fourth dimension[END_REF].

With an S u M (Γ) to be rendered completely precise in section three, the proof of the (1.7.1) will use, among other ingredients, arguments like those necessary for the Stabilization Lemma (1.7.2). In the old days of [START_REF] Poénaru | Killing handles of index one stably and π ∞ 1[END_REF], when the stabilization lemma was proved in dimension three, the issue π ∞ 1 M 3 = 0 was becoming big. Today, I tend to believe it was a red herring.

Anyway, in the context of (1.7.0), importantly, it is the compact N -ball B N which is there and not something like int B N or even like B N -{some boundary points}. This is a key point, since any simplyconnected V (open manifold) can be rendered GSC by multiplying it with R N , but not with B N . We abstract from this discussion the following transversal compactness requirement for our S u M (Γ), namely that it should be a (regular) neighbourhood with compact fiber, of some appropriate lower dimensional spine. We will explain next the notion of REPRESENTATION of Γ, not to be mixed up with the "presentations" nor with the more mundane group-representations. For more details concerning this basic notion of REPRESENTATION one can also consult the first part of this Trilogy [START_REF] Poénaru | Equivariant, locally finite inverse representations with uniformly bounded zipping length for arbitrary finitely presented groups[END_REF] and/or the two part survey [START_REF] Otera | Topics in Geometric Group Theory I[END_REF], [START_REF] Poénaru | Topics in Geometric Group Theory II[END_REF]. But, in a more primitive form, it is already there in [START_REF] Gabai | Valentin Poénaru's Program for the Poincaré Conjecture[END_REF], [START_REF] Poénaru | The collapsible pseudo-spine representation theorem[END_REF], [START_REF] Poénaru | Infinite processes and the 3-dimensional Poincaré Conjecture, II: The Honeycomb representation theorem[END_REF], [START_REF] Poénaru | On the equivalence relation forced by the singularities of a non degenerate simplicial map[END_REF], [START_REF] Poénaru | Killing handles of index one stably and π ∞ 1[END_REF], [START_REF] Poénaru | Almost convex groups, Lipschitz combing, and π ∞ 1 for universal covering spaces of 3-manifolds[END_REF], [START_REF] Poénaru | Geometry à la Gromov for the fundamental group of a closed 3-manifold M 3 and the simple connectivity at infinity of M 3[END_REF], and then in a more complete form in the more recent [START_REF] Poénaru | Equivariant, almost-arborescent representations of open simplyconnected 3-manifolds; a finiteness result[END_REF] and [START_REF] Poénaru | On geometric group theory[END_REF].

Definition 1.5. -A REPRESENTATION for Γ is a map (1.8) X f ---→ M (Γ)
with a list of features to be unrolled below. [But, first, a question of terminology. Since, up to quasiisometry M (Γ) ≈ Γ, the map f (1.8) which goes like this: → Γ, is to be contrasted with the usual group representations Γ homomorphism -----------→ {some other (linear?) group}, hence "REPRESENTATIONS", in capital letters. [Some people may prefer "inverse representations" too.] So, here are the features of (1.8), which make up our definition. We will number these features as 0), 1), 2), 3). 0) The X is a not necessarily locally finite simplicial complex, and f is a nondegenerate simplicial map (meaning that f (λ-simplex) is a λ-simplex too). This forces that dim X ≤ 3 and so we will distinguish between 2-dimensional REPRESENTATIONS with the representation space X 2 of dimension two and 3-dimensional REPRESENTATIONS with the 3 d representation space X 3 . Both are useful, and the proof of the QSF theorem is a sort of ballet-dance, or rather slalom, between the two. When dim X = 3, no additional conditions, beyond f being non-degenerate will be imposed. For a 2-dimensional REPRESENTATION X 2 f --→ M (Γ) we will ask that, outside of a discrete set of singularities, f should be a generic immersion. And those singularities will be of the "undrawable type", explicilty described by the local formula in (1.16.1) below. And the undrawable singularities have been previously described in [START_REF] Gabai | Valentin Poénaru's Program for the Poincaré Conjecture[END_REF], [START_REF] Poénaru | The collapsible pseudo-spine representation theorem[END_REF], [START_REF] Poénaru | Almost convex groups, Lipschitz combing, and π ∞ 1 for universal covering spaces of 3-manifolds[END_REF], too.

And we will soon come back to them.

But then, as it will be explained in 2) below, there are mortal singularities of maps X 2 f --→ M (Γ) and immortal singularities of the space X 2 . For our 2 d REPRESENTATIONS, we will have

{immortal singularities of X 2 } ∩ M 2 (f ) = ∅ , meaning also that {mortal singularities} ∩ {immortal singularities} = ∅ ⊂ X 2 .
Finally, only the locally finite REPRESENTATIONS will be useful for us (and not the others), but getting that local finiteness is not an easy affair (see [START_REF] Poénaru | Equivariant, locally finite inverse representations with uniformly bounded zipping length for arbitrary finitely presented groups[END_REF]).

1) The X is GSC (geometrically simply connected). Remember, the GSC concept stems from differential topology, but it makes good sense for cell-complexes too. It means that the 1-cells are in cancelling position with the 2-cells. In our specific case it also means that the 2-skeleton of X has the following structure {an infinite collapsible complex (i.e. something gotten by an infinite sequence of dilatation from a point)} ∪ {2-cells}.

More about GSC can be found in [START_REF] Poénaru | A glimpse into the problems of the fourth dimension[END_REF], the text of my lecture at the Strasbourg meeting "Geometry in History", from June 2015, and see here [START_REF] Otera | On geometric simple-connectivity[END_REF] too (and see also [START_REF] Poénaru | Some remarks on geometric simple connectivity[END_REF]).

But, for the convenience of the reader I will add here a fast refresher concerning the GSC (geometric simple connectivity) concept. We are considering a space X which might be either a smooth manifold or a cell-complex. Here we are interested only in the non-compact case, and in the handle-body, respectively in the cell-complex case. When we consider a smooth handle-body, respectively a cell-decomposition, then we start from a ball minus a tame closed, totally discontinuous subset of the boundary, respectively from an infinite tree, possibly thickened to a regular neighbourhood. To this, we will add handles of index λ ≥ 1, respectively cells of dimensions λ ≥ 1. We add now, first of all the 1-hanles H 1 i , next a family of 2-handles H 2 j s.t. the infinite family of indices {j} is in canonical bijection with {i} and, finally we add also all the rest, more H λ 's, λ ≥ 2. The important object here is THE GEOMETRIC INTERSECTION MATRIX, which is the square matrix (∞ × ∞)

H 2 j • H 1 i ≡ {the number of times the attaching map of H 2 j goes through H 1 i } ∈ Z + (no ± signs here)}.
With this, we get a space which is GSC iff this matrix is of the easy id + nilpotent type:

H 2 j •H 1 i = δ ji +a ji , where a ji ∈ Z + and a ji > 0 ⇒ j > i.
It is assumed here that both {i} and {j} are parametrized by Z + . To this situation one can attach an orientated tree. The vertices are the elements of {i} ≈ {j}, and we will call them states, and then are a ji oriented edges j → i. Actually, when one goes to a completely general situation, our oriented tree may be such that we are forced to use an indexing i, j ∈ Z. Now, when it comes to GSC, when 1-handles have to cancell with 2-handles, we need the indexing i, j ∈ Z + .

There is also a notion of difficult id + nilpotent, where the condition a ji > 0 ⇒ j > i is replaced by a ji > 0 ⇒ j < i, the dual condition. The two conditions are different, in the infinite case, the only one interesting us here. And it is only the easy id + nilpotent which comes then with the desired cancelling property, i.e. with GSC.

The classical Whitehead manifold Wh 3 which is certainly NOT GSC, admits handle-body decompositions of the difficult id + nilpotent type (see [START_REF] Poénaru | A glimpse into the problems of the fourth dimension[END_REF]). And here is the proof that Wh 3 is not GSC. For open 3-manifolds V 3 there is the implication

V 3 is GSC =⇒ π ∞ 1 V 3 = 0 .

And, as everybody knows π ∞

1 Wh 3 = 0. There is a rather strange connection between GSC (or rather between what I call a brutal violation of GSC) and non-commutative geometry à la Alain Connes. This is explained in [START_REF] Poénaru | Classical differential topology and non-commutative geometry[END_REF], but we will not dwell more on this issue now here and now.

2) Some preliminaries are necessary in order to be able to state the present point 2). Spaces like X 3 , M (Γ) or M (Γ) have singular points x, where locally they are not a manifold of the respective dimension. We call such x's immortal singularities. There are also immortal singularities of X 2 . These are points where X 2 cannot be locally embedded into R 3 . These immortal singularities x are a discrete subset and, at such an x, the X 2 looks like in (1.16.1) below. Then for maps like X f --→ M (Γ), points x ∈ X where f is not an immersion, will be called mortal singularities. So, singularities of spaces are the immortal ones, while singularities of maps are mortal. The reason for the terminology will soon become clear.

When it comes to the map f (1.8) there will be two equivalence relations on the source-space X, of interest to us.

There is, to begin with, the obvious equivalence relation Φ(f ) ⊂ X × X induced by f , with its definition

(x, y) ∈ Φ(f ) ⇐⇒ f (x) = f (y) .
But then, there is also a more subtle equivalence relation Ψ(f ) ⊂ X × X. Schematically speaking, Ψ(f ) is the smallest equivalence relation compatible with f (i.e. such that Ψ(f ) ⊂ Φ(f )) which kills all the mortal singularities of f , meaning that in the natural diagram

X " " " " f / / M 3 (Γ) , X/Ψ(f ) f1 9 9
the map f 1 , naturally induced by f is an immersion, i.e. the map f 1 is singularity-free, and no equivalence relation smaller than Ψ(f ) can do the job. The Ψ(f ) only kills mortal singularities, not immortal ones. One has, of course, to prove that this Ψ(f ) makes sense, meaning that it exists and that it is unique; see here [START_REF] Poénaru | Equivariant, locally finite inverse representations with uniformly bounded zipping length for arbitrary finitely presented groups[END_REF], [START_REF] Otera | Topics in Geometric Group Theory I[END_REF], [START_REF] Poénaru | On the equivalence relation forced by the singularities of a non degenerate simplicial map[END_REF], [START_REF] Poénaru | The collapsible pseudo-spine representation theorem[END_REF], which provide full details.

With this, we can finally state our condition 2) for REPRESENTATIONS, which is that we should have

Ψ(f ) = Φ(f ) .
In plain English, this means that the cheapest way to kill all the mortal singularities is to kill all the double points. Finally, we can state the last condition for our REPRESENTATION (1.8).

3) The map f is "essentially surjective", by which we mean the following thing:

• If dim X = 3, then either Im f = M (Γ) OR a bit more generally we have the following description for M (Γ). To begin with Im f contains all the singularities of M (Γ) in its interior and M (Γ) itself admits the following description: This definition may already seem very long but then, a bit later when we will come to the EASY THEOREM 1.10, below, then even more details will be thrown into this Definition 1.5.

M (Γ) = Im f + {handles of index λ = 2 and λ = 3}, an object which we call M 3 ∪ ∂M 3 = ∂M 3 × {0} ∂M 3 × [0, ∞). •• If dim X = 2, then M (Γ) = Im f +

Comments:

A) The equivalence relation Ψ has an interesting topological property. It decreases the π 1 . Whenever we have a nondegenerate map f like below, i.e. a "REPRESENTATION", with condition 3) possibly omitted

Y (representation space, not necessarily simply-connected) π ) ) ) ) f / / Z (space to be represented), Y /Ψ(f ) f1 6 6
then the induced map

π 1 Y π * ---→ π 1 (Y /Ψ(f ))
is surjective. So, very importantly, since π 1 X = 0 in (1.8), then we automatically have π 1 (X/Ψ(f )) = 0 too. B) And, with a REPRESENTATION space which being GSC is simply-connected too, we may want to REPRESENT other spaces than M (Γ). Since dim X ≤ 3 they have to be 3-dimensional but, and here is the point: these REPRESENTED spaces are forced by A) to be simply-connected.

Actually, in the very beginning, long ago, what I was REPRESENTING were not M (Γ)'s but homotopy 3-spheres Σ 3 . Then, I used REPRESENTATIONS of M (Γ)'s in the context of Theorem 1.2, or rather in contexts which, eventually turns out to be very special cases of it. I was then only concerned with Γ = π 1 M 3 (manifold).

And then, in order to get a better grasp of my tool, I turned to REPRESENTATIONS of the Whitehead manifold Wh 3 too. And, at that point I got very worried because, what I then thought were pathologies, popped up. With the help of John Hamal Hubbard things got cleared up: I had just bumped into dynamical chaos. Very precisely, when you look at 2 d REPRESENTATIONS of the Whitehead manifold,

X 2 f --→ Wh 3 ,
then the double points set M 2 (f ) ⊂ X 2 which is NOT closed, has the accumulation pattern of the Julia set of a real quadratic polynomial f λ coming with λ / ∈ {Mandelbrot set}. For more details see [START_REF] Poénaru | Representations of the Whitehead manifold Wh 3 and Julia sets[END_REF], [START_REF] Otera | Topics in Geometric Group Theory I[END_REF]. This raises the issue of the connection between wild low dimensional topology and dynamical chaos, a topic which I think deserves to be booked into. But that is far from our aim here, of course.

C) The reader may have noticed, by now, that, so far at least, the little theory which we have developed ignores the group structure. But then, in the context of (1.8) we have already G × M (Γ) → M (Γ) and hence, there is here also a clear invitation to have a REPRESENTATION space on which the Γ acts (freely) too, Γ × X → X and, with this, get an equivariant map f in our (1.8).

So, here is how REPRESENTATIONS finally

X f --→ M (Γ)
connect to group theory. When it comes to proving the QSF theorem, we need equivariant REPRESEN-TATIONS, where we have a free action Γ × X -→ X with the property that f (gx) = gf (x), for all g ∈ Γ and x ∈ X. These representations are quite hard to get. They are constructed in [START_REF] Poénaru | Equivariant, locally finite inverse representations with uniformly bounded zipping length for arbitrary finitely presented groups[END_REF] the first part of the Trilogy, but see here the paper [START_REF] Poénaru | Equivariant, almost-arborescent representations of open simplyconnected 3-manifolds; a finiteness result[END_REF] too, for the special case when γ = π 1 M 3 (smooth), and

M (Γ) = M 3 .
D) The GSC concept has its historical roots in the Morse-theoretical framework of differential topology. A smooth n-manifold M n is GSC if it has a handle-body decomposition when 1-handles cancel with (some of) the 2-handles. Clearly M n ∈ GSC ⇒ π 1 M n = 0, so what about the converse implication? I have discussed this at some length in [START_REF] Poénaru | A glimpse into the problems of the fourth dimension[END_REF] but for the comfort of the reader I will just briefly recall the essentials here. If M n is compact and n = 4 then, indeed π 1 M n = 0 ⇒ M n ∈ GSC and, for n ≥ 5 this was essential for Smale's h-cobordism theorem. Adding the hypothesis π ∞ 1 = 0, the same kind of implications holds for open n-manifolds too. Remain the murky cases, namely n = 4 and M n non-compact with boundary = ∅. That is where my interest has concentrated in recent years. E) Now, it turns out that there is a nice geometric way for making sense of the basic condition Ψ(f ) = Φ(f ) occurring in our Definition 1.5. I will start by spelling out things in a more heuristical manner. Start with an arbitrary double point (x, y) ∈ M 2 (f ). The condition Ψ(f ) = Φ(f ) means that for any such (x, y) we can find a zipper inside the set

M 2 (f ) ∪ Sing(f ) ⊂ X × X
which closes our double point, meaning that it realizes the identification x = y.

Let us make this more precise now.

To begin with, in the context of the map f from (1.8) consider the following set

(1.9) M 2 (f ) ≡ M 2 (f ) ∪ Sing(f ) ⊂ X × X .
To be pedagogically precise, here Sing(f ) should mean Diag(Sing(f )), i.e. the {diagonal of the mortal singularity set} ⊂ X × X -M 2 (f ). With this, we have the following, admitedly still a bit schematic Definition 1.6. -In the context of (1.8), let us consider a double point (x, y) ∈ M 2 (f ). A continuous path λ(x, y) ⊂ M 2 (f ) connecting (x, y) to Sing(f ) is called a zipping path. [In order to make this, may be not so precise definition, clear, I will present a specific example of a zipping path for (x, y) ∈ M 2 (f ). We start with a triple point (x 1 , x 2 , s 3 (singularity of the mortal kind)) ∈ M 3 (f ), and two other mortal singularities s 1 , s 2 ∈ X. With this data will come three continuous paths defined for t ∈

[0, 1]: i) (a 1 (t), a 2 (t)) ∈ M 2 (f ) with a 1 (0) = a 2 (0) = s 1 , and a 1 (1) = x 2 , a 2 (1) = s 3 (i.e. the path a 1 joins s 1 to (x 2 , s 3 )); then ii) (b 1 (t), b 2 (t)) ∈ M 2 (f ) with b 1 (0) = b 2 (0) = s 2 and b 1 (1) = x 1 , b 2 (1) = x 2 ; then, finally iii) (c 1 (t), c 2 (t)) ∈ M 2 (f ) joining (x 1 , s 3 ) to (x, y), i.e. c 1 (0) = x 1 , c 2 (0) = s 3 , c 1 (1) = x, c 2 (1) = y.
The reader should not find it hard to provide an appropriate drawing for this description. And then, one can find such a graphical display in figure 6 from [START_REF] Otera | Topics in Geometric Group Theory I[END_REF] or figure 1 from [START_REF] Poénaru | Equivariant, locally finite inverse representations with uniformly bounded zipping length for arbitrary finitely presented groups[END_REF] except that then the explicit labelling of the point in X is different from the present one. Again with different notations, we have also presented this same configuration, as figure 6.3 in the section VI of this very present paper.] It is not hard to show that the property Ψ(f ) = Φ(f ) is equivalent to the existence, for any (x, y) ∈ M 2 (f ), of a zipping path λ(x, y). In plain English, the Ψ(f ) = Φ(f ) means that the map f can be zipped. For a given (x, y) ∈ M 2 (f ), the zipping path λ(x, y) is, of course, not unique. There are various zipping strategies, and for the proof of the QSF theorem the choice of correct zipping categories is an important issue. End of Comments.

Let us inject now some metric geometry into our little story. Choose, to begin with some metric on M (Γ), let us say a riemannian metric with which lengths can be measured. And, the relatively mild singularities which M (Γ) has, allow us to make sense of riemannian metrics on M (Γ). And, up to quasi-isometry this metric is unique and so will be its various lifts considered below. This metric lifts then, naturally, to M (Γ), then to X, and finally to X × X. So the zipping paths λ(x, y) have now lengths, which are well-defined up to quasi-isometry, which is enough for us.

We can state now an important step in the proof of the QSF theorem. It is proved in [START_REF] Poénaru | Equivariant, locally finite inverse representations with uniformly bounded zipping length for arbitrary finitely presented groups[END_REF], the first part of the Trilogy.

Theorem 1.7. (Po [START_REF] Poénaru | Equivariant, locally finite inverse representations with uniformly bounded zipping length for arbitrary finitely presented groups[END_REF], the TRILOGY I) -For any group Γ, we can find REPRESENTATIONS which are three-dimensional

X 3 f --→ M (Γ) ,
with the following three properties:

1) The complex X 3 is locally finite.

2) The group Γ acts freely on X 3 , i.e. we have Γ × X 3 → X 3 , and f is equivariant, i.e. f (gx) = gf (x).

3) The zipping length of f is uniformly bounded.

Very explicitly, there exists a constant C > 0 such that, for any (x, y) ∈ M 2 (f ) we should have inf λ {length of the zipping path λ(x, y)} < C .

Let me stress that, while getting for M (Γ) some REPRESENTATION, is relatively easy, proving Theorem 1.7, i.e. getting REPRESENTATIONS which have the properties 1), 2), 3) (or just any single one of them) is quite far from being trivial.

The first step towards the GSC Theorem 1.4 will be to construct an equivariant 2-dimensional REPRE-SENTATION (1.10)

X 2 f ---→ M (Γ) ,
with a locally finite X 2 and which is also equivariant, like in the Theorem 1.7. This means that there will be a free action Γ × X 

(f ) is CLOSED if M 2 (f ) ∪ Sing(f ) ⊂ X 2 is a closed subset.
End of (1.7.1)

Fact (1.11) -If for the 2 d REPRESENTATION (1.10) M 2 (f ) is CLOSED, this implies the following. Let x n , y n ∈ X 2 , x n = y n , f (x n ) = f (y n ) and assume lim n=∞ x n = x ∞ ∈ X 2 . Then lim n=∞ y n = y ∞ ∈ X 2 . Clearly f (x ∞ ) = f (y ∞ ), and if x ∞ = y ∞ then (x ∞ , y ∞ ) ∈ M 2 (f ), just like (x n , y n ) ∈ M 2 (f ).
But it can also happen that x ∞ = y ∞ and then

x ∞ = y ∞ ∈ Sing(f ) .
End of (1.11) Proof. Assume that lim n=∞

x n = x ∞ takes place in a local connected piece U ⊂ X 2 . Then we find sheets 

V 1 y 1 , V 2 ⊃ y 2 , . . ., all V i ⊂ X 2 , with f V i f U and f (x i ) = f (y i ). The V 1 , V
y ni = ∞ in X 2 . But then M 2 (f ) is certainly NOT CLOSED.
Here the V i 's are not parts of ONE V .

II) The {y n } ⊂ X 2 is confined at finite distance in X 2 . It has then accumulation points y ∞ , y ∞ , . . . We are forced to have f

(y ∞ ) = f (y ∞ ) = • • • = f (x ∞ ) and f being a generic immersion, we must have y ∞ = y ∞ = • • • , call this point y ∞ and then, either y ∞ = x ∞ or y ∞ = x ∞ . Since for a REPRESENTATION in 2 d , we have M 2 (f ) ∩ {singularities} = ∅,
it is easy to finish now the proof of (1.11).

Very much on the lines of (1.11), here is a typical example when M 2 (f ) is NOT CLOSED. Consider the figure 2.4-(A) (Section II), when locally X 2 has ∞ + 1 branches, each a copy of R 2 namely the (z = 0) and then the 2 d sheets (x = a 1 ), (x = a 2 ), . . . ,

(x = a n ), . . . with a 1 < a 2 < • • • and lim n=∞ = a ∞ .
Then f is defined in the obvious way, inside a chart (x, y, z) = R 3 of M (Γ). We have here the double points

x n = (x = a n , y = 0, z = 0) ∈ (z = 0) AND y n = (x = a n , y = 0, z = 0) ∈ (x = a n ) .
Here, in the sheet (z = 0) ⊂ X 2 , we have lim --→ M (f ) there is a double implication

n=∞ x n = (x = a ∞ , y = 0, z = 0) ≡ x ∞ / ∈ M 2 (f )
{M 2 (f ) ∪ Sing(f ) ⊂ X 2 is a closed subset (i.e. M 2 (f ) is CLOSED in the sense of definition (1.7.1))} ⇐⇒ {M 2 (f ) ∪ Diag(Sing(f )) ⊂ X 2 × X 2 is a closed subset, (which implies that M 2 (f ) ∪ Diag X 2 ⊂ X 2 × X 2 is closed too)}.
[This lemma will not be used in our proof of the GSC theorem.]

Proof. Consider a sequence (x n , y n ) ∈ M 2 (f ) ∪ Diag(Sing(f )). We will assume that M 2 (f ) is CLOSED in the sense (1.7.1). The set {(x n , y n )} can be broken into two parts:

The {(x n , y n )}, where x n = y n and f (x n ) = f (y n ) AND the {x n , y n } where x n = y n ∈ Sing(f ). In the first case, if lim

n=∞ x n = x ∞ then since M 2 (f ) is CLOSED, lim n=∞ y n = y ∞ . This again comes with two possibilities: Either x ∞ = y ∞ , then, since clearly f (x ∞ ) = f (y ∞ ), we have (x ∞ , y ∞ ) ∈ M 2 (f ), OR x ∞ = y ∞ and then x ∞ = y ∞ is Diag(Sing(f )) ⊂ Diag(X 2
). It follows easily from here that the subset M 2 (f ) ∪ Diag(f ) ⊂ X 2 × X 2 is closed, so we have proved the arrow =⇒.

With the same (x n , y n ) as above, assume now that the M 2 (f ) ∪ Diag(Sing(f )) ⊂ X 2 × X 2 is a closed subset. Assume x n = y n , ∀ n. Here x n may be any point in M 2 (f ) ⊂ X 2 . Because of our hypotheses, in X 2 the sequence x n has to come with lim n=∞ x n = x ∞ ∈ X 2 (and similarly lim n=∞ y n = y ∞ ∈ X 2 ). Here, either x ∞ = y ∞ and then the sequence {x n } ⊂ M 2 (f ) converges in M 2 (f ). Or, x ∞ = y ∞ , we have then (x ∞ , y ∞ ) ∈ Diag(Sing(f )) and the sequence {x n } converges in M 2 (f ) ∪ Sing(f ). This proves the arrow ⇐=. Now, Theorem 2.1 in the next section will provide us with a useful 2 d REPRESENTATION like in (1.10). But this will come with two big handicaps, which are generically unavoidable. And, overcoming them, is what this paper is essentially about. Here they are:

(1.11.1-A) X 2 may well be locally finite but certainly f X 2 ⊂ M (Γ) is NOT a closed subset and f X 2 itself is NOT locally finite.

(1.11.1-B) The M 2 (f ) ∪ Sing(f ) ⊂ X 2 is NOT CLOSED (see Definition 1.7.1). It will turn out that there is a trick which will allow us to live with the lack of local finiteness of f X 2 in (1.11.1-A), but the conjunction of the f X 2 ⊂ M (Γ) NOT being a closed subset and the avatar (1.11.1-B) will be one of the main difficulties which the proof of the GSC theorem will have to overcome. A bit more will be said concerning this issue, in the present introduction, but this will only be a preview of things to come in the next sections.

Anyway, notice that once the M 2 (f ) ⊂ X 2 is NOT CLOSED, in the sense of our previous definition, the

M 2 (f ) ∪ Diag(Sing(f )) ⊂ X 2 × X 2 is not a closed subset either.
With these things, the S u M (Γ) (see (1.6), (1.7.0)) is not quite exactly a thickening of M (Γ), but rather a complex objet which we will be able to define completely precisely and correctly, only in Section III. For the time being, we have to stay only rather vague and impressionistic concerning it. But here are some hints of how the construction of S u M (Γ) starts.

•) We start with a high-dimensional thickening of something like a version of "f X 2 ⊂ M (Γ)" from which M (Γ) should be gettable by the GSC preserving step of adding cells of dimension ≥ 2 (or handles of index λ ≥ 2).

••) But, as we know by now, f X 2 may not be locally finite and we start by rendering it locally finite via the DELETION of some very bad points, the p ∞∞ 's, about which much more will be said in this paper.

•••)

In order not to loose GSC, we compensate the deletions by additions of 2-cells, adding more singularities in the process, but staying locally finite.

••••)

The object reached this way, is then subjected to more GSC preserving additions of cells (or handles), in infinite number. This is all we can and care to say right now, in the present introduction, concerning S u M (Γ).

We go back now to (1.10) and consider the map (1.12)

X 2 f X 2 .
This is, actually, a big quotient-space projection, which we rewrite (1.12.1)

X 2 X 2 /Φ(f ) = f X 2 ,
which is certainly NOT a GSC-preserving step (generically quotient-space projections are not). What is worst is that because of the avatars (1.11.1-A) and (1.11.1-B) we cannot even thicken (1.12.1) into a higher dimensional step which should be GSC-preserving. So let us see what we can do. Once we know that Φ(f ) = Ψ(f ), our (1.11) can be realized, starting from the GSC space X 2 , by an infinite sequence of elementary zippings, (a notion soon to be defined rigorously), each of which, when thickened to a sufficiently high dimension (which turns out to be dimension 5), then the higher-dimensional version of the elementary zipping moves, originally defined in dimension two, will become a GSC-preserving inclusion maps.

[Remark. For our whole mechanism to function we certainly need dimensions ≥ 5. Actually much higher dimensions will be needed, but let's stop right now at this n ≥ 5. It so happens that strange things which we certainly wish to avoid, occur exactly at n = 4.

They are hinted at in (1.19.2) below, and the curious reader may look at [START_REF] Gabai | Valentin Poénaru's Program for the Poincaré Conjecture[END_REF], [START_REF] Poénaru | Infinite processes and the 3-dimensional Poincaré Conjecture, II: The Honeycomb representation theorem[END_REF], [START_REF] Poénaru | Geometric simple connectivity in four-dimensional differential topology[END_REF], [START_REF] Poénaru | On the 3-dimensional Poincaré Conjecture and the 4-dimensional Smooth Schoenflies Problem[END_REF].

Actually dim S u M (Γ) = N + 5, high N .]
And, it also turn out that, in the absence of the difficulties (1.11. 1-A, B) the remarks concerning the (1.10) which we just made, could be transformed into an easy proof for our Theorem 1.2. This is explicitly done in [START_REF] Otera | Easy" Representations and the QSF property for groups[END_REF] and, for the convenience of the reader, we will outline it here too, in this introduction.

But the difficulties (1.11.1-A, B) are there, with us, and so the road to Theorem 1.2 is much longer and trickier. Here is the idea. We have said already that our S u is actually a functor with good localization and glueing properties. So "S u " can be applied to other things than M (Γ), too. In particular, S u M (Γ) will have to make sense too, and we will very much need things like the functorial properties which we already mentioned eralier (1.12.2)

S u M (Γ) = (S u M (Γ)) ∼ , (1.13) S u ( M (Γ))/Γ = S u M (Γ) .
The functor S u is connected to the vision of (1.10) as a big quotient space projection. But then, connected with a vision of (1.10) as gotten by a zipping process, there is a second functor S b with properties just like (1.12.2) and (1.13) above, and with good localization/globalization. So, there is a locally-finite cell-complex S b ( M (Γ)) which is of the same dimension as S u ( M (Γ)). And "S b " can also be applied to other things than M (Γ), like to M (Γ) itself.

Just like S u is a vision of (1.10) as a big quotient-space projection, S b is a vision of the same (1.10) as a zipping process.

