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Discrete and continuous models of linear elasticity: history
and connections

Abstract This paper tracks the development of lattice models that aim to describe linear elasticity of solids
and the field equations of which converge asymptotically toward those of isotropic continua, thus showing
the connection between discrete and continuum. In 1759, Lagrange used lattice strings/rod dynamics to show
the link between the mixed differential-difference equation of a one-dimensional (1D) lattice and the partial
differential equation of the associated continuum. A consistent three-dimensional (3D) generalization of this
model was given much later: Poincaré and Voigt reconciled the molecular and the continuum approaches at
the end of the nineteenth century, but only in 1912 Born and von Karman presented the mixed differential-
difference equations of discrete isotropic elasticity. Their model is a 3D generalization of Lagrange’s 1D lattice
and considers longitudinal, diagonal and shear elastic springs among particles, so the associated continuum
is characterized by three elastic constants. Born and von Kdrman proved that the lattice equations converge
to Navier’s partial differential ones asymptotically, thus being a formulation of continuous elasticity in terms
of spatial finite differences, as for Lagrange’s 1D lattice. Neglecting shear springs in Born—Karman’s lattice
equals to Navier’s assumption of pure central forces among molecules: in the limit, the lattice behaves as a
one-parameter isotropic solid (“rari-constant” theory: equal Lamé parameters, or, equivalently, Poisson’s ratio
v = 1/4). Hrennikoff and McHenry revisited the lattice approach with pure central interactions using a plane
truss; the equivalent Born—Karman’s lattice in plane stress in the limit tends to a continuum with Poisson’s
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ratio v = 1/3. Contrary to McHenry—Hrennikoff’s truss, Born—Karman’s lattice leads to a “free” Poisson’s
ratio bounded by its “limit” bound (v = 1/4 for plane strain or 3D elasticity; v = 1/3 for plane stress
elasticity). Unfortunately, Born—Kdrman’s lattice model does not comply with rotational invariance principle,
for non-central forces. The consistent generalization of Lagrange’s lattice in 3D was achieved only by Gazis
et al. considering an elastic energy that depends on changes in both lengths and angles of the lattice. An
alternative consistent three-parameter elastic lattice is the Hrennikoff’s, with additional structure in the cell.
We also discuss the capability of nonlocal continuous models to bridge the gap between continuum isotropic
elasticity at low frequencies and lattice anisotropic elasticity at high frequencies.

Keywords Lattice/discrete elasticity - Continuum elasticity - Elastodynamics - Discrete elasticity -
Difference equations - Partial differential equations - Microstructured solids - Constrained kinematics -
Metamaterials

1 Introduction

Connecting worlds at different scales has been the dream of philosophers and scientists in the quest for a rational
understanding of fundamental laws in natural or human sciences. Bergson’s famous quote “I’intelligence ne se
représente clairement que le discontinu” (1907), that is “Intelligence depicts clearly only the discontinuous”
can be understood as an invitation to question the behavior of interaction laws at a finer scales, possibly ruled
by discontinuous variations, for a better understanding of the world at larger scales [1]. As for economics, in
1926, Keynes said [2]: “we are faced with the problem of organic unity, of discreteness, of discontinuity, the
whole is not equal to the sum of the parts, small changes produce large effects, the assumptions of a uniform
and homogeneous continuum are not satisfied.” Thus, continuous models with smooth variation fields may be
not sufficient to represent specific phenomena. These questions are echoed in physics and mechanics as well:
understanding the behavior at a macroscopic scale, mathematically represented by some continuous represen-
tative variables, may be supported by the evolution of some discontinuous microstructure at a finer scale. The
present paper aims to present, in a concise way, the main contributors who succeeded in connecting discrete
(or lattice) and continuous models for linear elasticity. This can be viewed also as the first bridge between
discrete and continuous mechanics, since linear elasticity can be viewed as the simplest constitutive law among
all complex rheological laws that were developed during the two last centuries. From a mathematical point of
view, lattice elasticity is ruled by mixed differential-difference equations, with spatial difference operators and
time derivatives due to supposed time continuous dependence, whereas partial differential equations both in
time and in space define continuous elasticity evolutions. Bridging discrete and continuous theories equals to
relating mixed differential-difference equations with partial differential equations, assuming some smoothness
of the field variables [3].

