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A B S T R A C T

Duoskelion structures have been recently introduced by Barchiesi et al. (2021) as a proof-of-concept motif for
a new class of metamaterials. The properties of these periodic beam-like chiral structural elements have been
investigated, up to now, by means of a discrete model formulation whose predictions are obtained by numerical
methods. In this paper we select a specific scaling law for micro stiffnesses aimed at deriving, via asymptotic
homogenization, an internally-constrained Cosserat one-dimensional planar continuum model as the limit of
a duoskelion structure. We analyze qualitatively and quantitatively the family of equilibrium configurations
of the homogenized continuum when subjected to axial loading and compare the results of the analysis with
those obtained by means of the discrete model formulation.

. Introduction

It is common experience among physicists that the behavior of
echanical discrete systems, even those consisting of simple Hooke’s

prings connected with each other, can easily get very complex, even

customized hysteretic behavior (Vaiana et al., 2021a,b), and many
others. The experimental validation of these approaches has been fa-
cilitated by the recent developments in experimental technologies, par-
ticularly referring to techniques ranging from high-resolution electron
microscopy to atomic-force microscopy, which enable the examination
n the static regime. However, the elements of some discrete systems, of the material at very low scales, hence providing an unprecedented

hile displacing in a seemingly unordered manner, show remark-
ble collective behaviors. Therefore, for the analysis of such systems,
ithout even considering the computational burden that might be

ometimes unbearable for extremely high degrees of freedom, a dis-
rete model is not always the first choice. If the system is composed
f a large number of similar sub-systems which appear periodically,
patially continuous formulations are able to capture the behavior of
he system at large and can replace more refined discrete modeling.
o pass from a discrete (micro)model to a continuum (macro)model,
symptotic homogenization techniques (Barchiesi et al., 2020; Coutris
t al., 2020; dell’Isola et al., 2016), like those utilized in this paper, can
e employed.

Discrete models are very often employed to deal with so-called
rchitected materials (Turco et al., 2018, 2016; Turco, 2019; Ere-
eyev and Turco, 2020), in the effort of designing materials exceeding
echanical performances of conventional materials, namely exhibit-

ng extremely favorable performances like low weight-to-stiffness ra-
ios (Zheng et al., 2014), high element-failure tolerance (Cherkaev and
yvkin, 2019), high energy-absorption capability (Cao et al., 2020),

possibility to link the structure with the properties of materials (Fischer
et al., 2020; Vangelatos et al., 2019a,b,c). The establishment of such a
link between the (micro)structure and the observed (macro)behaviors is
indeed an active area of research and is at the core of investigations in
mechanical metamaterials science (Giorgio, 2016; Placidi et al., 2017;
De Angelo et al., 2019).

Historically, complex architected/micro-structured media have not
always attracted the interest of the community working in mechan-
ics, especially until the second half of the nineteen-fifties. However,
the significance of micro-scale mechanisms in influencing macro-scale
material behaviors has been nowadays widely recognized in the con-
text of mechanics (Abdoul-Anziz and Seppecher, 2018; Abdoul-Anziz
et al., 2019, 2021; Jakabčin and Seppecher, 2020; Yang et al., 2020,
2021, 2022) and is one of the reasons laying behind the extensive
studies on second gradient and micro-polar theories (dell’Isola et al.,
2012, 2017; Pietraszkiewicz and Eremeyev, 2009; Eugster et al., 2022;
dell’Isola et al., 2022; Altenbach et al., 2010; Abali et al., 2015).
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Indeed micro-scale mechanisms can originate interesting and charac-
teristic macro-scale behaviors, being a complex combination of local
relative displacements, buckling phenomena, folding, snapping, and
many others. Many micro-structures have been investigated in the
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performed and reduced Euler–Lagrange equations are retrieved. Equi-
librium equations are then solved in the case of uniform deformations,
showing that the continuum model can behave like a mechanical diode,
where the analogy (Spagnuolo and Scerrato, 2020) consists of the fact
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existing literature; among them, it is worth to mention those based
on the pantographic motif (Seppecher et al., 2019; Turco et al., 2017;
dell’Isola et al., 2019), i.e. a mechanism which is well known from ev-
eryday life (pantographic mirrors, expanding fences, scissor lifts, etc.),
which is characterized by a zero-energy accordion-like uniform exten-
sion/compression deformation mode. These materials can be suitably
designed to show strong anisotropic effects, namely to be extremely
compliant in some directions and extremely stiff in others (Placidi et al.,
2015, 2016; Eremeyev et al., 2018).

Among the many unexplored micro-structures that one could con-
ceive, this paper is concerned with duoskelion structures, which have
been recently introduced in Barchiesi et al. (2021a). Similar structures,
based on a chiral geometry, have been addressed both experimen-
tally (De Angelo et al., 2020) and theoretically (Misra et al., 2020)
in the literature, but considering different connections among adjacent
cells. Duoskelion structures are meant to be a proof-of-concept motif
for a new class of metamaterials showing unconventional effects, like
axial–transverse coupling and the co-existence of an extremely strong
stiffness in compression and a relatively small stiffness in extension.
Duoskelion structures have been investigated, up to now, only by
means of a discrete model formulation. In this paper, we select a
specific scaling of micro stiffnesses to deduce, via a formal asymptotic
homogenization procedure, the deformation energy of a continuum
describing the mechanical behavior of duoskelion structures. Owing
to the choice of the scaling, a kinematic constraint appears at the
continuum level. After having derived the continuum model, we discuss
some relevant equilibrium configurations in the case of axial loads.
To lighten the presentation, we will henceforth adopt the following
convention: the expression duoskelion beam will designate the one-
dimensional planar continuum obtained by homogenization, while the
expression duoskelion microstructure will designate the discrete system.

In more details, the work is organized as follows. In Section 2,
we describe the employed discrete spring (micro)model of duoskelion
structures, whose elementary periodically repeated cell has size 𝜀. At
irst, the finite-dimensional kinematics of the duoskelion microstructure
s introduced. Making use of such a kinematics, the deformation energy
f the duoskelion microstructure is specified. The infinite-dimensional
inematics of the target macro-scale continuum, i.e. the independent
inematic fields, is then postulated on the basis of the micro-scale
inematics. After having defined a kinematic bridging between the
icro- and macro-descriptions, the asymptotic expansion of the micro-

cale deformation energy, involving space derivatives of the target
ontinuum fields evaluated at discrete points of the duoskelion mi-
rostructure, is carried out with respect to 𝜀. Such an asymptotic
xpansion is used, together with the micro-scale stiffnesses scaling
aws, to determine the 𝜀-leading terms in the deformation energy.
ubsequently, the quantity 𝜀 is let to zero — the total length of the

beam-like structure is kept fixed — and the integral functional of
deformation energy characterizing the continuum model is retrieved
by substituting Riemann sums with integrals in space. The study being
restricted to cases where the deformation energy is finite, aimed at
avoiding that, for the chosen scaling law, the deformation energy blows
up when 𝜀 tends to zero, a kinematic constraint is enforced at the
macro-scale. Static condensation, namely the closed-form solution of
an equilibrium equation allowing to express one kinematic field as an
algebraic function of the others, is then performed on the continuum
formulation to reduce the number of independent fields specifying the
kinematics of the continuum.

In Section 3, equilibrium Euler–Lagrange equations associated to
the continuum model are written down for the case when axial loads
are considered. This is achieved by means of the introduction of an
augmented Lagrangian. Subsequently, a further static condensation is
that, for a given force magnitude, negative axial displacement induced
by a compression force is vanishing, while that induced by a traction
force is not.

In Section 4, the Weierstrass’ qualitative study of equilibrium equa-
tions is performed by rewriting them in the form of an equivalent
Hamiltonian dynamical system. The properties of such a dynamical
system, inherited from its Hamiltonian structure, are not only exploited
to perform a qualitative study of equilibrium solutions, but also to
express them in algebraic implicit form. Linear stability analysis around
the straight-beam solution for clamped-double roller boundary con-
ditions is then performed. Results obtained in this section by means
of the above-mentioned qualitative study are then used to guide the
investigations carried out in the subsequent sections. Indeed, it is worth
noting that, through the use of qualitative methods, the continuum
formulation allows us to get a complete classification of the possible
equilibrium shapes prior to any computational study. This classification
will be used to guide discrete numerical simulations to get highly
non-trivial equilibrium shapes.

In Section 5, some equilibrium large-deformation and large-displa-
cement configurations are computed numerically by exploiting the
implicit expression obtained in the previous section for the continuum
model. Both traction and compression cases are studied.

In order to show the capabilities of the homogenized continuum
model in describing the behavior of the discrete one, Section 6 presents
the results, obtained by numerical simulations, of the discrete system
with 50 unit cells for one of the equilibrium problems analyzed in the
previous section. Finally, conclusions and outlooks are discussed.

2. Heuristic homogenization of duoskelion microstructures

In this Section, we first introduce the duoskelion micro-structure
as a discrete spring model and then look for a 1D planar continuum
describing synthetically its properties when the size 𝜀 of the peri-
odically repeated cell is sufficiently small with respect to its total
length 𝐿. To this aim, we apply a heuristic homogenization procedure,
which consists in calculating the limit of the deformation energy of the
discrete model for 𝜀∕𝐿 tending to zero. After having chosen a conve-
nient discrete kinematics, Piola’s micro–macro identification ansatz is
onsidered. It consists in introducing the kinematic macro-descriptors
f the continuum as continuous functions, whose values at designated
oints are identified with suitable generalized coordinates of the micro-
odel. Exploiting such an identification, the deformation energy of the
icro-model is then rewritten in terms of continuum descriptors. Taylor

xpansions of continuum descriptors with respect to the micro length
cale 𝜀 are performed, aimed at expressing the deformation energy of
he discrete system as a polynomial function of 𝜀. Finally, the number
f the periodically appearing subsystems, called cells, is increased and
he stiffnesses are appropriately scaled, while the overall size of the
ystem is kept fixed.

.1. Discrete model

The considered family of discrete models parameterized by the cell
ize 𝜀 consists of systems of internally constrained rigid bodies inter-
cting through extensional and rotational springs. In the undeformed
onfiguration, see Fig. 1, a unit cell is repeated periodically along a
traight line in direction of the unit basis vector 𝐞𝑥 ∈ E2. The geometry
f the system presents a chiral pattern, namely it is not invariant for
eflections with respect to the axes of the orthonormal basis (𝐞𝑥, 𝐞𝑦)
n Fig. 1 and it is invariant for ±𝜋 rad rotations. Using the language
f material symmetry groups, we can state that the geometry of the
icrostructure belongs to the material symmetry group 𝑍2. The total
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Fig. 1. Considered discrete spring model of duoskelion micro-structure. Reference geometry and graphical illustration of elastic elements and internal constraints. S-shaped bodies
are rigid.
Fig. 2. Considered discrete spring model of duoskelion micro-structure. Reference and current configurations for three adjacent cells and graphical illustration of the introduced
kinematic quantities.

length 𝐿 of the undeformed duoskelion micro-structure encompasses
𝑁 − 1 cells.

The cells are centered at the positions 𝑃𝑖 = 𝑖𝜀𝐞𝑥, for 𝑖 ∈ {0, 1,… , 𝑁},

specifically, the quantity 𝜗𝑖, defined for the reduced index set 𝑖 =
{1, 2,… , 𝑁 − 2}, is the angle between the two vectors 𝑝𝑖 − 𝑝𝑖−1 and 𝐞𝑥.

By the definition, we have 𝜑 = 𝛥 +𝜗 − 𝛿𝑖 and 𝜑 = 𝛥 +𝜗 + 𝛿𝑖 . The
3

with 𝜀 = 𝐿∕(𝑁−1). The height of each cell is equal to 2ℎ𝜀, with ℎ a pos-
𝑖−1 𝑖 𝑖 2 𝑖 𝑖 𝑖 2

quantity 𝛼𝑇 is the angle formed by the S-shaped rigid body centered

itive constant quantity not depending on 𝜀. The quantity ℎ defines the
aspect ratio of each cell. The S-shaped bodies — which are those giving
the name duoskelion to the structure, i.e. two-legged — are rigid, while
the dashed vertical links in Fig. 2 are extensional springs hinge-joined
on the points 𝐶𝑖 and 𝐷𝑖 (see again Fig. 2) connecting two adjacent
S-shaped bodies. Rotational springs are placed between extensional
springs and S-shaped rigid bodies. Note that the extensional springs are
rigid with respect to bending, hence they can transmit torques. White-
filled circles in Fig. 1 represent hinge constraints, requiring the end
points of the concurring elements to have the same position in space.

Kinematic quantities related to the discrete system and utilized
throughout the paper are introduced graphically in Fig. 2. Clearly, the
kinematics of the spring system is globally described by finitely many
generalized coordinates. As an instance, a minimal set of coordinates
for the discrete system consists of (1) the position 𝑝𝑖 ∈ E2 of the points
at position 𝑃𝑖 in the reference configuration, and (2) the rotation angle
𝜑𝑖 ∈ R of the S-shaped rigid bodies. Aimed at simplifying formulas, and
particularly to formulate the total potential energy in a most compact
form, further kinematic quantities are introduced in Fig. 2, i.e. the
positions 𝐴𝑖, 𝐵𝑖, 𝐶𝑖, 𝐷𝑖 ∈ E2 and the angles 𝛥𝑖, 𝛿𝑖, 𝛼𝑇𝑖 , 𝛼

𝐵
𝑖 , 𝜗𝑖 ∈ R. More
𝑖
at 𝑃𝑖 in the reference configuration and the adjacent vertical link on
the right, see Fig. 2. The quantity 𝛼𝐵𝑖 is the angle formed by the S-
shaped rigid body centered at 𝑃𝑖+1 in the reference configuration and
the adjacent vertical link on the left. The superscripts T and B stand,
respectively, for top and bottom.

The micro-model deformation energy is defined as

𝜀 ∶=
𝑁−1
∑

𝑖=0

𝐾𝐸,𝑖
2

(

‖𝐶𝑖 −𝐷𝑖‖ − 2ℎ𝜀
)2 +

𝐾𝑇 ,𝑖
2

sin2 𝛼𝑇𝑖 +
𝐾𝐵,𝑖
2

sin2 𝛼𝐵𝑖 , (1)

with 𝐾𝐸,𝑖 > 0 and 𝐾𝑇 ,𝑖, 𝐾𝐵.𝑖 > 0 being the stiffnesses of the extensional
and rotational springs, respectively, and ‖ ⋅‖ being the Euclidean norm.
According to Fig. 2, we have that

𝐷𝑖−1 − 𝐶𝑖−1 =
(

𝑝𝑖 − 𝑝𝑖−1
)

− 𝜀
2

(

𝐑𝛥𝑖+𝜗𝑖−𝛿𝑖∕2 + 𝐑𝛥𝑖+𝜗𝑖+𝛿𝑖∕2
)

𝐞𝑥

− ℎ𝜀
(

𝐑𝛥𝑖+𝜗𝑖−𝛿𝑖∕2 + 𝐑𝛥𝑖+𝜗𝑖+𝛿𝑖∕2
)

𝐞𝑦 , (2)

where 𝐑𝛽 ∶ R2 → R2 is a linear transformation belonging to
𝑂𝑟𝑡ℎ+ which rotates its argument by an angle 𝛽 in the anti-clockwise
direction, in the plane spanned by 𝐞𝑥 and 𝐞𝑦. In matrix form, we can
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write the vector 𝐑−𝜗𝑖 (𝐷𝑖−1 − 𝐶𝑖−1) in the basis (𝐞𝑥, 𝐞𝑦) as

[

𝐑−𝜗𝑖 (𝐷𝑖−1 − 𝐶𝑖−1)
]

(𝐞𝑥 ,𝐞𝑦)
= 𝜀

(

𝜌𝑖 − cos𝛥𝑖 cos(𝛿𝑖∕2) + 2ℎ sin𝛥𝑖 cos(𝛿𝑖∕2)
− sin𝛥𝑖 cos(𝛿𝑖∕2) − 2ℎ cos𝛥𝑖 cos(𝛿𝑖∕2)

)

,

𝐷

t

𝐝

𝐄

a
n

i

At this point, substituting Eqs. (6), (13), and (16) into Eq. (1), the
micro-scale energy recasts as

 =
𝑁−1
∑ 𝐾𝐸,𝑖 𝜀2

(

√

𝑇 2 +𝑄2 − 2ℎ
)2

(17)

(3)

where the quantity 𝜌𝑖 has been defined as 𝜌𝑖 ∶= ‖𝑝𝑖 − 𝑝𝑖−1‖∕𝜀.
Let us now consider the local, i.e. depending on the considered 𝑖th
cell, orthonormal basis made up of the vectors 𝐞𝜗𝑖+𝛥𝑖 ∶= 𝐑𝛥𝑖𝐞𝜗𝑖 and
𝐞⟂𝜗𝑖+𝛥𝑖 ∶= 𝐑𝛥𝑖𝐞

⟂
𝜗𝑖

, which is obtained by rotating in the anti-clockwise
direction the local basis (𝐞𝜗𝑖 , 𝐞

⟂
𝜗𝑖
) of an angle 𝛥𝑖. Noting that the equality

[

𝐑−𝜗𝑖 (𝐷𝑖−1 − 𝐶𝑖−1)
]

(𝐞𝑥 ,𝐞𝑦)
=

[

𝐷𝑖−1 − 𝐶𝑖−1
]

(𝐞𝜗𝑖 ,𝐞
⟂
𝜗𝑖
) holds true, combining

Eq. (3) and the definition of the orthonormal basis (𝐞𝜗𝑖+𝛥𝑖 , 𝐞
⟂
𝜗𝑖+𝛥𝑖

) leads
to

𝐷𝑖−1 − 𝐶𝑖−1 = 𝜀
{[

𝜌𝑖 cos𝛥𝑖 − cos
(

𝛿𝑖
2

)]

𝐞𝜗𝑖+𝛥𝑖

−
[

𝜌𝑖 sin𝛥𝑖 + 2ℎ cos
(

𝛿𝑖
2

)]

𝐞⟂𝜗𝑖+𝛥𝑖

}

, (4)

that, defining the quantity 𝑅𝑖 ∶= 𝜌𝑖 cos𝛥𝑖, can be rewritten as

𝑖−1 − 𝐶𝑖−1 = 𝜀
{[

𝑅𝑖 − cos
(

𝛿𝑖
2

)]

𝐞𝜗𝑖+𝛥𝑖

−
[

𝑅𝑖 tan𝛥𝑖 + 2ℎ cos
(

𝛿𝑖
2

)]

𝐞⟂𝜗𝑖+𝛥𝑖

}

. (5)

The last relation implies that the Euclidean norm of vector 𝐷𝑖−1 −𝐶𝑖−1
can be written as

‖𝐷𝑖−1 −𝐶𝑖−1‖2 = 𝜀2
{

[

𝑅𝑖 − cos
(

𝛿𝑖
2

)]2
+
[

𝑅𝑖 tan𝛥𝑖 + 2ℎ cos
(

𝛿𝑖
2

)]2
}

.