And, because S b M (Γ) is a high-dimensional geometric realization of the zipping process which, in the context of (1.11) goes from X 2 ∈ GSC to f X 2 , we get, relatively easily the next

Theorem 1.8. -The S b ( M (Γ)) is GSC.
This theorem is a good way to take advantage that, in high-dimension, the zipping of (1.12), (1.12.1) is an infinite sequence of GSC-preserving elementary steps and this even in the presence of the AVATARS (1.11.1.A, B) which normally present us from assembling those infinitely many steps in any usual reasonable manner.

Incidentally, the subscripts "u", "b" stand for "usual" and "bizarre". The big step is to go now from "known" property S b M (γ) ∈ GSC to the mysterious S u M (Γ) ∈ GSC, which seems unreachable by any direct assault, since no direct assault seems to be able to connect the two objects (let us say by a diffeomorphism). Think also of the gap between quotient space projection maps and inclusion maps (which in our context will always be GSC-preserving). And, our whole project here is to create in the S b -context, and infinite sequence of GSC-preserving maps, inclusions not distributed by (1.11-A), (1.11-B), and which can mimick, sufficiently well, in a sense which will be clarified later, the infinite quotient-space projection (1.12.1). So, our project here is that, notwithstanding the AVATARS (1.11-A), (1.11-B) which are there in the way, we should be able to break through that big gaps QUOTIENT PROJECTION MAPS / INCLUSION MAPS.

Of course, in the absence of the AVATARS that gap is not at all that formidable. As we shall see, in the end of this section, in the AVATAR-free case, a simple-minded thickening is enough for doing the job.

Actually two more intermediary functors are needed here, S u and S b where the " " signalizes an important technical switch allowing us to deal with some really very nastly pathologies involved in (1.10). The S u M (Γ), S b M (Γ), S u M (Γ), S b M (Γ) are smooth cell-complexes, all of the same dimension. Also there are two transformations

(1.14) S u M (Γ) ⇒ S u M (Γ) , S b M (Γ) ⇒ S b M (Γ) ,
which are isomorphic transformations, except that their two sources and targets are not a priori known to be so. Very importantly, for our whole mechanism of proofs to be able to function, some technical ingredients will also have to be thrown in. They will be formally introduced later, we only record here their names, like a slogan to be unwrapped later on: means S ε OR S ε , will always be of the following type. Start from a hyperplane R n-1 ⊂ R n , and then go to

R n ∪ R n-1 = R n-1 × {0}
R n-1 × [0, ∞). These will turn out to be simpler than the "undrawable singularities" of Θ 3 (f X 2 ), to be described later.

At this level we move now downstairs to M (Γ) which is compact and to the two S u M (Γ), S b M (Γ) which are not. Making use of the compactness of M (Γ) and of the uniform bound for the zipping length (see here the Theorem 1.7, above) one can show that S u M (Γ) = DIFF S b M (Γ) and from there, by functoriality (see (1.12)) it follows that S u M (Γ) = S b M (Γ) too. The equivariance of the whole construction is essential here, of course. It should be pretty obvious what a diffeomorphism between two C ∞ cell-complexes should mean. Now we finally use the isomorphism between the two transformations in (1.14) and we hence manage to produce the desired diffeomorphism

S u M (Γ) = DIFF S b M (Γ) ,
which in turn, via Theorem 1.8, implies that S u M 3 (Γ) ∈ GSC. The big diagram below schematizes this whole story with the three equalities ("=") following in logical order from the bottom line to the top one

---------------------------------- | = DIFF ↓ S u M (Γ) ⇐= S u M (Γ) = S b M (Γ) =⇒ S b M (Γ) ↓ covering maps ↓ S u M (Γ) = DIFF S b M (Γ)
(proved, as said above, making use of the compactness of M (Γ) (reflex of the fact that Γ is finitely presented), and of the uniformly bounded zipping length).

Notice that while M (Γ) is compact, the S (u or b) M (Γ) is NOT. But then, its infinity is man-made and controllable, unlike the God-made, mysterious infinity of M (Γ) ≈ Γ, the object of our quest.

This ends our overview of the general plan of the proof of the GSC theorem.

In the rest of this first section we will review some material, very necessary for this paper, but normally scattered over several older papers. We have put it here together, in a useful compact form, with a concern of making this paper more reader-friendly, and self-contained, readable independently of all those older papers.

For the convenience of the reader, in this introductory Section I, we have put together some material concerning singularities, desingularizations and elementary zipping moves, necessary for the rest of this paper. Of course, these things (with more details) are also explained in [START_REF] Gabai | Valentin Poénaru's Program for the Poincaré Conjecture[END_REF], [START_REF] Poénaru | The collapsible pseudo-spine representation theorem[END_REF], [START_REF] Poénaru | Infinite processes and the 3-dimensional Poincaré Conjecture, II: The Honeycomb representation theorem[END_REF], [START_REF] Poénaru | Geometric simple connectivity in four-dimensional differential topology[END_REF], [START_REF] Poénaru | Equivariant, almost-arborescent representations of open simplyconnected 3-manifolds; a finiteness result[END_REF], [START_REF] Otera | Easy" Representations and the QSF property for groups[END_REF], but as just said, we want this present paper to be readable independently of the references above.

But before going into all those reminders, I will make a turn back to the REPRESENTATIONS (1.8) and to the two avatars (1.11.1-A), (1.11.1-B) for the 2-dimensional X 2 f --→ M (Γ). There is also a very closely related avatar for the 3-dimensional X 3 f --→ M (f ):

(1.15) Generally speaking, an arbitrary compact K ⊂ M (f ) can be touched infinitely many times by the map

X 3 f ---→ M (Γ) .
This is a manifestation of a more general phenomena which in [START_REF] Poénaru | π ∞ 1 and simple homotopy type in dimension 3[END_REF] I have called the WHITEHEAD NIGHT-MARE. It is also present for the classical Whitehead manifold Wh 3 , for the Casson Handles ( [START_REF] Freedman | The topology of four dimensional manifolds[END_REF] and [START_REF] Guillou | A la recherche de la topologie perdue[END_REF]) and for the gropes of Stanko-Freedman-Quinn [START_REF] Freedman | Topology of 4-manifolds[END_REF]. End of (1.15)

Theorem 1.9. -Let Γ be any finitely presented groups. Then the following two items imply each other, i.e. they are equivalent.

A) There exists a 3 d REPRESENTATION X 3 → M (Γ) such that any compact K ⊂ M (Γ) is touched only finitely many times by the map f (i.e. a 3 d REPRESENTATION avoiding the Whitehead nightmare). B) There exists a 2 d REPRESENTATION X 2 f --→ M (Γ) which avoids both the avatars (1.11-A) and (1.11-B), i.e. which is such that

• The subset f X 2 ⊂ M (Γ) is both locally finite and closed, •• The M 2 (f ) ⊂ X 2 is CLOSED (like in (1.11.1)), i.e. M 2 (f ) ∪ Sing(f ) ⊂ X 2 is a closed subset.
We will call "easy", a group Γ which satisfies A), B) (and if one is satisfied so is the other).

Since we will not use this theorem we will not present its proof in this paper. But it is easily provable using the technology developed in the TRILOGY. So, the "easy" groups avoid the Whitehead nightmare, in its hypothesis (1.5) and/or in the hypothesis (1.11.1-A), (1.11.1-B). One can read Theorem 1.9 as saying that the avatars (1.11-A), (1.11-B) are exactly the way in which the Whitehead nightmare, which is defined in terms of

3 d REPRESENTATIONS X 3 → M (Γ), manifests itself for 2 d REPRESENTATION X 2 → M (Γ).
And please, do not mix up the technical term "easy", which we have just introduced, with the usual meaning of this same word in ordinary language.

It turns out that all the explicitly known groups, like hyperbolic, almost-convex, combable, automatic, and others, are "easy", as we shall soon see.

With this, we have the following Easy Theorem 1.10. (Otera-Po [START_REF] Otera | Easy" Representations and the QSF property for groups[END_REF]) -All "easy" groups are QSF.

We call this the easy theorem, both because it is both easy to prove (in the usual sense of the word easy) and because it concerns our "easy" groups. By no means do I want to insinuate that the "easy groups" are easy objects, in the usual sense of that word.

Since the proof of Theorem 1.10 is a good introduction, or aperitive, for the much leftier (proof of the GSC Theorem 1.4) + (the proof of Theorem 1.2) and although it exists already in print [START_REF] Otera | Easy" Representations and the QSF property for groups[END_REF], we will present a fast review of it at the end of the present Section I. The idea is actually immensely simple. Our definition of "easy groups" eliminates all the things which make the proof of the QSF theorem hard. The transformation leading from quotient maps to inclusion maps, in the context of Theorem 1.10, becomes a very simple-minded affair.

But then, this is a good place for inserting another story, connected, historically at least, to our present quest.

In the very early 1990's, independently of each other, Andrew Casson, the present author, Bestvina-Mess (and others) proved results of the following type, concerning

π 1 M 3 's and π ∞ 1 M 3 .
Theorem 1.11. (Casson, Po, and all, see here [START_REF] Gersten | Casson's idea about 3-manifolds whose universal cover is R 3[END_REF], [START_REF] Poénaru | Almost convex groups, Lipschitz combing, and π ∞ 1 for universal covering spaces of 3-manifolds[END_REF], [START_REF] Poénaru | Geometry à la Gromov for the fundamental group of a closed 3-manifold M 3 and the simple connectivity at infinity of M 3[END_REF], but the list of possible references is here much longer.) -Let M 3 be a closed 3-manifold with π 1 M 3 = G. Assume G satisfies any condition of a certain long list of geometric group-theoretical condition, like: hyperbolic (Gromov), combable (Thurston), almost convex (Cannon), automatic, and others, . . ..

Then π ∞ 1 M 3 = 0 (hence π ∞ 1 G = 0).
Obviously, as such, this is completely superseded by Perelman's Theorem 1.3.

In the work of Po-Casson, i.e. in the technology of Theorem 1.11 above, occurred the notion of Dehnexhaustibility which is very much like in Definition 2, except that the map f is now an immersion. And, abstracting from this, Brick, Mihalik and Stallings created the QSF concept.

And here is what survives from the old work in Theorem 1.11 today.

Of course, the notion QSF did not exist in the old days of Theorem 1.11. But if one reads those old papers with the eyes of today and if one forgets completely about 3-manifolds (which are now completely out of the picture), one can read between the lines a result valid for ALL finitely presented groups, our next Theorem 1.12.

Theorem 1.12. -All the groups occurring in Theorem 1.11 (Casson-Po), whether they are of type π 1 M 3 , or general finitely presented groups, i.e. hyperbolic groups, almost convex groups, combable groups, automatic groups, and so on, are "easy" hence they are all QSF. Some explanations: In the early nineties, at the time of the Casson-Po theorems neither QSF nor easy groups existed, the concepts had not yet been invented or defined. But, if one looks at those old papers with the eyes of today, one can see that what was actually proved there, besides the three-dimensional stuff which is anyway superseded by Perelman, was exactly the Theorem 1.12, all those groups were actually shown to be easy, in the sense defined in Theorem 1.9.

Of course, Theorem 1.12 immediately implies Theorem 1.11 (when Γ = π 1 M 3 ), but as already said that is by now old superseded stuff. BUT it applies to all finitely presented groups.

In those old days when I was working on the issue of π ∞ 1 M 3 , I was obsessed by the universal covering spaces of 3 d manifolds and I did not see the forest, because of the trees. I was thinking that I was working in 3 d topology, while actually I was doing group theory. I sometimes wonder today whether all that M 3 issue was not a red herring.

We go now to that material which is the background necessary for reading this paper, without need to go back to all those old papers of mine.

The material which we present now is both necessary for the rest of the paper and for our snapshot of the proof of the Easy Theorem 1.10, to follow soon.

It also, certainly, should make our Definition 1.5 of REPRESENTATIONS more precise.

We will start with the Construction of the presentation M (Γ). Starting from combinatorial presentation (1.5), we introduce 3 d bretzel T 3 = n # (S 1 × D 2 ) corresponding to the generators. Next, corresponding to the relators we pick up a smooth map ( * )

m i=1 S 1 i ϕ1 ---→ ∂T 3 ,
which we may suppose to be a generic immersion. This is thickened then into a submersion, with very small widths [-ε

i , ε i ]'s, m i=1 S 1 i × [-ε i , ε i ] ϕ2 ---→ ∂T 3 . Next, each S 1 i × [-ε i , ε i ] is extended to D 2 i × [-ε i , ε i ] (with, of course, ∂D 2 i = S 1
i and sticking out of our bretzel) and, finally we can introduce our 3 d presentation of Γ

M (Γ) = T 3 + {the m 2-handles D 2 i × [-ε i , ε i ], each attached along ∂T 3 ϕ2 ← ---S 1 i × [-ε i , ε i ] ⊂ D 2 i × [-ε i , ε i ]}
. This is a singular handle-attachement, of course. We assume the [-ε, ε]'s very small, such that the connected components of M 2 (ϕ 2 ) are little squares, which we will generically call S. These S's are corresponding to the double points in M 2 (ϕ 1 ). These are the so-called "undrawable singularities" discussed in detail in [START_REF] Gabai | Valentin Poénaru's Program for the Poincaré Conjecture[END_REF], [START_REF] Poénaru | The collapsible pseudo-spine representation theorem[END_REF], [START_REF] Otera | Topics in Geometric Group Theory I[END_REF] and to which we will come back below too. Figure 1.1 presents the standard neighbourhood Θ 3 (S) of the S ⊂ M (Γ). [The "Θ n " refers to n-dimensional thickening. And to stress that our, most often SINGULAR, thickenings are NOT the standard regular neighbourhoods, we wrote "Θ n " rather than "N n ".] Without loss of generality, in the situations of the generic immersions ( * ) we may always assume the following two items too.

•) Each individual ϕ 1 | S i injects, and hence so does any individual Notice that the present undrawable singularities S are immortal, meaning that they are singularities (= non-manifold points) of spaces, never to be killed by maps, and not singularities of maps (= non-immersive points). The Θ 3 (S) ⊂ M (Γ), which is an undrawable singularity in dimension three, is gotten by putting these three 3-dimensional pieces together. The rectangles [ε j , -ε j ; ε j , -ε j ], [ε i , -ε i ; ε i , -ε i ] in (B), (C), respectively, are glued to the ones in (A). The immortal undrawable singularity S is shaded. The δΘ 3 = S 1 × S 1 -intD 2 , i.e. the lateral surface which splits Θ 3 (S) from the rest of M (Γ), is made up from three contributions: the hall-sphere in (A) and the two curved arches occurring in (B) and (C).

ϕ 2 | S 1 i × [-ε i , ε i ]. ••) Each S 1 i × [-ε i , ε i ]
The S above is a 3 d immortal singularity and the 2 d version will be soon introduced too.

Then we also have singularities of maps f , meaning non-immersive points. They are mortal singularities, f kills them.

At this point we can try to explain why exactly 3-dimensional presentations M (Γ) are needed. Let us say we have a REPRESENTATION space X which is made out of cells, but I will rather call them handles, each of them a product {core} × {co-core} = B λ × B n-λ . It turns out that if one wants to achieve local finiteness for X, then we need the condition dim(co-core) > 0 , for X and hence for the geometric presentation M (Γ) of Γ too. In TRILOGY [START_REF] Poénaru | Equivariant, locally finite inverse representations with uniformly bounded zipping length for arbitrary finitely presented groups[END_REF] it is very clearly explained why the requirement on dim (co-core) is necessary. But, for completeness's sake, let me still say a few words here. We want to be able to send the lateral surface B λ × ∂B n-λ to infinity, so as to be able to corral there the infinitely many singular attachements of (λ + 1)-handles. This is the key to our much desired local finiteness of X. So, the mundane presentations K 2 (Γ) (= finite 2 d complex with π 1 = Γ), are by now out; this condition then forces that dim(presentation) > 2 .

So why do we not take a geometric presentation of dimension 4, 5, or more, but exactly three? The reason is that this opens the possibility of using a REPRESENTATION of the type

(1.15.1) {REPRESENTATION SPACE X 2 } f ---→ {presentation of dimension 3}
where the richness of the {space of double points of a generic map dim 2 → dim 3} can be put to use. This statement requires some explanations. It is well-known that in many cases the kind of richness just mentioned has played a big role, think for instance of the proofs of the Dehn lemma and the sphere theorem [START_REF] Papakyriakopoulos | On Dehn's lemma and the asphericity of knots[END_REF]. See, also, what John Stallings says in [START_REF] Stallings | Group theory and Three-Dimensional Manifolds[END_REF] about the affinity of geometric group theory with three-dimensional topology. [This does not mean that any 3 d topology is involved here.]

But, all that is old story, by now. In our present context, the fact is that, generally speaking, our M 2 (f ) is NOT CLOSED in X 2 . As it was explained, this is one of the main difficulties for proving the QSF theorem. And since we have to live with it, we start by constructing a REPRESENTATION X 2 f --→ M (Γ), where althought not CLOSED, M 2 (f ) should still have an accumulation pattern, as mild as still possible. To see what this means, let us start with the simplest totally non-singular situation when, locally, X 2 is a copy of R 2 and any connected component of

M 2 (f ) is a copy of R. Inside this R 2 ⊂ X 2 the M 2 (f ) ∩ R 2 consists
now of a collection of parallel lines, normally infinitely many of them. This should remind the reader of a one-dimensional foliation F or a one-dimensional lamination L, of R 2 . These have transversal structures, which are R in the case of F or a Cantor set in the case of L. A third kind of transversal structure will be met next.

In the case of M 2 (f ) ∩ R 2 , once this is NOT a closed subset, we can construct REPRESENTATIONS like (1.15.1) which realize, as transversal structures go, the next best thing, once M 2 (f ) is NOT CLOSED (or, put otherwise, the least harmful thing). And this next best thing is a countable set which has only a finite set of points of accumulation. This kind of transversal structure for M 2 (f ) ⊂ X 2 is realized in [START_REF] Poénaru | Equivariant, locally finite inverse representations with uniformly bounded zipping length for arbitrary finitely presented groups[END_REF] by a process which I have called the "decantorianization". But then, this structure is only the simplest of the local complications with which we have to live. More complicated ones, not to be described here, are necessary too. But the important point is that we can live with them, we can prove the QSF theorem, with them being around.

And, to have all these things we need exactly the dimensions from (1.15.1). So, by now, we have explained why exactly 3-dimensional presentations for Γ are needed; and the reason is not some big love for three-dimensional topology (some readers may remember that [START_REF] Gabai | Valentin Poénaru's Program for the Poincaré Conjecture[END_REF] happens all in four dimensions). The 3-dimensional presentations of Γ are imposed on us by the needs of the technology of the proof of our Theorem 1.2, or actually 1.4.

With this, we go back now to the definition of the

2 d REPRESENTATIONS (1.16) X 2 -→ M (Γ)
which we complete now with respect to the things already said in Definition 1.5. We will add the following ingredients to that definition, in the two-dimensional case, exactly.

(1.16.1) The not necessarily locally finite space X 2 has generally speaking a set of singularities, where it is not locally embeddable in R 3 . If s ∈ X 2 is such a singularity, then there is a neighbourhood s ∈ U ⊂ X 2 with the following structure, which one should compare with the one in figure 1.1 (which should be considered its

3 d thickening), U = [-1 ≤ x ≤ 1, -1 ≤ z ≤ 1] ∪ (x = y = 0, -1 ≤ z ≤ 0) [-1 ≤ y ≤ 1, -1 ≤ z ≤ 1]
and this is what we will call a 2-dimensional undrawable singularity, with the singular point s = (x = y = z = 0). This is a terminology which was suggested to me, many years ago and in a completely different context, by my friend Barry Mazur. The subset of singularities cannot be discrete, as we shall see, i.e. it has accumulation points at finite distance in X 2 . Also, the undrawable singularities above can be immortal or mortal (when f kills them). End of (1.16.1)

(1.16.2) (This is an amplification of the avatar (1.11.1-A). We move now to f X 2 which, unless Γ = π 1 (smooth M 3 ) also has, its own immortal singularities (always undrawable ones).

And f X 2 (naive) will have non local finiteness points, denoted p ∞∞ . By "naive" I mean that, with a more sophisticated approach, this non local finiteness will be eliminated, at a price, as we shall see.

There will be two kinds of p ∞∞ 's. To begin with, the p ∞∞ (S)'s where the immortal singularities of f X 2 (naive) accumulate, and then the others, the p ∞∞ (proper).

All the p ∞∞ 's pre-exist at level X 2 as

p ∞∞ ∈ X 2 -M 2 (f ) . End of (1.16.2)
Here is the idea of how to deal with the lack of local finiteness of f X 2 coming from {p ∞∞ }. In a more sophisticated, real life version, of X 2 and f X 2 , each p ∞∞ gets DELETED and in order not to change the π 1 , this deletion gets then COMPENSATED by the (singular) addition of a 2-cell D 2 (p ∞∞ ). Anyway, before this deletion the subset {p ∞∞ } ⊂ X 2 or f X 2 is discrete, i.e. without accumulation points. And, outside its mortal singularities, the X 2 → M (Γ) is a generic immersion.

(1.16.3) Forgetting, very temporarily about the disease from (1.16.2) we will discuss now a bit the (1.16.1).

There are two possibilities for the union of the two pieces of U (1.16.1). EITHER f (U ) ⊂ {smooth part of the 3 d M (Γ)} and then f | U in the obvious map U → R 3 (x, y, z) with two half lines of double-points in M 2 (f ), starting at s, which is now a non-immersive point, i.e. a mortal singularity, "mortal" because both equivalence relations Ψ(f ) and Φ(f ) kill it OR f | U embeds naturally in M (Γ) but NOT in R 3 . The Θ 3 (S), with s ∈ S is now the obvious 3 d thickening of U . Just like S, our s is now an immortal singularity. This is the model from figure 1.1.

But as already said, the immortal singularities may be there for f X 2 , but NOT for X 2 itself. They are created by zipping.

All these features should be incorporated into the Definition 1.5, when it comes to the 2-dimensional REPRESENTATIONS X 2 f ---→ M (S) .

End of (1.16.3) Now, in fact, for all practical purposes, the 2 d REPRESENTATION X 2 f --→ M (S) will not be used, directly as such, but as a guide for a very thin 3 d thickening of it, which is more convenient for our purposes,

(1.17) Θ 3 (X 2 ) f ---→ M (S) ,
concerning which only few words will be said, right now. But, before that, contemplate the dimensional ballet-dance, or slalom:

The very first thing we can construct [START_REF] Poénaru | Equivariant, locally finite inverse representations with uniformly bounded zipping length for arbitrary finitely presented groups[END_REF], is a 3 d REPRESENTATION and, soon afterwards (see next Section II), in order to take care of that richness of the maps dim 2 → dim 3, we go to a 2 d REPRESENTA-TION. But immediately next, we change that back into a more manageable 3 d REPRESENTATION, our (1.17).

The thickening Θ 3 (X 2 ) is thin, in the sense that we stay at ε-distance from X 2 ; moreover every undrawable 2 d singularity of X 2 becomes now like the 3 d undrawable singularities of M (Γ). And now, at the 3 d level of (1.17) by Deletion + Compensation the diseases of non-local finiteness of Θ 3 (X 2 ) and Θ 3 (f X 2 ) and the lack of discreteness for the set of immortal singularities of Θ 3 (f X 2 ) can be cured.

For that, the change

X 2 =⇒ Θ 3 (X 2 )
proceeds by deleting p∞∞(ALL) p ∞∞ ×[-ε, ε] and then compensates for this by addition of singular 2-handles.

See Section III for more on this. Now, the (1.17) has all the properties of a 3 d REPRESENTATION, and just like in ••) from 3) in Definition 1.5 is coming with M (S) = f Θ 3 (X 2 ) + {handles of index λ = 2 and λ = 3, AND a boundary collar}, consisting of steps which are all GSC-preserving. That is what that 3) does. End of (1.17)

A remark on terminology. Our thickenings Θ n , in principle, are singular. So they are, generally speaking NOT regular neighbourhoods. This is why we do not use the notation N n , which we reserve for smooth regular neighbourhoods.

Here is another comment concerning the dimension used. The 3-dimensional REPRESENTATIONS were very useful for getting Theorem 1.7 which is one of the tools for the GSC theorem.

Then, there is that certain richness in the structure of the double points set of a generic map dim 2 → dim 3, and going to 2 d REPRESENTATIONS gives us access to this richness, which is still with us when we go to (1.17). But then, to develop the S b -technology, we need to go into high dimensions, dimensions 4 (actually 5) and NOT those high dimensions of Smale and Stallings, but rather SUPPLEMEN-TARY dimensions, supplementary with respect to the four of the Θ 4 (Θ 3 (f X 2 ), R) soon to be introduced. Very approximatively speaking, we will work with something like Θ 4 (Θ 3 (f X 2 ), R) × B N , the important intermediary object towards the N + 5 dimensional S u M (Γ).

We will continue to call the (1.17) a 3 d REPRESENTATION. And we will go four-dimensional before really going into DIMENSIONS 4. In the next definition we will introduce the all-important Θ 4 (Θ 3 (X 2 ), R), forgetting momentarily about the headaches (1.11.1-A), (1.11.1-B), (and about the disease from (1.16.2) too, never mind that we will eventually get rid of it by the change (1.16) ⇒ (1.17), and for expository purposes we will temporarily ignore all those AVATARS), i.e. we will proceed now as if everything was normal. And how to deal with the general, real-life case, will be discussed later, in Sections II, III. --→ M (Γ) from (1.16), we will introduce the notion of desingularization R for f X 2 , which for the purpose of the present discussion is supposed normal, i.e. locally finite and with no avatars. But it is more convenient to work with its 3-dimensional thickening Θ 3 (f X 2 ) which, locally at the singularities of f X 2 (all like in (1.16.1)), and all of them immortal, is now like in figure 1.1.

The reader will have remarked, by now, that among other things what 3) in Definition 1.5 really does is to make sure that in terms of Θ 3 (f X 2 ), the passage

Im f =⇒ M (Γ)
at the singularities is like in the figure 1.1, while outside of the singularities Θ 3 

(f X 2 ) is, locally, just a normal C ∞ regular neighbourhood induced by X 2 f --→ M (Γ). [To make good sense of this, keep in mind that Sing(f X 2 ) = f X 2 ∩ Sing M (Γ).]
Of course f X 2 itself and X 2 too have undrawable singularities. But, while for f X 2 and/or Θ 3 (f X 2 ) all singularities are immortal, for X 2 they may a priori be both of the mortal kind and of the immortal one. In fact, the real-life X 2 will be conceived so that it should be free of immortal singularities. When we speak 2 d -language, at any singularity s of X 2 or of f X 2 we have locally two branches, i.e. {neighbourhood of X 2 or of f X 2 at s} = U (from (1.16.1)) = U (x) ∪ U (y) (glued together singularly).

With this, a desingularization R for f X 2 (and/or for Θ 3 (f X 2 )) is a choice which for each singularity s establishes a bijection (the choices being totally independent for various s's)

{U (x), U (y)} -→ x {-1, +1} .
The branch corresponding to +1 is called specified and the one corresponding to -1 non-specified. End of Definition 1.18.

Before we can go to things like Θ 4 (Θ 3 (f X 2 ), R) or Θ 4 (Θ 3 (X 2 ), R) some more geometry will have to be grafted on the very combinatorial definition of R we just gave. As a pedagogical prentice let us start with the very special case when Γ = π 1 M 3 (smooth 3-manifold) and (hence) M (Γ) = M 3 itself. Now we have the situation

(1.19) X 2 f ---→ M 3 = M 3 × {0} ⊂ M 3 × [-1 + 1] (4-manifold).
A desingularization R for X 2 is now, just like before, a choice for each singularity s ∈ X 2 of a bijection

{U (x), U (y)} -→ {-1, +1} = (non-specified, specified).
In our special situation (1.19) for such a desingularization R we can consider a lift (1.19.0)

X 2 f --→ M 3 ⊂ M 3 × [-1, +1] | ↑ F
lifting each specified branch towards M 3 × {+1}, and leaving the rest put, locally embedded in the smooth

M 3 = M 3 ×{0}.
[In a more symmetrical vein, we may also lift the non-specified branches towards M 3 ×{-1}, but up to diffeomorphism N 4 (F X 2 ) ≡ Θ 4 (X 2 , R) would just stay unchanged.] In this very particular situation, we define now

Θ 4 (X 2 , R) = Θ 4 (Θ 3 (X 2 ), R) ≡ N 4 (F X 2 ) .
We move now to the general situation of X 2 f --→ M (Γ). The desingularizations R are defined just like before. And, to this combinatorial R we want to associate an object Θ 4 (Θ 3 (X 2 ), R), and on the same lines (later on) a Θ 4 (Θ 3 (f X 2 ), R). For the time being (without the avatars (1.11-A), (1.11-B)), these will be smooth 4-manifolds.

We will define Θ 4 (Θ 3 (X 2 ), R), in the general M (Γ) case, by glueing together of appropriate local pieces and this is the good definition (forget now about (1.19.0)). Each singularity S ⊂ Θ 3 (X 2 ), always like in figure 1.1, whether mortal or immortal has its localized piece, to be made explicit below, building bloc for the general Θ 4 

(Θ 3 (X 2 ), R), namely (1.19.1) Θ 4 (Θ 3 (S), R) = Θ 4 (Θ 3 (X 2 ), R) | Θ 3 (S) .
This is always a copy of the standard B 4 , coming canonically equipped, as part of our definition of Θ 4 (. . . , R), with a framed R-dependent embedding (1.19.2)

δΘ 3 (S) --→ ∂Θ 4 (Θ 3 (S), R) .
The δΘ 3 (S), via which we glue to the outside world, is always an unknotted copy of S 1 × S 1 -int B 2 and the two possibilities, corresponding to how the two choices for R, look with respect to each other are like in the figure 1.1-bis, which is part of the Definition of (1.19.1).