Lattice elasto-dynamics was first solved through uniaxial models by Lagrange: in 1759, he presented both
the mixed differential-difference equations of a 1D lattice and the related wave partial differential equation
[4,5]. Lagrange studied the vibration of a discrete string composed of a finite number n of masses with fixed
ends (Lagrange, 1759; 1788) and obtained the exact natural frequencies of this 1D lattice for any n, showing
that its asymptotic behavior is that of a continuous string. In Lagrange [4], it is also shown that this problem
is mathematically analogous to that of a 1D axial (dubbed Lagrange’s) lattice, composed of a finite number
of particles joined by equal linear elastic springs, the asymptotic behavior of which is that of a continuous bar
(see Fig. 3). Lagrange’s equation for this lattice is

o (Uip1 —2u; +ui—1) = Mii; (D

where « is the spring stiffness; M is the mass; and u; is the axial displacement of each particle, initially at
a distance a from each other (lattice spacing). Equation (1) is a mixed differential-difference equation that
couples a spatial difference operator (matter is discrete in space) with some time differential operator (time is
continuous) (see [3] for a general presentation of mixed differential-difference equations). Equation (1) was
written explicitly by Lagrange in 1759 (see Figs. 1, 2 for this equation related to the propagation of sound
and to natural vibration). Lagrange’s lattice is sometimes also referred to as a 1D Born—Karman’s lattice [6];
as a particular case of their 3D lattice model. As reported by Burkhardt [7], Cannon and Dostrovsky [8] or
more recently by Myshkis [3] that Bernoulli [9] had already approximated the geometrical curvature of a
string by some straight segments (for up to n = 7 elements), thus implicitly formulating a discrete Laplacian
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Fig. 1 Mixed differential-difference equation—vibration of one dimensional lattice for a sound propagation model; from Lagrange
[4], Recherche sur la nature et la propagation du son, page 55
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Fig. 2 Mixed differential-difference equation—vibration of one dimensional string lattice; From Lagrange [4], Recherche sur la
nature et la propagation du son, page 60
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Fig. 3 One-dimensional axial lattice with mass M and longitudinal springs of stiffness o (for Lagrange lattice or one dimensional
Born — Karman lattice)

(or discrete second-order spatial difference operator in Eq. (1)). In this sense, Lagrange’s mixed differential-
difference equation can also be attributed to the preliminary works of Bernoulli. Lagrange [4] derived the exact
solution for Eq. (1) by a discrete summation of trigonometric functions of time (which may be reinterpreted
in terms of discrete Fourier transform method) [4]. A very concise solution based on such finite trigonometric
summation is presented by Filimonov et al. [10] for initial conditions based on Dirac distribution [10]. The
exact solution of Eq. (1) was alternatively found elegantly during the twentieth century by Schrédinger [11]
for general initial conditions in terms of Bessel functions (see more recently [12,13] or [14]) (Fig. 3).
By setting the scaling parameters:

ES
a=—andM = pSa (2)
a
where E is the Young’s modulus, S is the equivalent cross sectional area, and p the mass density per unit
volume. Equation (1) may be expressed as:

Wip1 — 2u; +ui_q

ES 5

= pSii; 3

a
i.e., the lattice difference equations are equivalent to a central finite difference formulation of the continuous
wave equation, as Maugin [15] pointed out [15]. In the asymptotic limit, for a sufficiently smooth function
u; (t) = u (x = ai, t), the long wave approximation of Eq. (3) is:

9%u (x,1) 9%u (x,1)
— L =pS—=

ES =
9x2 ot?

“)
This continuous approximation of a discrete problem is particularly efficient in computing the low order
frequencies of the finite system (see [4, 16, 17]). However, even in the linear elastic range, described by Eq. (1)
with given elastic constant « for the lattice, the continuous approximation Eq. (4) is not able to reproduce its
wave dispersive properties (see the extensive analyses of Born and von Kdrmén [6]—see also Born and Huang
[18]; Maradudin et al. [19]; Askar [20]; Eringen [21]; Maugin [15]; Eringen [22]; Kittel [23]). Furthermore,
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it was shown by Filimonov et al. [10] that the solution of the continuous problem may be asymptotically
significantly different from the lattice one for large time evolution (even in the linear range). Schrodinger [11]
also discussed the limits of the continuous approximation of the wave equation with respect to the lattice wave
behavior (see also [12,13] or [14]).

However, this brief historical presentation will not address the strong mathematical difficulties related to the
connection of nonlinear discrete lattices and nonlinear wave equations, including the soliton phenomenon [24].
The investigation of the complex behavior of nonlinear elastic lattices started with the pioneer works by Fermi
et al. [25], who studied the dynamic behavior of a 1D axial lattice with a nonlinear elastic restoring force [25].
Continuous approximations have been developing since the 1960s to approximate such nonlinear dynamic
models (see [26-28], for instance). The reader is directed to the seminal works of Rosenau [28], Maugin
[15], Kosevich [29] or more recently to the monograph of Abramian et al. [30], for an extensive treatment of
nonlinear lattices and enriched nonlinear wave equations. The present paper is, however, restricted to linear
elasticity both for the lattice and its possible continuum representation.