(6)

We now define the unit vector 𝐝𝑖 ∶=
𝐵𝑖−1−𝑝𝑖−1

‖𝐵𝑖−1−𝑝𝑖−1‖
, which lies on the

line joining 𝐵𝑖−1 and 𝑝𝑖−1 and points toward 𝐵𝑖−1. It is straightforward
o see that the vector 𝐝𝑖 can be written in the basis (𝐞𝜗𝑖 , 𝐞

⟂
𝜗𝑖
) as

𝑖 = − sin
(

𝛥𝑖 −
𝛿𝑖
2

)

𝐞𝜗𝑖 + cos
(

𝛥𝑖 −
𝛿𝑖
2

)

𝐞⟂𝜗𝑖 (7)

or, equivalently, in the basis (𝐞𝜗𝑖+𝛥𝑖 , 𝐞
⟂
𝜗𝑖+𝛥𝑖

), as

𝐝𝑖 = sin
(

𝛿𝑖
2

)

𝐞𝜗𝑖+𝛥𝑖 + cos
(

𝛿𝑖
2

)

𝐞⟂𝜗𝑖+𝛥𝑖 . (8)

Let us now consider the unit vector 𝐄𝑖 ∶=
𝐵𝑖−𝑝𝑖

‖𝐵𝑖−𝑝𝑖‖
, which lies on the

line joining 𝐵𝑖 and 𝑝𝑖 and points toward 𝐵𝑖. It is again straightforward
to see that the vector 𝐄𝑖 can be written in the basis (𝐞𝜗𝑖 , 𝐞

⟂
𝜗𝑖
) as

𝐄𝑖 =
[

− sin𝛥𝑖 cos
(

𝛿𝑖
2

)

− cos𝛥𝑖 sin
(

𝛿𝑖
2

)]

𝐞𝜗𝑖

+
[

cos𝛥𝑖 cos
(

𝛿𝑖
2

)

− sin𝛥𝑖 sin
(

𝛿𝑖
2

)]

𝐞⟂𝜗𝑖 (9)

or, equivalently, in the basis
(

𝐞𝜗𝑖+𝛥𝑖 , 𝐞
⟂
𝜗𝑖+𝛥𝑖

)

, as

𝑖 = − sin
(

𝛿𝑖
2

)

𝐞𝜗𝑖+𝛥𝑖 + cos
(

𝛿𝑖
2

)

𝐞⟂𝜗𝑖+𝛥𝑖 . (10)

Note that, since 𝛥𝑖+1 −
𝛿𝑖+1
2 + 𝜃𝑖 = 𝛥𝑖 +

𝛿𝑖
2 , one has 𝐄𝑖 = 𝐝𝑖+1.

In conclusion, for the angle 𝛼𝑇𝑖−1 appearing in Eq. (1), one can write
s in Eqs. (11)–(13) (see Box I), where (11) has been obtained by
oting that 𝛼𝑇𝑖−1 is the angle formed by the vectors 𝐝⟂𝑖 and 𝐷𝑖−1 − 𝐶𝑖−1,

while (12) has been obtained by substituting Eqs. (5) and (8) in (11).
Analogously, for the angle 𝛼𝐵𝑖−1 appearing in Eq. (1), one can write as
n Eqs. (14)–(16) given in Box II.
𝜀
𝑖=0 2 𝑖 𝑖

+
𝐾𝐵,𝑖−1

2

⎧

⎪

⎨

⎪

⎩

1
√

𝑇 2
𝑖 +𝑄2

𝑖

[

𝑇𝑖 cos
(

𝛿𝑖
2

)

−𝑄𝑖 sin
(

𝛿𝑖
2

)]

⎫

⎪

⎬

⎪

⎭

2

(18)

+
𝐾𝑇 ,𝑖−1

2

⎧

⎪

⎨

⎪

⎩

1
√

𝑇 2
𝑖 +𝑄2

𝑖

[

𝑇𝑖 cos
(

𝛿𝑖
2

)

+𝑄𝑖 sin
(

𝛿𝑖
2

)]

⎫

⎪

⎬

⎪

⎭

2

, (19)

where, to avoid lengthy formulas, the quantities 𝑇𝑖 ∶= 𝑅𝑖 − cos(𝛿𝑖∕2)
and 𝑄𝑖 ∶= 𝑅𝑖 tan𝛥𝑖 + 2ℎ cos(𝛿𝑖∕2) have been defined.

2.2. Micro–macro identification

We aim to formulate a one-dimensional continuum in the limit of
vanishing 𝜀. The continuum is then parameterized by the arclength
𝑥 ∈ [0, 𝐿] of the straight segment of length 𝐿 connecting all points
𝑃𝑖, see the blue lines in Fig. 2. For the time being, owing to the
rigorous asymptotic convergence results that we are going to prove in
a forthcoming work, we assume the independent kinematic Lagrangian
descriptors of the macro-model to be the functions

𝜒 ∶ [0, 𝐿] → E2 , 𝜑 ∶ [0, 𝐿] → R . (20)

The placement function 𝜒 places the 1D-continuum into E2 and is
best suited to describe the points 𝑝𝑖 ∈ E2 of the discrete system
on a macro-level. To take into account also the effect of rotating
S-shaped rigid bodies, the placement function is augmented by the
micro-rotation function 𝜑.1 Recall that 𝑝𝑖 and 𝜑𝑖 make up a minimal
set of global generalized coordinates for the discrete system. We thus
identify the discrete system with a one-dimensional continuum which
can be classified as a micromorphic — Cosserat actually — continuum.
It is also convenient to introduce the functions 𝜌 ∶ [0, 𝐿] → R+ and
𝜗 ∶ [0, 𝐿] → R in order to rewrite the tangent vector field 𝜒 ′ as

𝜒 ′(𝑥) = 𝜌(𝑥)
[

cos 𝜗(𝑥)𝐞𝑥 + sin 𝜗(𝑥)𝐞𝑦
]

, (21)

where prime denotes differentiation with respect to the reference arc
length 𝑥. Thus, the quantity 𝜌 corresponds to the norm of the tangent
vector 𝜒 ′. Such a quantity will be henceforth referred to as stretch.
We explicitly remark that the current curve 𝜒([0, 𝐿]) can in general
have a length ∫ 𝐿0 𝜌 d𝑥 different from 𝐿, as 𝑥 is not an arc-length
parametrization for 𝜒 but only for the reference placement 𝜒0(𝑥) = 𝑥𝐞𝑥.
Fig. 3 elucidates graphically the kinematics of the continuum. Note that
the choice of the maximal set of independent kinematic descriptors
of the continuum will change several times throughout the paper.
Table 1 reports the various maximal sets of independent kinematic
descriptors adopted at continuum scale along the present paper ordered
by adoption. Remark that, henceforth, when in the text we mention that
the kinematics of the continuum is specified up to rigid translations,
this is equivalent to say that 𝜒(𝑥0) must be fixed for an arbitrary 𝑥0 ∈
[0, 𝐿] in order to completely specify the kinematics of the continuum.
Note also that, in passing from the set n. 2 to the set n. 3 and from
the set n. 3 to the set n. 4 in Table 1, a static condensation will be
performed. The field 𝑟 in Table 1 will be introduced later on in the
paper.

For the Piola’s micro–macro identification, we relate the discrete
generalized coordinates 𝑝𝑖 and 𝜑𝑖 of a single cell centered at node
𝑖 with, respectively, the functions 𝜒 and 𝜑 evaluated at 𝑥𝑖 = 𝑖𝜀,

1 In the sequel, the field 𝜑 will be also called attitude field. or rotation angle
field
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sin 𝛼𝑇𝑖−1
𝐝⟂𝑖 ⋅

(

𝐷𝑖−1 − 𝐶𝑖−1
)

=
‖𝐷𝑖−1 − 𝐶𝑖−1‖

(11)

=
𝜀
[

−cos
(

𝛿𝑖
2

)

𝐞𝜗𝑖+𝛥𝑖 + sin
(

𝛿𝑖
2

)

𝐞⟂𝜗𝑖+𝛥𝑖
]

⋅
{[

𝑅𝑖 − cos
(

𝛿𝑖
2

)]

𝐞𝜗𝑖+𝛥𝑖 −
[

𝑅𝑖 tan𝛥𝑖 + 2ℎ cos
(

𝛿𝑖
2

)]

𝐞⟂𝜗𝑖+𝛥𝑖
}

‖𝐷𝑖−1 − 𝐶𝑖−1‖
(12)

= − 𝜀
‖𝐷𝑖−1 − 𝐶𝑖−1‖

{

cos
(

𝛿𝑖
2

)[

𝑅𝑖 − cos
(

𝛿𝑖
2

)]

+ sin
(

𝛿𝑖
2

)[

𝑅𝑖 tan𝛥𝑖 + 2ℎ cos
(

𝛿𝑖
2

)]}

, (13)

Box I.

sin 𝛼𝐵𝑖−1

𝐄⟂
𝑖 ⋅

(

𝐷𝑖−1 − 𝐶𝑖−1
)

= −
‖𝐷𝑖−1 − 𝐶𝑖−1‖

(14)

=
−𝜀

[

−cos
(

𝛿𝑖
2

)

𝐞𝜗𝑖+𝛥𝑖 − sin
(

𝛿𝑖
2

)

𝐞⟂𝜗𝑖+𝛥𝑖
]

⋅
{[

𝑅𝑖 − cos
(

𝛿𝑖
2

)]

𝐞𝜗𝑖+𝛥𝑖 −
[

𝑅𝑖 tan𝛥𝑖 + 2ℎ cos
(

𝛿𝑖
2

)]

𝐞⟂𝜗𝑖+𝛥𝑖
}

‖𝐷𝑖−1 − 𝐶𝑖−1‖
(15)

= 𝜀
‖𝐷𝑖−1 − 𝐶𝑖−1‖

{

cos
(

𝛿𝑖
2

)[

𝑅𝑖 − cos
(

𝛿𝑖
2

)]

− sin
(

𝛿𝑖
2

)[

𝑅𝑖 tan𝛥𝑖 + 2ℎ cos
(

𝛿𝑖
2

)]}

. (16)

Box II.

We now expand in Taylor series centered in 𝑥𝑖 the fields 𝜑 and 𝜒
uniquely specifying the kinematics of the continuum

′ ′
5

𝜑𝑖+1 − 𝜑𝑖 = 𝜀𝜑 (𝑥𝑖) + 𝑜(𝜀) , 𝑝𝑖 − 𝑝𝑖−1 = 𝜀𝜒 (𝑥𝑖) + 𝑜(𝜀) . (24)
Fig. 3. Continuum model. Reference (top) and current (bottom) configurations along
with the main kinematic quantities.

Table 1
Maximal sets of independent kinematic descriptors adopted at continuum scale along
the present paper ordered by adoption.

𝜒(⋅) 𝜗(⋅) 𝜑(⋅) 𝑟(⋅) 𝛥(⋅) 𝜒(𝑥), with 𝑥 ∈ [0, 𝐿] arbitrary

1. 𝖷 𝖷

2. 𝖷 𝖷 𝖷 𝖷

3. 𝖷 𝖷 𝖷

4. 𝖷 𝖷

i.e. 𝜒(𝑥𝑖) = 𝑝𝑖 and 𝜑(𝑥𝑖) = 𝜑𝑖, with 𝑥𝑖 the abscissa of node 𝑖 along
the middle line. For the asymptotic identification, we now need to
expand the energy with respect to 𝜀, so that we can re-write, up to
higher order terms in 𝜀, the deformation energy of each cell of the
discrete system centered at node 𝑖 as a function of the continuum
generalized coordinates evaluated at 𝑥𝑖. Looking at Fig. 2, it is seen
that the following relations hold true

𝜑𝑖−1 = 𝛥𝑖 + 𝜗𝑖 −
𝛿𝑖
2
, 𝜑𝑖 = 𝛥𝑖 + 𝜗𝑖 +

𝛿𝑖
2
, (22)

which imply the following expressions for the quantities 𝛥𝑖 and 𝛿𝑖

𝛥𝑖 =
𝜑𝑖−1 − 𝜗𝑖

2
+
𝜑𝑖 − 𝜗𝑖

2
, 𝛿𝑖 =

(

𝜑𝑖 − 𝜗𝑖
)

−
(

𝜑𝑖−1 − 𝜗𝑖
)

. (23)
Plugging the above expansion in Eq. (23), we get the following
𝜀-approximations for the quantities 𝛥𝑖 and 𝛿𝑖

𝛥𝑖 =
[

𝜑(𝑥𝑖) − 𝜗(𝑥𝑖)
]

+ 𝑜(𝜀0) , 𝛿𝑖 = 𝜀𝜑′(𝑥𝑖) + 𝑜(𝜀) . (25)

At this point, we can easily see that the formula (21) is nothing but the
continualization of the expression

𝑝𝑖 − 𝑝𝑖−1 = ‖𝑝𝑖 − 𝑝𝑖−1‖
[

cos 𝜗𝑖(𝑥)𝐞𝑥 + sin 𝜗𝑖(𝑥)𝐞𝑦
]

. (26)

Indeed, dividing (26) by 𝜀, plugging (24) in (26) considering 𝜗𝑖 = 𝜗(𝑥𝑖),
and letting 𝜀 → 0, we get (21), where 𝜌(𝑥𝑖) = lim𝜀→0 ‖𝑝𝑖 − 𝑝𝑖−1‖∕𝜀.
In particular, note that we have 𝜌𝑖 = 𝜌(𝑥𝑖) + 𝑜(𝜀). Thus, plugging the
expressions in Eq. (25) into the deformation energy (19) of the discrete
model, we get

𝜀 =
𝑁−1
∑

𝑖=0

𝐾𝐸,𝑖
2
𝜀2

(
√

𝑇 2
𝑖 + �̃�2

𝑖 − 2ℎ + 𝑜(𝜀)
)2

(27)

+
𝐾𝐵,𝑖−1

2

⎧

⎪

⎨

⎪

⎩

1
√

𝑇 2
𝑖 + �̃�2

𝑖 + 𝑜(𝜀)

{

[1 + 𝑜(𝜀)]
(

𝑇𝑖 + 𝑜(𝜀)
)

−
[

𝜀
𝜑′(𝑥𝑖)
2

+ 𝑜(𝜀2)
]

(

�̃�𝑖 + 𝑜(𝜀)
)

}

⎫

⎪

⎬

⎪

⎭

2

(28)

+
𝐾𝑇 ,𝑖−1

2

⎧

⎪

⎨

⎪

⎩

1
√

𝑇 2
𝑖 + �̃�2

𝑖 + 𝑜(𝜀)

{

[1 + 𝑜(𝜀)]
(

𝑇𝑖 + 𝑜(𝜀)
)

+
[

𝜀
𝜑′(𝑥𝑖)
2

+ 𝑜(𝜀2)
]

(

�̃�𝑖 + 𝑜(𝜀)
)

}

⎫

⎪

⎬

⎪

⎭

2

, (29)

where, to avoid lengthy formulas, the quantities 𝑇𝑖 ∶= 𝑅𝑖 − 1 and
�̃�𝑖 ∶= 𝑅𝑖 tan𝛥𝑖 + 2ℎ have been defined.
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At this point, it is necessary to specify a scaling law for the stiff-
nesses. The stiffness scaling laws, which determine how micro-scale
stiffnesses depend upon the number of cells, are specified by means
of power laws as

s
r
s
O



t



N
d
p
a
𝛥
m
a
l
𝛥

2

t
∑

[
t
𝜌
c



𝜌

The stiffnesses 𝐾𝐸 , 𝐾𝐵 , and 𝐾𝑇 in Eq. (37) are non-negatively valued
functions of the abscissa 𝑥 ∈ [0, 𝐿] such that 𝐾𝐸 (𝑥𝑖) = 𝐾𝐸,𝑖, 𝐾𝐵(𝑥𝑖) =
𝐾𝐵,𝑖, and 𝐾𝑇 (𝑥𝑖) = 𝐾𝑇 ,𝑖, respectively.