Notice now that outside of the singularities, with the non-singular part of X 2 going into the non-singular part of M (Γ) immersively, our Θ 3 (X 2 ) is then (outside the singularities) just the regular neighbourhood induced by X 2 f --→ M (Γ). With this, here comes another feature of that definition of Θ 4 (Θ 3 (X 2 ), R), which is the following:

(1.19.3) Θ 4 (Θ 3 (X 2 ), R) | (Θ 3 (X 2 ) - S = singularity Θ 3 (S)) = DIFF = (Θ 3 (X 2 ) - S = singularity Θ 3 (S)) × [-ε, +ε] ⊃ S δΘ 3 (S)
(embedding in the boundary), like in the case M 3 (Γ) = M 3 (smooth). Turning back to (1.19.3), this formula is clearly R-independent, and we will choose it as definition for the Θ 4 (Θ 3 (X 2 ), R) | (Θ 3 (X 2 ) -S Θ 3 (S)), while for Θ 4 (Θ 3 (S), R), the definition is provided by figure 1.1-bis. So, for any individual S, we define now

Θ 4 (Θ 3 (S), R) ≡ {B 4 , figure 1.1-bis} ,
and in order to introduce structure into this last definition, we introduce now the canonical embedding ∂Θ 4 (Θ 3 (S), R) ⊃ δΘ 3 (S), proceeding like in figure 1.1-bis. Finally, we globalize, i.e. we glue the local pieces together:

(1.19.4) Θ 4 (Θ 3 (X 2 ), R) ≡ Θ 4 (X 2 , R) ≡   Θ 4 (Θ 3 (X 2 ), R)   Θ 3 (X 2 ) - S Θ 3 (S)     ∪ S Θ 4 (Θ 3 (S), R) , glued together along ∂   Θ 4 (Θ 3 (X 2 ), R)   Θ 3 (X 2 ) - S Θ 3 (S)     ⊃ S ∂ Θ 3 (S) × [-ε, +ε] ⊂ S ∂ Θ 4 (Θ 3 (S), R) ,
where the ×[-ε, +ε] is the factor occurring in the RHS of (1.19.3) and then, coherently with this, transversal to ∂ S ⊂ ∂ Θ 4 (Θ 3 (S), R), in figure 1.1-bis. End of (1.19.4) The object which (1.19.4) defines, is a smooth 4 d manifold, endowed with a collapse

Θ 4 (Θ 3 (X 2 ), R) Θ 3 (X 2 ) ⊂ Θ 4 (Θ 3 (X 2 ), R) .
This long process clinches the DEFINITION OF THE Θ 4 (Θ 3 (X 2 ), R), which is clearly GSC, since X 2 is so.

Also this Θ 4 is a smooth 4-manifold, in our avatar-free case. In our avatar-free context we can also consider a desingularization for f X 2 call it R again, BUT it may a priori have nothing to do with the R of Θ 3 (X 2 ). Actually, there is little caveat here. All the singularities of X 2 or Θ 3 (X 2 ) are mortal, while the ones of f X 2 or Θ 3 (f X 2 ) are all immortal, created by the zipping, and needing a newly created desingularization R.

After this, proceeding exactly like for Θ 4 (X 2 , R), in our present avatar-free context, we can define Θ 3 (f X 2 , R), proceeding by first defining the spare parts Θ 4 (singular part, R) and Θ 4 (non-singular part) (which is NO longer R-dependent), and then glue together their various local pieces. End of Definition 1.18.

Very importantly for us, when one goes from Θ 4 (Θ 3 (X 2 ), R) to Θ 4 (Θ 3 (X 2 ), R) × B p , for any p ≥ 1, the R-dependence is washed off. This has the following important consequence. We certainly need an equivariant theory in order to prove Theorem 1.2. So, like in Theorem 2.1 from the next section we start with a 2 d REPRESENTATION X 2 f --→ M (Γ) which is locally finite and equivariant too. Now we have a free action Γ

× X 2 → X 2 , with f (γ • x) = γ • f (x).
The equivariance easily extends then to Θ 3 (X 2 ), let's say the one from (1.17). But then, when we go 4 d (and we need that step, an intermediary step for getting later to something rather close to a smooth manifold in high dimension), we loose the free group action (hence we loose the equivariance, because of the R-dependence). But then also, as soon as one more from Θ 4 

to Θ 4 (Θ 3 (f X 2 ) (or Θ 3 (X 2 )), R) × B N , for N ≥ 1,
the free group action of Γ and the equivariance are back with us.

Let us go back now to (1.16) and to its zipping. This zipping means that the map f can be exhausted by an infinite sequence of quotient space projections which we call elementary zipping moves. In figure 1.2, which is borrowed from Dave Gabai's paper [START_REF] Gabai | Valentin Poénaru's Program for the Poincaré Conjecture[END_REF], we present all the possible elementary zipping moves. The zipping is mute when it reaches the singularities of M (Γ). What we find there for (1.16) is

f (immortal singularities of X 2 ) ⊂ Sing M (Γ) ,
and nothing more. So figure 1.2 can happily restrict itself to the target R 3 .

These moves certainly make sense for Θ

3 (X 2 ), Θ 4 (Θ 3 (X 2 ), R), Θ 4 (Θ 3 (X 2 ), R) × B p , p ≥ 1, too. But let us stop at Θ 4 (Θ 3 (X 2 ), R
) and look at the effect of an elementary zipping move X j O(i)

----→ X j+1 , on the road which completely zips the Θ 4 version of the map (1.16), think of it as being broken into an infinite sequence of elementary steps, zipping moves like in figure 1.2, but forget the avatars for the moment

X 2 = X 2 0 → X 2 1 → • • • → X 2 i → X 2 i+1 → • • • → f X 2 .
With this here is what happens. We go first to the 3 d version Θ 3 (X 2 ) we get

Θ 3 (X 2 ) = Θ 3 (X 2 0 ) → . . . Θ 3 (X 2 1 ) → Θ 3 (X 2 i+1 ) → . . . Θ 3 (f X 2 ) .
And now, if Θ 3 (X 2 j ) comes with a desingularization R, then this gets automatically transported to the Θ 3 (X 2 j+1 ). In the acyclic cases O(0), O(1), O(2) (figure 1.2) this should be pretty clear. In the O(3) case we will just forget about the R for those two singularities which bump into each other, dying in the process. And now we will look at what happens for the Θ 4 (Θ 3 (X 2 j ), R)'s.

(1.19.5) For any of the acyclic moves O(i)

with i = 0, 1, 2, the Θ 4 (Θ 3 (X 2 j ), R) -→ Θ 4 (Θ 3 (X 2 j+1 ), R
) is a smooth J.H.C. Whitehead dilatation, i.e. a diffeomorphism inducing an embedding which is GSC preserving.

(1.19.6) Now, exactly in dimension four, the O(3) is very special, and hence more interesting. There are two cases now, exactly in dimension n = 4, namely the following two:

•) The COHERENT case, when the R's of the two singularities involved are in phase with each other.

[Explanation: There are now two smooth branches (see figure 1

.2 for O(3)), call them U (x), U (y) with U (x)∩ U (y) {s 1 and s 2 }. "In phase" means that U (x(or y)) is specified for s 1 ⇐⇒ U (x(or y)) is specified to s 2 too.] ••)
The NON-COHERENT case, where the R's are not in phase. [A Prentice: The notion of COHER-ENCE is really a purely four-dimensional issue, but this is not the place to discuss it. So, in this paper, without dwelling longer on it, we will soon move to higher dimensions, when the distinction COHERENT VERSUS NON-COHERENT vanishes as soon as the dimensions are ≥ 5.

But the interested reader may consult the references [START_REF] Gabai | Valentin Poénaru's Program for the Poincaré Conjecture[END_REF], [START_REF] Poénaru | Geometric simple connectivity in four-dimensional differential topology[END_REF], [START_REF] Poénaru | On the 3-dimensional Poincaré Conjecture and the 4-dimensional Smooth Schoenflies Problem[END_REF]. Let us also say here that the sketchy proof suggested below for easy Theorem 1.10 is essentially inspired by the very initial, very easy part of my own approach of the 3 d Poincaré Conjecture and I have here in mind both my papers [START_REF] Poénaru | The collapsible pseudo-spine representation theorem[END_REF], [START_REF] Poénaru | Infinite processes and the 3-dimensional Poincaré Conjecture, II: The Honeycomb representation theorem[END_REF], living very up-stream in the approach in question, and also David Gabai's review paper [START_REF] Gabai | Valentin Poénaru's Program for the Poincaré Conjecture[END_REF] which presents things as they stood about twenty years ago and then, for an up-date see here [START_REF] Poénaru | Geometric simple connectivity in four-dimensional differential topology[END_REF], [START_REF] Poénaru | On the 3-dimensional Poincaré Conjecture and the 4-dimensional Smooth Schoenflies Problem[END_REF]. So, COHERENCE is a purely 4-dimensional item. Four dimensions are really very special indeed, see here also [START_REF] Poénaru | A glimpse into the problems of the fourth dimension[END_REF].] End of Prentice. In the COHERENT case, we have a smooth embedding

Θ 4 (Θ 3 (X 2 j ), R) -→ Θ 4 (Θ 3 (X 2 j+1 ), R) ,
given by the addition of a smooth 2-handle and hence we are also GSC-preserving. In the NON-COHERENT case there is no clear embedding at all. End of (1.19.6)

(1.19.7) But, since Θ 4 (Θ 3 (X 2 ), R) =⇒ Θ 4 (Θ 3 (X 2 ), R) × B N , N ≥ 1,
washes off the R-dependence, we have by now a completely clear picture for

Θ 4 (Θ 3 (X 2 j ), R) × B N -→ Θ 4 (Θ 3 (X 2 j+1 ), R) × B N , N ≥ 1 ,
which is always either a smooth J.H.C. Whitehead dilatation or the addition of a 2-handle. Provided N ≥ 1, this is always a GSC-preserving step since now COHERENCE is washed out. So, with N ≥ 1, at least in the avatar-free case we have a clear passage

(1.19.8) Θ 4 (Θ 3 (X 2 ), R) × B N =⇒ Θ 4 (Θ 3 (f X 2 ), R) × B N ,
the RHS R being canonically induced by the LHS R. Moreover, in the avatar-free case, this passage is easily shown to be GSC-preserving, this is the essence of the easy Theorem 1.10, as we shall soon see. Now, even without Θ 4 and without ×B N , someting like a transformation

Θ 3 (X 2 ) =⇒ Θ 3 (f X 2 ) ,
in lieu of (1.19.8), certainly makes sense, but it is no longer GSC-preserving, hence useless for our purposes. But, the big point is that we will need objects like Θ 4 (Θ 3 (X 2 ), R), Θ 4 (Θ 3 (f X 2 ), R) even with the avatars (1.11.1-A) (1.11.1-B). Then the constructions above will have to be modified:

•) Bad p ∞∞ points of non local finiteness for f X 2 will have to be deleted and compensated by addition of 2-handles.

••) Various bad accumulation points will have to be corralled and sent to infinity, which will require some work.

Moreover our Θ 4 's will acquire singularities. The next sections will explain all this. We are finally ready to give a glimpse into the proof of the Easy Theorem 1.10. Of course, the complete proof is actually available in print [START_REF] Otera | Easy" Representations and the QSF property for groups[END_REF]. But we think it is a good introduction to the much harder proof of the GSC Theorem 1.4, reason for presenting this sketch of proof here.

We start from the Easy Representation (1.15), which we will break into an infinite sequence of elementary zipping moves O(i)

(1.20) X 2 ≡ X 0 -→ X 1 -→ X 2 -→ • • • -→ f X 2 .
Next we go to a high-dimensional thickening

Θ n (X 2 ) = Θ 4 (Θ 3 (X 2 ), R) × B p , n 5 .
The reason for n ≥ 5 is, of course, the (1.19.6). With this, the following things happen now.

A) The various arrows in (1.20) become smooth embeddings, each of which is either a compact smooth Whitehead dilatation, or the addition of a 2-handle

(1.21) Θ n (X 2 ) = Θ n (X 0 ) → Θ n (X 1 ) → Θ n (X 2 ) → • • •
Before going on, notice that going from (1.20) to (1.21) means the following kind of process:

(1.22) Replacing an infinite quotient-space projection by an infinite inclusion map, or letting the latter mimick the former. End of (1.22) It turns out that this (1.22) is one of the very main ideas, both for Theorem 1.10 and for the GSC Theorem. BUT, while in the context of Theorem 1.10, when the Whitehead nightmare is absent, the {process (1.22)} + {its consequences which we will soon see} are really a very simple-minded affair, in the generic real-life case, with the Whitehead nightmare there, present, things are infinitely trickier. Here is an example of what may happen with an infinite inclusion map, when the Whitehead nightmare is present.

Theorem 1.13. (Po-Tanasi [START_REF] Poénaru | On the Handles of index one of the product of an open simply-connected 3-manifold with a high-dimensional ball[END_REF]) -Let V 3 be any open simply-connected 3-manifold. There is then a sequence of smooth non-compact smooth manifolds, which are all non-compact, with non-empty boundary, and of smooth inclusions

X m+3 1 ⊂ X m+3 2 ⊂ X m+3 3 ⊂ • • • , (m large) such that: 1) X m+3 1 
∈ GSC and all the inclusions above are finite combinations of smooth Whitehead dilatations and/or additions of handles of index λ > 1. So, all of them are GSC-preserving.

2) If we take lim -→ X m+3 i , the union of the objects above, endowed with the weak-topology (and in our very general context, there is no other topology which we can use here), then there is a continuous bijection

lim -→ X m+3 i ψ --→ V 3 × B m .
I claim that, under the conditions of the theorem above, ψ -1 is not continuous and lim -→

X m+3 i is NOT METRIZABLE.
[Proof. If ψ -1 would be continuous, we would find that V 3 × B m ∈ GSC. Now V 3 could well be the Whitehead manifold Wh 3 . And the Stabilization Lemma 1.4.1 excludes that Wh 3 × B m be GSC.

[Proof. If Wh 3 × B N would be GSC then the stabilization Lemma 1.4.1 would tell us that Wh 3 is Dehnexhaustible. And for open 3-manifolds Dehn-exhaustibility implies π ∞ 1 = 0 (see [START_REF] Poénaru | Killing handles of index one stably and π ∞ 1[END_REF]).] Now, if ψ -1 is not continuous, then via an old classical result of L.E.J. Brower, lim -→ X m+3 i cannot be a manifold and it follows then that it is not metrizable either.]

We meet here a metrizability barrier and, to overcome it, the proof of our GSC Theorem 1.4 has to make use of the technical ingredients (1.14.1). And once these are integrated in our kit of tools, the proof of the GSC Theorem will be able to use the step (1.22), which is now, in this context, quite nontrivial.

When M 2 (f ) ∪ Sing(f ) ⊂ X 2 is NOT CLOSED, we cannot do without (1.14.1). But let us go back now to our sketch of proof for Theorem 1.10, which is a much easier affair. Θ n (X i ) (with "Θ n " standing for n-dimensional thickening, but see then the remarks on terminology made just after (1.17)).

B) Since M 2 (f ) ∪ Sing(f ) ⊂ X 2 is now closed, like in (1.
C) Because X 2 ≡ X 0 ∈ GSC, so is also our ∞ i=0 Θ n (X i ).
Here, GSC is meant in the category of smooth cell-complexes. D) Because f X 2 ⊂ M (Γ) is closed and also locally finite, we also have

(1.22) ∞ i=0 Θ n (X i ) = DIFF Θ n (f X 2 ) . E) Point 3) in the general definition of REPRESENTATIONS makes that Θ n ( M (Γ)) = Θ n (f X 2 ) +
{handles of index 2 and 3}, and hence we also have Θ n ( M (Γ)) ∈ GSC. (Here Θ n ( M (Γ)) ≡ Θ 4 ( M (Γ), R) × B n-4 .) With n ≥ 5, the group Γ acts freely on Θ n ( M (Γ)) and once Θ n ( M (Γ)) ∈ GSC this immediately implies Γ ∈ QSF. Here are some more details.

Here, our representation was not assumed Γ-equivariant, but the Θ n ( M (Γ)), n ≥ 5, on which Γ acts freely, certainly is so. Moreover the fundamental domain Θ n ( M (Γ))/Γ is compact. It is now a standard fact that, if Y is a locally finite simplicial complex which is GSC, comes with a free Γ-action such that Y /Γ is compact, with π 1 Y /Γ = Γ, then Γ ∈ QSF. End of the argument. This ends our sketch of proof for Theorem 1.10.

In the context of D) above, one should notice that with the pathology (1.11.1-A) above, the Θ n (f X 2 ) would not make sense and with both pathologies (1.11.1-A, B) above, the ∞ i=0 Θ n (X i ) would NOT make sense either. [Figure 3.2 in Section III exhibits some of the pathologies.]

Here are, finally, some general kind of remarks concerning the technologies used in this paper. During our constructions, some boundary points have to be deleted, or rather sent to infinity as "punctures". This is a general kind of phenomenon occurring in the construction of S u . But then, transversal compactness puts a limit on how much punctures we are allowed to use, without loosing our desired implication (1.7.1). I call this the "Stallings' barrier". Remember that, according to classical results of John Stallings, it is very easy to get GSC by multiplying with R p , p large, which of course makes havoc of transversal compactness. Multiplying with B p , like in (1.7.2), is a very different affair. We have already mentioned these things in connection with (1.7.2). But then there is also the second "nonmetrizability barrier", to be respected, and it pushes in the opposite direction with respect to the Stallings' barrier. We want to stay on the good side of both of them. Here is how this second barrier occurs. During our construction of S b , we need to drill some ditches in those additional dimensions, and then, later on, fill them in again with various material, but differently. Unless this is done with very great care, it leads to spaces which are not metrizable, hence useless for our purposes. See here what happens in Theorem 1.13.

And then, there is a third barrier too. On the REPRESENTATION space X 2 , there are two, not everywhere defined flows, the collapsing flow (and see here what is said at 1) in the Definition 1.5, concerning X 2 ∈ GSC), and then the zipping flow. Each of them, just by itslef is a simple-minded, let us say harmless object. But, together, they can produce BAD CYCLES, like the one suggested in the little drawing below, and these can be quite dangerous for the proof of the GSC theorem.

zipping flow collapsing flow

_ _

A BAD CYCLE I would like to end this introductory section with two compactness. Much more concerning them can be found in [START_REF] Poénaru | On geometric group theory[END_REF].

Conjecture 1. All the finitely presented groups G are easy, in the sense of Definition 5.

So "easy" is meant here in the technical sense. Nevertheless, if you feel that this statement as it stands is too impertinent, and I certainly refer to it, sometimes, as "the impertinent conjecture", you may prefer the following alternative, equivalent statement.

Conjecture 1, version two. For any G there is a REPRESENTATION avoiding the Whitehead nightmare.

Obviously, Conjecture 1 implies the QSF Theorem 1.2. But then, I believe that the technology for the proof of the QSF theorems, as developed in the present Trilogy can be re-arranged and twisted around, so as to prove this stronger result. I feel rather optimistic about that. I must add here that one can prove the analogue of Conjecture 1 if one appropriately weakers the Definition 1.5 of REPRESENTATIONS; one replaces GSC in the definition of REPRESENTATIONS by "weakly GSC" (WGSC), in the sense of L. Funar and D. Otera [START_REF] Funar | On the WGSC and QSF tameness conditions for finitely presented groups[END_REF]. (See here [START_REF] Otera | Finitely presented groups and the Whitehead nightmare[END_REF] for this weaker result.) But this is, of course, a much more modest thing than the Conjecture 1.

Let's finally go back to the issue of the QSF theorem being both completely general (true for all G's) and quite non trivial too, contradicting the normally believed wisdom. Here is how I think that this tension can be resolved. And here I make my Conjecture 2 (and fore more details see also [START_REF] Poénaru | On geometric group theory[END_REF]).

I believe there is another category, waiting to be made explicit, larger than the category of finitely presented groups, inside which our category of finitely presented groups lives embedded like the rationals inside the real numbers, or like the periodic functions inside the almost-periodic ones. Here the "difficult" objects should naturally appear, beyond the "easy" ones, resolving the tension.

I think this hypothetical new category manifests itself already via things like the Penrose aperiodic tilings or the quasi-crystals from condensed matter physics. And the language in which to express it, should be the non-commutative geometry of Alain Connes, I believe.

But, for the time being, this is rather a wild project or a dream. And, once we are in the dreams section, here is another wild thought. At this point we turn to the existence of groups for which the Word problem is algorithmically unsolvable (a classical result of P.S. Novikov [START_REF] Novikov | On the algorithmically unsolvable word problem in group theory[END_REF], a bit later proved by W. Boone too [START_REF] Boone | Decision problems about algebraic logical systems as a whole and recursively enumerable[END_REF]. Would it be possible to construct a group G, the algorithmically unsolvable word problem of which should encode ALL algorithmically unsolvable problems? Or, a collection of groups, the algorithmically unsolvable isomorphism problem of which should encode all the algorithmically unsolvable problems? Many thanks are due to Louis Funar, David Gabai and Daniele Otera, for very useful conversations. Also, without the friendly help of the IHES, this paper could not have seen the light of day.

Last, but not least, many thanks are due to Cécile Gourgues for the typing and to Marie-Claude Vergne for the drawings.

The 2-dimensional representation theorem

The object of the present section is to construct that 2 d REPRESENTATION (1.10) starting from which the so far rather mythical object S u ( M (Γ)) from (1.6), will be eventually constructed in the next section.

So here is the main result of this present section. 

X 2 f -→ M (Γ) ,
with the following features 1) (First finiteness condition.) The 2-dimensional cell-complex X 2 is, for all practical purposes, locally finite. [Very precisely, with a naive X 2 , local finiteness of X 2 is violated at the points p ∞∞ (S) ∈ f -1 (f X 2 ∩ S) in figure 2.8 below. But this will be then corrected for the realistic X 2 , via deletion of the p ∞∞ (S) and addition of compensating 2-discs instead. See (2.15) below.]

2) (Equivariance.) There is a free action Γ×X 2 → X 2 s.t. for all x ∈ X 2 , γ ∈ Γ we have f (γx) = γf (x).

3) (The second finiteness condition.) For any tight compact transversal Λ to M 2 (f ) ⊂ X 2 we have

(2.2) card (lim(Λ ∩ M 2 (f ))) < ∞ .
[This is the result of the "decantorianization" process.]

4) The closed subset, with Λ running over the tight Λ's above

(2.3) LIM M 2 (f ) = def Λ lim(Λ ∩ M 2 (f )) ⊂ X 2 ,
which is the only place where M 2 (f ) ⊂ X 2 can accumulate, is a locally finite graph and f LIM M 2 (f ) ⊂ f X 2 is also a closed subset. We also have the following feature. Let Λ * run over all tight transversals to LIM M 2 (f ), then we have

(2.4) Λ * (Λ * ∩ M 2 (f )) = M 2 (f ) . 5) Let (x, y) ∈ M 2 (f ) ⊂ X 2 × X 2 be a double point of f and λ(x, y) ⊂ M 2 (f ) ≡ M 2 (f ) ∪ Diag(Sing(f )) ⊂ X 2 × X 2
be a zipping path for (x, y). There exists a uniform bound K > 0 s.t. if λ(x, y) ≡ {The length of λ(x, y)} (which is well-defined, up to quasi-isometry), then

(2.5) inf λ λ(x, y) < K ,
where λ runs over all zipping paths for (x, y). [In other words, for (x, y)

∈ M 2 (f ) ⊂ X 2 × X 2 , zipping paths, of course, always exist since Ψ(f ) = Φ(f ).
But what is being said now is that among them there can be chosen a certain zipping path λ(x, y) which is such that λ(x, y) < K.]

Comments. -A) We will explain the term "tight transversal". What this means is that the following figure is forbidden.

B) The vilain in our whole story is the closed set LIM M 2 (f ). There is

an equivalence LIM M 2 (f ) = φ ⇔ M 2 (f ) ⊂ X 2 is CLOSED (in the sense (1.11.1) meaning that M 2 (f ) ∪ Sing(f ) ⊂ X 2 is closed).
C) The present section will, very likely, look very much like a pedantical descriptive story, with very little conceptual substance, but then the very exact details of what the (2.1) looks like, will be important for us, later on. And then, behind our Theorem 2.1, there is the Theorem 2.2 + its complement 2. For the convenience of the reader, we re-phrase here some things which were already said in Section I, in connection with figure 1.1 and with (1.16) and (1.17). We are given a copy of R 3 + , with ∂R 3 + = R 2 and with two copies of

R 2 + × [0, 1] parametrized as R ε × R + × [0, 1] ε , with ε = 1, 2. The R ε × [0, 1] ε ∼ = R ε × [0, 1] ε | ∂R + ⊂ ∂(R ε × R + × [0, 1] ε ) come with two embeddings R 1 × [0, 1] 1 -→ (R 2 = ∂R 3 + ) ←-R 2 × [0, 1] 2 ,
cutting through each other transversally along the square S = [0

, 1] 1 × [0, 1] 2 ⊂ R 2 .
The singular 3-space Θ 3 ( S) is gotten by glueing each of the two

R ε × R + × [0, 1] ε 's along the corresponding R ε × [0, 1] ε to R 3
+ is an open neighbourhood of our S ⊂ M (Γ). One can notice that the Θ 3 ( S) is exactly like the undrawable singularities in [START_REF] Gabai | Valentin Poénaru's Program for the Poincaré Conjecture[END_REF], [START_REF] Poénaru | The collapsible pseudo-spine representation theorem[END_REF], [START_REF] Poénaru | Infinite processes and the 3-dimensional Poincaré Conjecture, II: The Honeycomb representation theorem[END_REF] in their 3-dimensional version, without any attached map of which they would be the source. One can require that our S's should always be contained in the lateral surface of the 0-handles of M (Γ) and that a given 2-handles should see at most one S. See here also figure 1.1.

Proof of Theorem 2.1. The proof of Theorem 1.1 starts from a 3-DIMENSIONAL REPRESENTATION THEOREM (see Theorem 2.2 below) proved in [START_REF] Poénaru | Equivariant, locally finite inverse representations with uniformly bounded zipping length for arbitrary finitely presented groups[END_REF], proceeding afterwards on the general lines of [START_REF] Poénaru | Equivariant, almost-arborescent representations of open simplyconnected 3-manifolds; a finiteness result[END_REF], a paper which, although focusing on smooth 3-manifolds was like taylor-made for our present needs, i.e. for [START_REF] Poénaru | Equivariant, locally finite inverse representations with uniformly bounded zipping length for arbitrary finitely presented groups[END_REF] and for the present paper. But there will be now important technical details where we will proceed differently from [START_REF] Poénaru | Equivariant, almost-arborescent representations of open simplyconnected 3-manifolds; a finiteness result[END_REF] and, normally, we will signalize this at the appropriate time, when necessary. But then, we will also make the present paper independently readable from [START_REF] Poénaru | Equivariant, almost-arborescent representations of open simplyconnected 3-manifolds; a finiteness result[END_REF], the knowledge of which should not be necessary for the reader, now. For this purpose, some useful figures from [START_REF] Poénaru | Equivariant, almost-arborescent representations of open simplyconnected 3-manifolds; a finiteness result[END_REF] are reproduced here again.

Exactly like in [START_REF] Poénaru | Equivariant, locally finite inverse representations with uniformly bounded zipping length for arbitrary finitely presented groups[END_REF] (and [START_REF] Poénaru | Equivariant, almost-arborescent representations of open simplyconnected 3-manifolds; a finiteness result[END_REF]), the M (Γ) and its M (Γ) are unions of handles of index λ ≤ 2, denoted generically by h λ i , while the 3 d object Y (∞) to be considered next and introduced already in [START_REF] Poénaru | Equivariant, locally finite inverse representations with uniformly bounded zipping length for arbitrary finitely presented groups[END_REF], consists of bicollared handles of index λ ≤ 2. These kind of handles are denoted, generically, by H λ i (γ), and each of these H λ i (γ)'s corresponds to some usual λ-handle h λ i ⊂ {M (Γ) or M (Γ)}, the case M (Γ) being of real interest for us. As explained in [START_REF] Poénaru | Equivariant, locally finite inverse representations with uniformly bounded zipping length for arbitrary finitely presented groups[END_REF], the index γ belongs to a countable set which, in principle, is (λ, i)-dependent. Each bicollared H λ i comes with its decomposition into usual handles,

H λ i = ∞ m=1
H λ i,m . More details concerning the bicollared handles are to be found in [START_REF] Poénaru | Equivariant, locally finite inverse representations with uniformly bounded zipping length for arbitrary finitely presented groups[END_REF] (and [START_REF] Poénaru | Equivariant, almost-arborescent representations of open simplyconnected 3-manifolds; a finiteness result[END_REF]). Figure 2.1 suggests the infinite decomposition

H λ (bicollared handle) = ∞ n=1 H λ n (usual handles) .
Theorem 2.2 and its complement 2.3, which are both stated below, are essentially, the juxtaposition of the main result of [START_REF] Poénaru | Equivariant, locally finite inverse representations with uniformly bounded zipping length for arbitrary finitely presented groups[END_REF] and of the Lemma 4.3 in the same paper. The main weight of the proof of our Theorem 2.1 falls on those two results. Like always in this paper, Γ is a generic, arbitrary, finitely presented group.

Theorem 2.2. (3-DIMENSIONAL REPRESENTATION THEOREM) -For any Γ, there is a 3-dimensional REPRESENTATION

(2.6) Y (∞) g(∞) ----→ M (Γ) ,
with the following features.

1) The space Y (∞) is a 3 d locally finite cell complex which is a union of bicollared handles Y (∞) = λ, i, γ

H λ i (γ)
, where λ ≤ 2, and where the system of indices i corresponds to a given handle-decomposition of

M (Γ): M (Γ) = i,λ h λ i .
We neither need nor use handles of index λ = 3 for M (Γ) (which is, nevertheless,

3-dimensional). Our Y (∞) is a 3 d train-track, in the sense of W. Thurston.
2) There is a free action Γ × Y (∞) → Y (∞), respecting the bicollared handlebody structure, with respect to which the non-degenerate map g(∞) is equivariant.

3) For each H λ i (γ) we have the non-compact attaching zone ∂H λ i (γ) ⊂ H λ i (γ) and the compact lateral surface δH λ i (γ) lives at the infinity of H λ i (γ). The embedding g(∞) | H λ i (γ) extends continuously to an embedding of H λ i (γ) ≡ H λ i (γ) ∪ δH λ i (γ), coming with a strict equality of sets g(∞)(δH λ i (γ)) = δh λ i . Moreover, inside M (Γ), the g(∞) H λ i (γ) occupies, roughly, the position of h λ i ⊂ M (Γ); see below for further explanations.

4) The various ε-skeleta Y (ε) ⊂ Y (∞) contain canonical outgoing collars, such that each 1) in a collar-respecting manner at some level k(i, γ) ∈ Z + s.t.