The question about the relations of 2D or 3D elastic lattices with the relevant continua is tantamount to
asking for the foundation of continuum mechanics from the lattice one. This question was first addressed by
Boscovich (1763), who proposed the key idea of the molecular foundation of elasticity [31]. The link between
discrete (or molecular) and continuous elasticity dates from the beginning of the nineteenth century, with
the studies of French mechanists: indeed, a partial molecular theory of elasticity was first built by Navier
[32], Cauchy [33] and Poisson [34], inspired by Boscovich’s fundamental assumption that elastic bodies are
composed of particles interacting along their joining lines. These inner forces are supposed repulsive when
the distance between particles becomes smaller than a given quantity, attractive when the distance is between
such a lower limit and another quantity, called radius of molecular activity (which, however, is much smaller
with respect to ordinary lengths), and vanish outside such radius ([31]; see also the analysis of Boscovich’s
contribution in Thomson [35]; Kelvin [36]; Timoshenko [37]). These theories rely on the concept of central
forces between particles, and in the asymptotic limit of an isotropic continuum lead to a unique elastic constant:
this is in contradiction with the energetic formulation of linear isotropic elasticity for continua leading to two
independent elastic constants [38]. Navier [32] first elaborated the molecular theory leading to a single constant
for isotropic solids (“rari-constant” theory), which Cauchy and Poisson generalized to orthotropic solids. This
leads to a model of constrained elasticity where Poisson’s ratio equal to 1/4 for 3D bodies (i.e., what we call
Lamé parameters A and p coincide). For anisotropic elastic solids, Cauchy [33] found 15 constants basing
on the central interaction assumption, while Green’s energetic approach foresaw 21 (Green continuum theory
of linear elastic anisotropic solids, [39]). The controversy ended only at the end of the nineteenth century
(see the historical analysis of Foce [40]; Capecchi et al. [41]; Capecchi et al. [42]). Voigt [39,43] considered
molecules as small corpuscules with orientation, thus admitting that molecular interactions consist of both the
usual central forces and additional moments depending on the orientation of the molecules (see also [44]).
Voigt thus obtained two elastic constants for isotropic solids, succeeding in reconciling the molecular and
continuum elasticity theories. Poincaré [45] derived the same results by considering a multi-potential theory
that generalizes pure central interactions, with an additional potential of angle variation for the three-body
interaction [45]. In other words, the theory of the French mechanists at the beginning of the nineteenth century
was partial, since it included only central forces, and may be viewed as a constrained discrete elasticity theory.

The consistent 3D generalization of the 1D lattice elasticity developed by Lagrange [4] appeared much
later: Born and von Kérman presented the mixed differential-difference equations of discrete isotropic elasticity
in 1912 [6], based on a model that can be reduced to three parameters. Their mechanical model is a regular
cubic lattice of body-points connected by longitudinal, diagonal and shear linear elastic springs. The lattice
equations asymptotically converge to Navier’s partial differential equations of elastodynamics for sufficiently
small lattice spacing, thus coinciding with a spatial finite difference formulation of continuous elasticity, as for
1D Lagrange’s lattice. When shear springs are neglected, Born—Kéarman’s lattice involves only central forces,
in accord with Navier’s molecular assumption [32], and in the limit, follows the “rari-constant” theory. As a
consequence, a truss (which is a discrete system composed of nodes connected by axial springs interacting only
by central forces) is generally not able to reproduce elasticity at the microscale (for general macroscopic elastic
properties): a complete lattice theory needs to incorporate rotational or shear springs (see also the extensive
review on general lattice models for heterogeneous structures by Ostoja-Starzewski [46]).