Remark that the continuum field variable 𝛥 can be expressed in
t
c
t
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v

�̃�

𝐾𝐸,𝑖 = 𝐾𝐸,𝑖𝜀
−1, 𝐾𝑇 (𝐵),𝑖 = 𝐾𝑇 (𝐵),𝑖𝜀

−1 , (30)

where 𝐾𝐸,𝑖 and 𝐾𝑇 (𝐵),𝑖 do not depend on 𝜀. Note that, according to the
caling (30), we have 𝐾𝐵(𝑇 ),𝑖∕𝐾𝐸,𝑖 = 𝑂(𝜀0), which means that neither
otational springs (both of them, top and bottom) nor extensional
prings have negligible stiffnesses asymptotically for 𝜀 tending to zero.
nce plugged in Eq. (29), the scaling laws above give

𝜀 =
𝑁−1
∑

𝑖=0

𝜀𝐾𝐸,𝑖
2

[√

(

𝑅𝑖 − 1
)2 +

(

𝑅𝑖 tan𝛥𝑖 + 2ℎ
)2 − 2ℎ + 𝑜(𝜀)

]2
(31)

+
𝜀𝐾𝐵,𝑖−1

2

⎧

⎪

⎨

⎪

⎩

𝜀−1
(

𝑅𝑖 − 1
)

− 𝜑′(𝑥𝑖)
(

𝑅𝑖 tan𝛥𝑖+2ℎ
2

)

√

(

𝑅𝑖 − 1
)2 +

(

𝑅𝑖 tan𝛥𝑖 + 2ℎ
)2

+ 𝑜
(

𝜀0
)

⎫

⎪

⎬

⎪

⎭

2

(32)

+
𝜀𝐾𝑇 ,𝑖−1

2

⎧

⎪

⎨

⎪

⎩

𝜀−1
(

𝑅𝑖 − 1
)

+ 𝜑′(𝑥𝑖)
(

𝑅𝑖 tan𝛥𝑖+2ℎ
2

)

√

(

𝑅𝑖 − 1
)2 +

(

𝑅𝑖 tan𝛥𝑖 + 2ℎ
)2

+ 𝑜
(

𝜀0
)

⎫

⎪

⎬

⎪

⎭

2

. (33)

Let us define the variable 𝑟𝑖 = 𝜀−1
(

𝑅𝑖 − 1
)

, which allows us to rewrite
he previous expression as

𝜀 =
∑

𝑖

𝜀𝐾𝐸,𝑖
2

[
√

𝜀2𝑟2𝑖 +
[(

1 + 𝜀𝑟𝑖
)

tan𝛥𝑖 + 2ℎ
]2 − 2ℎ + 𝑜(𝜀)

]2
(34)

+
𝜀𝐾𝐵,𝑖−1

2

⎧

⎪

⎨

⎪

⎩

𝑟𝑖 − 𝜑′(𝑥𝑖)
(1+𝜀𝑟𝑖) tan𝛥𝑖+2ℎ

2
√

𝜀2𝑟2𝑖 +
[(

1 + 𝜀𝑟𝑖
)

tan𝛥𝑖 + 2ℎ
]2

+ 𝑜
(

𝜀0
)

⎫

⎪

⎬

⎪

⎭

2

(35)

+
𝜀𝐾𝑇 ,𝑖−1

2

⎧

⎪

⎨

⎪

⎩

𝑟𝑖 + 𝜑′(𝑥𝑖)
(1+𝜀𝑟𝑖) tan𝛥𝑖+2ℎ

2
√

𝜀2𝑟2𝑖 +
[(

1 + 𝜀𝑟𝑖
)

tan𝛥𝑖 + 2ℎ
]2

+ 𝑜
(

𝜀0
)

⎫

⎪

⎬

⎪

⎭

2

. (36)

ote that, for each cell centered at node 𝑖, the variable 𝑟𝑖 is a kinematic
escriptor independent of the variables 𝛥𝑖 and 𝛿𝑖, which are also inde-
endent. Thus, the kinematics of the system is completely described,
s an instance, by the triple of independent kinematic descriptors 𝑟𝑖,
𝑖, and 𝜑𝑖, complemented by the placement of one node along the
iddle line. Let us adopt this kinematics for the discrete system and,

ccordingly, also for the sought continuum limit. At the continuum
evel, the quantities 𝑟𝑖 and 𝛥𝑖 become the functions 𝑟 ∶ [0, 𝐿] → R and
∶ [0, 𝐿] → R, respectively.

.3. Macro-model

The continuum limit is now obtained by letting 𝜀 → 0 and reminding
hat the summation in Eq. (36) turns into an integral according to

𝑖 𝑓 (𝑥𝑖)𝜀
𝜀→0
⟶ ∫ 𝐿0 𝑓 d𝑥, where 𝑓 is a real valued function defined on

0, 𝐿]. Limiting ourselves to study only cases in which the energy of
he continuous limit is finite, it is obtained that 𝑟𝑖 = 𝑜(𝜀0), namely
𝑖 cos𝛥𝑖 − 1 = 𝑜(𝜀). In conclusion, the deformation energy of the limit
ontinuum reads as

= ∫

𝐿

0

⎧

⎪

⎨

⎪

⎩

𝐾𝐸
2

[√

(tan𝛥 + 2ℎ)2 − 2ℎ
]2

+
𝐾𝐵
2

⎡

⎢

⎢

⎢

⎣

𝑟 − 𝜑′ tan𝛥+2ℎ
2

√

(tan𝛥 + 2ℎ)2

⎤

⎥

⎥

⎥

⎦

2

+
𝐾𝑇
2

⎡

⎢

⎢

⎢

⎣

𝑟 + 𝜑′ tan𝛥+2ℎ
2

√

(tan𝛥 + 2ℎ)2

⎤

⎥

⎥

⎥

⎦

2
⎫

⎪

⎬

⎪

⎭

d𝑥 , (37)

while the condition 𝑟𝑖 = 𝑜(𝜀0) reads at the continuum level as

cos𝛥 = 1 almost everywhere in [0, 𝐿] . (38)
erms of the quantities 𝜗 and 𝜑 as 𝛥 = 𝜑 − 𝜗 according to the
ontinualization of Eq. (25). In the language of continuum mechanics,
he quantity 𝛥 thus represents the so-called shear deformation of the
D continuum. It is worth to note also that the quantities 𝛥 and 𝜑
re sufficient to retrieve the current deformed curve of the continuum
nce the placement of a point of the continuum is known. Indeed, the
uantity 𝜗 is obtained as 𝜗 = 𝜑 − 𝛥. The quantity 𝜌 is instead obtained
y the constraint (38) as

= 1∕ cos𝛥 (39)

and, finally, the placement function is retrieved by integrating Eq. (21).
he above expression (39) for the quantity 𝜌 suggests that 𝜌 ≥ 1 for
− 𝜗 ∈ [−𝜋∕2, 𝜋∕2], which means that the duoskelion beam, because

f the scaling laws, is incompressible. This kind of behavior goes under
he name of mechanical diode.

By plugging the condition 𝑟𝑖 = 𝑜(𝜀0) and the asymptotic expansion
𝑖 = 𝜀𝜑′(𝑥𝑖) + 𝑜(𝜀) obtained in Eq. (25) into ‖𝐷𝑖−1 − 𝐶𝑖−1‖ in Eq. (6),
e get Eqs. (40)–(42) given in Box III, which suggests that, at the

ontinuum level, the quantity tan𝛥(𝑥𝑖)+2ℎ stands for the current signed
ength of the extensional spring on the left of node 𝑖, normalized with
espect to the cell length 𝜀. Since in the reference configuration the
quality 𝛥 = 0 holds true, the quantity tan𝛥 + 2ℎ is greater than zero
n such a configuration. To pass from a positive value of such a signed
ength to a negative one, one must hence pass through a completely
ompressed configuration where tan𝛥+2ℎ = 0. Such a configuration is
athological, because the two last addends of the continuum energy
ensity in (37) blow up to infinity when tan𝛥 + 2ℎ → 0. It is thus
easonable limiting ourselves to study only cases where tan𝛥 + 2ℎ ≥ 0.
n such a case, the energy (37) reads as

= ∫

𝐿

0

⎡

⎢

⎢

⎢

⎣

𝐾𝐸
2

tan2 𝛥 +
𝐾𝐵
2

⎛

⎜

⎜

⎝

𝑟 − 𝜑′ tan𝛥+2ℎ
2

tan𝛥 + 2ℎ

⎞

⎟

⎟

⎠

2

+
𝐾𝑇
2

⎛

⎜

⎜

⎝

𝑟 + 𝜑′ tan𝛥+2ℎ
2

tan𝛥 + 2ℎ

⎞

⎟

⎟

⎠

2
⎤

⎥

⎥

⎥

⎦

d𝑥 ,

(43)

which, defining a new internal variable �̃� = 𝑟
tan𝛥+2ℎ substituting 𝑟 in

the set of independent kinematic descriptors, can be further recast as

 = ∫

𝐿

0

[

𝐾𝐸
2

tan2 𝛥 +
𝐾𝐵
2

(

�̃� −
𝜑′

2

)2
+
𝐾𝑇
2

(

�̃� +
𝜑′

2

)2
]

d𝑥 . (44)

It is worth to be remarked that the aspect ratio of the unit cell ℎ does
no more appear in the deformation energy (44) after the hypothesis
tan𝛥 + 2ℎ ≥ 0.

We now address the static condensation of the variable �̃�. At first,
we note that the dependence of the deformation energy density ̃
in Eq. (44) upon the newly introduced variable �̃� is only algebraic.
Additionally, the variable �̃� does not appear in the constraint (38).
Therefore, conditions for the stationarity of the energy functional 
with respect to �̃� are simply obtained as

0 = 𝜕̃
𝜕�̃�

= 𝐾𝐵

(

�̃� −
𝜑′

2

)

+𝐾𝑇

(

�̃� +
𝜑′

2

)

, (45)

which can be easily solved, giving the following expression for the
ariable �̃�

=
𝐾𝐵 −𝐾𝑇

2
(

𝐾𝐵 +𝐾𝑇
)𝜑′ . (46)

Note that the energy functional (44) is convex with respect to �̃�.
Therefore, the expression for �̃� in the equation above actually gives
not just a stationary point, but a minimum one. Note also that, when
𝐾𝐵(𝑥) = 𝐾𝑇 (𝑥), i.e. the duoskelion is balanced at 𝑥, the variable �̃� is null
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‖𝐷𝑖−1 − 𝐶𝑖−1‖ =𝜀

√

√

√

√

{

[

𝑅𝑖 − cos
(

𝛿𝑖
2

)]2
+
[

𝑅𝑖 tan𝛥𝑖 + 2ℎ cos
(

𝛿𝑖
2

)]2
}

(40)

a
i
o



𝐾

𝑟𝑖=𝑜(𝜀0)= 𝜀

√

√

√

√

{

[

1 + 𝑜(𝜀) − cos
(

𝛿𝑖
2

)]2
+
[

(1 + 𝑜(𝜀)) tan𝛥𝑖 + 2ℎ cos
(

𝛿𝑖
2

)]2
}

(41)

Eq. (25)
= 𝜀 |

|

tan𝛥𝑖 + 2ℎ|
|

+ 𝑜(𝜀) , (42)

Box III.

t 𝑥. Back-substituting Eq. (46) into the continuum deformation energy
n Eq. (44), we get the following expression for the deformation energy
f the continuum limit

Eq. (38)
= ∫

𝐿

0

cos 𝜗
cos(𝜑 − 𝜗)

d𝑥 (50)

leads to the following expression of the constraint
7

𝐿 𝐾 𝐾

∫

𝐿

f

F

s

s

F

f

3

(
a
t
I
s
w
p
c

t
R
c
s
t

E

= ∫0
𝐸
2

tan2 𝛥 + 𝑅
2
𝜑′2d𝑥 , (47)

with

̃𝑅 = 𝐾𝐵

(

𝐾𝑇
𝐾𝐵 +𝐾𝑇

)2

+𝐾𝑇

(

𝐾𝐵
𝐾𝐵 +𝐾𝑇

)2

=
𝐾𝐵𝐾𝑇
𝐾𝐵 +𝐾𝑇

. (48)

Note that, when 𝐾𝑅 → 0, the energy turns into that of a cable where
no energy is accumulated in bending. In conclusion, we have got at
continuum level a one-dimensional Cosserat continuum (Eremeyev and
Pietraszkiewicz, 2012; Altenbach and Eremeyev, 2009; Altenbach et al.,
2013)—a non-linear generalization of the Timoshenko–Ehrenfest beam
model (Elishakoff, 2020; Battista et al., 2018; Della Corte et al., 2019;
Harsch and Eugster, 2020) actually, see (47)— internally constrained
by Eq. (38). Looking at the energy (47), the essential boundary data
that we may want to assign — not necessarily all of them — are 𝜒(0) =
𝜒0 (or its projection onto a direction), 𝜒(𝐿) = 𝜒𝐿 (or its projection onto
a direction), 𝜑(0) = 𝜑0, and 𝜑(𝐿) = 𝜑𝐿.

3. Equilibrium equations for duoskelion beams subjected to axial
loads

In this Section, we begin the study of equilibrium configurations of
duoskelion beams subjected to axial loads. After having introduced an
Extended Lagrangian formulation, we write the equilibrium equations
and, subsequently, we perform a kinematic reduction. Such a kinematic
reduction allows to characterize equilibria only in terms of the attitude
field 𝜑. Additionally, the reduction to an optimization problem involv-
ing a single field permits the application of the so-called Weierstrass’
qualitative study of solutions.

We now choose as new set of independent kinematic descriptors of
the system the fields 𝜗 and 𝜑, once rigid translations of the continuum
are blocked. The static problem that we want to study considers for
the placement function hinge conditions 𝜒(0) = 𝟎 at the left end of the
beam, prescribed axial placement 𝜒(𝐿) ⋅ 𝐞𝑥 = 𝐿 + 𝑢𝐿 at the right end
— the transverse right end displacement is left free — and, possibly,
clamping conditions 𝜑(0) = 𝜑0 and/or 𝜑(𝐿) = 𝜑𝐿 at beam’s ends
on the attitude field.2 The problem that shall be studied can be thus
summarized as follows

Find the stationary conf igurations (𝜗∗(⋅), 𝜑∗(⋅)) of 
such that

[

𝜒(𝐿) − 𝜒(0)
]

⋅ 𝐞𝑥 = 𝐿 + 𝑢𝐿, with 𝑢𝐿 ∈ R,

and fulf illing B.C.′s on 𝜑. (49)

We note that it is possible to write the constraint
[

𝜒(𝐿) − 𝜒(0)
]

⋅ 𝐞𝑥 =
𝐿 + 𝑢𝐿 in terms of the quantities 𝜗 and 𝜑. Indeed, the equality chain
[

𝜒(𝐿) − 𝜒(0)
]

⋅ 𝐞𝑥 = ∫

𝐿

0

(

𝜒 ′ ⋅ 𝐞𝑥
)

d𝑥
Eq. (21)

= ∫

𝐿

0
𝜌 cos 𝜗d𝑥

2 These conditions shall be referred to in the sequel as B.C.’s on 𝜑.
0

cos 𝜗
cos(𝜑 − 𝜗)

d𝑥 = 𝐿 + 𝑢𝐿 . (51)

In conclusion, the problem that shall be studied can be summarized as
ollows

ind the stationary conf igurations (𝜗∗(⋅), 𝜑∗(⋅)) of 

uch that ∫

𝐿

0

cos 𝜗
cos(𝜑 − 𝜗)

d𝑥 = 𝐿 + 𝑢𝐿, with 𝑢𝐿 ∈ R,

and fulf illing B.C.′s on 𝜑. (52)

3.1. Augmented Lagrangian formulation

To enforce the constraint ∫ 𝐿0
cos 𝜗

cos(𝜑−𝜗)d𝑥 = 𝐿+𝑢𝐿 in the problem (52),
we define the augmented energy functional 𝐴

𝐴 = ∫

𝐿

0

𝐾𝐸
2

tan2(𝜑−𝜗)+
𝐾𝑅
2
𝜑′2d𝑥−𝜆

[

∫

𝐿

0

cos 𝜗
cos(𝜑 − 𝜗)

d𝑥 −
(

𝐿 + 𝑢𝐿
)

]

,

(53)

o that the problem (52) recasts as

ind the stationary triples (𝜗∗(⋅), 𝜑∗(⋅), 𝜆∗) of 𝐴

ulf illing B.C.′s on 𝜑. (54)

Note that the real quantity 𝜆 is not a field.