H λ i (γ) is attached along ∂H λ i (γ) to Y (λ-
(2.7)

If i is fixed and γ n → ∞ then lim k(i, γ n ) = ∞ .
End of (2.7).

Here Y (ε) = H λ i (γ), for all i, γ, and λ ≤ ε.

5) Let (x, y) ∈ M 2 (g(∞)) ⊂ Y (∞) × Y (∞), and λ(x, y) ⊂ M 2 (g(∞)) ≡ M 2 (g(∞)) ∪ Diag(Sing(g(∞))) ⊂ Y (∞) × Y (∞)
be a zipping path for (x, y). There exists a uniform bound K > 0 such that inf λ ∈ {all zipping paths λ of (x, y)} λ(x, y) < K .

The term "roughly" occurring in 3) above should be explained by the little drawing below, where for any handle H we use the notation ∂H = attaching zone, δH = lateral surface. Let us say that we have an embedding (see the little drawing below)

h λ i ⊂ g(∞)( H λ i (γ)) , ∀ γ
and which, for λ = 0 is the identity map, which always induces δh λ i = δH λ i (γ) (living at infinity for H λ i (γ)). The case λ = 1 or 2 is suggested below, while for λ = 0 we find that g(∞) H 0 i (γ) = h 0 i , as already said. 

g(∞) H λ i (γ).

Here δ lives at infinity, for H λ i (γ). Also, the shaded area = h λ i ⊂ H i (γ).

Before going on, let us notice that, topologically speaking, H λ i (γ) is a non-compact 3-manifold with ∂H λ i (γ) being, at the same time, the boundary and the λ-handle attaching zone.

Complement 2.3 to the 3 d Representation Theorem 2.2. -1) For each ε-skeleton Y (ε) of Y (∞) we introduce the ideal boundary, living at infinity

(2.8) δ Y (ε) ≡ i,γ,λ≤ε δH λ i (γ) and Y (ε) ≡ Y (ε) ∪ δ Y (ε) .
As a consequence of (2.7), inside Y (λ-1) we find that 1) (which lives at infinity), and it is this which implies the local finiteness of Y (∞). Figure 2.3-bis should illustrate our (2.9).

(2.9) When γ n → ∞, then {∂H λ i (γ n )} accumulates on δ Y (λ-
2) We also introduce, now at the target the set

(2.10) Σ 1 (∞) ≡ i,γ,λ g(∞) δH λ i (γ) = i,λ δh λ i ⊂ M (Γ)
and, with this, when we consider the finite handles H λ i,m (γ), which are coming with the decomposition

H λ i (γ n ) = ∞ m=1 H λ i,m (γ n ), with λ, i fixed and n, m → ∞, then inside the M (Γ) the g(∞) δH λ i,m (γ n )'s accumu- late on g(∞)δY (λ) ⊂ Σ 1 (∞) .
Notice that, while (2.9) has concerned the attaching zones of the bicollared handles, item 2) concerns lateral surfaces δ. [While the (2.9) above is behind the first finiteness condition in the Theorem 2.1, the present item is one of the essential ingredients behind the second finiteness condition from the same theorem. For the same purpose of getting the second finiteness condition in the Theorem 2.1, an additional 2 d condition will have to be imposed: For given (λ, γ), consider the innermost compact wall (see (2.12) below)

W i (λ) ⊂ {the 2-skeleton X 2 of Y (∞)} | H λ i (γ) .
Then, inside Y (∞) we have lim i=∞ W i (λ) = ∞. All these items make decantorianization possible. Concerning the second finiteness condition, we shall see that, essentially, LIM M 2 (f ) is Σ 1 (∞) ∩ f X 2 ; a more exact formulation is the formula (2.21.2).]

3) (Complement to (2.7) and (2.9).) There are PROPER individual embeddings ∂H λ i (γ) ⊂ Y (λ-1) and the following global map is PROPER too, and also injective i,γ,λ

∂H λ i (γ) j -→ Y (∞) .
We also have Im j = Sing (g(∞)) ≡ {the points x ∈ Y (∞) where g(∞) in (2.6) fails to be immersive, i.e. the mortal singularities of g(∞)}.

[Unlike what we see in the figure 1.1, here we have mortal singularities.]

COMMENT. While it is the vocation of the equivalence relations Ψ(f ) which come with our REPRESENTA-TIONS, to kill the mortal singularities, and these are always singularities of maps, nothing, in particular none of our maps, will ever kill the immortal singularities, which are singularities of spaces, never to be killed.

4) Our Y (∞) is a 3 d train-track, which fails to be smooth exactly along the set Im j above. Finally, we have g(∞)(Sing (g(∞))) ∩ Sing M (Γ) = ∅ .

Remark. For fixed λ we have

i,γ g(∞) δH λ i (γ) = i δh λ i {λ-skeleton of M (Γ)} .
The bulk of this section, from here on, is a very pedantical description of (2.1), on which the statement of Theorem 2.1 should be easily readable. It is the 3 d REPRESENTATION THEOREM 2.2 and its complement 2.3 (proved in [START_REF] Poénaru | Equivariant, locally finite inverse representations with uniformly bounded zipping length for arbitrary finitely presented groups[END_REF], first part of our TRILOGY), which makes the explicit description of the 2 d REPRESENTATION possible. And the detailed piece of botanics which that description represents, is necessary for being able to develop, afterwards, our more conceptual arguments towards the GSC theorem.

Each individual H λ i (γ) will be endowed with three partial foliation F (COLOUR), our three colours being BLUE (λ = 0), RED (λ = 1) and BLACK (λ = 2).

As these notations may suggest, the COLOURS are connected to the indices of our bicollared handles. We will make this connection soon explicit.

The foliations are invariant when the action Γ permutes the bicollared handles H λ , and the handle attachements respect the foliations. When Γ = π 1 M 3 and M (Γ) = M 3 (smooth 3-manifold), then each of the F (COLOUR)'s in a globally defined foliation of the manifold M 3 , to be exact not everywhere welldefined; our foliations have to have gaps (like for instance in figures 2.1 or 2.3).

But when we are in the general case, and M (Γ) is singular we can no longer have globally defined foliation on M (Γ). But, we will insist that for each individual colour, g(∞)

(F | H 1 ) and g(∞)(F | H 2 ) should agree on g(∞) H 1 ∩ g(∞) H 2 . BUT, when h 0 k , h 2 i , h 2 j participate in some immortal S ⊂ Sing M (Γ), S ⊂ δh 0 k then, inside the γ-independent g(∞) H 0 k (γ), the g(∞)(F(BLACK) | H 2 i (γ 1 )) and g(∞)(F(BLACK) | H 2 j (γ 2 )
) have to cut through each other transversally, for each choice of γ 1 , γ 2 . So, F (BLACK) cannot be globally defined.

These foliations are explicitly constructed in [START_REF] Poénaru | Equivariant, almost-arborescent representations of open simplyconnected 3-manifolds; a finiteness result[END_REF] but, since we want the present paper to be readable independently from [START_REF] Poénaru | Equivariant, almost-arborescent representations of open simplyconnected 3-manifolds; a finiteness result[END_REF] (with respect to which it anyway differs to a certain amount) we have suggested our F (COLOUR)'s through a series of figures, which I will explain now. We start with figure 2.1.2 which describes what happens on the δH 0 i (γ)'s.

LEGEND:

= RED (= ----), --= BLACK, the shading = If we had 3-handles H 3 (γ) but we do not, then this would correspond to such an H 3 (γ). The plane of this figure is a sphere δH 0 i (γ), which, from the stand-point of H 0 i (γ) lives at infinity. In (A) we see F (RED and BLACK) ∩ δH 0 i (γ). You may imagine the ρ-points and π-points as being, respectively, the vertices and the barycenters of the 2-simplexes of a triangulation of δH 0 i (γ). They are joined by the green graph in (B). But this is not part of the foliations. It corresponds to the gaps on i (γ). But, it will turn out that, very soon, only very little of the F(COLOUR) | H 2 i (γ) will be kept alive, and so we will not discuss it in detail now, but move to F(COLOUR) | H 1 i (γ). And, of course too, there are NO

H 0 i (γ), of F(RED) | H 0 i (γ), respectively F(BLACK) | H 0 i (γ).
H 3 i (γ)'s.
For a handle of given index λ, we will distinguish three kinds of COLOURS: the natural colour, which is the unique colour of the lateral surface, the semi-natural colour(s) which pertains to the attaching zone and the un-natural colour(s) which, by definition, are whatever is left out. COLOURS and Handles. For a given λ, a given COLOUR can be natural, 1 2 -natural (also called semi-natural) or just un-natural. The attaching zones are put together out of natural and 

{F (RED and BLUE)} | H 1 i (γ).

A section through (A), in the plane of a W (BLACK). The walls W (COLOUR) are pieces of the F (COLOUR) out of which the X 2 (2.1) is made up. The (C) is a variant of (B), with other details stressed. For a given COLOUR notice the distinction WALL ⊂ (corresponding) LEAF.

For BLUE, the "⊂" is "=", while for RED and BLACK it means " ".

The representation space of the 2 d representation, the X 2 is, in a first approximation, a very dense 2-skeleton of Y (∞), the 3 d representation space, put together out of spare parts, which are always pieces of some leaf of one of the F (COLOUR)'s. These are either compact walls W or "non-compact" security walls W ∞ (BLACK). We have put the non-compact between quotation marks since it may mean simply that ∂W ∞ (BLACK) contains free boundary pieces (which we may decide to delete). The notation W (∞) (BLACK) will mean "W (BLACK) or W ∞ (BLACK)". The X 2 | H λ i , the detailed structure of which is to be explained later, is to fulfill the following requirements:

(2.11. 

Ψ   f |   X 2 | H λ i ∪ j H λ+1 j     = Φ   f |   X 2 | H λ i ∪ j H λ+1 j     .
Assuming that, for each H λ i ∪ H λ+1 jn , the H λ+2 jn is glued to them, we will ask something similar for

H λ i ∪ j H λ+1 j ∪ k H λ+2 k .
The two features (2.11.1) + (2.11.2) will make that, for the 2 d REPRESENTATION from (2.1), the conditions

X 2 ∈ GSC and Ψ(f ) = Φ(f )
will be automatically fulfilled, once the analogous conditions are verified already for (2.6). With this we give now the (2.12) The structure of X 2 | H λ i , where λ ≤ 1. We will have X 2 | H λ i = {the attaching zone ∂H λ i } ∪ {infinitely many compact walls W (natural COLOUR λ), glued in the case λ = 1 via their ∂W (RED) to ∂H λ i (λ = 1) and converging, in both cases λ = 0 and λ = 1 to the ideal δH λ i which lives at infinity} ∪ {whenever, at the level of Y (∞) we have ∂H µ>λ j ∩ H λ i = ∅, then the corresponding piece of the attaching zone ∂H µ j is already contained in X 2 | H λ i } ∪ {infinitely many security walls W ∞ (BLACK) H λ i }. Neither the W (λ)'s nor the W ∞ (BLACK)'s accumulate at finite distance in H λ i . And keep in mind that

X 2 = COLOUR λ W (λ) ∪ W ∞ (BLACK)
(plus refinements, to come in (2.15) below, deletion of p ∞∞ 's, compensated by added discs). Figures 2.5, 2.6 display the W ∞ (BLACK)'s and after the EXPLANATIONS for these figures, it will also be shown how each of the individual W ∞ (BLACK)'s is attached to the rest of X 2 | H λ i . Finally, our present M (Γ) (and hence M (Γ) too), has immortal singularities S which we find now at the infinity of the H 0 i 's and which come with a host of complications to be discussed in due time. This ENDS the item (2.12).

(2.13) (The structure of X 2 | H 2 i .) We will find now that X 2 | H 2 i = {the attaching zone ∂H 2 i } ∪ {infinitely many W (BLACK)'s glued to the preceeding piece along their ∂W (BLACK)'s, and with no other glueings at the source X 2 of f }.

For every given H 2 i there is a unique W (BLACK complete) which is a 2-cell, actually a 2p-gone for some p > 1, let us say a hexagon, like in the figure 2.4. All the other W (BLACK) of H 2 i are annuli, wide enough to see all the double lines signalized in figure 2.4. Let us say that they are punched by a little open cell, a "pseudo BLACK hole" H, with ∂H a piece of free boundary for X 2 , not glued to anything at the source. This very simple stucture for X 2 | H 2 i corresponds to an earlier suggestion made by Dave Gabai, in a different but related context. End of (2.13).

Important Remark. The present BLACK holes are there from the very beginning, part of the very definition of X 2 . Later on, in Sections III, IV actual HOLES H, to be deleted from X 2 will be introduced too. Then, that unique W (BLACK complete) of H 2 i (γ) may have a BLACK HOLE too, in X 2 -H, occurring with question mark in figure 2.4. End of Remark.

Figure 2.3-bis

Corresponding to a h 1 j incident to a h 0 i , downstairs in M (Γ) we find, upstairs in Y (∞), a H 0 i (γ) to which infinitely many H 1 j (γ n ) are incident, with a common δH

1 j (γ 1 ) = δH 1 j (γ 2 ) = • • • . We see here the g(∞) H 0 i (γ) and g(∞)(∂H 1 j (γ n ))'s, n → ∞, meaning actually lim n=∞ g(∞)(∂H 1 j (γ n ) ∩ H 0 i (γ)) ⊂ δH 0 i (γ)
. Those δH 0 , δH 1 live at the infinity of H 0 , H 1 . Inside H 0 , the ∂H 1 j (γ n ), converging to δH 0 , are represented here in green. The drawing is impressionistic, since the ∂H 1 's are infinite staircases, in real life. This figure illustrates (2.9) and also 3) in the complement 2.3.

When, inside M (Γ) we look at the totality of the f (compact walls W ) these have limit positions, the limit walls and, with the Σ 1 (∞) introduced in (2.10), we find that there is the exact equality Σ 1 (∞) = {the union of the limit positions of the compact walls}

(2.10) = i,λ δh λ i = (2.14) = S 2 ∞ (BLUE) ∪ (S 1 × I) ∞ (RED) ∪ Hex ∞ (BLACK) ⊂ M (Γ) .
This is a much better version of (2.10). The W ∞ (BLACK)'s do not accumulate at finite distance inside M (Γ).

VERY IMPORTANT REMARKS.

A) If it would not be for the immortal singularities S ⊂ Sing M (Γ), the Σ 1 (∞) would be a simple-minded {smooth surface (= 2-manifold) with ramification points} locally embeddable in R 3 . But with S's present, we also get branching points. For the ramification points, the local models for Σ 1 (∞) are the following generic configurations

(x = 0) ∪ [(y = 0) ∩ (x ≥ 0)] and (x = 0) ∪ [(y = 0) ∩ (x ≥ 0)] ∪ (z = 0) ∩ (x ≥ 0) ∩ (y ≥ 0)] ,
which are clearly embeddable in R 3 . For the branching points, the local model is

{(x = 0) ∪ [(y = 0) ∩ (x ≥ 0)]} + {(x = 0) ∩ [(z = 0) ∩ (x ≥ 0)]} ,
with the two pieces being glued only along (x = 0); the p ∞∞ (∞)'s in figure 2.8-(C) are such points. They are very much like an undrawable singularity for Σ 1 (∞).

B) The BLUE and RED limit walls (S 2 ∞ and (S 1 ×I) ∞ ) are generated already at the level of the individual bicollared handles H 0 i (γ), H 1 j (γ) and, for λ = 0 or λ = 1, the various H λ i (γ 1 ), H λ i (γ 2 ), . . ., with "i" meaning "i or j", correspond to the same individual S 2 ∞ or (S 1 × I) ∞ . By contrast with this, it takes the whole infinite collection H 2 k (γ 1 ), H 2 k (γ 2 ), . . . to generate an individual pair of walls Hex ∞ (BLACK). Inside a given

H 2 i (γ), we have ∂(BLACK Hole (n)) ----→ n=∞ ∞ ,
so that the Hex ∞ (BLACK)'s are generated just by the W (BLACK complete), once the whole infinite collection is there.

C) The pseudo BLACK holes, for those W (BLACK)'s which are different from the UNIQUE W (BLACK complete), and which are mentioned above are God-given, i.e. they are part of the structure of X 2 , from the beginning and they are not to be mixed up with the later, artificial i.e. man-made Holes H, introduced in Sections V, VI. These latter ones are an indispensable tool for making sense of the geometric realization of the zipping process, which is the core of Section V below.

EXPLANATIONS CONCERNING THE FIGURE 2.4. The drawing (A) gives a complete view of the unique

W (BLACK complete) ⊂ H 2 i (γ) ⊂ Y (∞).
The doubly collared structure of H 2 i (γ) imposes the telescopic system of hexagons, which is actually infinite. In real life, this system may be more irregular than suggested here (see, for instance the figure 1.4.III.C in [START_REF] Poénaru | Equivariant, almost-arborescent representations of open simplyconnected 3-manifolds; a finiteness result[END_REF]); but that comes without any harm. And the reader need not worry about the [START_REF] Poénaru | Equivariant, almost-arborescent representations of open simplyconnected 3-manifolds; a finiteness result[END_REF], otherwise.

We come now to the figure 2.4.

In our drawing (A), only the double points coming from the H 0 's and H 1 's adjacent to H 2 i (γ) ⊃ W (BLACK) are explicitly displayed; a figure like (A) will be said to be at the source. Actually, the W (BLACK) is glued to the H 0 's along M, K and to H 1 's along L, N , and similarly along the remaining boundary arcs. Since, contrary to what has happened in the context (2.12), for our present λ = 2 there can be no contributions ∂H µ>λ j ∩ H λ i = ∅, the W (BLACK)'s complete or not, are not glued to anything in X 2 , outside of the ∂W (BLACK)'s.

The arcs like (α(∞), β) which occur in (A), will be explained later. They correspond to O(3)-moves for the zipping flow, making that the zipping paths λ(x, y) from Theorem 2.2 NEVER touch them. And, for π 1 -reasons to be explained later, enough such cut-arcs (β, α(∞)) have to be there. [But a word of caution here. Cut arcs (β, α(∞)) occur inside W (BLACK) in figure 2.4-(A), and then also inside W ∞ (BLACK)'s in the figures 2.5, 2.6. They live inside the W ∞ (BLACK)'s but, for typographical commodity we have drawn them as going through a string of little circles. These stand for holes H living in walls W (BLUE or RED), transversal through the W (∞) (BLACK)'s, and located higher (or lower than them). Not all of these cut arcs will be effectively used. How all this comes about is to be explained later. In particular see here the Lemma 7.1-bis, in Section VII.] On the node K, the cut arcs are rendered unnecessary by the presence of the S-region, which comes already with its O(3)'s; see figure 6.2. Finally, here is the meaning of those little circles riding on top of lines Λ, plain or dotted. Transversal to our page (at level M (Γ)) we have walls W = W (BLUE or RED) cutting our W (BLACK) along Λ. And in W , when Holes will be drilled, projecting on our little circle, there will be two of them, one over and one under the W (BLACK). 

4-(C)

In (A) one sees a W (BLACK). In (B) one sees with more details the p ∞∞ -island.

LEGEND (for (B)):

-----(thin dotted line) = trace of (limit wall) ∩ W (COLOUR) (this is f LIM M 2 (f )).

------(thick black line) = (RED ∩ BLACK) in f M 2 (f ), when in y = y n , OR (BLUE ∩ BLACK), in f M 2 (f ), when in x = x n . = Such a circle, riding on top of a double line, in the drawings (A), (B), signalizes the presence of two holes, at level X 2 -H ⊂ X 2 , inside the corresponding W (COLOUR)( W (BLACK)), one over W (BLACK), the other one under; see here drawing (C) too. For a discrete set of values y = y n , figure (C) lives in a RED wall. We have here

p n∞ ∈ f M 2 (f ) f LIM M 2 (f ) ⊂ f X 2 ,
and lim n=∞ p n∞ = p ∞∞ . The little drawing below should suggest, very schematically, the attachment of a H 2 to some H λ ≤ 1 and it is also supposed to suggest the fact that lim ∂(BLACK Hole (n)) → ∞ .

There is also another kind of figure, at the target, where all the lines M 2 (f ) ∩ W are drawn. This is a much denser version of our present figure which is at the source, but at the level of our coarse typography, it is graphically undistinguishable from it. The W (BLACK complete) ⊂ X 2 are without the central BLACK hole, while each W (BLACK reduced) ⊂ X 2 has one, permanently deleted.

When later on in this paper (see Section IV below) we will move from X 2 to X 2 -H (= the X 2 with Holes), then from some of the W (BLACK complete) the central BLACK Hole (occurring here with a question mark) is to be deleted too (when at level X 2 -H). In this last situation, the BLACK Hole ⊂ W (BLACK complete) will be among our normal Holes H from (5.6). Much more concerning X 2 -H will be said later on.

The drawing (B) gives more details concerning the p ∞∞ -island, and the not explicitly drawn p ∞∞ (S)island is completely similar; it is concentrated around the corresponding p ∞∞ (S) corner of the doubly shaded S-region. The (C) which lives in the plane y = y n of W (RED) n accompanies the (B), which itself lives in the W (BLACK) from (A).

Here is how the S-region arises. At the level M (Γ), S ⊂ δh 0 k is an immortal singularity, generated by h 2 i , h 2 j . At level Y (∞) to h 2 i , h 2 j correspond our H 2 i (γ) and also a dual H 2 j (γ ), both glued to the H 0 k (side K, figure (A)), coming with g(∞) H 2 i (γ) and g(∞) H 2 j (γ ) which cut transversally through each other. The shaded S-region in (A) stands for {our W (BLACK) ∩ H 2 j (γ ) ⊂ M (Γ)}. When we go to (2.1), then the H 2 j (γ 1 ), H 2 j (γ 2 ), . . . (all possible γ 1 , γ 2 , . . .), generate infinitely many W (BLACK complete) * 's. They are duals to our W 's. The dotted line [p ∞∞ (S), p] in (A) corresponds to what the trace of the {limiting position of our W * 's} ∩ W (BLACK) would be IF W and W * would cut through each other physically, for x > 0. As it is [p ∞∞ (S), p] is not physical, so we call it FAKE. (Think here of the train-track structure coming with S.) The fake Σ 1 (∞) will play no role in our story.

In the drawings (A) + (B), which we consider now at the source, the outer zigzag line, going from the corner marked m -(see (A)) to the corresponding point p ∞∞ , comes from the following intersection, consisting essentially entirely of double points of the f from (2.1):

( * ) W (BLACK) ∩ {a pair (X 2 | H 0 ) ∪ ∂H 1 (X 2 | H 1 )
, glued together at the level of X 2 } .

At the source X 2 , each W (BLACK) is glued to the rest exactly along its ∂W (BLACK); as we shall see, for W ∞ (BLACK), things are more complicated, forced by the needs of (2.11.1), (2.11.2), to begin with. But then, the W ∞ (BLACK)'s, as they stand in the figures 2.5, 2.6, are essential for driving a ZIPPING FLOW which is well-adapted for the proof of our GSC Theorem. This theorem has occurred in a first impressionistic version as Theorem 1.4 but it will be re-explained, with complete details in Section III.

In a figure at the source, a p ∞∞ -island has one zigzag line, generating everything, via the BLUE and RED half-lines which come out of it, it is both the BLUE and the RED ones which are glued to the zigzag at the level of X 2 . [EXPLANATIONS. At the level of X 2 , and exactly in the context of ( * ) above, according to (2.12), (2.13), the zigzag which is part of ∂H 1 , lives in X 2 | H 0 and, when we go to X 2 | H 1 , then the red lines are glued to it. But then, since {the zigzag} ⊂ X 2 | H 0 , the BLUE lines are glued to it too.] At the target, there are infinitely many such arborescent drawings all superposed, without being glued together, creating an infinite checkerboard. Coming back to our zigzag at the source, in terms of (2.12) it is of the form W (BLACK) ∩ ∂H 1 and this specific H 1 , occurring in figure 2

.4-(A), at L, is called H 1 L (γ 0 ). We have g(∞) H 1 L (γ 0 ) ≈ h 1 L ⊂ M (Γ).
As long as we only consider the figure at the source, all the red lines shoot out of the zigzag above, and all the BLUE lines, cutting transversally through them, stretch from the RED border of ∂W (BLACK) (let us say the L in (A)), to our zigzag and beyond. When we consider now the figure 2.4-(A), above at the target, then there are now infinitely many zigzags, produced by all the ∂H 1 L (γ)'s, one of these indices γ being our γ 0 . Each ∂H 1 L (γ) comes, like in 4) from Theorem 2.2, with its attaching level k(L, γ). Finitely many γ's come with k(L, γ) < k(L, γ 0 ) and their zigzags enter the figure at the target, through the BLUE side M . For the other, infinitely many of them, coming with k(L, γ) > k(L, γ 0 ), their zigzags enter the figure through the RED side L, to the right of ( * ), closer and closer to the BLUE limit wall, while the preceeding ones were, in terms of the figure 2.1-(A), to the left of ( * ). [Let us say that, in terms of figure 2.4-(A), the zigzag (L, γ 0 ) starts at the corner m -, being the left border of the corresponding checkerboard. The zigzags with k(L, γ) < k(L, γ 0 ) are to the left of it (in the figure at the target), while the ones with k(L, γ) > k(L, γ 0 ) are to the right of it, coming closer and closer to the corresponding S 2

∞ .] A given W (BLACK) has at most one S-region, coming with its two p ∞∞ (S)'s, and each p ∞∞ (S)-island is treated just like the ordinary p ∞∞ -islands. Each W (BLACK), complete or reduced, has some dotted lines (α(∞), β) (see the drawing figure 2.4-(A)) cutting through infinitely many double lines, but NOT part of

f M 2 (f ) ∪ f LIM M 2 (f ).
Here is their role. For the zipping paths λ(x, y) occurring in 5), Theorem 2.1, we want via appropriate O(3)-moves (defined like in figure 1.2) to isolate an acyclic part of the zipping flow where the λ(x, y)'s should be located. Along the (α(∞), β) such O(3) may be placed, and then

λ(x, y) ∩ (∞(∞), β) = ∅ .
It will turn out that there are enough O(3)'s inside the S-region so that the side K in figure 2.4-(A) does not need (α(∞), β)-lines (see the figure 6.2).

Remark. The fact that each W (BLACK) should have at most one S-region is easily arrangeable, by construction.

Coming back to (B), we can see the triple points

t np = t np (x = x p , y = y n ) ∈ f M 3 (f ) ,
which come with the following accumulation pattern, inside f X 2

lim p=∞ t np = p n∞ ∈ f M 2 (f ) ∩ f LIM M 2 (f ) .
This ENDS our explanations concerning the figure 2.4. In the figures 2.5 and 2.6 we have displayed security walls W ∞ (BLACK), and we give now EXPLANATIONS CONCERNING THESE FIGURES 2.5, 2.6. ∞ -region. As the figure shows, the easy region N 2 ∞ is bordered by two curves, our universal curve x = Ψ(y) and it twin curve too, the ∂H 1 i0 (MAX), which is physical (i.e. comes from X 2 ). The [α, β] is a cut arc. We display here one half of the W ∞ (BLACK)

H 1 (n) ⊂ X 2 | H 1 , which continues beyond [ST],
to the other end of H 1 . The line [SS 1 ] is supposed to be very close to W (RED) n , on its left side. The plane of the figure 2.5 is disjoined from the present W ∞ (BLACK)

H 1 . They both cut through S 1 ∞ = S 2 ∞ ∩ (S 1 × I) ∞ .
The red corner [a, s 2 , b] is contained in some ∂W (BLACK). The (S 1 × I) ∞ continues to another p ∞∞ (W ∞ (BLACK) H 1 ), for a (different H 0 ) ∩ H 1 . The universal curve x = Ψ(y) is good both for W ∞ (BLACK) H 0 and for W ∞ (BLACK) H 1 (which are NOT in the same plane). The region of W ∞ (BLACK) H 1 which is between the universal curve and

S 2 ∞ ∪ (S 1 × I) ∞ is N 2 ∞ (W ∞ (BLACK) H 1
), and the one under, up to

∂H 1 i0 (MAX) is N 2 ∞ (W ∞ (BLACK) H 1 ), then again N 2 .
[The universal curve comes, actually, from a universal surface.] The [α(∞), β]'s are cut arcs.

Important Remark. In our construction of X 2 all the local pieces are free of singularities EXCEPT when it comes to our W ∞ (BLACK)'s, which has singularities at the s, s in the figures 2.5, 2.6. It is there that the zipping of X 2 f --→ M (Γ) has to start.