The full mixed differential-difference equations of discrete elasticity, valid for a monatomic cubic lattice,
are given by Born and von Karman [6] and their Eq. (10) (see Fig. 4), and include both central and non-central
(shear in Born—Kdrman’s lattice) forces, even in the isotropic case. These maybe seen as axial springs, joining
nearest particles and next-to-nearest particles), and shear springs joining nearest particles: on page 300 of
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Fig. 4 Mixed differential-difference equation—vibration of three-dimensional elastic lattice; Eq. (10) from Born and von Kdrméan

(6]

Born and von Karman [6], one reads: “Es stammen dabei die erste und zweite klammer von den relativen
x-Verschiebungen der 6 Punkte in der Entfernung a, wobei natiirlich den beiden Punkten auf der x-Achse im
allgemeinen ein anderer Faktor zukommt, als den 4 Punkten senkrecht dazu.” that is “The first and second
brackets [of their Eq. (10)] depend on the relative x-displacements of the 6 points at distance a, where of
course, the two points on the x-axis generally have a different factor than the 4 points perpendicular to it.”
This fundamental statement introduces non-central (shear) forces, orthogonal to the lattice lines joining nearest
particles and not incorporated in Navier’s molecular theory [32]. Born—Kdrman'’s lattice is widely studied (see,
e.g., the lattice model of Suiker et al. [47] and Zhang et al. [48]). For pure central forces, Born—-Karman’s
lattice is limited to horizontal, vertical and diagonal axial springs, with two stiffnesses, and its limit behavior
implies a specific Poisson’s ratio. This constrained lattice in 2D is generally dubbed square Bravais lattice
in the literature, and was also widely used (see [49-55]). It was revisited during the twentieth century in a
truss framework analysis by Wieghardt [56], Riedel [57], Hrennikoff [58], Hrennikoff [59], McHenry [60] and
McHenry [61]. McHenry truss (re-considered by Hrennikoff, who introduced additional auxiliary bars [59])
is equivalent to the square Bravais lattice, or to Born—Karman’s limited to central forces. For plane stress,
Poisson’s ratio of the asymptotic continuum associated to these lattices is restricted to the value v = 1/3. In
contrast to McHenry-Hrennikoff truss, the complete Born—Karman’s lattice model leads to a “free” Poisson’s
ratio, bounded by v = 1/4 for plane strain or 3D elasticity and v = 1/3 for plane stress elasticity.

However, Born—-Karman’s lattice does not comply with rotational invariance, which is required, together
with invariance in translation, for a consistent lattice theory [62—66]. The non-central force term associated
with shear forces is responsible for the violation of the rotational invariance principle, with confusion between
rigid rotation and shear modes. As in Gazis and Wallis [63], the energy of the lattice should be expressed as
a function of such invariant quantities as distances between pairs of atoms or angles formed by three atoms
(idea also shared by Voigt and Poincar€). Gazis et al. [67] gave a definite answer to the paradoxical properties
of Born—Kdrmén’s lattice by replacing the shear interaction with rotational springs. Gazis et al. lattice is
consistent, in the sense that it fulfills both rotational and translational invariance, and asymptotically converges
toward a linear isotropic elastic continuum with free equivalent Poisson’s ratio. Thus, in Gazis et al. [67],
there is a bridge between discrete and continuous linear isotropic elasticity from a monatomic cubic lattice
with central first and second neighborhood interactions, plus additional rotationally invariant angular forces
[67]. In the present paper, we do not discuss in detail other lattices with their mechanical representations;
for instance, Clark et al. [26] developed a consistent lattice model with four (two central and two angular)
interactions for body-centered cubic lattices, which are rotationally invariant [68]. This model is an alternative
to De launay’s lattice body-centered cubic lattice model [51] which relies on four mechanical interactions, but
with non-rotationally invariant angular forces. However, surprisingly, the frequency dispersive equations for
these two models may coincide for some parameter equivalence, as shown by Bose et al. [69], Kothari and
Singhal [70], Shukla [71] and Ramamurthy [72]. Here, we show that Born—Karman [6] and Gazis et al. lattice
[67] coincide only in the long wave range limit (isotropic continuous medium), but their mixed differential-
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difference equations and frequency dispersive equations differ, except in the case of central interactions. An
alternative three-parameter linear elastic lattice model, also converging toward Navier’s isotropic continuous
equations, is the truss in Hrennikoff [59] (see also [73]), where the square Bravais lattice (central forces) foresees
additional bars connected to the diagonal ones instead of the shear springs of Born and von Kdrmén. Triangular
lattices (with unit hexagonal cell) with both central and angular interactions which also asymptotically converge
toward isotropic linear elastic continuum may be also mentioned [74,75]. As for the cubic lattice with angular
interactions (Gazis et al. lattice [67]), the angular interaction (non-central interaction) in the triangular regular
lattice allows to calibrate the Poisson’s ratio of the associated asymptotic linear elastic isotropic continuum
solid. More recent lattices that also converge toward the isotropic elastic continua are those of Zhang et al.
lattice with three parameters characterizing normal, secondary springs and rotational springs [48,76], and that
of Nannapaneni et al. [77] with three parameters characterizing normal, diagonal and equivalent volumetric
interactions. Even if these lattice models are physically and mathematically different, and also differ from
their mixed differential-difference equations, it is worth noting that they all converge toward the isotropic
continuum, always yielding Navier’s partial differential equations of elastodynamics.