.2. Reduced Euler–Lagrange equations

Let us now assume 𝜆 to be fixed. Therefore, a family of tuples
𝜗∗(⋅), 𝜑∗(⋅)) is sought for a given 𝜆, such that the triples (𝜗∗(⋅), 𝜑∗(⋅), 𝜆)
re solutions of problem (54). Note that the quantity 𝜆 is nothing but
he external force applied on the right boundary of the continuum.
ndeed, up to the constant quantity 𝜆𝑢𝐿, the quantity that has been
ubtracted from  in (47) to get 𝐴 in (53) is nothing but the external
ork done by the external force 𝜆 on the right end displacement. A
ositive 𝜆 stands for a traction force, while a negative 𝜆 stands for a
ompression force.

Recall that any constant, i.e. known, real quantity can be added
o a function without changing its stationary points and their nature.
ecall also that multiplying a function by a positive constant does not
hange its stationary points and their nature. Therefore, for the sake of
implicity, we define a new augmented energy functional E𝛬 according
o the following expression

𝛬 ∶=∫

𝐿

0

1
2
tan2(𝜑 − 𝜗) + 𝐾

2
𝜑′2d𝑥 − 𝛬

[

∫

𝐿

0

cos 𝜗
cos(𝜑 − 𝜗)

d𝑥
]

(55)

= ∫

𝐿

0

[

1
2
tan2(𝜑 − 𝜗) + 𝐾

2
𝜑′2 − 𝛬 cos 𝜗

cos(𝜑 − 𝜗)

]

d𝑥 , (56)
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obtained by subtracting the known real quantity 𝜆(𝑢𝐿 − 𝐿) from the
energy functional (53) and then dividing it by 𝐾𝐸 . Remark that the
quantity 𝐾𝐸 is always greater than zero. The quantities 𝐾 and 𝛬 in
(56) have been defined as 𝐾 = 𝐾𝑅∕𝐾𝐸 and 𝛬 = 𝜆∕𝐾𝐸 , respectively. At
t

F

f

t
t
E

0

r

t

f
f

c

𝑉

E

w
e

−

3.3. Uniform equilibrium solutions

Let us look for solutions of problem (65) consisting into uniform
deformations. To this end, let us fix 𝜑′ = 0 and assume that no

e

|

o
n
a
s
f

c

t

i
w
[
b
d
c
e
t
b
t
a
F
p

T
t

−

his point, the problem that we seek to solve reads as

ind, for a given Λ, the stationary conf igurations (𝜗∗(⋅), 𝜑∗(⋅)) of E𝛬

ulf illing B.C.′s on 𝜑. (57)

We now address the static condensation of the variable 𝜗. Note that
he dependence of the deformation energy density Ẽ𝛬 in Eq. (56) upon
he variable 𝜗 is only algebraic. Enforcing the stationarity of the energy
𝛬 with respect to the quantity 𝜗, we obtain

=
𝜕Ẽ𝛬
𝜕𝜗

= 𝛬
sin𝜑

cos2(𝜑 − 𝜗)
−

tan(𝜑 − 𝜗)
cos2(𝜑 − 𝜗)

. (58)

Assuming that cos(𝜑 − 𝜗) ≠ 0, from Eq. (58) we get the following
elationship

an(𝜑 − 𝜗) = 𝛬 sin𝜑 , (59)

which gives a closed form expression for tan(𝜑 − 𝜗) in terms of the
ield 𝜑. Recalling that by elementary trigonometric relationships the
ollowing equality holds

os(𝜗) = cos(𝜑 − 𝜗) cos(𝜑) + sin(𝜑 − 𝜗) sin(𝜑) (60)

and using (59), it is easily seen that
cos 𝜗

cos(𝜑 − 𝜗)
= cos𝜑 + 𝛬 sin2 𝜑 . (61)

Plugging the expressions (59) and (61) into the energy E𝛬 in (56), we
get the following expression for E𝛬

E𝛬 = ∫

𝐿

0

[𝐾
2
𝜑′2 + 𝑉 (𝜑)

]

d𝑥 , (62)

where the function 𝑉 has been defined as

= −𝛬
(

cos𝜑 + 𝛬
2
sin2 𝜑

)

. (63)

In conclusion, we have expressed the energy functional E𝛬 as a
function of the field 𝜑 only. Defining a new non-dimensional space
variable 𝜉 = 𝑥∕𝐿0 ∈ [0, 𝐿∕𝐿0] and the coefficient 𝐾 = 𝐾∕𝐿2

0, the
augmented energy functional E𝛬 reads as

E𝛬 = ∫

𝐿∕𝐿0

0

[

𝐾
2
𝜑′2 + 𝑉 (𝜑)

]

d𝜉 , (64)

where prime denotes differentiation with respect to the non-dimensio-
nal abscissa 𝜉. Henceforth, the prime symbol will denote differentiation
with respect to the non-dimensional abscissa 𝜉. At this point, problem
(57) recasts as

Find the f ields 𝜑∗(⋅) fulfilling B.C.’s on 𝜑

that, for a given Λ, make stationary E𝛬. (65)

Henceforth, the stiffnesses 𝐾 will be assumed to be independent of
the abscissa 𝜉. Equating to zero the first variation of the functional
𝛬 with respect to the variable 𝜑, by straightforward computations
hich include an integration by parts, we get the following differential
quation for the unknown field 𝜑 in the bulk of the beam

𝐾𝜑′′ + 𝜕𝑉
𝜕𝜑

= 0 (66)

while, at the boundaries, i.e. 𝜉 ∈
{

0, 𝐿∕𝐿0
}

, we get the condition
𝜑′𝛿𝜑 = 0. Defining 𝑉 = 𝑉 ∕𝐾, we obtain from Eq. (66) the following
differential equation for the attitude field

𝜑′′ − 𝜕𝑉
𝜕𝜑

= 0 . (67)
boundary conditions are given on the angle 𝜑. Then, the dependence
of the deformation energy density Ẽ𝛬 in Eq. (62) upon the variable 𝜑
is only algebraic and the Euler–Lagrange equation for 𝜑 associated to
the energy (62) reads as

0 =
𝜕Ẽ𝛬
𝜕𝜑

= −𝛬 sin𝜑 (𝛬 cos𝜑 − 1) , (68)

which admits as solution either 𝜑 = 0 or cos𝜑 = 1∕𝛬, this last being
quivalent to 𝜑 = ±arccos(1∕𝛬).

Note that 𝜑 = ±arccos(1∕𝛬) is indeed a solution of Eq. (68) only if
𝛬| > 1. Therefore, we are led to the following result. When |𝛬| < 1, the
nly uniform deformation solving problem (65) is such that 𝜑 = 0, it is
amely the undeformed configuration — note that 𝜗 = 0 from Eq. (59)
nd that 𝜌 = 1 from Eq. (39). When |𝛬| > 1, there exist two non-trivial
olutions of problem (65) consisting of uniform deformations different
rom the undeformed configuration, namely 𝜑 = ±arccos(1∕𝛬).

In the non-trivial case 𝜑 = ±arccos(1∕𝛬), the quantity 𝜗 can be
omputed from Eq. (59) as

an
[

±arccos
( 1
𝛬

)

− 𝜗
]

= 𝛬 sin
[

±arccos
( 1
𝛬

)]

. (69)

We note that, when 𝜗 = 0, the previous equation can be rewritten as

± tan
[

arccos
( 1
𝛬

)]

= ±𝛬 sin
[

arccos
( 1
𝛬

)]

, (70)

which is always satisfied for |𝛬| > 1. Indeed

tan
[

arccos
( 1
𝛬

)]

=
sin

[

arccos
(

1
𝛬

)]

cos
[

arccos
(

1
𝛬

)] = 𝛬 sin
[

arccos
( 1
𝛬

)]

. (71)

Therefore, all the solutions of problem (65) being uniform deforma-
tions exhibit a rectilinear current shape. Regarding the elongation 𝜌, in
the cases 𝜑 = ±arccos (1∕𝛬) ∈ [−𝜋∕2 + 2𝑘𝜋, 𝜋∕2 + 2𝑘𝜋], 𝑘 ∈ Z —which
require 𝛬 ≥ 1— it is uniform along the domain and its value is

𝜌 = 1
cos𝜑

= 𝛬 ≥ 1 (72)

while, in the cases 𝜑 = ±arccos (1∕𝛬) ∈ [𝜋∕2+2𝑘𝜋, 3∕2 𝜋+2𝑘𝜋], 𝑘 ∈ Z
—which require 𝛬 ≤ −1— it is uniform along the domain and its value
is

𝜌 = 1
cos𝜑

= 𝛬 ≤ −1 . (73)

However, this last equality cannot be fulfilled as, by definition, we
have 𝜌 ≥ 0. In conclusion, for 𝛬 ≤ 1, no deformation is observed,
.e. only the zero solution 𝜑 = 0 exists — which implies 𝜌 = 1 —
hile for 𝛬 > 1 we have also the solution 𝜑 = ±arccos (1∕𝛬) ∈
−𝜋∕2 + 2𝑘𝜋, 𝜋∕2 + 2𝑘𝜋], 𝑘 ∈ Z, which implies 𝜌 = 𝛬. This kind of
ehavior can be categorized not only under the name of mechanical
iode, which is due to the fact that, as mentioned earlier, the beam
an only be elongated and not shortened. Actually, the fact that there
xists a threshold for 𝛬 below which the axial force has no effect on
he deformation of the beam can also be regarded as duoskelion beams
ehaving like mechanical switches. It is worth noting that the results of
his section are in perfect agreement with those presented in a previous
rticle introducing duoskelion structures (Barchiesi et al., 2021a) (see
ig. 6, p. 4 of the cited reference), where numerical computations were
erformed using the same discrete model utilized in Section 6.

Recall that, in the foregoing, the assumption tan𝛥+2ℎ ≥ 0 was made.
aking into account the fact that 𝜗 = 0, such an inequality recasts as
an𝜑 + 2ℎ ≥ 0 or, equivalently, as
𝜋
2
< −arctan(2ℎ) ≤ 𝜑 . (74)

The inequality above is trivially verified for 𝜑 = 0, while the range of ℎ
for such an inequality to hold in the non-trivial cases 𝜑 = ±arccos(1∕𝛬)
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should be analyzed. At first, note that −arctan(2ℎ) < 0. By means of
elementary trigonometric relationships, the inequality

−arctan(2ℎ) ≤ ±arccos(1∕𝛬) (75)

𝛬

W
i
c
e
b
o

3

s

c
E
𝜌
a
—
z
i
o
t
a

l
f
f
f
s
o
f
𝜑
r

𝜑
a

𝑉

u
t

F

As mentioned above, since the augmented energy functional in (80)
is equal to zero for the solution 𝜑 = 0, we want to prove, for a given
𝛬, that the augmented energy functional in (80) is positive for all the

𝜑

a

𝑊

recasts as
2 − 1 ≤ 4ℎ2 . (76)

All previous discussions will be re-interpreted in the light of the
eierstrass’ qualitative study presented in the next section. While

n studying uniform solutions we have not given essential boundary
onditions on 𝜑, in the next subsection we are going to prescribe the
ssential boundary condition 𝜑 = 0 at the left and right ends of the
eam. In such a case, the only uniform equilibrium solution is the null
ne, of which we study the stability.

.4. Linear stability analysis

We know that, for all 𝛬’s, the function 𝜑(𝜉), such that 𝜑(𝜉) = 0 for
all 𝜉 ∈ [0, 1], is a solution to the following problem

Find the f ields 𝜑∗(⋅) that, for a given Λ, make stationary

∫

𝐿∕𝐿0

0

[ 1
2
𝜑′2 + 𝑉

]

d𝜉

uch that 𝜑(𝜉 = 0) = 𝜑(𝜉 = 1) = 0 (77)

to which we have reduced our initial problem (cfr. (65), we are here
onsidering a notable set of boundary conditions on 𝜑), exploiting the
uler–Lagrange equation for the field 𝜗(𝜉) and the internal constraint
(𝜉) cos𝛥(𝜉) = 1. Remark that the functional appearing in the problem
bove vanishes for 𝜑(𝜉) = 0. Therefore, if it is positive — for a given 𝛬

for all the sufficiently regular and small fields 𝜑(𝜉) different from
ero fulfilling the boundary conditions 𝜑(𝜉 = 0) = 𝜑(𝜉 = 1) = 0,
.e. kinematically admissible, it means that the zero solution does not
nly make stationary the energy, but it is also a local minimum among
he kinematically admissible fields. The solution 𝜑(𝜉) = 0 is in that case
locally stable solution of the problem (77).

In this subsection we shall study the linear stability (a special case of
ocal stability) of the zero solution to problem (77). To check whether,
or a given 𝛬, the condition above is fulfilled, we approximate the
unction 𝑉 (𝜑) — appearing in the density of the augmented energy
unctional — in the neighborhood of 𝜑 = 0 by means of a Taylor expan-
ion truncated at the second order in 𝜑. This leads to the approximation
f the density of the augmented energy functional through a quadratic
unction — specifically, without mixed and linear terms — of 𝜑′ and
. For the sake of simplicity, we shall henceforth consider a particular
atio 𝐿∕𝐿0, i.e. 𝐿∕𝐿0 = 1.

We are considering small perturbations of the uniform solution
= 0, such that the following Taylor approximation of 𝑉 , truncated

t second order, can be utilized

̃ ≈ 𝑉
|

|

|

|

|𝜑=0
+ 𝜕𝑉
𝜕𝜑

|

|

|

|

|𝜑=0
𝜑 + 1

2
𝜕2𝑉
𝜕𝜑2

|

|

|

|

|𝜑=0
𝜑2 . (78)

Since

𝜕𝑉
𝜕𝜑

|

|

|

|

|𝜑=0
= 0 , (79)

when only solutions to problem (77) being small perturbations of the
niform solution 𝜑 = 0 are sought, problem (77) can be replaced by
he following one

ind the f ields 𝜑∗(⋅) that, for a given Λ, make stationary

∫

1

0

(

1
2
𝜑′2 + 1

2
𝜕2𝑉
𝜕𝜑2

|

|

|

|

|𝜑=0
𝜑2

)

d𝜉

such that 𝜑(0) = 𝜑(1) = 0. (80)
sufficiently regular and small fields 𝜑’s different from zero fulfilling the
boundary conditions 𝜑(0) = 𝜑(1). This is a sufficient condition to prove
the linear stability of the zero solution. Without loss of generality, we
can assume that the integral between of the quantity 𝜑2 is equal to one.
Therefore, we seek to prove that

𝐶2
𝑃 ∶= inf

𝜑∈𝑊 1,2
0 ([0,1]) s.t. ∫ 1

0 𝜑2 d𝜉=1∫

1

0
𝜑′2 d𝜉 > − 𝜕

2𝑉
𝜕𝜑2

|

|

|

|

|𝜑=0
. (81)

The quantity 𝐶2
𝑃 in (81) is the inverse of the optimal — i.e. sharpest

— value of the constant 𝐶 in the Poincaré inequality ‖𝜑‖𝐿𝑝(𝛺) ≤ 𝐶
‖∇𝜑‖𝐿𝑝(𝛺) ∀𝜑 ∈ 𝑊 1,𝑝

0 (𝛺) for the 1D domain 𝛺 = [0, 1] and the norm
𝐿2, i.e. 𝑝 = 2.3 In our case, the inverse of the optimal constant is equal
to 𝜋2. We can thus conclude that 0 < 𝛬 < 1 is a sufficient condition
for 𝜑 = 0 to be a linearly stable solution. More generally, the condition
−𝛬 (𝛬 − 1) ∕𝐾+𝜋2 > 0, is a sufficient condition for 𝜑 = 0 to be a linearly
stable equilibrium solution. Therefore, when this condition is fulfilled,
for the considered boundary conditions, only non-uniform equilibrium
solutions, that we address in the next section, can be linearly unstable.

In Appendix A, we have included an alternative proof of these
conclusions, which makes use of the direct methods of the calculus of
variations.