Each of our present W ∞ is larger than the corresponding security wall in [START_REF] Poénaru | Equivariant, almost-arborescent representations of open simplyconnected 3-manifolds; a finiteness result[END_REF]. It overflows, like the W ∞ (BLACK) H 0 (n) in figure 2.5, which enters deep inside the zone of the 1-handle, it has free boundary and, most importantly, for each W ∞ there is a unique p ∞∞ = p ∞∞ (W ∞ ) ∈ int W ∞ . For technical reasons to be clarified later, we have to allow now for W ∞ -Y (∞) = ∅ and, moreover, in figure 2.6 the W ∞ (BLACK) H 1 (n) overflows a bit beyond W (RED) n , towards the core of H 1 . In the figure 2.5, W ∞ (BLACK) continues beyond [CD] to the other ∂H 2 j (γ n ); at level M (Γ) we have here the

h 1 i , h 1 j attached to h 0 . At the level X 2 , the W ∞ (n) H 0 is attached, in figure 2.5 to ∂H 1 i (γ n ) ∪ W n (BLUE) ∪ W n+1 (BLUE) ∪ ∂H 1 j (γ n ) and similarly, in figure 2.6 the W ∞ (n) H 1 is attached to ∂H 1 ∪ W (RED) n ∪ W (RED) n+1 . At least for W ∞ (BLACK) H 0 (n)
other attachments at the source X 2 | H 0 will be described later on. In particular, let us say that for X 2 | H 0 such attachments correspond not only the already mentioned ∂H 1 = ∂H 1 i (γ n ) ⊂ X 2 | H 0 , but there are also higher

∂H 1 i (γ n+1 ) + ∂H 1 i (γ n+2 ) + . . . ⊂ X 2 | H 0 , and our W ∞ (BLACK) H 0 (n) is certainly to be attached to ∂H 1 i (γ n
), but not to the higher ∂H 1 i 's. In the figure 2.5, the a 1 , b 1 , a 2 , s 1 , s 1 , s 2 , s 2 , . . . are all mortal singularities of f . Actually, at s m there are effectively two singularities, involving W ∞ and W (RED) + W (BLUE). At s m there is only one such. Very importantly, as things stand right now, with a simple-minded W ∞ , we would find that

( * ) lim m=∞ (s m , s m ) = p ∞∞ (W ∞ )
and similar things go for the figure 2.6 too. With this, if in (2.12) we would take the X 2 | H λ , λ ≤ 1 to be the simple-minded union of smooth walls W, W ∞ , then X 2 WOULD FAIL to be locally finite at the points p ∞∞ (W ∞ ) and then, connected to this, the set Sing (f ) ⊂ X 2 would have unwanted accumulations at finite distance too, i.e. it would not be discrete. In order to take care of this difficulty, we will use a modified structure for the W ∞ (BLACK)'s, at their p ∞∞ 's and then, for uniformity's reason (and also in anticipation of things to come), we will use a similar structure for the W (BLACK)'s, at their various points p ∞∞ , p ∞∞ (S) too. I will explain here this modification for the W ∞ (BLACK), where we start by considering a large enough circle C(p ∞∞ ) ⊂ W ∞ (BLACK), centered at p ∞∞ ; next, we perform the following modification, deleting p ∞∞ and adding a compensating 2-handle instead, (2.15)

X 2 ⊃ {the simple-minded, smooth W ∞ (BLACK)} ⇒ {W ∞ (BLACK)-{p ∞∞ }} ∪ C(p∞∞) D 2 (H(p ∞∞ )) (compensating disc)
and this is then completed to the big step to the real-life X 2

(X 2 naive) =⇒ X 2 - p∞∞(ALL) p ∞∞ + p∞∞(ALL) {D 2 (H(p ∞∞ )) added along C(p ∞∞ )}.
And, once {p ∞∞ (ALL)} ⊃ {p ∞∞ (S) = p ∞∞ (W ∞ (BLACK))} this big step makes that X 2 is now locally finite. End of (2.15).

Here are some explanations for (2.15). The singularities of X 2 , all of them undrawable and mortal, are the points s, s in the figures 2.5, 2.6. They accumulate, for a naive X 2 on the p ∞∞ (W (BLACK) ∞ ) which are the points of non-local finiteness of the naive X 2 . Hence the necessity of deleting the p ∞∞ (W (BLACK) ∞ ) in the first step (2.15). But then the p ∞∞ (S) are both points of non-local finiteness for f X 2 and also accumulation points for the undrawable, immortal singularities of f X 2 (naive). These diseases are taken care of by the second step in (2.15), where the W (BLACK)'s are treated just like the W ∞ (BLACK)'s.

The D 2 (H(p ∞∞ )) (which is sometimes denoted D 2 (p ∞∞ )), is a round disc of boundary C(p ∞∞ ). But the C(p ∞∞ ) becomes now a new mortal singularity of (2.1), i.e. it consists of non-immersive points, but the image f X 2 does not feel the modification (2.15). As explained in Section I, the real operative notion will be

Θ 3 (X 2 ) f --→ M (Γ), rather than X 2 f
--→ M (Γ). The change (2.15) will be incorporated into the definition of Θ 3 (X 2 ) too. And with the change (2.15), the Θ 3 (X 2 ) will acquire, besides its already existing undrawable singularities, new singularities C(p ∞∞ ) (or rather C(p ∞∞ )× -ε 4 , ε 4 ). It would not be very difficult to extend to these new singularities the 2-valued R's and then the Θ 4 (. . . , R) from Section I (see the (1.18), (1.19)). BUT, for technical reasons to become clear later (essentially uniformity of treatment with the C (normal Holes H), which certainly need to stay singular for the purposes of the later COMPACTIFICATION), we will NOT smooth the C(p ∞∞ )'s and, once we have performed (2.15), the Θ 4 (Θ 3 (X 2 ), R) will NOT be a smooth manifold, but it will stay singular along the C(p ∞∞ ) (thickened) and so will the S u M (Γ) be too. Anyway, local finiteness, at least for X 2 and its derived objects is by now with us. And, when it comes to the points of type p ∞∞ , like we may see in the figures 2.4, 2.5, 2.6, 2.8 they come in two kinds, namely (2.15.0) X 2 ⊃ {p ∞∞ (all)} = {the p ∞∞ (proper) which come with f X 2 locally embeddable in R 3 ; they are smooth points for X 2 , but ramification points for LIM M 2 (f ). They appear as corners of the main dotted hexagon in figure 2.4.(A), and each W ∞ (BLACK), in the figures 2.5, 2.6 has one such point too} + {the p ∞∞ (S), which are created via the zipping by the immortal singularities S ⊂ Sing M (Γ), like in the formula (2.22) below. At the p ∞∞ (S)'s which occur in figure 2.8 the zipping of two W (BLACK)'s cutting through each other at the target stops. The p ∞∞ (S)'s are limits of immortal singularities of f X 2 }. End of (2.15.0)

[Here is a more formal characterization of the points p ∞∞ . In all cases, for p ∞∞ ∃ wall W s.t. p ∞∞ ∈ f W ⊂ f X 2 . With this come two possibilities, both making of p ∞∞ points where the naive f X 2 is NOT locally finite. i) Either, in f W we have a sequence of undrawable immortal singularities of f X 2 , q 1 , q 2 , q 3 , • • • ∈ f W s.t. lim q n = p ∞∞ . This kind of p ∞∞ is p ∞∞ = p ∞∞ (S). This is illustrated in figures 2.8-(C).

ii) OR, there are no immortal singularities in the neighbourhood, but now, for an infinite sequence

q n ∈ (f M 2 (f ) f LIM M 2 (f )) ⊂ f W , we have lim n=∞ q n = p ∞∞ . We do not find neighbourhoods q n ∈ U n ⊂ f X 2 confined in f W , all are really 3-dimensional.
In this case p ∞∞ = p ∞∞ (proper), and figure 2.4-(B) illustrates them.

We considered here, all the time, the naive version of f X 2 , pre-(2.15).] The step (2.15), as such, gets us a locally finite X 2 . To insure local finiteness for f X 2 and the related higher-dimensional spaces locally finite, the int D 2 (p ∞∞ ) will stay forever free, producing not only a singular Θ 3 (X 2 ), but singular Θ 4 (Θ 3 (f X 2 ), R), S u M (Γ) too.

So, for reason of smoothness of the exposition and for further needs too, the transformation (2.15) will be performed now, not only at the p ∞∞ (proper) ∈ W ∞ (BLACK), but at all p ∞∞ 's in (2.15.0). This new revised definition of X 2 comes without technical problems of its own, because at the simple-minded level the (2.15.0) is a discrete subset of smooth points of the simple-minded X 2 . Notice that, all the p ∞∞ 's are disjoined from M 2 (f ) and make sense both at level X 2 and f X 2 . This also means that now, for each of the individual p ∞∞ 's there is an additional folding map, at C(p ∞∞ ), in any zipping strategy for

X 2 -→ M (Γ) .
The various free boundaries ∂W ∞ (BLACK) H 0 or ∂W ∞ (BLACK) H 1 accumulate, respectively, on S 2 ∞ or on (S 1 × I) ∞ ; see here the figures 2.5 and 2.6.

Besides the zigzag of ∂H 1

i (γ n ) in figure 2.5, staying still at the source, there are infinitely many zigzags ∂H 1 i (γ m>n ) to the left of it and finitely many to the right of it, ∂H 1 i (γ <n )'s. All of them are part of

X 2 | H 0 .
When we go to a figure 2.5 at the target, then more zigzags will appear. The extreme right one will be denoted ∂H 1 i0 (MAX) (but for typographical reasons it is drawn as a curved line, rather than a zigzag). In the figure at the target, between our ∂H 1 i (γ n ) and the ∂H 1 i0 (MAX), only finitely many new zigzags will appear.

In the figures 2.4, 2.5, 2.6 appear also, "universal curves", concerning which much more will be said later. For right now, it will suffice to know that W ∞ (BLACK) is divided by its universal curve into an "easy region" N 2 ∞ , between the universal curve and ∂H 1 i0 (MAX) (including the ∂H 1 i0 (MAX) too), and also a "difficult region" N 2 ∞ containing two components, one higher than the universal curve, the other one lower than ∂H 1 i0 (MAX), bordering the limit walls. The W ∞ (BLACK) H 0 (n), which contains the plane of this figure, is glued, at level

X 2 | H 0 , to W n (BLUE) + W n+1 (BLUE) + ∂H 1 i (γ n ), and to the R(∞) n,n+1 ⊂ W ∞ (BLACK) H 0 (n)
which is part of it, as the inclusion sign stresses. The X 2 | H 0 contains not only ∂H 1 i (γ n ), but also the higher ∂H 1 i (γ N >n ), but our W ∞ (n) is not glued to them. None of the rectangles R(∞) or the smaller r(∞) have any free face, they are all glued to the rest of the X 2 | H 0 . But, while R(∞) n,n+1 ⊂ W ∞ (BLACK) H 0 (n), the infinitely many 

R(∞) n,n+1 ⊂ W ∞ (BLACK) n , contributing thus to (2.11.1). Next, in a different plane than W ∞ (BLACK) H 0 (n), the W ∞ (BLACK) H 0 (n + 1) is similarly glued to W n+1 (BLUE), W n+2 (BLUE), [β, γ, δ, • • • ] + [β , γ , δ , • • • ]. We also glue it to [c 1 , d] + [c 1 , d ],
again for reasons of (2.11.1).

So, comparing (B) and (A), the r(∞)(n + 1, n), respectively the r(∞) ∪ r(∞)(n + 2, n) from (A), when coplanar with our W ∞ (BLACK) H 0 's are part of, respectively R(∞) n+1,n+2 , R(∞) n+2,n+3 . Now, other r(∞)'s, which may be there either because of possibly more irregular 1-handle attachements OR not coplanar with W ∞ , do not (actually cannot) have their ∂r(∞) glued to any W ∞ (BLACK) H 0 , reason for their different treatment in the explanations coming with (A). But then, see also what will be said a bit later concerning the higher r(∞)'s. One should also notice that the

R(∞) n+1,n+2 ⊂ W ∞ (BLACK) H 0 (n+1) is NOT glued to ∂H 1 i (γ n ) (see (A)
) and it lives in a plane different from that of R(∞) n,n+1 and the r(∞)'s. In connection to figure 2.6.1-(A) we also have:

( * 0 ) Even if the H 1 (γ n+1 )'s are absent, the R(∞) n+1,n+2 | [c 1 , d, d , c 1 ] is still there in W ∞ (BLACK) n with all its boundary [c 1 , d, d , c 1 ] completely glued.
Each pair W n (BLUE) + W n+1 (BLUE) and the ∂H 1 i (γ), fixed i, variable γ, going through them create a surface of genus g > 1, potentially contradicting (2.11.1). This is taken care of by our R(∞) n,n+1 's, in conjunction with the arborescent (2.16) below.

All this is nicely possible, because each W ∞ (BLACK) H 0 (n) is glued both to W n (BLUE) and to W n+1 (BLUE). End of Explanations for figure 2.6.1.

We will decide that the easy region N 2 (W (∞) ) ⊂ W ∞ is closed and contains p ∞∞ , so that

W (∞) (BLACK) ∩ LIM M 2 (f ) -{p ∞∞ (W (∞) )} ⊂ N 2 (W (∞) ) .
The W ∞ 's will be chosen far from the W (BLACK)'s and the S's which are concentrated around them. This ENDS our explanations for the figures 2.5, 2.6. (Figure 2.6.1 was just an interlude inside this bigger discussion.) Inside H λ , when λ = 0, let W 1 , W 2 , W 3 , . . . be the succession of walls of natural BLUE colour, all in X 2 | H 0 . Inside the same X 2 | H 0 we will also have ∂H 1 (γ n ) ∩ H 0 's, and for the good match between the indices of the W n (BLUE) and of ∂H 1 (γ n ) see the item (2.15.1) below. For each W n (BLUE) there is, inside

X 2 | H 0 a W ∞ (n) H 0 ≡ W ∞ (BLACK) H 0 (n) resting on it, and glued both to W n and to W n+1 . The W ∞ (n) H 0 , half of which is seeable in figure 2.5 goes from H 1 i (γ n ) to H 1 j (γ n ) and, at level X 2 | H 0 is glued to ( * 1 ) ∂H 1 i (γ n ) ∪ W n ∪ W n+1 ∪ ∂H 1 j (γ n ) ,
and continues beyond, to its free boundary. The ( * 1 ) determines a rectangle R(∞) n,n+1 ⊂ W ∞ (n) H 0 , see the figure 2.6.1. [The ( * 1 ) with its R(∞) is necessary for keeping X 2 | H 0 be GSC, as (2.11.1) demands. Explanations: The W (BLUE) n 's are glued to all the ∂H 1 ∩ H 0 's to begin with. With this, the (∂H 1 ∩ H 0 ) ∪ W n ∪ W n+1 creates a surface of genus g ≥ 1 and this is rendered harmless by the R(∞)'s. Then, the next g ≥ 1 is taken care of by the W ∞ (n + 1) H 0 , a.s.o. See also the explanations coming with the figure 2.6.1-(B).] So far, we discussed H λ when λ = 0. But mutatis-mutandis, all this, including the R(∞)'s goes for λ = 1 too; see here the discussion which comes with the figure 2.6.2. IF W 1 (RED), W 2 (RED), . . . are the successive natural W 's of H 1 i (γ), then a pair of W ∞ (BLACK) H 1 's will rest on W 1 ; (and get a bit beyond it, towards the core of H 1 , see the line [S, S 1 ] in the figure 2.6), then another pair of W ∞ (BLACK) H 1 's will rest in W 2 , a.s.o. The whole structure should be suggested by figure 2.7. But this structure will be needed only much later, in the third paper of our QSF trilogy.

We turn back now to H 0 . For any pair (m, p) when m > p i.e. without the protective W ∞ (p) H 0 , the

( * 2 ) W m (BLUE) + W m+1 (BLUE) + ∂H 1 i (γ p ) + ∂H 1 i (γ p+1 )
creates an embedded torus inside X 2 | H 0 , which we have to render harmless (for the sake of X 2 | H 0 ∈ GSC).

A priori, the r(∞)'s in figure 2.6.1-(A) signalize this potential danger. But, as explained, when we take the totality of the R(∞)'s, then they engulf the r(∞)'s, avoiding the harm for GSC. So we do not need independent r(∞)'s.

Contrary to the R(∞)'s the apparent reason for filling the r(∞)(m, p) ⊂ X 2 | H 0 above vanishes when one moves from

X 2 | H 0 to X 2 | H 1 .
Here is the reason why. When moving from X 2 | H 0 to X 2 | H 1 , the ( * 2 ) which has led to the creation of our r(∞)(m, p) is to be replaced by

( * ) 3 W m (RED) + W m+1 (RED) + ∂H 2 i (γ p ) + ∂H 2 i (γ p+1 ) ,
which cut by a plane orthogonal to the core line of H 1 , would create something like in the figure 2.6.2. Notice that, the tori which had appeared in the context of ( * 2 ), and which would have rendered the use of the r(∞)'s necessary, are replaced now by rectangular boxes, suggested in figure 2.6.2. So, no r(∞)'s new, at all.

Notice, also, that we have contacts f (X 2 | H 1 ) ∩ f W ∞ (BLACK) H 0 at the target; they do not come with any glueings, unlike it was the case with ( * 1 ) and ( * 2 ). When we consider the various r(∞) ⊂ X 2 | H 0 , created, like in figure 2.6.1 by H 0 and the adjacent H 1 j (γ n )'s (fixed j), then we have, as the only possible accumulation of the rectangles r(∞), that lim m=∞ r(∞)(m, p) = {some point on the limit circle

S 1 ∞ = S 2 ∞ ∩ (S 1 × I) ∞ , coming with H 0 , H 1 }. And
no r(∞)'s are necessary for H 1 , as just saw. Concerning the r(∞)'s in figure 2.6.1 this is a completely paranthetical side-comment, since they are all engulfed by the R(∞)'s.

For the H 0 ⊂ Y (∞) some additional adjustments will be necessary at the level X 2 | H 0 . Let us say that H 0 corresponds to h 0 ⊂ M (Γ), to which the h 1 1 , h 1 s , . . . , h 1 α are attached. For each of these h 1 i 's, there is an infinite family of 1-handles of Y (∞) :

H 1 i (γ 1 ), H 1 i (γ 2 ), .
. . all attached to H 0 , coming closer and closer to S 2 ∞ = δH 0 . (2.15.1) For any given H 0 and any level n, all the ∂H 1 i (γ n )'s, where i = 1, 2, . . . , α, should reach the same W n (BLUE) and, moreover, the ∂H 1 i (γ 1 ) should reach the innermost W 1 (BLUE) of H 0 . We can achieve these conditions by artificially adding, when necessary, to the ∂H 1 i (γ)'s annuli W (RED) glued at level X 2 to the W n (BLUE) + W n+1 (BLUE) + . . . + W N (BLUE). These pieces are to be added to the zigzags

ZZ i (j) ≡ ∂H 1 i (γ j ) ⊂ X 2 | H 0 . The [a 1 , b 1 , a 2 , s 1 ] in figure 2.
5 could be such an addition. (2.16) For any given pair (H 0 , n), all the ∂H 1 i (γ n )'s for i = 1, 2, 3, . . . , α should be joined arborescently by the W ∞ (BLACK) H 0 (n)'s which rest on W n (BLACK) and which are glued to them. So, there are exactly α -1 such W ∞ (n)'s, and the global picture should be readable on figure 2.7. End of (2.16) In principle, the figures 2.5, 2.6 correspond to unique individual handles H 0 , H 1 . But H 0 , H 1 correspond to h 0 , h 1 ⊂ M (Γ) and, when all the H 0 , H 1 's corresponding to these h 0 , h 1 are taken into account, then we get at the target, complete figures, similar to 2.5, 2.6, with the same accumulation pattern, but much denser. For a given W ∞ , when moving from figures 2.5, 2.6 "at the source", as drawn, to the complete figures "at the target", then there are no additional glueings, similar to ( * 1 ), prior to any zipping. In the figures 2.5, 2.6 we have defined heights d(W ∞ ) for the W ∞ 's. We also have quantities k(W ∞ ) ≡ {the level at which W ∞ is attached}. With this, we will have

(2.17) lim n=∞ d(W ∞ (BLACK)(n)) = 0 , lim n=∞ k(W ∞ (BLACK)(n)) = ∞ ,
in the complete figures. So, at the level of M (Γ) the W ∞ 's can only accumulates on S 2 ∞ ∪ (S 1 × I) ∞ , without generating their own limit walls. For given W ∞ , the f M 2 (f ) ∩ W ∞ accumulates on tree-shaped figures

(2.18) LIM ≡ (S 2 ∞ ∪ (S 1 × I) ∞ ) ∩ W ∞ ⊂ f LIM M 2 (f ) ⊂ f X 2 .
The limiting position of the LIM's inside S 2 ∞ ∪ (S 1 × I) ∞ is denoted by lim LIM and it follows from (2.17) that lim LIM is reduced to a collection of independent arcs, living inside S 2 ∞ OR inside (S 1 × I) ∞ ; see figure 2.7.

With all our various modulations just described, in particular the (2.15.1), we have the final X 2 | H λ 's out of which we put together the global X 2 . This object has both immortal singularities and mortal singularities (= non immersive points), and singular circles C(p ∞∞ ).

We have here the following implications:

(2.18.1) {M (Γ) and M (Γ) are NOT smooth 3-manifolds, but they have singularities, all immortal of the undrawable type} ⇔ {Γ is NOT of type π 1 M 3 , M 3 = smooth manifold} and {X 2 has immortal singularities} ⇔ {M (Γ) (and M (Γ)) have immortal singularities}. End of (2.18.1).

So Sing

(f ) = {a discrete set} ∪ C(p ∞∞ ), f | Sing(f ) injects and f (mortal Sing(f )) ∩ Sing M (f ) = ∅, while at the same time f (immortal Sing(f )) ⊂ Sing M (f ).
The f M 2 (f ) ∩ Sing M (Γ) = ∅ which is a big novelty with respect to [START_REF] Poénaru | Equivariant, almost-arborescent representations of open simplyconnected 3-manifolds; a finiteness result[END_REF] will be discussed later, in great detail. Novelty with respect to [START_REF] Poénaru | Equivariant, almost-arborescent representations of open simplyconnected 3-manifolds; a finiteness result[END_REF], means something specific exactly for those Γ = π 1 M 3 , meaning most Γ's and this paper deals with ALL finitely presented Γ's (compare this with (2.18.1) above).

[Let us also say here that, the paper [START_REF] Poénaru | Equivariant, almost-arborescent representations of open simplyconnected 3-manifolds; a finiteness result[END_REF], which deals exclusively with the case Γ = π 1 M 3 (smooth), is certainly connected with the present TRILOGY but, even if we from time to time mery mention it, its By now enough has been said about (2.1) so that the implication {Theorem 2.2 and its complement 2.3} =⇒ Theorem 2.1, should be clear. For instance, the second finiteness condition (2.2) follows from the complement 2.3. We will take now a closer look at the formula (2.3). Together with the ideal Σ 1 (∞), which should be thought of as in (2.14), comes the useful set (2.20)

Σ 2 (∞) = g(∞)Y (∞) ∩ Σ 1 (∞) = i γ H 1 i (γ) ∩ S 2 ∞ ∪     j γ H 2 j (γ)   ∩ (S 2 ∞ ∪ (S 1 × I) ∞ )  
and also the following kind of objects, which are all closed subsets of Σ 1 (∞), respectively of

X 2 , respectively of f X 2 , (2.21.1) Sing M (Γ) = squares S ⊂ S 2 ∞ ⊂ Σ 1 (∞), (2.21.2) LIM M 2 (f ) = f -1 (f X 2 ∩ Σ 1 (∞)) ⊂ X 2 , same LIM M 2 (f ) as in (2.3), (2.21.3) f LIM M 2 (f ) = f X 2 ∩ Σ 1 (∞) ⊂ f X 2 .
COMMENTS. When it comes to f LIM M 2 (f ) being closed (a feature which is not a purely mechanical consequence of the inputs) then, when we are outside the (2.21.1), this was explicitly proved in [START_REF] Poénaru | Equivariant, almost-arborescent representations of open simplyconnected 3-manifolds; a finiteness result[END_REF], while

for each individual S ⊂ Sing M (Γ) the set S ∩ f LIM M 2 (f ) = int S ∩ f LIM M 2 (
f ) will be soon described explicitly too, and this should make our claimed closedness obvious. Actually, when it comes to the map f in (2.1), then, when it comes to the local structure (local meaning at the level of one bicollared handle or at the junction of several of them, then what was already said in this paper is a description both explicit and complete. From it one should easily read that our sets in (2.21.1) to (2.21.3) are closed, as claimed.

We will call FAKE LIM M 2 (f ) the total contributions of the dotted lines [p ∞∞ (S), p] ⊂ W (BLACK complete or reduced) in all the figures 2.4. This is not included in (2.21.2), (2.21.3), and it will never play any active role in our discussions.

In the formulae (2.21.2), (2.21.3) it is only the BLUE and RED limit walls of Σ 1 (∞) which play an active role by their accumulation pattern, generating the LIM M 2 (f ) in the formulae in question. Inside M (Γ), the BLACK limit walls are disjoined from f X 2 , and hence they are mute in the contexts of the same formulae.

We discuss now the impact of the immortal square S ⊂ Sing M (Γ). Contrary to what has happened in [START_REF] Poénaru | Equivariant, almost-arborescent representations of open simplyconnected 3-manifolds; a finiteness result[END_REF] when we only dealt with the case Γ = π 1 M 3 , M 3 (smooth), the f X 2 has now immortal singularities of its own. By definition, these are the points where

f X 2 is NOT locally embeddable in R 3 . Their set Sing f X 2 ⊂ f X 2 is generated as follows (2.22) Sing f X 2 = S int S ∩ f M 2 (f ) ⊂ f LIM M 2 (f ) .
What is more serious, the f X 2 is not locally finite at the points ∂ S ∩ f X 

(S) ∈ ∂S ∩ f X 2 blown into arcs, (because X 2 , f X 2 get thickened into Θ 3 (X 2 ), Θ 3 (f X 2 )).
We shall show later on how this serious difficulty, a complete novelty with respect to [START_REF] Poénaru | Equivariant, almost-arborescent representations of open simplyconnected 3-manifolds; a finiteness result[END_REF], is to be handled; it will require to thicken our f X 2 into dimension three, to begin with, but then it will require also much more than that. All this, which we already mentioned, will be explained in due time, in the next sections, with details.

The geometry of (2.22) is explained in the figure 2.8, and here are some comments concerning it. Both (A) and (B) live in the plane of some W (BLACK (not necessarily complete) and, in the neighbourhood of each of their two p ∞∞ (S)'s, except for some changes in colour, they are like figure 2.4-(B). We see here, in

(A), (B) the unique W (BLACK complete)'s of X 2 | H 2 i , X 2 | H 2 j .
This unique W (BLACK complete) is the dual (W * ) of the W (BLACK complete) of the respective figure.

When we go to the complete figures, i.e. the figures at the target, with all the respective f γ

X 2 | H 2 i (γ), f γ X 2 | H 2 j (γ)
thrown in, then the (A), (B) get enriched with infinitely more walls of type W (BLACK complete), converging to the dotted limit walls.

When we move from Γ = π 1 M 3 (smooth) (with which [START_REF] Poénaru | Equivariant, almost-arborescent representations of open simplyconnected 3-manifolds; a finiteness result[END_REF] had dealt), to the general case of our arbitrary finitely presented group Γ, then we have now transversal intersection W (BLACK) W (BLACK) * ⊂ M 2 (f ), stopping short and abruptly when they reached the immortal singularity S ⊂ Sing M (Γ). One should also think that, in the context of a figure like 2.8-(C), the x-coordinate is now a 1 d train-track manifold with two branches x(H 2 i ) and x(H 2 j ). With this, we can explain now the FAKE LIM M 2 (f ) from figure 2.4-A in a fashion similar to the formulae (2.21.2) and (2.21.3). When it comes to the points where 1 (∞) fails to be a 2-manifold (see the IMPORTANT REMARK after formula (2.14)), then the branching points of 1 (∞), the p ∞∞ (∞)'s, never touch f X 2 , while all the p ∞∞ (S)'s are ramification (= non-2-manifold) points for 

1 (∞), all touching f X 2 . Look in particular at the p ∞∞ (S) thickened into [ω, y], [ω -, y -] in figure 2.8-(C). Through [p ∞∞ (∞), p ∞∞ (S) ≈ [ω, y], p ∞∞ (∞)] goes a BLACK branch of 1 (∞), in the direction x(H 2 j ) > 0. Then, we also have our W (BLACK) ⊂ H 2 i , figure 2.4, shooting in the direction x(H 2 i ) > 0. If we would artificially decree that x(H 2 i ) = x(H 2 
(f ) = f -1 (FAKE intersection f X 2 ∩ 1 (∞)) ⊂ X 2
, but unlike what had happened in (2.21.2), it is now the BLACK 1 (∞) which would contribute actively.

But the (2.22.2) will normally be mute, throughout this paper; there will be no role for it.

Just like the p ∞∞ (∞)'s, the unphysical p ∞∞ (S)'s in the figure 2.8 will never play any role either, they are outside our universe and irrelevant. This ends our discussion of figure 2.8, for the time being. The proof of Theorem 2.1 is by now completed too, we will just add the following little complement to it. Lemma 2.4. -Consider an infinite sequence

( * ) x 1 , x 2 , • • • ∈ f M 2 (f ) ⊂ M (Γ) .
This general, otherwise arbitrary sequence can be broken into disjoined pieces each of them satisfying one of the following four, mutually exclusive cases.

Case I. The sequence goes to infinity in f X 2 but NOT in M (Γ). For any accumulation point of ( * ) in M (Γ), call this accumulation point lim x ni , we find then lim

x ni ∈ Σ 1 (∞) -f X 2 ⊂ M (Γ).
Here is a typical example. Consider an infinity of W n (BLACK)'s, each coming with a figure 2.4-(B) and converging to a black limit wall Hex ∞ ⊂ Σ 1 (∞). In each W n (BLACK) we find an infinity of lines f M 2 (f ) coming from intersections with W 1 (BLUE), W 2 (BLUE), • • • , and W 1 (RED), W 2 (RED), • • • , where ∂W p (RED) ⊂ W p (BLUE), without any other glueings at the source. In each W 2 (BLACK) we find a double point (part of a triple point)

(x n(p) , y n(p) ) ∈ M 2 (f ) with x n(p) ∈ W p (RED), y n(p) ∈ W p+1 (BLUE). When n →, p → ∞ our {f (x n(p) ), f (y n(p) )} accumulates on S 2 ∞ ∪ (S 1 × I) ∞ -f X 2 ⊂ M (Γ) .
Case II. Our sequence ( * ) does NOT go to infinity, neither in f X 2 nor in M (Γ). There are then two subcases:

II 1 ) It accumulates on a compact K ⊂ f X 2 -f LIM M 2 (f ).
II 2 ) At least a subsequence of ( * ) accumulates on f LIM M 2 (f ).

In this case II, our ( * ) stays confined in a finite union of handles h λ i ⊂ M (Γ). Case III. There exists at least one subsequence of ( * ), ( * * )

x p1 , x p2 , • • • ∈ f M 2 (f ) ⊂ M (Γ)
which does not stay confined at finite distance in

M (Γ) (hence not in f M 2 (f ) either). So, for M (Γ) = λ,i h λ i ,
(λ ≤ 2), we find an infinite sequence of handles

h λ (1) 
i( 1) , h

λ(2) i(2) , • • • with x pi ∈ f X 2 ∩ h λ(i) p(i)
and with

lim n=∞ i(n) = ∞ .
So, in this case III, via ( * * ), our ( * ) sees the MYSTERIOUS INFINITY OF Γ, objects of our present quest.

EQUIVARIANT ZIPPING. Since our (2.1) is a REPRESENTATION, we have Ψ(f ) = Φ(f ) and then according to Lemma 2.4 in [START_REF] Poénaru | Equivariant, locally finite inverse representations with uniformly bounded zipping length for arbitrary finitely presented groups[END_REF] our X 2 f -→ M (Γ) is zippable, i.e. the map f can be exhausted by a sequence of folding maps, more precisely of elementary zipping moves O(i) moves with 0 ≤ i ≤ 3 defined like in figure 1.2 in Section 1 and see also [START_REF] Gabai | Valentin Poénaru's Program for the Poincaré Conjecture[END_REF], [START_REF] Poénaru | The collapsible pseudo-spine representation theorem[END_REF], [START_REF] Poénaru | Equivariant, almost-arborescent representations of open simplyconnected 3-manifolds; a finiteness result[END_REF], [START_REF] Otera | Easy" Representations and the QSF property for groups[END_REF] (2.23)

X 2 = X 2 0 P1 --→ X 2 1 P2 --→ X 2 2 P3 --→ . . . . . . . . . f X 2 = X 2 /Φ(f ) .
For what follows next we need to allow the O(0) to be sometimes trivial too, i.e. not meeting triple points at all. Moreover, we will allow for each P j in (2.23) to be not just one single O(i)-move but to take the form P j = k P jk where each individual P jk is such an elementary move, fixed i.

Let us also choose an atlas M (Γ) = p U p such that, when we go to M (Γ) Any intersection point of plain lines in the doubly infinite lattice in (C) is a p n∞ (S) or p ∞n (S), and these are the immortal singularities for f X 2 . When we will go to Θ 3 (f X 2 ) these will be thickened into small disjoined immortal squares called generically S. So, every initial immortal square S ⊂ M (Γ) breaks into a double infinity of smaller immortal S ⊂ Θ 3 (f X 2 ). The [AAAA] in (C) stands for such an S. We have f X 2 ∩ ∂S = {p ∞∞ (S)}. The little drawing below should complete the (C).

π -→ M (Γ), then each π -1 U p is product, with π -1 U p = k U pk .
We see here, schematically, the contribution of S (i.e. of the (C)) to the Σ(∞). But we did not draw the whole ∞ × ∞ grid. We are here in S -→ M (Γ) from Theorem 2.1, there exists Γ-equivariant zippings, by which it is meant that there is a zipping (2.23), with P j = k P jk s.t. for each P j there exists a neighbourhood U p(j) coming with π -1 U p(j) = k U pk , where P jk takes place inside U pk , and where all the moves π P jk ⊂ U p(j) are isomorphic; here j is given (i.e. p(j) too) and k is arbitrary. We will write P j = π -1 πP jk .

2) Actually, for any atlas of M (Γ) which locally trivializes π, we can find a zipping like in 1).

3) When we go to the diagram

(2.24) X 2 f / / π M (Γ) π πX 2 = X 2 /Γ f /Γ / / M (Γ) = M (Γ)/Γ ,
then the equivariant zipping upstairs, for f , induces a zipping downstairs for f /Γ.

Let us take a look at 2) in our Lemma. We consider

M (Γ) = p U p , M (Γ) = p,k U pk .
When we look at (2.23), the first move X 2 0 p1 --→ X 2 1 starts in some given U pk and we can break it into

X 2 0 p11 ---→ X 2 11 p12 ---→ X 2 1 s.t. X 2 0 p11 ---→ X 2
11 happens all in U pk . The π -1 π(p 11 ) is a set of isomorphic moves, each happening in one of the U pk1 , U pk2 , • • • . Perform all these zippings, look at what is left of (2.23), and start it all over again. This is the idea for 2).

The upper line in (2.24) is a REPRESENTATION for Γ but not necessarily the truncation X 2 i≥1 → M (Γ), since X 2 i may not be GSC. As far as X 2 /Γ is concerned, this is NOT GSC and so the lower line in (2.24) is NOT a REPRESENTATION of anything.

In the rest of this paper we will constantly work with the equivariant zippings for (2.1).

(2.25) SOME IMPORTANT REMARKS CONCERNING THE 2-DIMENSIONAL REPRESENTATION SPACE X 2 .

A) The BLACK security walls W ∞ (BLACK) are a very important ingredient of X 2 . They are essential for the ZIPPING FLOW as we shall see. But, also, when it comes to the units X 2 | H λ i(γ) , for λ = 0, 1, these contain a big contribution from the W ∞ (BLACK), without which they would loose various important properties, like (2.11.1), (2.11.2). Very importantly, for λ = 0, 1, each W ∞ (BLACK) ∩ H λ i (γ) is very dense in H λ i (γ). B) We move now downstairs to the compact presentation M (Γ) of our group Γ. The M (Γ) has a (singular) handlebody decomposition into H 0 i , H 1 j , H 2 k , the H 0 i ∪ H 1 j being a smooth bretzel (#(S 1 × S 2 )'s) all the singularities coming from the attaching map (2.26)

k {attaching zone ∂H 2 k } F ---→ ∂ H 0 i ∪ H 1 j .
Via appropriate subdivisions of the handlebody decomposition of M (Γ) we may assume the following items: In figure 2.9 we chose to draw a hexagon. End of (2.25) (SOME IMPORTANT . . .).

FINAL COMMENTS. A) The f Sing(f ) ⊂ f X 2 is a discrete subset, without accumulations at finite distance. Also, it is disjoined from Sing(f X 2 ) ⊂ f X 2 which does accumulate at finite distance, in the {p ∞∞ (S)}. The lack of local finiteness of the f X 2 , occurring exactly along {p ∞∞ }, will be handled in the next section. It is, indeed, a very serious issue.

B) The (2.4) in Theorem 2.1 is made possible by the overflowing of the walls W ∞ . In the same vein, the set M 2 (f ) ∪ LIM M 2 (f ) has its own holonomy, just like a foliation or a lamination, and this holonomy may be non-trivial. We already mentioned it in connection with (2.15) and in Section I too. C) Generally speaking, LIM M 2 (f ) = ∅ and we have the obvious equivalence

(2.28) LIM M 2 (f ) = ∅ ⇐⇒ M 2 (f ) ⊂ X 2 is NOT closed, as a subset of X 2 ,
and even M 2 (f ) ∪ Sing(f ) ⊂ X 2 is NOT closed. This is one of the basic difficulties we will have to fight with, in this paper, as already explained.

D) In the context of Lemma 2.4, situation 2) concerns the local, "man-made" infinity of H λ k (γ) ⊂ Y (∞), while 3) concerns the much more mysterious INFINITY of f X 2 and/or M (Γ), which is the actual topic of this series of papers. We will manage to tame or handle this INFINITY by making use of equivariance; see the last section of the present paper. E) In everything which comes next, when the contrary is not explicitly stated, p ∞∞ may mean p ∞∞ (proper) or p ∞∞ (S). We will always have (2.29) p ∞∞ = lim n=∞ (p n∞ or p ∞n ), where

p n∞ ∈ M 2 (f ) ∩ LIM M 2 (f ) ⊂ X 2 .
3 Where we go back to dimension three

Remember that we have started with the 3-dimensional REPRESENTATION Y (∞)

g(∞)
----→ M (Γ) ≈ Γ (quasi-isometry), where the Y (∞) was put together from bicollared handles of dimension three. This had allowed us to get local finiteness, equivariance and uniformly bounded zipping length, features which we will by all means try to stick to in what will follow from now on. But, in order to get a more transparent structure for the double points we moved to a 2-dimensional very dense skeleton of Y (∞), i.e. to the 2-dimensional representation X 2 f -→ M (Γ), without losing our three desirable features just stated. So, what we have gained is a transparent double point structure

X 2 × X 2 ⊃ M 2 (f ) → M 2 (f ) ⊂ X 2
the rich complexity of which, schematically represented in the figures of the last section (see, in particular, 2.4 to 2.6), will be one of our tools.

On the 2-complex X 2 there are two, not everywhere well-defined flows, namely the collapsing flow and the zipping flow. Generally speaking, there will be transversal intersection of the two kind of trajectories, creating closed loops. Together with the non-metrizability barrier and with the Stallings barrier, this is one of the potential problems which the present paper will have to overcome.

In the first section of this paper we have mentioned the difficulties named (1.11.1-A), (1.11.1-B). But then, when one tries to face them by using some more precise technology, then the non-metrizability barrier, the Stallings barrier and the last mentioned barrier, closed oriented loops created by the combined zipping and collapsing flow pop up. But then also, high dimensions will be needed here. To begin with, in order to take care of the Stallings barrier we will use transversally compact objects i.e. objects of the form {3 d , or intermediary 4 d , objects} × B N (high) , and it is the supplementary B N which will take care of the non-metrizability barrier together with the PARTIAL DITCH FILLING process.

It is in the supplementary N dimensions that the action of geometric realization of the zipping flow will really take place. There will be DITCHES drilled in those dimensions, and then the important step of PARTIAL ditch-filling will take place there. So, our use of those supplementary high-dimensions is not quite the same as in the well-known classical context of Smale and Stallings. Our high dimensional objects will be GSC and will carry a free Γ-action. But this action will fail to be co-compact, so the technology from our old papers [START_REF] Poénaru | Killing handles of index one stably and π ∞ 1[END_REF], [START_REF] Poénaru | Almost convex groups, Lipschitz combing, and π ∞ 1 for universal covering spaces of 3-manifolds[END_REF], [START_REF] Poénaru | Geometry à la Gromov for the fundamental group of a closed 3-manifold M 3 and the simple connectivity at infinity of M 3[END_REF] will here be necessary, before we can get to Γ ∈ QSF. This will actually happen in the third paper of our TRILOGY, of which the present one is only the second.

As already explained, we will never use the simple-minded X 2 , which is not locally finite, but use instead its more sophisticated version {X 2 from (2.15)} where to begin with, we delete the p ∞∞ (W (BLACK) ∞ )'s and then all the p ∞∞ 's. The p ∞∞ (BLACK) ∞ 's are visible in the figures 2.5 and 2.6. These deletions are compensated by additions of 2-handles. So now the X 2 is locally finite, because the p ∞∞ (W (BLACK) ∞ )'s and p ∞∞ (S)'s are deleted, but not so the f X 2 , where these deletions are invisible. 16.1), and which also occur in [START_REF] Gabai | Valentin Poénaru's Program for the Poincaré Conjecture[END_REF], [START_REF] Poénaru | The collapsible pseudo-spine representation theorem[END_REF], and which are not embeddable in R 3 , without destroying their train-track structure. The most serious lack of local finiteness for f X 2 is the accumulation of the undrawable singularities above at the p ∞∞ (S). This has nothing to do with X 2 , but it is created by the zipping. A workable definition of f X 2 requires the deletion of the p ∞∞ (S)'s and their replacement by compensating disks. End of (3.1). This will all come in due time. Two, both locally finite "thickenings" for f X 2 will be introduced now, namely the Θ 3 (f X 2 ) and the Θ 3 (f X 2 ) , and when we will write Θ 3 (f X 2 ) ( ) , then this will mean one, or the other, or both. Before even going to the explicit definitions, some features of these objects will be reviewed already.

The Θ 3 (f X 2 ) is slightly less singular than that Θ 3 (f X 2 ) where ALL the p ∞∞ × (-ε, ε) are deleted and compensated for (by 2-handles); at the level of Θ 3 (f X 2 ) the holes p ∞∞ (proper) × (-ε, ε) are healed (by a process to be explained) and only the holes p ∞∞ (S) × (-ε, ε) which cannot be healed stay alive, compensated by their 2-handles. Here the p ∞∞ (proper) INCLUDES the p ∞∞ (W (BLACK) ∞ ) which, once we move to the level Θ 3 (f X 2 ) CAN BE HEALED, just like the other p ∞∞ (proper). So, only the p ∞∞ (S)'s do stay deleted in Θ 3 (f X 2 ). The Θ 3 (f X 2 ) ( ) certainly is locally finite, (unlike the f X 2 ). All the p ∞∞ × {±ε} are at infinity in all cases and when p ∞∞ = p ∞∞ (proper), far from singularities. This allows the Healed Θ 3 (f X 2 ) to stay locally finite. There will be a natural free action Γ × Θ 3 (f X 2 ) ( ) → Θ 3 (f X 2 ) ( ) , and in the context of the lower line of (2.24) we will define, downstairs, a Θ 3 (f /Γ(X 2 /Γ)) ( ) , coming with a map Θ 3 (f /Γ(X 2 /Γ)) ( ) → M (Γ), and with the functorial properties

(3.2) Θ 3 (f /Γ(X 2 /Γ)) ( ) = Θ 3 (f X 2 ) ( ) /Γ , and (Θ 3 (f /Γ(X 2 /Γ)) ( ) ) ∼ = Θ 3 (f X 2 ) ( ) , accompanied by π 1 Θ 3 (f /Γ(X 2 /Γ)) ( ) = Γ.
It should be stressed here that the Θ 3 (f /Γ(X 2 /Γ)) ( ) can, and will, also be defined directly downstairs, strictly from "first principles", i.e. using the same local recipees as for Θ 3 (f X 2 ) ( ) upstairs; then the formulae (3.2) occur as a posteriori facts, consequences of this. An alternative would be to start with the first line in (3.2) and take it as a definition. But some important insights would then get lost. We have, from (2.1), the simple-minded inclusion f X 2 ⊂ M (Γ) from which, after the appropriate treatment of the p ∞∞ 's and the passage to regular neighbourhoods, we get things like the equivariant map Θ 3 (f X 2 ) ( ) -→ M (Γ) , or its reflex dowstairs, already mentioned.

Both Θ 3 (f X 2 ) and Θ 3 (f X 2 ) are cell-complexes (and not 3-manifolds), the second one slightly more singular than the first one, and also more manageable.

Most of the effort in the present paper will be spent on S u M (Γ) which will be our main object of study. But once the S u M (Γ) is understood, it will be relatively easy to decode the S u M (Γ), which occurs in the GSC theorem too. The S u is, finally, the useful tool for that theorem.

It should also be stressed that none of our objects like Θ 3 (f X 2 ) ( ) or (S u M (Γ)) ( ) contain f X 2 as a subset, so they are NOT "regular neighbourhoods" of it. We just call them "thickenings of f X 2 ".

We will show now how to construct the Θ 3 (f X 2 ) ( ) , and this will be done in several successive steps, provisional constructions on the road to the real one.

Step I. Start with a decomposition f X 2 = ∞ 1 U i into small smooth, embedded 2-dimensional sheets. When U i enters the canonical open neighbourhood of some S ⊂ M (Γ), touching this singularity S, then it may always be assumed (see figure 2

.8) that U i is contained inside one of the two R 3 + ∪ (R ε × R + × [0, 1] ε )'s. This allows us to define unambiguous thickening U i × [-ε i , ε i ] ⊂ M (Γ)
where ε 1 > ε 2 > . . . 0 converges very fast to zero. Putting together these objects we get a first, very coarse thickening

∞ 1 U i × [-ε i , ε i ] for f X 2 .
With the 1 (∞) which was defined in (2.10), (2.14) we go now to a first provisional definition

(3.3) Σ(∞) (provisionally defined) ≡ Σ 1 (∞) ∩ ∞ 1 U i × [-ε i , ε i ] , coming with ∂ Σ(∞) ≡ Σ(∞) ∩ ∂ ∞ 1 U i × [-ε i , ε i ] and int Σ(∞) ≡ Σ(∞) -∂ Σ(∞) .
End of (3.3) Formulae (3.3) are appropriate for the present Step I, but they will need to get sharpened and amplified, by the time we will get to the final Step III of our definition for Θ 3 

(f X 2 ) ( ) .
The int (∞) in (3.3), which can be thought of as a 2 d thickening of the LIM M 2 (f ) from (2.3), is an open surface with a ramification (= non-manifold) locus, having the local form {figure Y } × R. These ramifications occur, exactly, along the open arcs p ∞∞ (proper) × (-ε, ε). Forget about p ∞∞ (S)'s here. For expository reasons, we will ignore them right now, and for a while.

Notice also that

(3.3.1) (∞) = {(∪ S 2 ∞ ∪ ∪ (S 1 × I) ∞ )} ∩ {∪ W ∞ (BLACK) ∪ ∪ (W (RED) ∩ H 0 )
, both of which will be called complementary walls}. So, we leave for the time being the p ∞∞ (S)'s in the dark, and only in the context of Step III will we finally make sense of the

(3.4) Θ 3 (f X 2 ) ( ) | {p ∞∞ ( 
S)} ? (question mark, for the time being).

At the points p ∞∞ (proper) × {± ε}, the

∞ 1 U i × [-ε i , ε i ]
is not locally finite and, with all these things, we introduce the following first and very provisional definition, continuing, for the time being to ignore (3.4), namely:

(3.5) Θ 3 (f X 2 ) ( ) (I) ≡ ∞ 1 U i × [-ε i , ε i ] -∂Σ(∞) .
With this definition, at the level of Θ 

(S) × [-ε, ε] ⊂ W × [-ε, ε] × {x = x ∞ }, then in the plane {x = x ∞ } ∩ W × [-ε ≤ z ≤ ε]
live infinitely many thinner and thinner immortal singularities of Θ 3 (f X 2 )(I) which accumulate on p ∞∞ (S) × [-ε, ε] and deleting just p ∞∞ (S) × {± ε} will not be enough; see here (3.13) below and the figure 2.8 too.

Notational Remark: Our present int (∞) used to be called " (∞)" in [START_REF] Poénaru | Equivariant, almost-arborescent representations of open simplyconnected 3-manifolds; a finiteness result[END_REF], but we will not make use of that paper now. The reader may ignore it.

(3.6) Outside of the p ∞∞ (S) × [-ε, ε], the Θ 3 (f X 2 )(I) is actually a non-compact 3-manifold with noncompact boundary, inside which the p ∞∞ (proper) × (-ε, ε) are PROPERLY embedded, having the undrawable singularities inherited from f X 2 .

But, at the level of the figure 2.8.(C), the p n∞ , p ∞n stand for 3 d undrawable singularities (see ((1.16.1) and also) [START_REF] Gabai | Valentin Poénaru's Program for the Poincaré Conjecture[END_REF], [START_REF] Poénaru | The collapsible pseudo-spine representation theorem[END_REF]), for Θ 3 (f X 2 )(I), which accumulate at the p ∞∞ (S), and where Θ 3 (f X 2 )(I) fails to be locally finite. We will take care of that, later on.

Step II. We start now by codifying the structure of f M 2 (f ) ⊂ X 2 as presented in the figures 2.4 to 2.6 and 2.8. Keeping the p ∞∞ 's out of focus, here are our typical local models for f M 2 (f ). There is always a main sheet V = {W or W (∞) }, cut transversally by 1 (∞) along a smooth line L ∞ = V ∩ f LIM M 2 (f ), which carries, possibly, a unique p ∞∞ (V ). Next, there are infinitely many double lines L j = W j ∩ V , with lim j=∞ L j = L ∞ , too. Finally, there are also lines T i = W i ∩ V , which cut transversally the (L j , L ∞ )'s at points (3.7)

t ij = T i ∩ L j ⊂ W i ∩ W j ∩ V , accumulating on L ∞ when j → ∞ .
This t ij may be a ramification point of X 2 or a triple point, hence a ramification point somewhere higher on the zipping road from X 2 to f X 2 . In our figures 2.4 to 2.6 or 2.8 we see that at the level f X 2 we have

lim j=∞ t ij = p n∞ ∈ f M 2 (f ) ∩ f LIM M 2 (f ) = {the set of p n∞ , p ∞n 's} .
When no triple points are involved, we may move from the level f X 2 to X 2 and then write happily

{p n∞ , p ∞n } ∈ M 2 (f ) ∩ LIM M 2 (f ) ⊂ X 2 .
We will distinguish three kinds of local models, and only the first two contain a p ∞∞ .

(3.8.i) The generic case V = W (∞) (BLACK) p ∞∞ , W i = W i (RED), W j = W j (BLUE); the figures are here 2.4, 2.5, 2.6. Also, in the next two cases, we will again have W j = W j (BLUE). It should be understood here that, in terms of figures like 2.4, 2.5, 2.6, for any individual line T ∩W ∞ (= red line), all the triple points except for finitely many of them live inside the difficult region T ∩ N B,C) may illustrate this case. At this point I will introduce now a localized system of dilatations, which will change Θ 3 (f X 2 )(I) into a Θ 3 (f X 2 )(II). These dilatations which will always grow out of the W (∞ )(BLACK)'s are called fins. The fins are not introduced neither for purposes of 3 d local finiteness of things like the Θ 3 (f X 2 ) ( ) nor of smoothness, but for the needs of the geometric realization of the zipping, in high dimensions. There, in high d, they will help keeping our variously needed objects locally finite. Very loosely speaking, during the geometric realization of the zipping, in high d, various undesirable accumulations will be corralled at infinity, along ∂ (∞). The fins will come with rims, also living at infinity (see formula (3.15) below) and these, added to ∂ (∞) will take care of the gaps, which things like the triple points create for ∂ (∞), making thus the corralling above possible because the rims of times fill the gaps. This, admittedly vague description will be make precise, later on.

, V = W (RED ∩ H 0 ) ⊃ {some smooth line LIM M 2 (f )} (accumulation of W (BLUE)'s), W i = W (∞) (BLACK). Here V = {cyclinder S 1 × [0, x ∞ + ζ]}, ζ > 0, with S 1 × {0} ⊂ W (BLUE) and S 1 × {x ∞ } = V ∩ 1 (∞). Figures 2.
Here is the GEOMETRY OF THE FINS. We will need fins for handling all the three local models from (3.8), and I will start now with the paradigmatic case i). To make our discussion smooth, we will use

now (∞) ⊂ ∞ 1 U i × [-ε i , ε i ].
In the context of (3.8.i) we have a local coordinate system (x, y, z) with V = (z = 0), W j = (x = x j ), W i = (y = y i ), to which we will add a fourth dimension, with the coordinate u. We have also a square, at the level of which the next contribution will be localized with T i ≡ {the line W (BLACK) ∩ W (RED)}, we will have

Σ(∞) | T i ⊃ (x = x ∞ ) ∩ {(-ε ≤ z ≤ ε) ∩ (y i -ε i ≤ y ≤ y i + ε i )} our square .
Let us define now the fin:

(3.9) 1 2 D 2 ± (p i∞ ) ≡ {the half-disk of diameter (x = x ∞ , y i -ε i ≤ y ≤ y i + ε i , z = ± ε), contained in the plane (y, u). Here 1 2 D 2 is a 2 d dilatation added to V × [-ε ≤ z ≤ ε]
, at z = ± ε}, and u is the additional, fourth dimension. We define rim of 1 2

D 2 ≡ ∂ 1 2 D 2 -{the diameter} .
The fin F + in figure 3.1-(A) lives inside (x, y, z = +ε, u ≥ 0) and outside of its base, which lives at (z = +ε, ± . With this we will want the addition in (3.9) to be part of a larger 3 d dilatation based on V × {± ε}, denoted again by F ± (with "F " like "fin"), and which does not touch otherwise to

y ∈ [y i -ε i , y i + ε i ], x ≥ x ∞ , u = 0), it avoids W i × (y i -ε i ≤ y ≤ y i + ε i ) ⊂ (x,
W i ×[-ε i , ε i ]-V ×[-ε, ε].
In the description of these dilatations, we have to make use of the fourth dimension u, and figure 3 The fins, which make use of the fourth dimension u. In terms of the Definition 1.18, one should think here in terms of Θ 4 = Θ 4 (x, y, z, u). In (B) we see, projected on the plane ( The (3.9) tells us which fins to add in the situation (3.8.i) and we move now to (3.8.ii). Here, at the level (2.1), for each S ⊂ Sing M (Γ) we find the situation from figure 2.8-(C), i.e. a doubly infinite checkerboard of walls W (BLACK), (W (n), W * (m)) for (n, m) ∈ Z × Z, and we will use the notation W * * = W . At each site (n, m) we will make a choice. A label "overflows" or "subdued" will be attached to each of the two terms W, W * , for each fixed (n, m) so that the following RULES should be satisfied for (W (n), W * (m)).

x = x ∞ , y, z) ⊃ {The cross (x = x ∞ ) ∩ ((-ε i ≤ y ≤ ε i ) ∪ (-ε ≤ z ≤ ε)) ⊂ Σ(∞) (3.
(3.10) We certainly want that W overflows ⇐⇒ W * is subdued; at (n, m). The same kind of thing should be valid when m is fixed, for W * (m). End of (3.10.1).

Each p ∞∞ (S) is an endpoint of some line lim M 2 (f ) ∩ W ∩ S, ending on ∂S and living in W ∩ (x = x ∞ ), with W like above. We will denote by W + (p ∞∞ (S)) ⊂ W = {W (m) OR W (n)}, the half line corresponding to the end in question and which is such that at each site S ∈ W + (p ∞∞ (S)) ⊂ W , it is exactly W which overflows (and hence W * is subdued). Here comes now our second RULE, complementing (3.10.1). The figure 6.2 in Section VI below, displays one possible recipee for implementing the rules (3.10.1) + (3.10.2), via the diagonal 0(3)-lines; any half line going from the diagonal 0(3)-lines to infinity, i.e. to ∂S, is a W + . On the unique central vertical W (see the figure 6.2), we have made the arbitrary choice that W overflows everywhere. But the precise way in which our rules (3.10.1) + (3.10.2) are implemented, is immaterial, our figure 6.2 is rather a mere illustration. On the other hand, once our choice of overflow versus subdued, has been made at each site S(m, n), we can talk about how to place the fins too.

(3.11) For each W + (p ∞∞ (S)) in (3.10.2), at each site (n, m) ∈ W + (p ∞∞ (S)) ⊂ (∞), the site is standing now for a triple point of the form f M 2 (f ) ∩ S 2 ∞ (BLUE), two fins F ± will be attached just like in (3.9), to the W + , which overflows at (n, m). Figure 6.2 illustrates this rule too. All this takes care of (3.8.ii). The same kind of procedure as for (3.8.i) can be implemented for the case (3.8.iii) too; see here the figure 6.4. With all this, we define now the next, still provisional object

(3.12) Θ 3 (f X 2 )(II) ≡ Θ 3 (f X 2 )(I) ∪ all fins
F ± with both the ∂ (∞) and the rims of fins, which rest on ∂ (∞), deleted .

Clearly, we have an infinite 3

d dilatation Θ 3 (f X 2 )(I) Θ 3 (f X 2 )(II)
. Keep in mind that the F ± are now 3 d objects. Figure 3.2 suggests the deletion in (3.12), when far from p(∞∞) and from fins.

Step III. So far, the (3.12) is still not locally finite at the p ∞∞ (S)'s. To take care of this, we introduce the following cell-complex, which is locally-finite, and which is also the final Θ 3 (f X 2 ), now correctly defined in (3.13) below. A section through Θ 3 (f X 2 )(II), far from the p ∞∞ 's and from the fins. And, as long as we are far from all these, and we perform the deletions indicated here, this figure is valid for the realistic Θ 3 (f X 2 ) ( ) too. We can think here in terms of Retain that what our figure 3.2 presents, in a simple situation when we are far from triple points and fins, from p ∞∞ 's and from singularities, is This is also accompanied by

= {a V = W ∞ (BLACK)} × [-ε, ε] and of //// = thickened W (BLUE)}. Then, we have Σ(∞) = LIM M 2 (f ) × [-ε, ε]
V × [-ε, ε] ∪ ∞ j=1 W j × [-ε j , ε j ] -LIM M 2 (f ) × {±ε} ⊂ Θ 3 (f X 2 ) ( ) , with x(W j ) = x j , x(LIM M 2 (f )) = x ∞ , lim j=∞ x j = x ∞ . Typically, we could have here V = W (∞) (BLACK), W j = W j (BLUE).
∂Σ(∞) = f LIM M 2 (f ) × {±ε} ∪ p∞∞(S) p ∞∞ × [-ε, ε] ⊂ Σ(∞) .
End of (3.14.1).

Starting from the final (∞), as just defined in (3.14.1), we also introduce the bigger

(3.14.2) Σ(∞) ∧ ≡ Σ(∞) ∪ Fin F 1 2 D 2 (F ) ⊂ Θ 3 (f X 2 ) (3.13) ,
the union being made along the diameters, and this comes with the following set, living at infinity,

(3.15) ∂ (∞) ∧ ≡ ∂ (∞) (3.14.1) ∪ fins F rim F . [One should notice that ∂ (∞) ∩ int(diam F ) = ∅.]
This also comes with the following PROPER inclusions

(3.16.1) ∂Σ(∞) ∧ -{the p ∞∞ (S) × [-ε, ε]} ⊂ Σ(∞) ∧ , and 
(3.16.2) int Σ(∞) ∪ fins = int Σ(∞) ∧ ≡ Σ(∞) ∧ -∂Σ(∞) ∧ ⊂ Θ 3 (f X 2 ) .
(Reminder) The (3.14.1) (and its hatted version with fins) are tailor-made to go with Θ 3 (f X 2 ). But then, our good operative notion will be Θ 3 (f X 2 ) , with Θ 3 (f X 2 ) in an auxiliary role. And, for Θ 3 (f X 2 ) , the (3.14.1) has to be replaced by (3.21) and its hatted version. End of Reminder.

Clearly, both (3.13) and (3.14) use the same ideas as in (2.15) and, for good measure we will introduce now the thickened version of X 2 (2.15) too. Here it is:

(3.17) Θ 3 (X 2 ) ≡ The smooth regular neighbourhood of thickeness [-ε, ε], Θ 3 {X 2 simple-minded} - p∞∞(all) p ∞∞ + p∞∞(all) D 2 (H(p ∞∞ )) × - ε 4 , ε 4 
.

For f X 2 we have introduced distinct Θ 3 (f X 2 ) and Θ 3 (f X 2 ) , a distinction which will not be made, neither for X 2 (2.15) nor for Θ 3 (X 2 ) (3.17), both objects being rather like Θ 3 (f X 2 ) , anyway, from the beginning.

Here are some additional explanations concerning the figure 3.3, which is the background behind all the three formulae (3.13), (3.14), (3.17). The action is concentrated in a region

p ∞∞ × (-ε, ε) -----------------→ PROPER embedding (W (∞) × [-ε ≤ z ≤ ε] -(x = x ∞ , z = ±ε)) ⊂ Θ 3 (f X 2 ) ( ) ,
(see (3.13) or (3.14)). What we actually see in figure 3.3-(A) is a small region, PROPERLY embedded inside Θ 3 (f X 2 ) ( ) , and spanning from z = -ε 2 to z = ε 2 , namely the (3.18)

A(p ∞∞ ) ∪ C(p∞∞) × -ε 4 , ε 4 D 2 (H(p ∞∞ )) × - ε 4 , ε 4 -→ Θ 3 (f X 2 ) ( ) .
The Σ(∞) * is, of course, Σ(∞) with the contribution p ∞∞ (S) restored. End of (3.21) Notice here that the int Σ(∞) * contains ALL the p ∞∞ × (-ε, ε). Also, in the definition of ∂Σ(∞) * , the two terms get glued together along Σ p∞∞(ALL)

p ∞∞ × {±ε}.