4. Non-uniform equilibrium solutions: problem statement

Henceforth, given the ordinary differential Eq. (67) governing the
field 𝜑(𝜉) in the bulk of the continuum and the boundary condition
𝜑′𝛿𝜑 = 0, we shall be looking for solutions of the boundary value
problem

𝜑′′ − 𝜕𝑉
𝜕𝜑

= 0 on [0, 𝐿∕𝐿0] 𝜑(0) = 0, 𝜑(𝐿∕𝐿0) = 0 (82)

and of the mixed problem

′′ − 𝜕𝑉
𝜕𝜑

= 0 on [0, 𝐿∕𝐿0] 𝜑(0) = 0, 𝜑′(𝐿∕𝐿0) = 0 (83)

which correspond to a beam clamped on both sides and a beam
clamped only on the left end side and free on the other, respectively.

4.1. Equivalent dynamical system

Eq. (67) can be equivalently recast in the form of a first-order
dynamical system

⎧

⎪

⎨

⎪

⎩

𝜕𝜑
𝜕𝜉 = 𝑦
𝜕𝑦
𝜕𝜉 = 𝜕𝑉

𝜕𝜑 ,
(84)

3 The inverse of the optimal constant in the Poincaré inequality is found
s Heinonen et al. (2001)

inf
1,𝑝
0 (𝛺)

{

‖∇𝜑‖𝐿𝑝(𝛺) ∶ ‖𝜑‖𝐿𝑝(𝛺) = 1
}

,

which is, clearly, strictly positive. It can be proven that, for 𝑝 = 2, the infimum
takes the value 𝜆−11 , with −𝜆1 being the first eigenvalue of the Laplacian oper-
ator with homogeneous Dirichlet conditions, namely the smallest real number
such that the following Dirichlet problem admits non-vanishing solutions in
𝑊 1,2

0 (𝛺)

−𝛥𝜑 = 𝜆𝜑 in 𝛺
𝜑 = 0 on 𝜕𝛺.

Note that, in our case, the inverse of the optimal constant can be found as

inf
𝑊 1,2

0 ([0,1])

{

∫

1

0
𝜑′2d𝑥 ∶ ∫

1

0
𝜑2d𝑥 = 1

}

.
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which means that a solution 𝜑(𝜉) of Eq. (67) is a trajectory of the
Lipschitz-continuous dynamical system (84). It is worth remarking that
if, instead of regarding 𝜉 as a space variable, we consider it to be a
time variable, we can interpret (84) as the well-known Hamiltonian

o

i

𝜉

o
m
u
a
o
t

Table 2
Numerical values of the quantities 𝛬, 𝐿∕𝐿0, and 𝐾 which have been
utilized to obtain the results presented in this work. All the quantities
are non-dimensional.

̃

p
t
i

dynamical system describing the motion of a particle submitted to the
potential −𝑉 , whose prime integral, i.e. the quantity which is conserved
ver trajectories, is equal to
1
2
𝜑′2 − 𝑉 . (85)

Its solutions thus correspond to periodic oscillations around local min-
ima of the potential (Arnold, 1992). Here, we are concerned with
oscillations around 𝜑 = 0. In view of the boundary conditions we are
considering, any solution admits a first time 𝜉𝑐 such that 𝜑′(𝜉𝑐 ) = 0. The
solutions have periodicity 2𝜉𝑐 and, setting 𝐶 = −𝑉 (𝜑(𝜉𝑐 )), we have

𝜉𝑐 =
√

1
2 ∫

𝜑(𝜉𝑐 )

0

1
√

𝐶 + 𝑉 (𝜙)
d𝜙 . (86)

The solutions are periodic successions of monotonous parts 𝜑(𝜉), whose
nverses are of the form

(𝜑) = 𝜉0 ±
√

1
2 ∫

𝜑

𝜑(𝜉0)

1
√

𝐶 + 𝑉 (𝜙)
d𝜙 , (87)

Remark that, owing to the existence of a prime integral and because
of the conditions 𝜑(0) = 0 and 𝜑′(𝜉𝑐 ) = 0, fixing 𝐶 is equivalent to
fixing 𝜑′(0) and 𝜑(𝜉𝑐 ). Remark also that the expressions in (86) and (87)
cannot be made explicit without invoking elliptic integrals. Therefore,
we shall compute by means of a numerical procedure the values of 𝐶
which ensure that boundary conditions are satisfied.

At this point, we shall recap how, once fixed 𝛬, the current shape
f the homogenized duoskelion beam model or, equivalently, the place-
ent function 𝜒 can be retrieved. Recall that, in the reference config-
ration, the continuum is straight and directed along the direction 𝐞𝑥
nd that the condition 𝜒(0) = 𝟎 is prescribed. Once boundary conditions
n 𝜑 are specified, the following steps should be undertaken to retrieve
he placement function 𝜒 :

1. to solve Eq. (67) together with boundary conditions on 𝜑;
2. to compute the field 𝜗 from Eq. (59), namely

tan(𝜑 − 𝜗) = 𝛬 sin𝜑 ; (88)

3. to compute the field 𝜌 using the following expression

𝜌
Eq. (39)

=

√

sin2(𝜑 − 𝜗) + cos2(𝜑 − 𝜗)
cos2(𝜑 − 𝜗)

=
√

tan2(𝜑 − 𝜗) + 1
Eq. (59)

=
√

𝛬2 sin2 𝜑 + 1 ; (89)

4. to compute 𝜒(𝜉) = 𝜒(0) + ∫ 𝜉0 𝜒
′(𝑠) d𝑠

𝜒(0)=𝟎
= ∫ 𝜉0 𝜌(𝑥)𝐞𝜗(𝑥) d𝑥, where

𝐞𝜗(𝑥) = cos 𝜗(𝑥)𝐞𝑥 + sin 𝜗(𝑥)𝐞𝑦, cfr. (21).

5. Computation of equilibria via Weierstrass’s closed-form solu-
tion

Before presenting the results of the numerical study, some pre-
liminary considerations based on the qualitative study of equilibrium
equations discussed above will be presented. The values of the quanti-
ties 𝛬, 𝐿∕𝐿0, and 𝐾 utilized to obtain the numerical results shown in
the sequel are reported in Table 2.

5.1. Preliminary considerations

Remark that the potential −𝑉 is an even function and it is periodic
with period 2𝜋. By means of elementary calculus, we can study the
maxima and minima of the function −𝑉 of 𝜑 for a given 𝛬. The results
of such a study are reported in Table 3. It is worth to remark that the
𝛬 (1) 𝐿∕𝐿0 (1) 𝐾 (1)

−5 5 1 2 1

local maxima and minima of the function −𝑉 , which correspond to
equilibrium points of the dynamical system (84), are nothing but the
uniform solutions discussed in the previous section.

In Fig. 4, the plot of the potential −𝑉 as a function of the angle 𝜑
is shown for four values of the load 𝛬, each belonging to one of the
intervals in Table 3.

We remark that the angle 𝜑 = 0 is a local minimum for −𝑉 if and
only if −1 < 𝛬 < 0 and ‖𝛬‖ ≥ 1. Therefore, only for values of the
load 𝛬 belonging to these intervals we can aim at finding solutions 𝜑(𝜉)
oscillating around the value 𝜑 = 0. To study such a kind of solutions it
is necessary to subdivide the abscissa into different intervals, so that in
each of these intervals the function 𝜉(𝜑) in (87) can be inverted. Owing
to the regularity of 𝑉 , each of these intervals is separated by a value
of the reference abscissa such that 𝜑′ = 0.

Fig. 5 reports for three values of 𝛬 belonging to the intervals −1 <
𝛬 < 0 and ‖𝛬‖ ≥ 1 the minimum value 𝜉𝑐 of the reference abscissa for
which 𝜑′ = 0 holds as a function of the constant 𝐶. Let 𝜑 be a local
maximum for −𝑉 . Clearly, we have that 𝜉𝑐 is an increasing function of
𝐶 and that 𝜉𝑐 → ∞ when the constant 𝐶 approaches −𝑉 (𝜑). Indeed,
because of the uniqueness of the solution to the initial value problem
(84), it is not possible that in a region of the beam of finite length 𝜉𝑐
the angle 𝜑 reaches 𝜑 with 𝜑′ = 0, because this would mean that such a
trajectory intersects that corresponding to the uniform solution 𝜑 = 𝜑.
Remark also that, if 𝐶 > −𝑉 (𝜑), then there does not exist a first time 𝜉𝑐
such that the condition 𝜑′(𝜉𝑐 ) = 0 holds true while, if 𝐶 < −𝑉 (0), then
there does not exist any solution to the initial value problem (84).

We shall now briefly explain in more detail how we construct
oscillatory solutions 𝜑(𝜉). Let us consider the condition 𝜑(𝐿∕𝐿0) = 0.
The condition 𝜑′(𝐿∕𝐿0) = 0 can then be dealt with in a straightforward
manner. At first let us note that the function 𝑉 (𝜑) is even. Let us
denote with 𝑛 the number of times the solution 𝜑 must intersect the
value 𝜑 = 0. At this point, we seek to find the value of the constant
𝐶 such that 𝜉𝑐 (𝐶) is equal to (𝐿∕𝐿0)∕(2𝑛 − 2). We denote with the
symbol 𝐶∗ such a specific value of the constant 𝐶. We then compute
numerically the integral function 𝜉(𝜑) in (87), setting 𝐶 = 𝐶∗, which
is clearly a non-decreasing function — it can hence be inverted —
in its definition interval [0, 𝜑∗], with 𝜑∗ = 𝜑(𝜉𝑐 ). Subsequently, we
compute its inverse 𝜑(𝜉). Starting from the so-found function 𝜑(𝜉) for
the interval 𝜉 ∈ [0, 𝜉𝑐 (𝐶∗)], exploiting the evenness of the potential
and the fact that the solution to the dynamical system (84), upon
reaching ±𝜑∗, passes through the same trajectory computed previously
— but in the opposite direction — we construct the sought solution
through successive reflections of the solution computed in the interval
𝜉 ∈ [0, 𝜉𝑐 (𝐶∗)] with respect to the vertical and horizontal axes.

It is worth to note that it is challenging to compute numerically the
quantity 𝜉𝑐 when the integrand function in (86) blows up, namely when
𝐶 = −𝑉 (𝜑). More particularly, the function NIntegrate of the software
Wolfram Mathematica 10,4 which has been used to construct the plots
in Fig. 5, could not converge when 𝜑(𝜉𝑐 ) is close to zero, i.e. 𝐶 ≈ −𝑉 (0),
and when 𝜑(𝜉𝑐 ) approaches 𝑉 (𝜑), i.e. 𝐶 ≈ −𝑉 (𝜑), cfr. Fig. 5.

In this regard, let us now prove that it is possible to extend by
continuity the function 𝜉𝑐 (𝐶) by setting 𝜉𝑐 (−𝑉 (0)) = lim𝐶→−𝑉 (0) 𝜉𝑐 (𝐶).

4 A global adaptive strategy has been used, which reaches the required
recision and accuracy goals of the integral estimate by recursive bisection of
he subregion with the largest error estimate into two halves, and computes
ntegral and error estimates for each half
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Table 3
Classification of the extreme points of the function −𝑉 of 𝜑.
𝛬 𝜑 = −𝜋 𝜑 = −arccos (1∕𝛬) 𝜑 = 0 𝜑 = arccos (1∕𝛬) 𝜑 = 𝜋

−1 < 𝛬 < 0 max – min – max

2

c

W
o
c
m
b
𝑉

𝑉

P

𝜉

c

𝜉

0 < 𝛬 < 1 min – max – min
‖𝛬‖ ≥ 1 min max min max min
Fig. 4. Plots of the potential −𝑉 as a function of the angle 𝜑 for four values of the load 𝛬, each belonging to one of the intervals in Table 3. Since the potential −𝑉 is a
𝜋-periodic function, we show only its plot in the interval 𝜑 ∈ [−𝜋, 𝜋].
Fig. 5. Minimum value 𝜉𝑐 of the reference abscissa for which 𝜑′ = 0 holds as a function of the constant 𝐶 for three values of 𝛬 belonging to the intervals −1 < 𝛬 < 0 and ‖𝛬‖ ≥ 1
omputed through the function NIntegrate of the software Wolfram Mathematica 10. It is seen that 𝜉𝑐 → ∞ when the constant 𝐶 approaches −𝑉 (𝜑). The numerical integration

fails when 𝜑(𝜉𝑐 ) is close to zero and when 𝜑(𝜉𝑐 ) approaches 𝑉 (𝜑).

e thus consider the case where 𝑉 (0) + 𝐶 is small. Clearly, the value
f 𝜑 over the motion of the equivalent dynamical system is in that
ase bounded by the value 𝜑𝑐 . We note that if 𝑉 (0) + 𝐶 is small in

greater than zero, meaning that, if the beam is too short, non-uniform
solutions may not exist.

Let us now study the asymptotic behavior of the function 𝜉 (𝐶) in
11

agnitude, then, considering the continuity of 𝑉 (𝜑), also 𝜑𝑐 must
𝑐

(86) when 𝜑 is close to 𝜑, a local maximum of the function −𝑉 (𝜑).

𝜉

𝜉

t

𝐶

𝜉

e small in magnitude. Therefore, we can satisfactorily approximate
̃(𝜑) + 𝐶 through a truncated second-order Taylor expansion as

̃(𝜑) + 𝐶 ≈ 𝑉 (0) + 𝐶 + 1
2

[

𝑉 ′′(0)
]

𝜑2 . (90)

It is thus possible to conclude that the condition 𝑉 (𝜑𝑐 )+𝐶 = 0, namely
the definition of the quantity 𝜑𝑐 , implies that 𝑉 (0)+𝐶 + 1

2

[

𝑉 ′′(0)
]

𝜑2
𝑐 =

0, which in turn implies that

𝜑𝑐 =

√

− 2
𝑉 ′′(0)

[

𝑉 (0) + 𝐶
]

. (91)

lugging the expression for 𝜑𝑐 in (86), we obtain

𝑐 =
√

1
2 ∫

√

− 2
𝑉 ′′(0)

(

𝑉 (0)+𝐶
)

0

1
√

𝑉 (0) + 𝐶 + 1
2

[

𝑉 ′′(0)
]

𝜑2

d𝜑 . (92)

Defining the new variable 𝑝 = 𝜑
√

− 2
𝑉 ′′(0)

(

𝑉 (0)+𝐶
)

, the previous integral

an be rewritten more simply as

𝑐 =

√

− 1
𝑉 ′′(0) ∫

1

0

1
√

1 − 𝑝2
d𝑝 , (93)

which means that for 𝐶 ≈ −𝑉 (0) the function 𝜉𝑐 (𝐶) behaves like
the constant function, as there is no dependence upon the quantity
𝐶 of the right-hand side of (93). Note that, therefore, the function
𝜉𝑐 (𝐶) ∶ (−𝑉 (0),−𝑉 (𝜑)) → R+ admits a lower bound which is strictly
𝑐
To this end, let us introduce an angle 𝜑0 such that 𝜑0 < 𝜑 and define
𝐶 = −𝑉 (𝜑). We then write 𝜉𝑐 in (86) as

𝜉𝑐 =
√

1
2 ∫

𝜑0

0

1
√

𝐶 + 𝑉 (𝜑)
d𝜑 +

√

1
2 ∫

𝜑𝑐

𝜑0

1
√

𝐶 + 𝑉 (𝜑)
d𝜑 . (94)

Setting

0 =
√

1
2 ∫

𝜑0

0

1
√

𝐶 + 𝑉 (𝜑)
d𝜑 (95)

we can rewrite 𝜉𝑐 in (94) as

𝑐 = 𝜉0 +
√

1
2 ∫

𝜑𝑐

𝜑0

1
√

𝐶 + 𝑉 (𝜑)
d𝜑 . (96)

Assuming 𝐶 ≈ 𝐶, we can satisfactorily approximate 𝐶 + 𝑉 (𝜑)
hrough a truncated second order Taylor expansion as

+ 𝑉 (𝜑) ≈ 𝐶 − 𝐶 + 1
2
𝑉 ′′(𝜑)(𝜑 − 𝜑)2 . (97)

Plugging the previous expression in (96), we get

𝑐 = 𝜉0 +
1

√

1
2𝑉

′′(𝜑𝑀 )

√

1
2 ∫

𝜑𝑐

𝜑0

1
√

𝐶−𝐶
1
2 𝑉

′′(𝜑)
+ (𝜑 − 𝜑)2

d𝜑 (98)
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t

𝜉

𝜉

0

Fig. 6. Fields 𝜑(𝜉) (left), 𝜌(𝜉) (mid-left), and 𝜗(𝜉) (mid-right) along with deformed equilibrium shape (right) for 𝐿∕𝐿0 = 1, 𝛬 = −5, 𝑛 = 2, 𝜑(𝜉 = 0) = 𝜑(𝜉 = 1) = 0.
Fig. 7. Fields 𝜑(𝜉) (left), 𝜌(𝜉) (mid-left), and 𝜗(𝜉) (mid-right) along with deformed equilibrium shape (right) for 𝐿∕𝐿0 = 1, 𝛬 = −5, 𝑛 = 2, and 𝜑(𝜉 = 0) = 0.