We have a disjoined decomposition the bar meaning closure inside Σ 1 (∞) and, also

σ(∞) ≡ σ 1 (∞)(2.19) -Θ 3 (f X 2 )(II)(3.12) = σ 1 (∞) -Θ 3 (f X 2 ) ⊂ M (Γ) .
We will come back to this σ(∞) in Section VII. On the same lines, we also introduce the version "with fins" 

O O

At this point, we may as well assume that there are enough arcs p ∞∞ ×[-ε, ε] and fins too, some possibly created specially for the present purpose so that we should have We should explain a bit these bad rectangles R 0 , satisfying (3.23) to (3.24.1), with some drawings. [An anticipation of things to come: In the Section V we will introduce the context "with Holes" (written "-H" in the formulae) and then, now very soon, on the way to the real life S u M (Γ) we will introduce the intermediary object (S u M (I)) I .

With all these things, one may think of the Σ(∞) ∧ * , occurring in the RHS of the formula (3.24.1) as living inside n M (Γ), for which the S u M (Γ) I , to be introduced more formally in formula (3.25) below, is only a very first approximation to the real thing. Now, for expository purposes it would be quite cumbersome, right now, to drag along the S ( ) u . So we only explain the S u , first and then later go to the S u (without any prentices). And, I repeat this once more, while (3.14.1) was well-adapted for the context Θ 3 (f X 2 ), the later (3.21) was the thing well-adapted for Θ 3 (f X 2 ) and for S u M (Γ).

A final word before our construction. Our various 3 d , 4 d and higher dimensional objects have two kinds of points at infinity: the God-given infinity, proceeding from Γ itself and the man-made infinity produced by our own construction. And with this, all the man-made infinities of Θ 3 (f X 2 ) , of S u M (Γ) I and of the REAL LIFE S u M (Γ) are already there in Θ 3 (f X 2 ) , with one possible exception. The passage VARIANT I =⇒ REAL LIFE includes the adjunction of R0 int R 0 × [0, ∞), coming with its own man-made infinity • (∞) * × {∞}. In this section, we add this only to S u M (Γ) but then, later on, we may find it convenient to add it at level Θ 3 (f X 2 ) already. THE CONSTRUCTION OF S u M (Γ) (and for S u M (Γ) this will come later).

We start with the decomposition into smooth pieces Notice here the jump in size from "× B N " to "× 1 2 B N ", the reasons for which will become clear later. Also, the 1 2 B N may sometimes have to be replaced by ( 1 2 + ε 0 )B N , with small ε 0 > 0. Notice also, that while Θ 4 (Θ 3 (f X 2 ) smooth , R), and also the (S u M (Γ)) smooth , really are C ∞ manifolds, the Θ 3 (f X 2 ) smooth itslef still contains all the singularities Σ C(p ∞∞ ) × -ε 4 , ε 4 of Θ 3 (f X 2 ) all intact (the immortal ones are deleted in (3.14)).

Θ 4 (Θ 3 (f X 2 ) , R) = Θ 4 (Θ 3 (f X 2 ) smooth , R) ∪ {Σ 2-handles} , where Θ 3 (f X 2 ) smooth ≡ {Θ 3 (f X 2 ) -
In all the formulae to follow, when we will write "2-handles", these kinds of subtelties, like the jump B N ⇒ 1 2 B N should be understood. End of (3.25) (3.26) We have a natural embedding Θ 3 (f X 2 ) ⊂ (S u M (Γ)) I , which restricts to Θ 3 (f X 2 ) smooth ⊂ (S u M (Γ) I ) smooth .

End of (3.26) This easily lift to the boundary ∂(S u M (Γ) I ) smooth , see below.

From here on, the road to the real-life S u M (Γ) consists of the following steps.

Step I. We start from In order to get a better version of (3.27), which should be smooth (and we need that for later purposes), we add to the S u M (Γ) smooth ⊂ S u (1), not just the Here, of course S u (1) + Σ handles S u [START_REF] Besson ; Après | Une nouvelle approche de la topologie de dimension 3[END_REF].

Here are also some explanations concerning (3.29). We can think of N 4+N R0 int R 0 × [0, ∞) as being Let us say here that, starting from

N 4+N R0 int R 0 × [0, ∞) = N 3+N R0 int R 0 ×[0, ∞)
R0 int R 0 ×{0} = TOP R0 int R 0 = int • Σ(∞) * ∪ fins ⊂ Θ 3 (f X 2 ) smooth ⊂ ∂(S u M (Γ) I ) smooth ,
we extend this composite embedding, first to N 3+N and then to N 3+N × [0, ∞).

But the problem now is that our R0 int R 0 × [0, ∞) has been pushed into the interior, and we actually will want it to live in the boundary. This leads to the next step, the last one in this long definition of the REAL LIFE S u M (Γ).

Step III. So, our step III is now S u (2) smooth =⇒ S u (2) smooth × [0, 1], with the effect that This object is sufficiently important for us, so that its definition should be displayed in full below: that all Γ's are QSF. Of the three, the longest and most difficult is certainly the present one. The three papers are our TRILOGY.

R0 int R 0 × [0, ∞) ⊂ N 4+N R0 int R 0 × [0, ∞) ⊂ S u ( 
B) The GSC theorem is at the heart of the proof that ∀ Γ ∈ QSF, which certainly needs that (S u M (Γ)) ∈ GSC. But in order to get this, we need to show first that (S u M (Γ)) ∈ GSC. Proving that, is the main part of the argument for the GSC theorem.

C) The main technical tool for proving the GSC Theorem will be a transformation going, very roughly speaking, from Θ N +4 (X 2 ) to an object related to S u M (Γ), to be a bit more explicit, from {Θ N +4 (X 2 ) with some Holes and DITCHES deleted} via an infinity of successive steps and taking the following general form,

( * 0 ) Θ N +4 (X 2 -H) -DITCHES Z = = =⇒ S b ( M (Γ) -H) I .
I will explain the notations used in ( * 0 ). The "Z" stands for "zipping", and the transformation in question mimicks the zipping process. The left hand side of ( * 0 ) is "Θ N +4 (X 2 ) with Holes and DITCHES deleted". The Holes and DITCHES are explained first in Section IV, then with more details in V. In V there will also be a space S u ( M (Γ) -H) I , meaning "S u M (Γ) I with Holes". For the time being, the Holes are still mythical.

But the final object of the construction Z is really another object S b M (Γ) I defined eventually via a reconstruction formula

S b M (Γ) I ≡ S b ( M (Γ) I -H) + {appropriate 2-handles} .
The S b ( M (Γ) -H) I which occurs in the RHS of ( * 0 ) is a cousin of S u ( M (Γ) -H) I , which will be explicitly constructed in Section V during the unrolling of the ZIPPING LEMMA, with more details in VI, when the zipping lemma will be proved. It is a pivotal object for the whole approach. But, keep in mind that the objects S Coming back to the Z, which mimicks the strategy X 2 =⇒ f X 2 for (2.1), it will be referred to as the "geometric realization of the zipping", in high dimensions. But, while the 2 d zipping strategy is a gigantic quotient-space projection, our Z will be an infinite sequence of inclusion maps, mixed from time to time with another kind of step, which we will call the DITCH-jumping. The point is that each of the elementary steps (infinitely many of them) building up the Z, is GSC preserving. The big quotient map, suffering of its AVATARS (1.11.1-A, B), Θ N +4 (X 2 ) =⇒ S u M (Γ) has, a priori, no reason to be GSC-preserving. Getting a GSC S u M (Γ) (or rather proving GSC for it) needs quite a round-about road. Of course, also, in an ideal world without the avatars (1.11.1-A), (1.11.1-B), and/or with the Whitehead nightmare absent, going from a sequence of quotient maps to a sequence of inclusions, would be vastly easier (see, for instance [START_REF] Otera | Easy" Representations and the QSF property for groups[END_REF]). BUT we do have to live with all those avatars and nightmares. Now, for expository purposes, instead of plunging straight into the general construction of the geometric realization of the zipping, we will open a prentice and, in te next section, a simplified TOY MODEL, exhibiting some of the important features of the real life thing, in a simplified context. It should be helpful for understanding the real story.

We will very much refer to it in the more technical sections which will follow afterwards. D) We end this section with a brief review of the ARTICULATION of the present paper, and its successive changes of dimensions which are used. We start from the 3 d REPRESENTATION ( * 1 ) Y (∞)

g(∞)
-----→ M (Γ) ∼ Γ from (2.6).

(3.45.1) Θ 3 (f X 2 ) has as only immortal, undrawable singularities, the S's, a double infinity of them for every S, see figure 2.8-(C). If we leave things as they are, then

S ⊂ S 2 ∞ .
In terms of figure 2.8-(C), these S's live at x = x ∞ . We lift each S, out of S 2 ∞ (and out of the corresponding H 0 i (γ)), at x ∞ + η(S), η(S) > 0, with these η's converging fast to zero when we approach ∂S, so as to continue to have lim 3) The reader should think now of (3.45.1) as being performed BEFORE the fins are in place. At the level of S ⊂ M (S), we consider now Σ(∞) * (without fins around). As a consequence of the step (3.45.1) this Σ(∞) * is a smooth surface far from the immortal singularities S ⊂ S. Actually, Σ(∞) * splits, locally, our Θ 3 (f X 2 ) in two or three, exactly, and one "half" is clean of singularities. See here the figure 2.8-(C). End of (3.45.3).

Only now we bring the FINS into the game, fins which remember, among other places have to live at the sites S too. But, via (3.45.1), when fins come in, these are by now non-singular. As already said,

(Θ 3 (f X 2 ) ) ∧ ≡ Θ 3 (f X 2 ) ∪ ∂Σ(∞) ∧ * ⊃ Σ(∞) ∧ * ,
is a closed subset of M (Γ). From the viewpoint of both Θ 3 (f X 2 ) and of int • (∞) * ∪ fins , the ∂Σ(∞) ∧ * lives at infinity. Inside M (Γ) sequences of points of any of those two spaces may converge to ∂Σ(∞) ∧ * , i.e. to infinity. The ∂Σ(∞) ∧ * is outside of any compact and it certainly contains the rims of the fins too. The fins themselves clearly need the 4 th dimension and, as we will present things below, this will be the u of Θ 4 (Θ 3 (f X 2 ) , R)(x, y, z, u).

The (3.45.2) tells us that (once we forget about the fins), then is the neighbourhood of int • (∞) * , when it comes to Θ 4 (Θ 3 (f X 2 ) , R) we do not have to worry about things like in figure 1.1-bis, nor about the corresponding desingularization R.

With this, here are the additional refinements which we will add to our definition of Θ 4 (Θ 3 (f X 2 ) , R). And, throughout this discussion, keep in mind that our Θ 4 (. . . , R) is a functor with good localization and glueing properties. x × I .

Our first refinement will be to replace that x × I (= x × [0, 1]) of the U 3 × [0, 1] ⊂ Θ 4 , where U 3 = {a 3 d nonsingular neighbourhood in Θ 3 }, by some x × [0, (x)], with (x) > 0, a C ∞ function of x, which is s.t. when lim x n ∈ ∂Σ(∞) ∧ * , then lim n=∞ (x n ) = 0.
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  {addition of cells of dimensions λ = 2 and λ = 3}. Here Im f means the closure of Im f . End of Definition 1.5.

( 1 .

 1 14.1) DITCHES, HOLES and PARTIAL DITCH FILLING.The versions S u or b are more singular than the already singular S u , S b 's. And we have to work with singular objects. When we say "smooth cell-complexes" we do NOT mean (smooth) manifolds, but cellcomplexes with smooth (C ∞ ) attaching maps. Locally, the singularities of our S

  sees at most one singularity S. Four our M (Γ) above we clearly have π 1 M (Γ) = Γ and the M (Γ) IS the presentation of Γ which we will use in this paper.
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 1 Figure 1.1.
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 1 [START_REF] Poénaru | The collapsible pseudo-spine representation theorem[END_REF]. -In the context of the X 2 f

Figure 1 .

 1 Figure 1.1-bisWe see here the R-dependent embedding (1.19.2), δΘ 3 (S) ⊂ S 3 (which, independently of the particular R, is always ∂Θ 4 (Θ 3 (S), R) = S 3 ).In the context of the figure 1.1-bis, in (A) the U (x) is specified and in (B) it is the U (y) which is specified.Remember that Θ 3 (S) = (U (x) × [-ε, ε]) ∪ (U (y) × [-ε, ε]), the two pieces being glued together like in (1.16.1). And the point of figure1.1-bis is that while the 3 d U (unspecified) × [-ε, ε] can be happily glued to ∂U (unspecified) × [-ε, ε] ⊂ δΘ 3 (S) ⊂ ∂Θ 4 (Θ 3 (S), R), without touching the rest, for U (specified) this is NOT POSSIBLE. This is the geometrical distinction between specified and unspecified, at the localized level of S.To make connection with (1.19), (1.19.0), assume, in the context of (1.19) a ball B 3 ⊂ M 3 centered at f (s). Then take a second ball B 3 (+) sticking out of M 3 in the +1 direction in M 3 × [-1, +1], and such that ∂B 3 = ∂B 3 (+). With this, the S 3 = B 3 ∪ B 3 (+) could be a model for our present ∂Θ 4 (Θ 3 (S), R), figure 1.1-bis.Turning back to (1.19.3), this formula is clearly R-independent, and we will choose it as definition for the Θ 4 (Θ 3 (X 2 ), R) | (Θ 3 (X 2 ) -

Figure 1 . 2 .

 12 Figure 1.2. Elementary zipping moves in 2 d . The target here is R 3 ⊂ {the smooth part of M (Γ)}. Legend: = f M 2 (f ), • = mortal singularity. The O(0) moves around the singularity, the O(1) splits it into two, or more, while the O(2) kills it by bringing it to the boundary. These first three moves are homotopy equivalences. In the next O(3) move, two singularities enter into a head-on collision and dye in the process, killing each other. Homotopically speaking one adds here a 2-cell. These moves, illustrated here for (1.16), easily extend to (1.17).

  Anyway, the two cases for the O(3) move, in the COHERENT and in the NON-COHERENT cases, are suggested in figure 1.3, where the action happens in a 2 d section through the smooth part of M (Γ) × [-1, +1] (the O(3)-moves are far from the singularities of M (Γ)). Again, this figure is borrowed from Dave Gabai's paper [8].

Figure 1 . 3 .

 13 Figure 1.3.

  11.1), one can put together the (1.21) and assemble it into a smooth n-manifold with large non-empty boundary ∞ i=0

Theorem 2 . 1 .

 21 (2-DIMENSIONAL REPRESENTATION THEOREM) -For any finitely presented group Γ there is a 2-dimensional REPRESENTATION (2.1)

  3, which are 3 d versions, from which Theorem 2.1 is deduced. And those are the main achievement of TRILOGY I [29], which certainly is conceptual. End of Comments. Let us go back to the presentation M (Γ), which is a singular 3-manifold. Its singularities (= nonmanifold points) are little squares S ⊂ Sing M (Γ). Here is the precise local description of M (Γ) around such a singularity S.

Figure 2 . 1 .

 21 Figure 2.1.We see here the decomposition of a bicollared handle H λ of index λ, into compact usual handles H λ m . Of course, in real life dim H λ = 3 and, for all the three indices used here, λ = 0, λ = 1, λ = 2. The attaching zones ∂H λ m have a limiting position parallel to the co-core C ∞ (H λ ) and disjoined from it. So, our dimension n here is actually n = 3.

Figure 2 .

 2 Figure 2.1.1.

Figure 2

 2 Figure 2.1.2.

  Description of F(COLOUR) | H 0 i (γ). The H 0 i (γ) is a 3-ball B 3 of boundary S 2 = δH 0 i (γ) and of center 0. The F (RED and BLACK)'s are NOT defined along the cone over the green graph from figure 2.1.2-(B), from 0 (the RED not along the π-part and the BLACK not along the ρ-part). For our H 0 i (γ), BLUE is the natural COLOUR, and δH 0 i (γ) is a BLUE leaf of the corresponding F. Besides this, F(BLUE) | H 0 i (γ), which is certainly not defined at the center 0, consists of a countable set of concentric 2 d spheres centered at 0. One gets the {F(RED and BLACK)} | H 0 i (γ) by coning what one sees in figure 2.1-(A). Incidentally, the shaded area in figure 2.1-(A) should correspond to the intersection with a hypothetical 3-handle H 3

  Figure 2.2 explains this.

Figure 2

 2 Figure 2.2.

1 2 -

 2 natural pieces (for λ = 1 and λ = 2).

Figure 2 . 3 -

 23 (A) suggests the RED foliation of a bicollared 1-handle H 1 i (γ), while (B) is a section through it. This section corresponds to the plane of a leaf of F (BLACK). And {some BLACK leaf of F(BLACK) | H 2 j (γ)} ∩ {our H 1 i (γ)}, may happily correspond to the shading in (B). The BLACK walls in (C) are part of X 2 .

Figure 2

 2 Figure 2.3.

Figure 2

 2 Figure 2.4-(B)

Figure 2 . 5 . 2 ∞

 252 Figure 2.5. We see here one half of the security wall W ∞ (BLACK) H 0 (A) ⊂ X 2 | H 0 , which continues to the right, beyond [CD]. The dark shading stands for the double difficult N 2 ∞ -region, while the light shading stands for the easy N 2∞ -region. As the figure shows, the easy region N 2 ∞ is bordered by two curves, our universal curve x = Ψ(y) and it twin curve too, the ∂H 1 i0 (MAX), which is physical (i.e. comes from X 2 ). The [α, β] is a cut arc.

Figure 2

 2 Figure 2.6.

Figure 2 .

 2 Figure 2.6.1-(A)

•

  r(∞)'s are, for right now until further notice, just empty spots insideX 2 | H 0 -{the W ∞ (BLACK) H 0 's}, contrary to the R(∞)'s ;we will have to deal with them, later on, see ( * 2 ) below. The various W ∞ (BLACK) H 0 (2) 's live in different planes.

Figure 2 .

 2 Figure 2.6.1-(B) Additional explanations to figure 2.6.1. The R(∞) n,n+1 from (A), continues to the right like the (B) suggests. The W ∞ (BLACK) H 0 (n) is glued to X 2 | H 0 along W n (BLUE) (on which it rests) AND to

Figure 2 . 6 . 2 .

 262 Figure 2.6.2. A section through H 1 . Here there are no longer unwanted tori of the type which could have needed the shaded r(∞)'s in figure 2.6.1. The X 2 | H 1 does not need r(∞)'s what was an S 1 × S 1 in the case of H 0 is now a harmless S 2 . Of course, there is still the potential danger of a ∂(S 1 × I × I) = S 1 × S 1 created by W m (RED) + W m+1 (RED). This danger can be avoided by an R(∞) m,m+1 ⊂ {an adhoc introduced W ∞ (BLACK) H 1 } .

  j ), thereby collapsing the train-track x-coordinate line into a usual line, then the [p ∞∞ (S), p] ⊂ {W (BLACK) in the figure 2.4-(A)} would be defined by a formula like the (2.21.2), let us say by (2.22.2) FAKE LIM M 2

Figure 2 . 8 .

 28 Figure 2.8.

W

  m (BLACK) * . The little red lines p ∞∞ (S) × [-ε, ε] are points where Σ(∞) is NOT locally finite. Lemma 2.5. -1) For the 2 d equivariant REPRESENTATION X 2 f

( 2 .F

 2 27.1) The F is a generic immersion and each individual F | ∂H 2 k is a smooth embedding (S 1 × I) i 27.2) The M 2 (F ) consists exactly of the squares S ⊂ ∂ H 0 i ∪ H 1 j ⊂ M (Γ) and each individual (S 1 × I) i sees at most ONE SINGLE such S. The cores pf the 2-handles H 2 k are exactly the W k (BLACK, complete), from figure 2.4. Each ∂W k (BLACK) consists of a circular succession of arcs ∂W k (BLACK) ∩ ∂H 0 i and ∂W k (BLACK) ∩ ∂H 1 j . This gives to the ∂W k (BLACK) a canonical structure of 2p-gon, with p = p(k).

Figure 2 . 9 .

 29 Figure 2.9. A typical piece of ∂W k (BLACK) ∩ ∂ H 0 i ∪ H 1 j . To be compared to figure 2.4-(A).

  At this point, notice that, except for the change of colour RED ⇒ BLACK, figure 2.8-(B) looks, deceptively, quite like 2.4-(B).

( 3 . 1 )

 31 But the two figures are quite different, although in both we see the standard lim n=∞ p n∞ = p ∞∞ . At the level of figure 2.4, f X 2 | p ∞∞ is naturally embeddable in R 3 , while in figure 2.8.(B), the p n∞ , p ∞n are undrawable singularities, like in (1.

2 ∞

 2 ; this will be introduced formally, later on. In a figure like 2.4-(B), along a line y = y n there are only finitely many points where, at the source, W (BLUE) and W (RED) are glued together. (3.8.ii) The immortal case, when V = W (BLACK) p ∞∞ and W i = {transversal W * (BLACK)}, see here figure 2.8. This model is imposed by the existence of the S ⊂ Sing M (Γ) ⊂ M (Γ).

( 3 . 8 .

 38 iii) The RED case, which has no p ∞∞

  y, z, u = 0). In (A) we are at some fixed value y ∈ [y i -ε i , y + ε i ], and there is also another fin F -, added at z = -ε. Figure (B) presents a projection of F ± on (y, z). Both the boundary vertical or horizontal ones, and the rims, are living at infinity. The F ± are, topologically, 2 d half-balls, with rims ⊂ ∂F ± ⊂ 1 2 D 2

  .1 should suggest what we are talking about.

Figure 3

 3 Figure 3.1.

  [START_REF] Otera | Asymptotic topology of groups, connectivity at infinity and geometric simple connectivity[END_REF].1)}, the fins 1 2 D 2 (F ± ). Except for their diameters, the fins are disjoined from the plane (z, y) in question.

( 3 . 10 . 1 )

 3101 For each W (n), when n is fixed, there should be a finite central zone where for all the indices m ∈ Z we should have{At (n, m), W (n) is subdued, hence W * (m) is overflowing} ,leaving us with two infinite ends of W (n), each of these connected, where W (n) overflows.

( 3 .

 3 10.2) The W + (p ∞∞ (S)) induces a disjoined partition of {the set of all the sites (n, m) ≈ S(n, m)}.

Figure 3

 3 Figure 3.2.

  and one DELETES ∂Σ(∞) = LIM M 2 (f ) × {±ε} so as to stay locally finite. This deletion can, alternatively, be thought of as sending to infinity; see (B). This SENDING TO INFINITY of LIM M 2 (f ) × {±ε}, in the context of our present figure means reading it metrically like in B. The (A) and (B) are topologically the same and they only differ metrically.

Figure 3 .

 3 Figure 3.3-(D)A section through (A) at z = 0, in the case p ∞∞ (proper), before HEALING. But this figure is valid for p ∞∞ (S) too. When we multiply with [-ε ≤ z ≤ ε], then at infinity, we get the completep ∞∞ × [-ε ≤ z ≤ ε], deleted in Θ 3 (f X 2 )for all p ∞∞ 's.

Figure 3 . 4 .

 34 Figure 3.4. (A) We are here in S 2 ∞ , at x = x ∞ , with the x > 0 direction looking towards the observer. The red shaded areas (////) are the immortal singularities S. The coordinates are like in the

( 3 .

 3 21.1) Σ(∞) * = • Σ(∞) * + ∂Σ(∞) * + σ(∞) ,

( 3 . 1 2

 31 22) Σ(∞) ∧ * ≡ Σ(∞) * ∪ (fins) ⊂ Θ 3 (f X 2 ) , int Σ(∞) ∧ * = int Σ(∞) * ∪ (fins-rims), coming with ∂Σ(∞) ∧ * = ∂Σ(∞) * ∪ fins F rim F , and with int • Σ(∞) * ∪ fins ≡ • Σ(∞) * ∪ (fins-rims) = Σ(∞) ∧ * -∂Σ(∞) ∧ * ⊂ PROPER inclusion Θ 3 (f X 2 ) .End of(3.22) This version with fins comes with an extension of (3.21.1) intoΣ(∞) ∧ * = int( • Σ(∞) * ∪ fins) + ∂Σ(∞) ∧ * + σ(∞) .We introduce now the bad rectangles (R 0 , ∂R 0 ), each coming with a commutative diagram of embeddings, defining an individual bad rectangle R0 . [Each individual R 0 is a rectangle continued in Σ(∞) ∧ * , with two long sides in f LIM M 2 (f ) × {±ε} ∪ fins Frims of F and two short sides which can be p ∞∞ × [-ε, ε] or rims of F (for a possibly ad hoc added F ), for this purpose, see here the figure3.4.1.] (3.23) (R 0 , ∂R 0 ) / / (∞) * ∪ F D 2 (F ) ≡ (∞) ∧ * , ∂ (∞) * ∪ fins = Σ(∞) ∧ * -∂Σ(∞) ∧ * .

2 D 2 3

 223 {bad rectangles R 0 } , an equality which should be understood "with multiplicities", by which we mean that there is a natural surjection, restricting to an injection (3.23), for each individual R 0(3.24) R0 R 0 --Σ(∞) * ∪ F 1 (F ) = Σ(∞) ∧ * ,and then in the same spirit, a second equality with multiplicities() * ∪ fins = R0 int R 0 ⊂ Σ(∞) ∧ * .

Figure 3 .

 3 4.1 illustrated an R 0 in the context of figure 2.4-(B, C) and 3.1. Then, figure 3.4.2 illustrated an R 0 in the context of the figures 2.8 + 6.2.

Figure 3 .

 3 Figure 3.4.1.

Figure 3 . 4 . 2 .

 342 Figure 3.4.2. Explanations to figures 3.4.2. This is a thickened detail of figure 2.8-(C), so the plane of the figure is S 2∞ . We see Σ(∞) * in the neighbourhood of p ∞∞ (S) × [-ε, ε] and there is no more than drawn. We have lim S n = p ∞∞ (S) × [-ε, ε]. But S n is a singularity of M (Γ) and NOT of Σ(∞) * . Shaded in green there is a rectangle R 0 , having on its ∂R 0 , the following items: p ∞∞ (S) × [-ε, ε], one of the rim of fin, added ad hoc, in green (= )), and infinitely many normal rims of fins (= ∩ or ∪). The fins added ad hoc are purely 2-dimensional. Also instead of fins one could use p ∞∞ (S) × (-ε, ε)'s.

( 3 .

 3 24.4) Θ 3 (f X 2 -H) ∪ ∂Σ(∞) ∧ * ⊂ ∂S u ( M (Γ) -H) ∧ I .]And, please, do not mix up the hat from the addition of fins, like in (3.21) ⇒ (3.22) and the same hat "∧", from the hat-construction. THEY HAVE NOTHING TO DO WITH EACH OTHER, sorry for the clumsy notation! We are ready now for explaining the structure of the REAL LIFE S ( )

p, ε 4 ×I 2 B

 42 ∞∞ [-ε, ε] which, as it should, is WITHOUT ANY COM-PENSATING DISCS, and which hence is smooth}, then the {Σ 2-handles} ≡ p∞∞(ALL) D 2 (H(p ∞∞ )) × -ε 4 , ε 4 ×I. With this, the diagram with which (3.19) ends happily breaks into pieces corresponding toΘ 3 (f X 2 ) smooth ⊂ Θ 4 (Θ 3 (f X 2 ) smooth , R)and to the 2-handles.From here, one gets the next decomposition into smooth, C ∞ pieces(3.25) (S u M (Γ)) I ≡ (Θ 4 (Θ 3 (f X 2 ) smooth , R) × B n ) a smooth (N + 4)-manifold + p∞∞(ALL) 2-handles + (D 2 (H(p ∞∞ )) × -ε 4 occurring already in Θ 4 (Θ 3 (f X 2 ) , R) × 1 N = (S u M (Γ) I ) smooth + {2-handles} .

Θ 3

 3 (f X 2 ) smooth , here, in Θ 3 , the rims of fins, just like the p∞∞ (ALL) p ∞∞ × (-ε, ε), live at infinity. This comes with anatural inclusion Θ 3 (f X 2 ) smooth ⊂ ∂(S u M (Γ) I ) smooth ⊂ (S u M (Γ) I ) smooth .Then we produce an infinite dilatation(3.27) (S u M (Γ) I ) smooth S u (1) ≡ (S u M (Γ) I ) smooth ∪ int( • Σ * (∞) ∪ fins) R0 (int R 0 ) × [0, ∞) .For what will follow now, let us stress the existence of the following composite embedding(3.27.1) int • Σ(∞) * ∪ fins ⊂ Θ 3 (f X 2 ) smooth ⊂ ∂(S u M (Γ) I ) smoothwhich is easily gettable using the high dimension of the factor B N which enters the definition of (S u ) I and from the fact that, in Θ 3 (f X 2 ) , the int( • (∞) * ∪ fins) lives far from the immortal singularities, i.e., in a regionU ⊂ Θ 3 (f X 2 ) where Θ 4 (Θ 3 (f X 2 ) , R) | U = U × I .Explanation: It can be easily arranged so that, in a figure like 2.8-(C) or 3.4-(A, B), the immortal singularities should NOT live at x = x ∞ , but at some x = x ∞ + η, η > 0 small. Our(3.27) easily extends to the dilatation below:(3.28) (S u M (Γ)) I (S u (1) ∪ (2-handles)) ⊃ PROPER inclusion int(Σ(∞) * ∪ fins) .Step II. In formulae (3.27), (3.28), theR0 int R 0 × [0, ∞)grows out of the PROPERLY and smoothly embedded R0 int R 0 × {0} = int(Σ(∞) * ∪ fins) ⊂ ∂S u M (Γ) smooth ⊂ S u M (Γ) I .