which, applying again (97),5 and after some elementary algebraic
manipulations, reads as

𝜑𝑐

In the next two subsections, we report numerical solutions obtained
when the load 𝛬 is assumed to take negative and positive values,
respectively. Recall that the conditions 𝜑(𝜉 = 0) = 0 and 𝜒(𝜉 =
12

𝜉𝑐 = 𝜉0 +
1

√ ∫
1

√

( )

d𝜑 . (99) 0) = 𝟎, i.e. clamp conditions, are always prescribed on the left end

a

i
l
i
a
w
r
v
a

(𝜑𝑐 − 𝜑)2𝑉 ′′(𝜑) 𝜑0 𝜑−𝜑
𝜑𝑐−𝜑

2
− 1

Defining the new variable 𝑝 = 𝜑−𝜑
𝜑𝑐−𝜑

, we get

𝜉𝑐 = 𝜉0 +
1

√

𝑉 ′′(𝜑)
∫

1

𝜑0−𝜑
𝜑𝑐−𝜑

1
√

𝑝2 − 1
d𝑝 = 𝜉0 −

cosh−1
(

𝜑0−𝜑
𝜑𝑐−𝜑

)

√

𝑉 ′′(𝜑)
. (100)

Observing that 𝜑0−𝜑
𝜑𝑐−𝜑

> 1, the previous expression can be recast into
he following one

𝑐 = 𝜉0 −

log

[

𝜑0−𝜑
𝜑𝑐−𝜑

+
√

(

𝜑0−𝜑
𝜑𝑐−𝜑

)2
− 1

]

√

𝑉 ′′(𝜑)
. (101)

Reminding that if 𝐶 → 𝐶𝑀 then 𝜑𝑐 → 𝜑, we obtain from (101) the
expression

𝜉𝑐 = 𝜉0 −
1

√

𝑉 ′′(𝜑)

{

log
[

2
(

𝜑0 − 𝜑
)]

− log
(

𝜑𝑐 − 𝜑
)}

. (102)

Reminding that, owing to (97), we have

𝜑𝑐 = 𝜑 +

√

√

√

√

√

2
(

𝐶 − 𝐶
)

𝑉 ′′(𝜑)
, (103)

which yields

𝑐 =

⎧

⎪

⎨

⎪

⎩

𝜉0 −
log

[

2(𝜑0 − 𝜑)
]

√

𝑉 ′′(𝜑)

⎫

⎪

⎬

⎪

⎭

+

log

[

2
(

𝐶−𝐶
)

𝑉 ′′(𝜑)

]

2
√

𝑉 ′′(𝜑)
. (104)

This means that, when 𝐶 → 𝐶, the function 𝜉𝑐 (𝐶) diverges logarithmi-
cally.

5 Note that, when 𝜑 in (97) is equal to 𝜑𝑐 , we have

= 𝑉 (𝜑𝑐 ) + 𝐶 ≈ 𝐶 − 𝐶 + 1
2
𝑉 ′′(𝜑)(𝜑𝑐 − 𝜑)2 .
of the beam. Additionally, note that, if 𝜑(𝜉) is a solution to either
problem (82) or (83), then also −𝜑(𝜉) is a solution to problem (82) or
(83), respectively. Remark also that the solution −𝜑(𝜉) corresponds to
reflecting the current shape 𝜒([0, 𝐿∕𝐿0]) with respect to the horizontal
axis, i.e. it corresponds to the symmetric deformed configuration. In
the sequel, we will refer to double roller condition as the boundary
condition where 𝜑 is fixed to zero, while the displacement is free, and
we will refer to free condition as the boundary condition where neither
𝜑 nor displacement are fixed.

5.2. Compression tests

In this subsection, we report numerical solutions obtained when the
load 𝛬 is assumed to take negative values.

Clamped-double roller conditions
In the first compression test, we set the length, the loading, the

essential boundary conditions on 𝜑, and the quantity 𝑛, as follows

𝐿∕𝐿0 = 1, 𝛬 = −5, 𝑛 = 2, 𝜑(𝜉 = 0) = 𝜑(𝜉 = 1) = 0 . (105)

By making use of the plot in Fig. 5 corresponding to 𝛬 = −5, it is seen
that to obtain a solution such that 𝜑(𝜉 = 0) = 𝜑(𝜉 = 1) = 0 and 𝑛 = 2,
i.e. which intersects two times the value 𝜑 = 0, one should set the
constant 𝐶 equal to 𝐶∗ = −1.05361. For that value of 𝐶 the associated
ngle 𝜑∗ is equal to 𝜑∗ = 1.41765 rad. The resulting solution 𝜑(𝜉) is

shown in Fig. 6, where we also report the fields 𝜗(𝜉) and 𝜌(𝜉), as well as
the deformed equilibrium shape. It is worth to remark that extremely
large displacements and rotations, as well as extremely large stretch
and shear deformations, are observed. By integrating the function 𝜌(𝜉),
t can be seen that the deformed equilibrium shape is almost four times
onger than the initial shape while, from the deformed shape in Fig. 5,
t is seen that the horizontal and vertical free end displacements are
lmost four times and two times greater than the initial length of the
hole beam, respectively. As an instance, the center line of the middle

egion of the beam rotates of about 𝜋 rad, and the shear angle reaches
alues extremely close to −𝜋∕2 rad. In Appendix B it is shown that such
solution is locally stable.
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Fig. 8. Fields 𝜑(𝜉) (left), 𝜌(𝜉) (mid-left), and 𝜗(𝜉) (mid-right) along with deformed equilibrium shape (right) for 𝐿∕𝐿0 = 1, 𝛬 = 5, 𝑛 = 2, and 𝜑(𝜉 = 0) = 𝜑(𝜉 = 1) = 0.

Clamped-free conditions
In the second compression test, we set the length, the loading, the

essential boundary conditions on 𝜑, and the quantity 𝑛, as follows

continuum system. Essentially, the discrete system is regarded as an
element of a sequence of discrete systems parameterized over the
generic cell size 𝜀, whose limit for 𝜀 → 0 is the continuum system.
13

Remind that the whole duoskelion beam has a length 𝐿, which is kept

𝐾

i
o
t

𝐃

𝐿∕𝐿0 = 1, 𝛬 = −5, 𝑛 = 2, 𝜑(𝜉 = 0) = 0 . (106)

By making use of the plot in Fig. 5 corresponding to 𝛬 = −5, it is
seen that to obtain a solution such that 𝜑(𝜉 = 0) = 0 and 𝑛 = 2,
i.e. which intersects two times the value 𝜑 = 0, one should set the
constant 𝐶 equal to 𝐶∗ = −9.4465. For that value of 𝐶 the associated
angle 𝜑∗ is equal to 𝜑∗ = 0.806499 rad. The resulting solution 𝜑(𝜉) is
shown in Fig. 7, where we also report the fields 𝜗(𝜉) and 𝜌(𝜉), as well as
the deformed equilibrium shape. It is worth to remark that extremely
large displacements and rotations, as well as extremely large stretch
and shear deformations, are observed. Also in this case extremely large
displacements, rotations, and deformations are observed. Additionally,
it is worth to remark that the deformed shape of the beam forms a kind
of flake.

5.3. Traction tests

In this subsection, we report numerical solutions obtained when the
load 𝛬 is assumed to take positive values.

Clamped-double roller conditions 𝐿∕𝐿0 = 1
In the first traction test, we set the length, the loading, the essential

boundary conditions on 𝜑, and the quantity 𝑛, as follows

𝐿∕𝐿0 = 1, 𝛬 = 5, 𝑛 = 2, 𝜑(𝜉 = 0) = 𝜑(𝜉 = 1) = 0 . (107)

By making use of the plot in Fig. 5 corresponding to 𝛬 = 5, it is seen
that to obtain a solution such that 𝜑(𝜉 = 0) = 𝜑(𝜉 = 1) = 0 and 𝑛 = 2,
i.e. which intersects two times the value 𝜑 = 0, one should set the
constant 𝐶 equal to 𝐶∗ = −1.02767. For that value of 𝐶 the associated
angle 𝜑∗ is equal to 𝜑∗ = 0.988922 rad. The resulting solution 𝜑(𝜉) is
shown in Fig. 8, where we also report the fields 𝜗(𝜉) and 𝜌(𝜉), as well
as the deformed equilibrium shape.

Clamped-double roller conditions 𝐿∕𝐿0 = 2
In the second traction test, we set the length, the loading, the

essential boundary conditions on 𝜑, and the quantity 𝑛, as follows

𝐿∕𝐿0 = 2, 𝛬 = 5, 𝑛 = 3, 𝜑(𝜉 = 0) = 𝜑(𝜉 = 2) = 0 . (108)

By making use of the plot in Fig. 5 corresponding to 𝛬 = 5, it is seen
that to obtain a solution such that 𝜑(𝜉 = 0) = 𝜑(𝜉 = 2) = 0 and 𝑛 = 3,
i.e. which intersects two times the value 𝜑 = 0, it is sufficient to exploit
the result obtained for the previous traction test and, therefore, set the
constant 𝐶 equal to 𝐶∗ = −1.02767. The resulting solution 𝜑(𝜉) is shown
in Fig. 9, where we also report the fields 𝜗(𝜉) and 𝜌(𝜉), as well as the
deformed equilibrium shape.

6. Numerical solution of the discrete system

At the beginning, in this section, we shall resume how a discrete
system with given 𝜀 can be put in relation with the homogenized
unchanged in the previously-mentioned limit process 𝜀 → 0. Let us
consider the case 𝐿0 = 1 m. Because of the definitions that have been
introduced throughout the present work, the constant 𝐾 is obtained
through the relation 𝐾 = 𝐾∕𝐿2

0, while the constant 𝐾 is obtained
through the relationship 𝐾 = 𝐾𝑅∕𝐾𝐸 . From the latter formula we
obtain

𝐾𝑅 = 𝐾𝐾𝐸 = 𝐾𝐾𝐸𝐿
2
0 (109)

We remind that 𝐾𝑅 is defined as (cfr. Eq. (48))

𝐾𝑅 =
𝐾𝐵𝐾𝑇
𝐾𝐵 +𝐾𝑇

, (110)

while the constants 𝐾𝐸 , 𝐾𝑇 and 𝐾𝐵 are defined as (cfr. Eq. (30))

𝐸 = 𝐾𝐸𝜀
−1, 𝐾𝑇 (𝐵) = 𝐾𝑇 (𝐵)𝜀

−1 , (111)

where the constants 𝐾𝐸 , 𝐾𝑇 and 𝐾𝐵 are defined, respectively, as
the stiffnesses of the extensional and top/bottom rotational springs.
Combining (109) with (110) and applying the scaling, we obtain

𝐾 = 1
𝐾𝐸𝐿2

0

𝐾𝐵𝐾𝑇
𝐾𝐵 +𝐾𝑇

=
𝐾𝐵

2𝐾𝐸𝐿2
0

, (112)

where a balanced duoskelion structure has been considered. The beam
is subjected to an axial force 𝜆, which is positive in extension and
negative in compression, which is linked to 𝛬 by the relation 𝛬 = 𝜆∕𝐾𝐸 .
According to the considerations above, as well as to the choices 𝐾 = 1
in Table 2 and 𝐿0 = 1 m, it easily follows that
𝐾𝐵
2

= 𝐾𝐸 × 1 m2, 𝜆 =
𝛬 ×𝐾𝐸
𝑁

× 1 m . (113)

The total length of the beam considered in the numerical simulations
performed with the discrete model is 𝐿 = 1 m, i.e. 𝐿∕𝐿0 = 1.

6.1. Methodology

A Timoshenko-like beam in-plane is formulated in a discrete fashion
for arbitrarily large deformations (Turco et al., 2020; Turco, 2020).
Such a beam consists in a finite number of consecutively connected
straight links, see Fig. 10 . Nodes connecting the links are numbered
in such a way that adjacent nodes are labeled with two consecutive
natural numbers. The current position of node 𝑗 is denoted with 𝑝𝑗 and
ts reference position with 𝑃𝑗 , being 𝑗 = 1, 2,… , 𝑁𝑡. Following the spirit
f enriched continua, each node is endowed with a unit vector, that for
he generic node 𝑗 reads in the reference configuration as

1,𝑗 =
𝑃𝑗+1 − 𝑃𝑗

‖𝑃𝑗+1 − 𝑃𝑗‖
. (114)

Such a unit vector is transformed in the current configuration into
the unit vector 𝐝1,𝑗 = 𝐐𝑗𝐃1,𝑗 , being 𝐐𝑗 a proper orthogonal second-
rank rotation tensor. Therefore, reference and current configurations
are determined by the sets of Lagrangian parameters

{

𝑃𝑗 ,𝐃1,𝑗
}

and
{

𝑝𝑗 ,𝐝1,𝑗
}

, respectively.
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Fig. 9. Fields 𝜑(𝜉) (left), 𝜌(𝜉) (mid-left), and 𝜗(𝜉) (mid-right) along with deformed equilibrium shape (right) for 𝐿∕𝐿0 = 2, 𝛬 = 5, 𝑛 = 3, and 𝜑(𝜉 = 0) = 𝜑(𝜉 = 2) = 0.
Fig. 10. Reference (light gray) and current (dark gray) configurations with related kinematic quantities. Geometrical meaning of stretch deformation 𝛥𝐰𝑎,𝑗+1 and shear deformation
𝐰𝑐,𝑗+1 is given in red for the generic discrete Timoshenko-like element in plane considered in this work. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)

Two strain measures, i.e. 𝛥𝐯𝑗+1 and 𝛥𝐐𝑗+1, are defined for the
generic index 𝑗 according to Fig. 10. Particularly, the vector 𝛥𝐰𝑗+1 is
iven by

stretch (link’s absolute change of length) and the shear6 deformations
of the link in-between nodes 𝑗 and 𝑗+1. The quantity 𝛥𝐐𝑗 is a bending
measure for the element formed by the two links joining, respectively,
14

nodes 𝑗 + 1/𝑗 and 𝑗/𝑗 − 1. Indeed, for such an element bending is

𝐸

c
t
t
0

𝐰𝑗+1 = (𝑝𝑗+1 − 𝑝𝑗 ) − ‖𝑃𝑗+1 − 𝑃𝑗‖𝐐𝑗𝐃1,𝑗 , (115)

hile the tensor 𝛥𝐐𝑗+1 is defined as

𝐐𝑗+1 = 𝐐𝑗+1𝐐𝑇
𝑗 − 𝐈 , (116)

ith 𝐈 being the identity second-rank tensor. The strain measure 𝛥𝐐𝑗+1
s defined as the difference between the relative rotation tensor 𝐐𝑗+1𝐐𝑇

𝑗
otating 𝐝𝑖,𝑗 into 𝐝𝑖,𝑗+1 and the identity tensor. Such a strain measure is
ero only when there is no relative rotation between the 𝑗th and 𝑗 + 1-
h link, namely when the relative rotation tensor coincides with the
dentity. Remark that the strain measure 𝛥𝐐𝑛+1 is objective. Indeed, let
s apply a rigid rotation 𝐑 to the current configuration or, equivalently,
et us change the frame of reference. We obtain 𝐑𝐐𝑗+1

(

𝐑𝐐𝑗
)𝑇 =

𝐐𝑗+1𝐐𝑇
𝑗 𝐑

𝑇 . Hence, the relative rotation tensor appearing in the strain
easure is objective. Obviously, the identity tensor is also objective.

rom what we have said, the strain measure 𝛥𝐐𝑛+1 is frame indepen-
ent. The strain vector 𝛥𝐰𝑗+1 can be additively decomposed into two
erms, namely

𝐰𝑎,𝑗+1 =
(

𝑝𝑗+𝑖 − 𝑝𝑗
)

(

1 −
‖𝑃𝑗+1 − 𝑃𝑗‖
‖𝑝𝑗+1 − 𝑝𝑗‖

)

, (117)

and

𝛥𝐰𝑐,𝑗+1 = 𝛥𝐰𝑗+1 − 𝛥𝐰𝑎,𝑗+1 . (118)

Each quantity in Eqs. (117) and (118) is interpreted geometrically
in Fig. 10. It is easily seen that the norms of the strain measures in
Eqs. (117) and (118) can be interpreted as measuring, respectively, the
considered in the present discrete formulation as the relative rotation
of 𝐃1,𝑗−1 and 𝐃1,𝑗 , being the vectors 𝐃1,𝑗−1 and 𝐃1,𝑗 rotating into the
vectors 𝐃1,𝑗−1 and 𝐃1,𝑗 in the current configuration, respectively. Such
a measure of bending is defined in the present discrete formulation as
the relative rotation of 𝐃1,𝑗 and 𝐃1,𝑗+1. It is worth remarking that the
quantity 𝛥𝐐𝑗 + 𝐈 = 𝐐𝑗𝐐𝑇

𝑗−1 is a proper orthogonal tensor. If 𝐐𝑗−1 = 𝐐𝑗
then 𝛥𝐐𝑗 is the null tensor.

Relationships between the independent Lagrangian parameters used
to describe the motion, i.e. displacements and rotations of nodes, and
the chosen strain measures 𝛥𝐰𝑎,𝑗 , 𝛥𝐰𝑐,𝑗 and 𝛥𝐐𝑗+1 have been given. We
shall introduce at this point the total deformation energy of the discrete
system. The total deformation energy of the discrete Timoshenko-like
beam is given by the summation along the beam of three elementary
contributions, namely the stretch contribution

𝐸𝑎,𝑗 =
𝑘𝑎
2
‖𝛥𝐰𝑎,𝑗+1‖2 , (119)

the bending contribution

𝑏,𝑗 =
𝑘𝑏
2
‖𝛥𝐐𝑗+1‖

2 , (120)

and the shear contribution

𝐸𝑐,𝑗 =
𝑘𝑐
2
‖𝛥𝐰𝑐,𝑗+1‖2 , (121)

6 Any measure of mismatch between link’s and 𝑫1,𝑗 ’s directions in the
urrent configuration is considered to be a shear deformation; remark that
he shear measure illustrated in Fig. 10 is a positive increasing function of
he angle formed by these two directions only when such an angle ranges from
𝑜 to 180◦, from 180◦ to 360◦, etc
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have a finite value. Numerical values for model parameters will be
provided in the sequel. The discrete problem is formulated in terms
of an applied force 𝜆, and is solved by means of a modified arc-length
method implemented into an in-house Matlab code, see Barchiesi et al.
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Fig. 11. Periodically repeated discretized duoskelion cell in undeformed and deformed
configurations. Shear stiffness is infinite throughout the whole beam. Links which are
colored in dark gray in the deformed configuration have infinite extensional stiffness.
Elements formed by two adjacent links with same gray tonality in the deformed
configuration have infinite bending stiffness. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

where ‖𝛥𝐰𝑎,𝑗+1‖ and ‖𝛥𝐰𝑐,𝑗+1‖ are the Euclidean norms of the vec-
tors 𝛥𝐰𝑎,𝑗+1 and 𝛥𝐰𝑐,𝑗+1, respectively, ‖𝛥𝐐𝑗+1‖

2 = tr(𝛥𝐐𝑇
𝑗+1𝛥𝐐𝑗+1),

nd 𝑘𝑎, 𝑘𝑏, and 𝑘𝑐 are stiffness parameters7 corresponding to stretch,
ending and shear deformations, respectively. Note that if 𝐸𝑎, 𝐸𝑏, and
𝑐 are defined to be, respectively, the total stretching, bending, and

hearing deformation energies, i.e. they are obtained by summing up,
espectively, all elementary contributions in Eqs. (119), (120), and
121) along the beam, then the total deformation energy is given by
𝑎 + 𝐸𝑏 + 𝐸𝑐 .

Remark also that, if 𝐝1,𝑗 is required to be collinear to the link con-
ecting nodes 𝑗 and 𝑗 + 1 in the current configuration, then there is no
hear deformation and one retrieves a Hencky-type discretization of the
xtensible Elastica which can be otherwise considered a generalization
o finite deformations and extensible beams of Hencky’s approximation
f Euler–Bernoulli beam model. Such a generalization is discussed,
.g., in the work (Turco, 2018).

.2. Comparison between micro- and macro- predictions

The duoskelion beam geometry shown in Fig. 1, with 𝑁 = 50 cells,
s discretized by means of the Timoshenko-like elements introduced
bove as shown in Fig. 11, i.e. one link for horizontal tracts and
wo links for vertical tracts, being the length of all links the same
n the undeformed configuration. Actually, the microstructure which
s studied in the present work represents a special case of such a
escription, as it is meant to be made by rigid two-legged bodies and
urely extensible springs (see Fig. 2). Such a special case is not to be
ecovered by enforcing kinematic conditions — i.e. on strain measures,
nd hence on kinematic quantities — but rather by letting for all links
he shear stiffness 𝑘𝑐 tending to infinite.8 Additionally, for selected links
nd elements, the stretching and bending stiffnesses, respectively, tend
o infinite (see the deformed configuration in Fig. 11). Links which are
ark in the deformed configuration have infinite stretching stiffness.
lements formed by two adjacent links with same color in the deformed
onfiguration have infinite bending stiffness.

Clearly, all elements and links within the system must have, strictly
peaking, finite stiffnesses. Indeed, those stiffnesses which should tend
o infinite are considered to be much greater than those which should

7 The dependence of stiffness parameters upon the index 𝑗 has been omitted
to lighten the notation.

8 In this way, the unit vector attached to each node will be co-axial to the
adjacent right link.
(2021a). Remark that, when two space dimensions are considered,
the quantity ‖𝛥𝐐𝑗+1‖

2 in (120) is equal to 4[1− cos(𝜔)], where 𝜔 is
the relative rotation angle between the 𝑗th and 𝑗 + 1-th link (Turco
et al., 2020) Hence, it is different from the quantity sin2(𝜔) that one
has in (1). Nevertheless, when small 𝜔 and in-plane rotations are
considered, we have that ‖𝛥𝐐𝑗+1‖

2 = 2𝜔2 and sin2(𝜔) = 𝜔2. Remark
lso that the quantity ‖𝛥𝐰𝑎,𝑗+1‖2 in (119) is the same quantity as the
ne

(

‖𝑝𝑗+𝑖 − 𝑝𝑗‖ − ‖𝑃𝑗+1 − 𝑃𝑗‖
)2 appearing in (1). Note that, according

o Fig. 11, the extensible vertical segment of a duoskelion cell is
iscretized with two links. Therefore, the equivalent finite extensional
tiffness is equal to 𝑘𝑎∕2. From the previous arguments, comparing the
efinitions (1), (119), and (120), it follows for the finite stiffnesses that

𝑎 = 2𝐾𝐸 , 𝑘𝑏 =
𝐾𝐵
2

. (122)

Therefore, for the finite stiffnesses we have that

𝑏 = 𝑘𝑎 × 1 m2, 𝜆 =
𝛬 × 𝑘𝑎
2𝑁

× 1 m . (123)

Table 4 reports the numerical values of the quantities 𝑘𝑎, 𝑘𝑏, 𝑘𝑐
which have been utilized in computing the discrete model presented
in this section. The numerical values are divided into finite ones and
infinite ones, according to the discussion above. The case that we
analyzed is the compression test with clamped-double roller essential
conditions at boundaries. Fig. 12 shows the equilibrium path computed
using the discrete model presented in this section for the compression
test with clamped-double roller essential conditions at boundaries. The
quantity 𝜆 in the abscissa is the absolute value of the compression
force, while the quantity 𝑢𝐿 in the ordinate is the absolute value of the
horizontal (axial) displacement of the right-end tip of the duoskelion
beam. It is worth to note that buckling is observed when the force
reaches approximately 0.02 N and that the stiffness matrix of the
discrete system is always positive definite for each converged solution
step, a fact which ensures the stability of the solution computed at
each converged step. Fig. 13 shows the deformed configuration of the
duoskelion beam computed by means of the discrete model in the
last step, corresponding to 𝜆 = 0.031 N and 𝑢𝐿 = 3.77 m, compared
against the deformed shape of the continuum in Fig. 6. In the discrete
model, extremely large nodal displacements, as well as deformations
of the deformable elements, are observed. Computations have been
stopped for 𝜆 = 0.031 N, which corresponds to the value 𝑢𝐿 = 3.77 m,
the same computed for the continuum model. Observing that, if no
information were lost in the homogenization, then, according to the
expression in (123), we would have had 𝜆 = 0.025 for the considered
compression test, we can conclude that the continuum approximates
satisfactorily the discrete even for a relatively low number of cells. The
current shape obtained with the discrete model exhibits all the main
features of the one obtained by means of the continuum model. The
two shapes are very similar, even if the vertical displacement of the
right-end tip is noticeably different. Such a discrepancy is compatible
with the fact mentioned above, namely that information is lost in
the homogenization. Fig. 14 shows, on the left, the total deformation
energy accumulated in the duoskelion beam and stretching, bending,
and shearing energy contributions summed along the whole duoskelion
beam versus the absolute value of the applied compression load. On the
right, Fig. 14 shows the deformation energy accumulated in stretching,
bending, and shearing energy contributions in a single duoskelion cell
versus the cell number. The units of measure of all energies reported
in the plots are Joules. As expected from the continuum model and
compatibly with the deformed shape in Fig. 13, in the middle region of
the beam most of the deformation energy is accumulated in stretching
contributions, while in proximity of boundaries it is accumulated in
bending contributions.
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Table 4
Numerical values of the quantities 𝑘𝑎, 𝑘𝑏, 𝑘𝑐 which have been utilized in
computing the discrete model presented in this section. The numerical
values are divided into finite ones and infinite ones, according to the
discussion above.
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also worth to note that the (only) final governing differential equation,
i.e. Eq. (67), involves only one unknown, that is a kinematic parameter
representative of the microstructure. Indeed, Eq. (67) involves only
one unknown, which is the rotation angle field. Such a field is the
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𝑘𝑎 (Nm−1) 𝑘𝑏 (Nm) 𝑘𝑐 (Nm−1)

0.5 0.5 – fin.
1 × 105 1 × 105 1 × 105 inf.

Fig. 12. Equilibrium path computed using the discrete model presented in this section
for the compression test with clamped-double roller essential conditions at boundaries.
The quantity 𝜆 in the abscissa is the absolute value of the compression force, while the
quantity 𝑢𝐿 in the ordinate is the absolute value of the horizontal (axial) displacement
of the right end of the duoskelion beam. The units of measure of the abscissa and the
ordinate are, respectively, Newton and meters. Buckling is observed when the force
reaches approximately 0.02 N.

7. Conclusions and outlooks

Duoskelion structures are meant to be a proof-of-concept motif for a
new class of metamaterials showing unconventional effects like axial–
transverse coupling and incompressibility. In the present contribution,
we have derived via asymptotic homogenization the deformation en-
ergy of a beam model describing the mechanical behavior of duoskelion
structures, and then discussed and computed a class of equilibrium
configurations extremely far from the reference one in the case of
axial loads by exploiting the Hamiltonian structure of the equivalent
dynamical system. Finally, we have shown that the homogenized model
compares well with the discrete one, even when the number of cells is
relatively low.

The homogenized beam model derived in this paper can be classi-
fied as an internally-constrained Cosserat (Chróścielewski et al., 2020)
one-dimensional planar continuum. We shall delve more in this clas-
sification. Let us look at the deformation energy (47). For the Piola’s
ansatz, we can straightforwardly interpret the quantity 𝜑(𝑥) as the
otation angle of the rigid S-shaped body in the elementary unit cell
entered at the abscissa 𝑥. As noted after Eq. (38), the quantity 𝛥
n (47) can be expressed in terms of the quantities 𝜗 and 𝜑 as 𝛥 =
− 𝜗, according to the continualization of Eq. (25). In the language

f continuum mechanics, the quantity 𝛥 hence coincides with the so-
alled shear deformation of the 1D continuum. Given the kinematics,
.e. placement and (cross-section-like) rotation angle fields, and the de-
ormation energy(47), considering that for small shear angles tan2 𝛥 ≈
2, it can be concluded that the homogenized model corresponds to one
f the possible non-linear generalizations of the classical Timoshenko
eam model. Clearly, as the constraint 𝜌 cos𝛥 = 1 (see Eq. (38))
ust hold almost everywhere, the homogenized model can be more

pecifically categorized as an internally constrained Timoshenko beam
odel, this last being a Cosserat-type continuum. At this point, it is
icromorphic variable of the continuum, i.e. it is directly related to
he microstructure. Eq. (67) does not involve 𝜗, which — contrarily to

— is instead directly related to the centerline. Obtaining Eq. (67)
as been possible because, thanks to the internal constraint, we were
ble, considering the case of an axially loaded duoskelion beam, to
anipulate the Euler–Lagrange equilibrium equation for the variable
in order to express tan𝛥 as a function of 𝜑 only (see Eq. (59)).

At this point, we shall now indulge in some considerations on
the employed homogenization approach. At first, we remark that the
homogenization approach employed in this paper possesses the main
features of asymptotic homogenization. Indeed, in our analysis we
expand the independent kinematic quantities 𝜒(⋅) and 𝜑(⋅) in powers
of a small parameter (see Eq. (24), i.e. the quantity 𝜀). Such an
expansion, up to the reminder 𝑜(𝜀), is stopped at the first order in
he small parameter 𝜀. While this could seem a limitation in catching
he microstructure-induced effects, this choice has been done simply
ecause the sought limit continuum — which we have proved to be
ufficiently descriptive of the discrete structure — is not of second
radient type (with the wording second gradient type we refer to the

appearance in the deformation energy density of the second gradient
of the independent kinematic descriptors 𝜒 and/or 𝜑), but rather
of first gradient — actually micromorphic — type. Considering that
the absence of second gradient terms in the Taylor expansion of the
independent kinematic quantities (except what is left in the reminder
𝑜(𝜀)) above is not a limitation and that, in any case, asymptotic ho-
mogenization does not restrict to cases where the limit continuum is of
second gradient type, we do not see anything against identifying our
approach as asymptotic homogenization.

It is nevertheless worth to mention that, as it is well-known, con-
straining the kinematics of a micromorphic (e.g. Cosserat or, particu-
larly, Timoshenko) one-dimensional model in a suitable way (typically
when 𝜑 = 𝜗′), one can transition from a first-gradient micromorphic
theory to a second gradient one. Therefore, while we have recovered
in the limit a micromorphic continuum, it is not excluded that in some
circumstances such a continuum could reduce to a second gradient
theory.

Making use of a variational view-point (which is considered as
classic nowadays in asymptotic homogenization, owing to the many cel-
ebrated contributions making use of the notion of Gamma-convergence
(Padilla-Garza, 2022; Friesecke et al., 2006)), the heuristic procedure
that we have employed has led us to obtain the continuum limit by
letting 𝜀 → 0 in the discrete deformation energy, reminding that the
summation turns into an integral according to ∑

𝑖 𝑓 (𝑥𝑖)𝜀
𝜀→0
⟶ ∫ 𝐿0 𝑓 d𝑥,

where 𝑓 is a real valued function defined on [0, 𝐿]. This is the reason
why only the first order in 𝜀 inside the summation — right before
performing the limit — is retained as a finite quantity for 𝜀 tending
o zero. Higher (than first) order terms are vanishing, while lower
than first) order ones, if any, are blowing up. There are however some
on-trivial factors which determine the order of a term.

At first, we shall mention the scaling laws assumed to hold asymp-
otically for the micro-scale stiffnesses. In our case, we have performed
specific choice for the stiffnesses 𝐾𝑇 (𝐵),𝑖, which allows to retain in the

imit a finite term containing the first gradient of 𝜑.
The assumption 𝑟𝑖 = 𝑜(𝜀0) is also a key point of the homogenization

rocess. Indeed, such a condition makes finite — and, specifically,
anishing — the terms that, after the scaling, would otherwise explode.
uch an assumption is equivalent to state that the model we are inter-
sted to recover in the homogenized limit describes only continuum
ystems with finite energy.

Concerning the fact that the Taylor expansions of the independent
inematic quantities 𝜒(⋅) and 𝜑(⋅) were stopped, up to the reminder,

at first order in 𝜀, we can at this point observe that, even expanding
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Fig. 13. Deformed configuration of the duoskelion beam computed by means of the discrete model presented in this section in the last step, corresponding to 𝜆 = 0.031 N and
𝑢𝐿 = 3.77 m, compared against the deformed shape of the continuum in Fig. 6. The units of measure of the horizontal and vertical axes are meters.
Fig. 14. On the left, total deformation energy accumulated in the duoskelion beam and stretching, bending, and shearing energy contributions summed along the whole duoskelion
beam versus the absolute value of the applied compression load. On the right, deformation energy accumulated in stretching, bending, and shearing energy contributions in a
single duoskelion cell versus the cell number. The units of measure of all energies reported in the plots are Joules.

the kinematic descriptors 𝜑𝑖 and 𝑝𝑖 up to the second order in 𝜀, given
the dependence of the deformation energy of the discrete system upon
𝜑𝑖 and 𝑝𝑖, given the assumption 𝑟𝑖 = 𝑜(𝜀0), and given the scaling laws

We remark that, if one were to perform a fully discrete analysis of
the duoskelion with different unit cell’s aspect ratios, he/she would
observe a dependence of the response, and particularly the extent of
17

for the micro-scale stiffnesses, the terms of the deformation energy the extensional-shear coupling under axial loading, on the unit cell’s

containing higher derivatives of 𝜑 and 𝜒 would be anyway vanishing
in the limit. In other words making explicit 𝑜(𝜀) terms in the expansion
of the kinematic quantities does not bring any different result, because
these terms would anyway go into 𝑜(𝜀) terms in the final — i.e. right
before the limit — discrete energy expression.

We anticipate that, in a forthcoming paper, we prove a rigorous
Gamma-convergence result generalizing the one which has been ob-
tained heuristically in the present paper, and which will make clearer
some points concerning the asymptotic homogenization of duoskelion
structures.