R0 int R 0 ×

 0 [0, ∞) but a whole (N + 4)-dimensional smooth regular neighbourhood of it.This produces an object S u (2), larger than S u (1), coming again with a decomposition into smooth pieces(3.29) S u (2) ≡ (S u M (Γ) I ) smooth ∪ N 4+N R0 int R 0 × [0, ∞)In this S u (2) smooth , the N 4+N stands for (N + 4)-dimensional regular neighbourhood + (2-handles).

  and from here on, in(3.29) the (S u M (Γ) I ) smooth and the N 4+N R0 int R 0 × [0, ∞) are glued together along the common N 3+N :∂N 4+n R0 int R 0 × [0, ∞) ⊃ N 3+N R0 int R 0 × {0} ⊂ ∂(S u M (Γ) I ) smooth .

2 )

 2 smooth × {0} ⊂ ∂(S u (2) smooth ) × [0, 1]) (with R0 int R 0 × [0, ∞) living now in the boundary).With the notations from (3.29) we get now the definition of the REAL LIFE S u M (Γ) which, by now, is an (N + 5)-dimensional objetS u M (Γ) ≡ (S u (2) smooth × [0, 1]) + {2-handles} .

  ( ) u or b I are only preliminary versions of the REAL LIFE S ( ) u or b .

  n=∞ p n∞ = p ∞∞ (S). [We forget here the C(p(∞∞)) × [-ε 4 , ε 4 ] which are also immortal singularities.] (3.45.2) With the measure (3.45.1), locally, in the neighbourhood of int • (∞) * , now the Θ 3 (f X 2 ) is a non-singular 3-manifold, with int • (∞) * being a PROPERLY embedded "hypersurface" (locally R 2 or {figure Y } × R), which locally SPLITS Θ 3 (f X 2 ) in two (or maybe three). (3.45.

( 3 .

 3 [START_REF] Papakyriakopoulos | On Dehn's lemma and the asphericity of knots[END_REF]) Let U 3 be a small connected but non-compact smooth piece of Θ 3 (f X 2 ) which cuts through int • (∞) * (∪ fins) , and which sees a piece of ∂Σ(∞) ∧ * (living at infinity, of course). Quite normally, we are supposed to find Θ 4 | U 3 =x ∈ U 3

  2 → X 2 s.t. for ∀ g ∈ Γ, x ∈ X 2 we should have f (gx) = gf (x).

		Also, the (1.10) will
	again have bounded zipping length, like in Theorem 1.7, which held in dimension n = 2, too.
	But let us dwell now a bit on 2 d REPRESENTATIONS, in general, and on their double points. And
	remember here our formlism from (1.3), M 2 (f )	Z/2Z -----→ M 2 (f ). So we look now at (1.10).
	Definition 1.7.1. -We will say that M 2	

  For any 2 d REPRESENTATION X 2 f

	As a side-remark, the map f in (1.10) has as singularities only isolated points. It cannot have (by
	definition) folds, like the little drawing below	
	2 simplex σ 2 1	
	FOLDING MAP	• ← folding line.
	2 simplex σ 2 2	
	But for such a FOLDING MAP the double point set is CLOSED, according to our definition (1.7.1).
	For completeness' sake we give the following Lemma 1.7.2 too. It is NOT part of the proof of the QSF
	theorem.	
	Lemma 1.7.2. -	
		and clearly
	x ∞ / ∈ Sing(f ) either, so M 2 (f ) is NOT CLOSED. This is the typical situation when (1.11) is being violated.
	It is like in I above.	

  1) Each individual X 2 | H λ i is GSC.

	(2.11.2) Let the H λ+1 j1 , H λ+1 j2 , . . . be adjacent to H λ i inside Y (∞), where H λ+1 j	and H λ i are glued together
	exactly along ∂H λ+1 j	∩ H λ i . We denote H λ i ∪	j	H λ+1 j	≡ H λ i ∪ H λ+1 j1	∪ H λ+1 j2	∪ . . . and, with this, we will ask
	that						

  2 , generically denoted p ∞∞ (S) (and see here the figure 2.4 too), where (2.22) accumulates. Typically the arcs [ω, y], [ω -, y -] in figure 2.8 are such points p ∞∞

4-(A)

We see here a W (BLACK complete) which, at level X 2 comes with no Holes. The figure is a section through a H 2 i (γ).

Very importantly. What we see fully displayed in (B) (and also suggested in (A), at the corners), is generated by the geometry of the bicollared handles H λ (γ), by the way H λ+1 j (γ 1 ) is attached to H λ i (γ 2 ) (and all this is well described in [START_REF] Poénaru | Equivariant, locally finite inverse representations with uniformly bounded zipping length for arbitrary finitely presented groups[END_REF]) and by the impact of these things in (2.1). The reader should not find it hard to see this. And, of course, things may be in real life, slightly less regular than in our figures here. But this does not disturb, in any way, our main line of argument, in this paper. knowledge is NOT necessary for reading the TRILOGY. So, the reader should not worry about it. That does not mean it cannot be helpful too. But I made quite some efforts to render the TRILOGY self-contained.]

We are here in S 2 ∞ . We see S 2 ∞ ∩ f X 2 . This is a piece of a BLUE limit wall S 2 ∞ cut by walls W (RED), W (BLACK) and W ∞ (BLACK) H ε , and also met transversally by (S 1 × I) ∞ 's and Hex ∞ (BLACK)'s. This figure is at the target. The RED and BLACK limit walls contribute only with dotted lines, where they rest on S 2 ∞ . The plain lines are traces of transversal contacts (W ∞ or W (COLOUR)) ∩ S 2 ∞ . When the lines in question come from W ∞ 's then their limiting position is lim LIM. None of the various dotted lines have counterparts in X 2 . The points marked "∞" are in the free part of ∂W ∞ (BLACK) H ε and/or live at infinity. The packages of W ∞ (BLACK), W (BLACK) which come with arrows continue to some other S 1 ∞ inside our S 2 ∞ .

At the infinity of X 2 we have the following basic graph (2. [START_REF] Poénaru | Infinite processes and the 3-dimensional Poincaré Conjecture, II: The Honeycomb representation theorem[END_REF])

where

So, here is now, finally, the correct Θ 3 (f X 2 ):

(3.13) Θ 3 (f X 2 ) ≡ Θ 3 (f X 2 )(II) (from (3.12)) -p∞∞(S)

p ∞∞ (S) × [-ε, ε]

with the last batch of 2-handles added along the C(p ∞∞ ) × -ε 4 , ε 4 . Notice that the p ∞∞ (S) × {± ε} was already deleted at the level of Θ 3 (f X 2 ) (I and II), now we delete the rest of p ∞∞ (S) × [-ε, ε] too. The notation "H(p ∞∞ (S))", going with the synonimous "-p ∞∞ (S) × (-ε, ε)" means that the deleted arc in question is a Hole, on par with the other Holes to be deleted in the Section IV. But, contrary to the normal Holes (5.6), which are open sets, the H(p ∞∞ (S)) × (-ε, ε) (as the larger {H(p ∞∞ (all)) × (-ε, ε)}) is closed.

When fins are being forgotten, then the Θ 3 (f X 2 ) from (3.13) contains the Σ(∞) from (3.14.1), which is a corrected version of the {Σ(∞) from (3.3)}. Afterwards, fins are also introduced, included then in Σ(∞) (the one from (3.14.1)) and then this Σ(∞) becomes the Σ(∞) ∧ , like in (3.14.2) below.

A this point I should signalize that the reason for having, below, two sets of formulae (3.14.1) (Σ(∞),

• Σ(∞), ∂Σ(∞)) and then also (3.21) (Σ(∞) * , int Σ(∞) * , ∂Σ(∞) * ), similar but yet quite different, is that (3.14.1) is well adapted for Θ 3 (f X 2 ) while (3.21) is well adapted for Θ 3 (f X 2 ) (3.14). And, while Θ 3 (f X 2 ) is an important ingredient for being able to state the GSC theorem, the Θ 3 (f X 2 ) which is the really important objet, is actually the useful, operative notion, indispensable for the proof of the GSC theorem. Of course also, it is from S u M (Γ) ∈ GSC (which is an easy consequence of the basic S u M (Γ) ∈ GSC), that in TRILOGY III we will be able to deduce that Γ ∈ QSF.

Then, both for (3.14.1) and for (3.21) there are also hatted versions, when fins are being thrown in too.

The (3.13) is the finally correct Θ 3 (f X 2 ) but, for the proof of the basic GSC Theorem 1.4 an even more singular version of it will be necessary, namely the

End of (3. In (B), (C) we see the HEALING of p ∞∞ (proper) × (-ε, ε). 

. When our present p ∞∞ is actually of type p ∞∞ (S), then the immortal singularities certainly touch Θ 3 , cutting through A(p ∞∞ (S)), but they stay away from the 2-handle D 2 (p ∞∞ (S)) × -ε 4 , ε 4 . When our (A) represents a p ∞∞ (S), then the following things should be understood:

•) We see now a section through a W (BLACK), at the level of a singularity S, and the plane of the figure is NOT (y, z), but (x = x ∞ ). The "z" from the drawing is the coordinate of the thickness (-ε, ε) of W (BLACK) and it could actually be y or z (complementary to our x = x ∞ ).

••) In the case p ∞∞ (S) infinitely many branches of W (BLACK) * 's, cut transversally our W (BLACK), crossing the A(p ∞∞ (S)). Infinitely many immortal singularities accumulate on p ∞∞ (S). But we did not try to draw these things too.

Anyway for p ∞∞ (ALL) we find the D 2 (p ∞∞ ) × -ε 4 , ε 4 . Figures (B), (C) refer exclusively to p ∞∞ (proper) and in (B), (C) we are certainly at x = x ∞ . We have suggested there the HEALING process, explained below. The (D) suggests that, except for their attaching zone, the compensating handles live in a different dimension from the rest.

So, the (B) and (C) concern exclusively the p ∞∞ (proper), and we have suggested a process consisting of (infinite, smooth 3 d collapses) + (infinite, smooth 3 d dilatations),

which only leaves the p ∞∞ (S) × [-ε, ε] deleted and compensated by its added 2-handle. The formula above will reappear, more formally, as (3.33), later on.

(B) We see here a piece of the W (BLACK) from (A).

Legend: ----= immortal singularity S of Θ 3 (f X 2 ). = here, (for x ≤ x ∞ ), the W and W * , both thickened, are glued together. For x ≥ x ∞ the Θ 3 (f X 2 ) is train-track. [Actually, later on, we may wish to move the singularities p n∞ (S) off the x = x ∞ , to let Σ(∞) be non-singular, and start the train-track structure at x ∞ + η, very small η > 0.] . Here, at x < x ∞ there is NO difficulty. In all this discussion, one should think of Θ 3 (f X 2 ) as being the primary object, while

) with the hole H(p ∞∞ (proper)) healed smoothly}, is the secondary object.

Before going on, we will introduce some useful notations. Let us look at the f LIM M 2 (f ) a typical piece of which is presented in the figure 2.4-(B, C). This f LIM M 2 (f ) is a graph with trivalent non-smooth points, p ∞∞ 's, and also with the p n∞ 's. See here the figure 2.4-(B) for the p ∞∞ 's and 2.4-(C) for the p n∞ 's.

The Σ(∞) (3.3) is a 2 d thickening of it. Here in the neighbourhood of p ∞∞ we find {figure Y } × [-ε, ε], while in the neighbourhood of p n∞ (figure 2.4-(C)), we find {regular neighbourhood of X ⊂ R 2 }. We will denote this by "f LIM M 2 (f ) × [-ε, ε]" and, correspondingly its boundary ∂Σ(∞) by f LIM M 2 (f ) × {±ε}. Keep in mind that this is just a NOTATION. Now, together with (3.13) comes the following definition, the (3.14.1) below, superseding the (3.3) and to be itself superseded later by (3.21), which accompanies (3.14). The point here is that, while (3.14.1) is appropriate for Θ 3 (f X 2 ), the more realistic (3.21) is appropriate for Θ 3 (f X 2 ) , as already said.

(3.14.1) Σ(∞) (for the time being, and until further notice, the good one)

and coming with

The A(p ∞∞ ) which is rotationally symmetric (the axis of symmetry being the thickly dotted

Desingularizations R as in Definition 1.18 (and also extensively used in the [START_REF] Gabai | Valentin Poénaru's Program for the Poincaré Conjecture[END_REF], [START_REF] Poénaru | The collapsible pseudo-spine representation theorem[END_REF], [START_REF] Poénaru | Infinite processes and the 3-dimensional Poincaré Conjecture, II: The Honeycomb representation theorem[END_REF]), can be defined for all of the immortal S = p n∞ or p ∞n , AND could also be used for the C(p ∞∞ ) × -ε 4 , ε 4 occurring in the formula (3.18.1). But, for technical reasons, actually for the proof of the compactness lemma, in sections V, VII, we will leave the C(p ∞∞ (ALL)) × -ε 4 , ε 4 always singular, even after thickening, and we will refrain from using smooth thickening for something like them. With this, we may introduce the 4 d cell complexes Θ 4 (Θ 3 (f X 2 ) ( ) , R), like in the definition below. Definition (3.19) -We define, to begin with, the cell-complex

p ∞∞ × (-ε, ε)

The RHS of (3.13),

without the corresponding handles.

, R) smooth .

The

p ∞∞ ×(-ε, ε) is here a 3-manifold with undrawable singularities, namely the following S {the infinitely many undrawable singularities S created by f on the site S, see figure 2.8-(C)}. These are all immortal. Notice that, since the p ∞∞ (S)'s are deleted, our 3 d object is locally finite. Here in ( * ) one uses the thickening functor Θ 4 (• • • , R) which was defined in (1.18) and also extensively used already in [START_REF] Gabai | Valentin Poénaru's Program for the Poincaré Conjecture[END_REF], [START_REF] Poénaru | The collapsible pseudo-spine representation theorem[END_REF], [START_REF] Morgan | Ricci Flow and the Poincaré Conjecture[END_REF]. This has good localization and glueing properties and, for any open set U ⊂ Θ 3 -{singularities}, Θ 4 (U, R) = U × I. Without any loss of generality, for any p ∞∞ we have (see here also figures 3. 3 and3

∩ {the undrawable singularities S = p n∞ , p ∞n of Θ 3 (f X 2 ), generated by the figure 2.8} = ∅, a fact which gives us an embedding, which should be obvious

and we clearly have also another embedding

Finally, one can put together ( * ) and ( * * ) and go to the next object, which is now singular both along the S (S ⊂ S) from ( * ) and the

a formula which, instead of being a simple-minded 4-dimensional thickening of (3.13), is rather a 4 

[ω, y] occur as follows. In the context of figure 2.8 consider the intersections

with j fixed and with n → ±∞.

There are infinitly many of them, accumulating on [ω, y] and [ω -, y -]. Denote them loosely by

and which runs inside W (BLACK) H 2 j , to avoid them. See here figure 3.4-(B) too. In a nutshell, concerning (3.19), one can glue now the two terms in the RHS of the formula ( * * * ) for Θ 4 (Θ 3 (f X 2 ), R) along the two embeddings just listed. This completes the definition of Θ 4 (Θ 3 (f X 2 ), R) and there is a completely similar definition for Θ 4 (Θ 3 (f X 2 ) , R); this is gotten by proceeding exactly like for Θ 4 

. And, since the really important object is Θ 4 (Θ 3 (f X 2 ) , R), we will give its definition in full here

] × I), glued together along the p∞∞(ALL)

Very importantly, we have a natural embedding and a collapse, both canonical, like in the diagram below

Very soon we will introduce the real life object S ( ) u M (Γ) which will be (N + 5)-dimensional. We will have to start with a provisional (N + 4)-dimensional version (S

but the precise definition is a bit more subtle, see (3.25) below.

Anyway, once we multiply with B N , N ≥ 1, the R-dependence of Θ 4 (• • • , R) is washed away. Things become then R-independent, hence canonical, the group Γ can now act freely, and so, after we multiply with our B N ≥1 , we are again equivariant.

But then, keep in mind that the real object with which our lengthy proofs will have to deal, is the REAL LIFE (n + 5)-dimensional S u . The (N + 5)-dimensional S u occurs only in the very end, when we will get to the end of proof of the GSC theorem, which soon, in this section, will be restated, now in its full glory. And then, in the last paper, TRILOGY III, we will deduce from the GSC theorem that Γ ∈ QSF, i.e. we will finally prove the QSF Theorem.

Before going on, we will discuss our policy of sending things to infinity. So far, we have encountered two procedures for sending things to infinity, namely (3.20-C) When it comes to p ∞∞ (proper), then the mere deletion of p ∞∞ (proper) × {±ε}, a very mild form of (3.20-A), would be enough to insure local finiteness. But then, in order to prevent the messy complication which the presence of the surviving p ∞∞ (proper) × (-ε, ε) would bring, we proceeded fully like for p ∞∞ (S), in the case of p ∞∞ (proper) too (when we deal with Θ 3 (f X 2 ) ).

We will meet now a fourth procedure which has nothing to do with our concern of local finiteness, but with deeper reasons, having to do with the proof of the GSC theorem, to become clear later on, in the Section VII. So, now we will be presented with a codimensional one "dangerous piece" Σ ⊂ Z, and here Z may be Θ 3 (f X 2 ) or S 

and here if x ∈ Σ lives already at infinity, then x×[0, ∞) is just crushed into x. Notice that this procedure could NOT be applied to LIM M 2 (f ) × {±ε}, in lieu of (3.20-A), or at least it would be ackward to do so.

Before actually introducing formally S 

which is the version of the (Σ(∞), int Σ(∞), ∂Σ(∞)) from (3.14.1) which we will need for the real life S u M (Γ) (and for Θ 3 (f X 2 ) ). So, here it is:

and then

, which contains p∞∞(proper)

The various bad rectangles R 0 belong to the types below:

, ε] and then, similarly to this, we also have

In these formulae where, for typographical commodity we omitted the fins, the [-ε, ε] is the thickness of (∞), i.e. the thickness of the whole line [. . .] inside the corresponding limit wall. Of course, also, (3.24.2) needs to be amplified by the contribution from the fins as said. Each individual rectangle R 0 has two long sides, corresponding to the ± ε above and living in ∂ (∞) and then also two short sides which may be rims of fins, or p ∞∞ × [-ε, ε]'s, living anyway at infinity from the viewpoint of Θ 3 (f X 2 ) I .

When the fins are being pushed inside * at the infinity of Θ 3 (f X 2 ) and get (Θ

Then, for a sufficiently large L ∈ Z + , we also get (Θ 3 (f X 2 ) ) ∧ ⊂ M (Γ)×B L (the B L is necessary because of the fins and singularities), and this is a closed subset. Actually one can arrange so that (Θ

We will come back big to this hat-construction in the last Section VII of the present paper. But then we will work downstairs in M (Γ) (and/or M (Γ)×B P ) and the HAT CONSTRUCTION will then be COMPACT-IFICATION, an essential ingredient for our GSC theorem and hence for proving that all finitely presented groups Γ are QSF.

2) At this stage, it will be useful for us to break our definition of Θ 3 (f X 2 ) and of other related objects, as follows.

We have, to begin with, as we already know

and with this

.

3) We will be very interested in the following map

and of the injectivity of some maps derived from it. Clearly the bad rectangles (R 0 , ∂R 0 ) with ∂R 0 ⊂ ∂Σ(∞) ∧ * provides us already with a very small piece of such an injectivity. But that is far from what we need, and in Section VII we will come back big to this issue.

(3.30)

+ + 2-handles (of dimension N + 5, and here the factor is (

We found it convenient here to proceed the way we did, with the adjunction of

But there is an ALTERNATIVE road where, from the very beginning we proceed with

Later on, we may rather use this one. With the approach (3.30.0) all the man-made infinity is there, from the very beginning, in 3 d . Important Remark. We may also implement the hat construction, at the present level, add ∂Σ(∞) ∧ * at the infinity of (S u M (Γ) I ) smooth (∪ Σ 2-handles) and get (S u M (Γ) I ) ∧ smooth ⊃ Σ(∞) ∧ * . Then (3.30) should get changed then into (3.30.1)

End of Remark.

But let us stress that we have just achieved (3.30). Inside the ∂(S u M (Γ)) smooth we find now the following object (and achieving this has been the aim of our Step III)

And here, this R0 lives far away (in ∂(S u M (Γ)) smooth ) from the attaching zones of those 2-handles in (3.30). We move next to

The construction of S u M (Γ). We will go now from Θ 3 (f X 2 ) to the Θ 3 (f X 2 ), where the p(∞∞)(proper)× (-ε, ε) have been added via the process of HEALING (i.e. NOT just brutally, but via a successive process of infinite collapse followed by infinite dilatation, a smooth process all in 3 d ) and we introduce now

p ∞∞ (S) × (-ε, ε), as it should be without the compensatory discs D 2 (H(p ∞∞ (S))) and, then with them back at 4 d level:

×I .

End of (3.31) With this, like in (3.25) we introduce now

We notice next the following two basic inclusions, the first of which is our old friend, already used (like for instance in (3.27.1))

and here

[When we move from ( * 1 ) to ( * 2 ), then we may also change the object

The reason for the change from ( * 1 ) to ( * 2 ) is, of course, that in going from Θ 3 (f X 2 ) to Θ 3 (f X 2 ), the contribution of the p ∞∞ (proper) gets restored at level Θ 3 .

The construction of S u M (Γ) proceeds now via the same steps I, II, III as for S u M (Γ) but proceeding from ( * 2 ) rather than from ( * 1 ). With this, the final result is the analogue of formula (3.30), namely the following definition (3.32)

And, inside ∂(S u M (Γ)) smooth we find now

End of (3.32)

The change ( * 1 ) ⇒ ( * 2 ), incorporated into the definition of S u M (Γ) will be necessary in TRILOGY III. Most arguments (certainly the basic ones) in the present TRILOGY II deal with S u M (Γ) where all the p ∞∞ contribution is deleted, and as I see things now, I believe the S u M (Γ) ∈ GSC will play a central role in the still conjectural statement that all Γ's are easy (in the technical sense that they can avoid the Whitehead nightmare). Also, the next Lemma 3.2 will make use of ( * 2 ) to ( * 4 ). Lemma 3.2. -There are two related transformations, the first occurring already in the legend of figure 3.3, namely

to be explicitly described below.

These transformations are localized in the neighbourhoods of the various p ∞∞ (proper) × (-ε, ε) visible in figure 3.3, respectively of what these bocome at the (N + 5)-dimensional level of S u . No other p ∞∞ , other than p ∞∞ (proper), will be talked about now. We are now far from the immortal {S n } ⊂ M (Γ) and the

where the transformations (3.33), (3.34) proceed are far from the immortal singularities of Θ 3 (f X 2 ) ( ) and so, in the region discussed now, the Proof. We will only concentrate on (3.34).

The diagram below defines a PROPER embedding j into S u M (Γ) (3.36) p∞∞(proper)

Here the × [0, 1] comes from the transformation (S u ) I ⇒ S u . Also Im j is disjoined from the (N + 5)dimensional object {(the

In the LHS of the formula (3.36) the two terms are glued together along the p∞∞(proper)

Here A(p ∞∞ ) is like in the figure 3 

which is now attached smoothly along

and see here also the figures 3.3-(A) and (B).

We proceed next with a last collapse, at the level of the 2-handle:

Here, the contribution of A(p ∞∞ ) -∂A(p ∞∞ ) to (S u M (Γ)) smooth has already been killed by the previous collapse in (3.35), as described above.

So, the collapses are by now finished and next will come the dilatations.

This second dilatation has several successive levels, each of them a dilatation step.

•) At the 3 d level of Θ 3 we proceed, like in figure 3.3-(C) and with a bit more details in figure 3.5

This step, extends the p ∞∞ (proper)

, being anyway at infinity will be melted into [± ε 2 , ±ε], inside the following object (3.40.2) p ∞∞ (proper)× -ε 2 , ε 2 ≡ {the new p ∞∞ (proper) × (-ε, ε) as restored by HEALING (or SUPER-HEALING)} .

••)

We multiply the whole RHS of (3.40.1) with the factor ×I × B N , restoring thus the contribution of

the smooth N + 4-dimensional manifold which we have just produced. This comes with

.

But now, once we have the K N +4 we can complete the step

there when it was still missing, namley on the contribution of

[Actually, our first dilatation re-establishes completely the contribution of the 2-handle D 2 (H(p ∞∞ )) to S u M (Γ).]

We end up with a diffeomorphic version of S u M (Γ), gotten now by SUPER-HEALING from S u M (Γ). End of Construction. COMMENTS. Both (N + 5)-dimensional objects which we have just defined S u and S u are singular, they are only cell-complexes and NOT smooth manifolds. The singular sets are p∞∞(S)

, for S u . The S u M (Γ) is the best thing we can offer as "high dimensional thickening of f X 2 ". Now, the Θ

But once we start taking a cartesian product with any B p≥1 , then the R-dependence gets washed away. This makes that both S ( ) u M (Γ)'s are canonical; they have as good functorial properties as Θ 3 in the context of the (3.2) above; we actually have the following.

Before going on, notice that for every p ∞∞ (proper) we have an obvious smooth "un-natural" embedding ρ, which can be vizualized in the figure 3 2) Even better, the S ( )

u 's have good localization and glueing properties, making that one can define directly, downstairs the S ( ) u M (Γ), proceeding like for S ( ) u M (Γ) upstairs; with this, we have that

Moreover, for the directly defined S In (3.17) we have introduced the Θ 3 (X 2 ), which has the 3 d version of the undrawable singularities Sing (f ) ⊂ X 2 , and of course, also, the C(p ∞∞ )'s, another kind of singularity. Definition 3.44. -We will introduce now, on the same lines as in (3.25) the Θ N +4 (X 2 ), which completes (3.17). With p ∞∞ = p ∞∞ (all), we will take Θ

, the two pieces being put together the obvious way. We can also get a Θ N +5 (X 2 ), of course.

Very important complement to Lemma 3.2. -The superhealing (3.34) is localized in a zone of S u M (Γ) limited by the following restriction: It only concerns walls W (∞) (BLACK) and, in 3 d terms it only concerns the piece of W (∞) (BLACK) which, in terms of (3.37) and figure 3

, i.e. staying far from z = ±ε. Anticipating on things to come, the point here is that our (3.34) will make also sense as a transformation (used in Section V), S b M (S) =⇒ S b M (s) .

End of complements.

The next statement is the main result of the present Part II of our TRILOGY, and also the main item in the proof of the QSF theorem.

The GSC Theorem (now in its full glory). -1) The (N + 5)-dimensional complex S u M (Γ) is GSC.

2) Then, via SUPER-HEALING it follows that S u M (Γ) is also GSC.

The proof of Lemma 3.2 will occupy all the rest of the very present paper, the Part II of the TRILOGY. But right now, in the rest of the very present section we will restrict ourselves to some comments and little complements. We end with some COMMENTS concerning the GSC theorem itself.

A) If the S u M (Γ) would be compact, which it is certainly NOT, then our GSC Theorem would already imply that Γ is QSF. As things stand, still another paper will be necessary for deducing that result from the GSC Theorem and its proof. With [START_REF] Poénaru | Equivariant, locally finite inverse representations with uniformly bounded zipping length for arbitrary finitely presented groups[END_REF] and the present one, that makes a total of three papers for proving Here Y (∞) is a union of 3 d bicollared handles and what we gain (and this never to be lost again), are local finiteness, Γ-equivariance and uniformly bounded zipping length. Then we go to an appropriately dense 2-skeleton of ( * 1 ) and change ( * 1 ) into the 2

All the richness of the structure of double points of maps from dimension two to dimension three is now at our disposal and, more specifically, a clear useful zipping strategy for ( * 2 ) is available too. This means a not everywhere well defined zipping flow on X 2 , the intersections of which with another similar, collapsing flow (on the same X 2 ), will play an important role. At this point, partly for reasons of circumventing the lack of local finiteness of f X 2 but mostly for opening the door to the high dimensions where our key for ∀ Γ ∈ QSF eventually lies, we go again 3-dimensional, but now in a very different context than in ( * 1 ), and we will construct the locally finite cell-complexes, closely approximating X 2 and f X 2 , ( * 3 ) Θ 3 (X 2 ) and Θ 3 (f X 2 ) ( ) .

These in turn will be thickened into dimension N + 4, going to

itself essentially the (N + 4) dimensional thickening of the intermediary, 4-dimensional Θ 4 (Θ 3 (f X 2 ) ( ) , R). All these things have just been done, above. The geometric realization of the zipping, developed in the Sections V, VI below, will make great use of the additional N dimensions, with respect to the three of ( * 3 ) or four of Θ 4 in ( * 4 ). This is how the N + 4 comes in. But then, to get the GSC Theorem from the analogous property of the S ( ) b which certainly are GSC, something which has to be proved first, we need the step

We actually need the smooth version of it, via regular neighbourhoods, and we ALSO need to bring it afterwards on the boundary. Hence the additional step "×[0, 1]" (and this [0, 1] has nothing to do with the "×I" of Θ 4 (. . . , R); when we are outside of the singularities, our Θ 4 is, remember, of the form {smooth U 3 ⊂ Θ 3 } × I (and this is NOT our "×[0, 1]" above). Then there is the final transformation {the provisional object S ( ) u M (Γ) I } =⇒ {the REAL-LIFE S ( ) u M (Γ)} .

And, for this last step, we climb from dimension N + 4 to N + 5. The space X 2 is GSC, and so is Θ N +4 (X 2 ). There is also a relatively large contribution This has nothing to do with the Holes H which will occur in (5.7), but when we will move from X 2 to X 2 -H, then the contributions to ∂(X 2 -H) coming from (3.44) and from (5.7) (i.e. ∂H(normal)), will be physically undistinguishable. By contrast to X 2 , the X 2 -H is highly non-simply connected.

We end this section with SOME REFINEMENTS CONCERNING THE Θ 4 (Θ 3 (f X 2 ) , R). We consider, to begin with

Here are some important facts concerning this object. And, for expository purposes, the present discussion, which will clarify certain geometrical facts, ignores the geometric realization of the zipping, in high dimensions.

Now, we want to throw in explicitly the FINS into our game, compatibly with (3.45) and with the (3.45.i)'s. Before fins come in, because of (3.45.1), the neighbourhood U 3 ⊃ S is non-singular. When fins are added, their basis will become immortal singularities. Outside the fins, and outside of ∂Σ(∞) ∧ * too, the procedure for Θ 4 (Θ 3 (f X 2 ) , R) is the completely normal one.