It is worth to mention that, even if not addressed in the present
paper and almost straightforward to see, the substitution of the S-
shaped rigid bodies with any otherwise shaped rigid body does not
change at all the homogenization procedure and gives the very same
results.
aspect ratio. Apparently, this is in contradiction with one of the results
that we obtained in this paper, namely the fact that the continuum-
level response of the investigated metamaterial is unaffected by the unit
cell’s ratio. Indeed, relying on the fact that the quantity tan𝛥(𝑥𝑖)+2ℎ —
where ℎ is the unit cell’s aspect ratio — stands for the current signed
length of the extensional spring on the left of node 𝑖, normalized with
respect to the cell length 𝜀 (see Eq. (42)), we carried out the following
argument. Since in the reference configuration the equality 𝛥 = 0 holds
true, the quantity tan𝛥 + 2ℎ is greater than zero in that configuration.
To pass from a positive value of such a signed length to a negative
one, one must pass through a completely compressed configuration
where tan𝛥+ 2ℎ = 0. Such a configuration is pathological, because the
continuum energy density blows up to infinity when tan𝛥+2ℎ → 0 (see
Eq. (37)). Therefore, we have believed reasonable to limit ourselves to
study only cases where tan𝛥 + 2ℎ ≥ 0. Under this restriction, we have
proved that the homogenized response — i.e. when the number of unit
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cells blows up to infinity — is unaffected by the unit cell’s aspect ratio
ℎ. It is thus possible to conclude that, while for duoskelion structures
consisting of only a few unit cells the extent of the extensional-shear
coupling under axial loading depends significantly on the unit cell’s

Resources, Writing – review & editing, Supervision, Project admin-
istration. Pierre Seppecher: Conceptualization, Methodology/Study
design, Formal analysis, Investigation, Resources, Writing – review
& editing, Visualization, Supervision. Emilio Turco: Conceptualiza-

a

𝜑

𝜑

aspect ratio, increasing the number of unit cells such a dependence
becomes less significant until, eventually, vanishing for infinite cells,
i.e. in the continuum limit.

Future outlooks of the present work include

1. performing the asymptotic homogenization adding concentrated
masses to the centers of the S-shaped rigid bodies or distributed
masses along such rigid bodies to deal with the dynamic regime
and, more specifically, with wave propagation in duoskelion
structures. This can be easily achieved following the same steps
done in Barchiesi and Khakalo (2019), leading to rotational
micro-inertia effects in the kinetic energy;

2. studying non-axial end loads by means of the same Extended
Lagrangian formulation employed in this work;

3. further comparing the discrete model and the macro-model nu-
merically — both in statics and dynamics — to assess to what
extent the continuum retains the salient features of the discrete
model depending on the cell size. Possible developments include
the comparison of force–displacement diagrams and the compu-
tation of the discrete-continuum deformation energy error for
different applied loads/displacements and cell numbers. Models
more sophisticated than the discrete ones utilized in this paper
could be explored at the micro-scale, as an instance semi-discrete
models based on continuum beam theories (Greco et al., 2021;
Greco and Cuomo, 2015, 2014; Cazzani et al., 2016; Harsch
et al., 2021; Sharma and Eremeyev, 2019);

4. introducing external distributed forces/couples and boundary
couples;

5. investigating how to physically realize duoskelion structures,
with special attention to the materialization of the extensional
springs. It can be conjectured that these springs, which should
be realized by physical devices that are very compliant only to
extension/compression in one direction, could be materialized
as pantographic beams (Barchiesi et al., 2018, 2019) constrained
so to have null axial relative displacement of adjacent boundary
hinges. In this manner, three scales would be clearly distin-
guishable in the metamaterial, namely the macro-scale (≈ 𝐿)
of the whole duoskelion beam, the meso-scale (≈ 𝜀) of the
single duoskelion cell, the micro-scale of each pantographic cell
making up the extensional springs;

6. exploiting the homogenization performed in this work to repeat
the same study for a two-dimensional fibrous material moving in
plane made up of two orthogonal families of hinged (in an anal-
ogous fashion to that of pantographic fabrics (Spagnuolo et al.,
2017) and bi-pantographic fabrics (Barchiesi et al., 2021b))
or rigidly connected duoskelion beams. When considering the
first type of connection, one could regard the resulting two-
dimensional material as a pantographic material whose fibers
are duoskelion structures. It worth to remark that when the
rigid connection is considered, the resulting two-dimensional
model could be adapted to the granular metamaterials recently
studied in Giorgio et al. (2020), in this regard see also the works
(Nejadsadeghi and Misra, 2021, 2020; Misra and Nejadsadeghi,
2019).
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Appendix A. Alternative linear stability analysis of the zero solu-
tion

In this appendix we shall study the linear stability of the zero
solution to problem (77) through an alternative approach to that used
in the core of the paper.

The Euler–Lagrange equation for 𝜑 associated to the second order
pproximation of the energy in the problem (77) reads as

′′ − 𝜕2𝑉
𝜕𝜑2

|

|

|

|

|𝜑=0
𝜑 = 0 , (124)

which has infinite sinusoidal solutions of the type

= 𝐴 sin
⎛

⎜

⎜

⎝

√

√

√

√− 𝜕
2𝑉
𝜕𝜑2

|

|

|

|

|𝜑=0
𝑥
⎞

⎟

⎟

⎠

, (125)

where 𝐴 ≥ 0 is constant and is the amplitude of the sinusoidal solution.
Remark that, when 𝐴 > 0, then the solution in Eq. (125) is a real one
if and only if 𝑉 is convex in a neighborhood of 𝜑 = 0. Additionally,
when 𝐴 > 0, such a solution fulfills boundary conditions 𝜑(𝜉 = 0) =
𝜑(𝜉 = 1) = 0 if and only if
√

√

√

√− 𝜕
2𝑉
𝜕𝜑2

|

|

|

|

|𝜑=0
= 𝑘𝜋, 𝑘 ∈ Z . (126)

At this point we can define a family of functions, parameterized over
the parameter 𝐴, which fulfill the boundary conditions 𝜑(0) = 𝜑(1) = 0
and the Euler–Lagrange equation above

𝜑 = 𝐴 sin (𝑘𝜋𝑥) , 𝑘 ∈ Z . (127)

We remind that, since E𝛬 = 0 for the solution 𝜑(𝜉) = 0 (remark that
such a solution can be also retrieved by setting 𝐴 = 0 in Eq. (127)), the
zero solution 𝜑(𝜉) = 0 does not only make stationary the augmented
energy functional appearing in problem (77), but it is also a local
minimum — and hence a locally stable solution — if other solutions
(i.e. fulfilling the Euler–Lagrange equation and boundary conditions)
with small magnitude are associated with positive values of the energy.
Being interested in studying the linear stability of the zero solution,
we plug the family of functions in Eq. (127) into the second order
approximation of the energy in problem (77)

∫

1

0

(

1
2
𝜑′2 + 1

2
𝜕2𝑉
𝜕𝜑2

|

|

|

|

|𝜑=0
𝜑2

)

d𝑥
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=∫

1

0

[

1
2
𝑘2𝜋2𝐴2 cos2(𝑘𝜋𝑥) + 1

2
𝜕2𝑉
𝜕𝜑2

|

|

|

|

|𝜑=0
𝐴2 sin2(𝑘𝜋𝑥)

]

d𝑥 ,

which, by means of a few manipulations and the computation of an
e

(
p
[
𝛿

𝛿

I

𝜓

𝜓

Plugging (134) into (129) and (132), we get

𝜓

⎧

⎪

𝛥𝜉
(

∑𝑁𝜉−2
𝑖=0 𝛼𝑖

)

+ 𝛼𝑁𝜉−1(𝜉 − 𝜉𝑁𝜉−1) if 𝜉 < 𝐿∕𝐿0 − 𝛥𝜉

𝜓

(
i

𝛿

c

r
t
c
t
f
i

R

A

lementary integral, reads as

∫

1

0

(

1
2
𝜑′2 + 1

2
𝜕2𝑉
𝜕𝜑2

|

|

|

|

|𝜑=0
𝜑2

)

d𝑥 = 𝐴2

4

(

𝑘2𝜋2 + 𝜕2𝑉
𝜕𝜑2

|

|

|

|

|𝜑=0

)

.

For 0 < 𝛬 < 1 we have 𝜕2𝑉 ∕𝜕𝜑2
|

|

|

|

|𝜑=0
> 0. Indeed, we have that

𝜕2𝑉
𝜕𝜑2

|

|

|

|

|𝜑=0
= −𝛬

𝐾

(

𝛬 cos2 𝜑 − 𝛬 sin2 𝜑 − cos𝜑
)

|

|

|

|

|𝜑=0
= −

𝛬 (𝛬 − 1)
𝐾

.

We hence get to the same conclusions reported after Eq. (81).

Appendix B. Stability analysis of non-uniform solutions

In this appendix we shall propose an approximate way to check the
local stability of any (hence also non-uniform) solution to problem (65).
More specifically, we shall be interested in studying the stability of the
solution computed for the compression test with clamped-double roller
conditions in Section 5.

At first, the second variation of the augmented energy functional E𝛬
in (64) can be easily computed as

𝛿2E𝛬 = ∫

𝐿∕𝐿0

0

{

(

𝛿𝜑′)2 − 𝛬
𝐾

[

−cos(𝜑) + 2𝛬(cos2 𝜑 − sin2 𝜑)
]

(𝛿𝜑)2
}

d𝜉 .

(128)

A solution 𝜑(𝜉) to problem (65) is locally stable if and only if 𝛿2E𝛬 in
128) is positive for any kinematically admissible variation 𝛿𝜑. At this
oint, we introduce a uniform discretization

{

𝜉𝑖
}𝑁𝐹−1
𝑖=0 of the domain

0, 𝐿∕𝐿0] consisting of 𝑁𝐹 knots, such that 𝜉0 = 0. Let us approximate
𝜑′ as

𝜑′ ≈ 𝜓 ′ ∶=
𝑁𝐹−2
∑

𝑖=0
𝛼𝑖I[𝜉𝑖 ,𝜉𝑖+1] , (129)

where 𝛼𝑖 ∈ R and I is the indicator function defined as

[𝜉𝑖 ,𝜉𝑖+1](𝑠) =

{

1 𝑠 ∈ [𝜉𝑖, 𝜉𝑖+1]
0 otherwise

. (130)

The previous definition allows us to compute 𝜓 ≈ 𝛿𝜑 as

(𝜉) = ∫

𝜉

0
𝜓 ′(𝑠) d𝑠 = ∫

𝜉

0

[𝑁𝐹−2
∑

𝑖=0
𝛼𝑖I[𝜉𝑖 ,𝜉𝑖+1](𝑠)

]

d𝑠 . (131)

Defining the quantity 𝑁𝜉 as the value of the minimum index 𝑖 such
that 𝜉𝑖 ≥ 𝜉, we obtain

(𝜉) = 𝛥𝜉
⎛

⎜

⎜

⎝

𝑁𝜉−2
∑

𝑖=0
𝛼𝑖
⎞

⎟

⎟

⎠

+ 𝛼𝑁𝜉−1(𝜉 − 𝜉𝑁𝜉−1) , (132)

where 𝛥𝜉 = 𝜉𝑖+1 − 𝜉𝑖, a quantity which does not depend on the index 𝑖.
Note that, when 𝜉 = 0, we have 𝜓(0) = 0, which is in agreement

with the condition 𝛿𝜑(𝜉 = 0) = 0. Since we are interested in studying
the stability of the solution computed for the compression test with
clamped-double roller conditions in Section 5, we have that the value
of the field 𝜑 is assigned also at the boundary 𝜉 = 𝐿∕𝐿0, which implies
that 𝛿𝜑(𝜉 = 𝐿∕𝐿0) = 0. Let us hence enforce that 𝜓(𝐿∕𝐿0) = 0. We
obtain

𝛥𝜉

[(𝑁𝐹−3
∑

𝑖=0
𝛼𝑖

)

+ 𝛼𝑁𝐹−2

]

= 0 , (133)

which allows us to find a closed-form expression for 𝛼𝑁𝐹−2

𝛼𝑁𝐹−2 = −
𝑁𝐹−3
∑

𝑖=0
𝛼𝑖 . (134)
(𝜉) =
⎨

⎪

⎩

(

𝜉𝑁𝐹−2 + 𝛥𝜉 − 𝜉
)

∑𝑁𝐹−3
𝑖=0 𝛼𝑖 otherwise

(135)

′(𝜉) =
𝑁𝐹−3
∑

𝑖=0
𝛼𝑖
(

I[𝜉𝑖 ,𝜉𝑖+1] − I[𝜉𝑁𝐹 −2 ,𝜉𝑁𝐹 −1]

)

(136)

Substituting these approximations of 𝛿𝜑 and 𝛿𝜑′ into the expression
128) of the second variation of the augmented energy functional E𝛬
n (64), we find

2E𝛬 =∫

𝐿∕𝐿0

0

[𝑁𝐹−3
∑

𝑖=0
𝛼𝑖
(

I[𝜉𝑖 ,𝜉𝑖+1] − I[𝜉𝑁𝐹 −2 ,𝜉𝑁𝐹 −1]

)

]2

d𝜉 (137)

− ∫

𝐿∕𝐿0−𝛥𝜉

0

𝛬
𝐾

[

−cos(𝜑) + 2𝛬(cos2 𝜑 − sin2 𝜑)
]

×
⎡

⎢

⎢

⎣

𝛥𝜉
⎛

⎜

⎜

⎝

𝑁𝜉−2
∑

𝑖=0
𝛼𝑖
⎞

⎟

⎟

⎠

+ 𝛼𝑁𝜉−1(𝜉 − 𝜉𝑁𝜉−1)
⎤

⎥

⎥

⎦

2

d𝜉 (138)

− ∫

𝐿∕𝐿0

𝐿∕𝐿0−𝛥𝜉

𝛬
𝐾

[

−cos(𝜑) + 2𝛬(cos2 𝜑 − sin2 𝜑)
]

×

[

(

𝜉𝑁𝐹−2 + 𝛥𝜉 − 𝜉
)

𝑁𝐹−3
∑

𝑖=0
𝛼𝑖

]2

d𝜉 (139)

Discretizing the integral operator in the equation above using a Rie-
mann sum, with the same space discretization

{

𝜉𝑗
}

introduced at the
beginning of this appendix, we obtain

𝛿2E𝛬(
{

𝛼𝑖
}

) =
𝑁𝐹−2
∑

𝑗=0

[𝑁𝐹−3
∑

𝑖=0
𝛼𝑖
(

𝛿𝑖𝑗 − 𝛿(𝑁𝐹−2)𝑗
)

]2

𝛥𝜉 (140)

−
𝑁𝐹−2
∑

𝑗=0

⎧

⎪

⎨

⎪

⎩

𝛬
𝐾

[

−cos(𝜑𝑗 ) + 2𝛬
(

cos2(𝜑𝑗 ) − sin2(𝜑𝑗 )
)]

×

(𝑗−1
∑

𝑖=0
𝛼𝑖

)2

(𝛥𝜉)3
⎫

⎪

⎬

⎪

⎭

, (141)

which is a (purely) quadratic non-diagonal form in 𝛼𝑖’s, whose Hessian
an be computed as

𝜕2
(

𝛿2E𝛬
)

𝜕𝛼ℎ𝜕𝛼𝑘
= 2

𝑁𝐹−2
∑

𝑗=0

[𝑁𝐹−3
∑

𝑖=0
𝛿𝑖ℎ

(

𝛿𝑖𝑗 − 𝛿(𝑁𝐹−2)𝑗
)

]

×

[𝑁𝐹−3
∑

𝑖=0
𝛿𝑖𝑘

(

𝛿𝑖𝑗 − 𝛿(𝑁𝐹−2)𝑗
)

]

𝛥𝜉 (142)

− 2
𝑁𝐹−2
∑

𝑗=1

{

𝛬
𝐾

(

−cos(𝜑𝑗 ) + 2𝛬
[

cos2(𝜑𝑗 ) − sin2(𝜑𝑗 )
])

×

(𝑗−1
∑

𝑖=0
𝛿𝑖ℎ

)(𝑗−1
∑

𝑖=0
𝛿𝑖𝑘

)

(𝛥𝜉)3
}

. (143)

Noting that the approximations of 𝛿𝜑 and 𝛿𝜑′ in (135) and (136),
espectively, are kinematically admissible for any

{

𝛼𝑖
}𝑁𝐹−3
𝑖=0 , in order

o prove that the solution computed for the compression test with
lamped-double roller conditions in Section 5 is stable, it is sufficient
o prove that the Hessian matrix above is positive definite. We checked
or 𝛥𝜉 = 0.1, 𝛥𝜉 = 0.05, and 𝛥𝜉 = 0.02 that, for the solution 𝜑(𝜉) shown
n Fig. 6, this condition is fulfilled.
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