This paper also briefly presents the main contributions on discrete and continuous structural mechanics.
Discrete beams (or lattice beams) were investigated by Hencky [78]; his model consists of rigid beam segments
connected by frictionless hinges and elastic rotational springs, the stiffness of which is defined as the ratio of
beam flexural rigidity to the segment length [78]. This system called Hencky-Bar-Chain system, asymptotically
converges toward a continuous Euler-Bernoulli beam, for a sufficiently large number of segments, with a
mathematical analogy between the difference equations of the lattice beam, and the finite difference formulation
of the continuous Euler-Bernoulli beam (see [79] for the validity of this equivalence for various boundary
conditions [79]). For all these one-dimensional problems (strings, rods or beams), discrete models may be
built from repetition of simple structural elements, which asymptotically converge toward the associated one-
dimensional continuum. The difference equations of the discrete elasticity problem coincide with the finite
difference formulation of the continuous one. Hencky’s model of discrete beam was extended to discrete plate
[79-82]. Bridging discrete and continuous models (for elasticity or even more general constitutive laws) is
an old and fundamental topic in the history of physics and mechanics. This brief historical study may find
a resonance today, with a regained interest in bridging scales, with the active development of metamaterials
based on design-oriented macroscopic properties [79,83].

Below, we present several lattice models that are not mathematically equivalent, yet all converging asymp-
totically toward the continuous linear isotropic elastic solid if the lattice spacing goes to zero. It is not the scope
of this paper to present more complex anisotropic or inelastic lattices. However, we shall close the paper with
a brief discussion on the capability of nonlocal continua to bridge the scale from anisotropic cubic lattices to
isotropic continuous elasticity.

2 3D discrete elasticity: the Born—-Karman model

The lattice is assumed to be monatomic and cubic, composed of particles with equal mass M and lattice spacing
a. The elastic interaction consists of nearest and next-to-nearest central forces corresponding to fictitious axial
springs of stiffness «, for the links between nearest particles, and g, for the links among next-to-nearest
particles (notations used by Gazis et al. [67]) and non-central forces corresponding to fictitious shear springs
of stiffness 6 located along the lines between nearest particles. Thus, pure central forces (Navier, Poisson’s or
Cauchy’s molecular assumption) are retrieved when § = 0 and do not tend toward a general Hooke’s law at
the continuum limit with prescribed values of Poisson’s ratio. Pure central forces do not allow in the case of
direct interactions the formulation of a general Hooke’s law at the continuum limit with prescribed values of
Poisson’s ratio. Born—Karman’s lattice thus depends on three stiffness parameters («, 8, §) to simulate central
and shear interactions, respectively. In the case of isotropy, a constraint equation for «, 8, § holds, so that the
model has two independent parameters that can then be related to those of the elastic isotropic continuum.
In the paper, we will restrict our analysis to linear difference equation of the displacement in space, so that
nonlinear geometrical effects will be neglected.

The mixed differential-difference equation of the 3D Born—Karman’s lattice is expressed by Eq. (10) of
Born and von Karman [6]—(see Fig. 4)—and is originally written for a non-isotropic lattice (which converges
toward a non-isotropic continuum) by the five- parameters (a’ LBy, 8, X’):
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o (u,-_H,j,k — 2u,',j,k + u,‘_l’j,k) + ,3/ (uj,j-i-l,k + Ui j—1,k + Ui jk+1 + Ui j k-1 — 414i,j,k)
+y' (Mi+1,j+1,k i1, 1k T Uit1 -1k T U1 -1k Uit j k]
Ui, j k1 F Uil k=1 F Wie1,jk—1 — Ui, j k)
+4§ (ui,j+1,k+1 + Ui j—1k+1 Ui j1k—1 T Ui j—1k—1 — 4ui,j,k)
+ X/ (Ui+1,j+1,k + Vi—1,j—1,k — Vi—1,j4+1k — Vi+1,j—1.k
FWig1, k41 Wil jk—1 — Witl, jk—1 — Wil jk+1)
= Mii; jx (5)

For isotropic solids (in the long wave limit), Born and von Karman’s model reduces to three parameters by
setting:

§ =0and y' =y’ (©)

It is more convenient to introduce the following equivalent parameters:

o =a; =6 and V:g @)
so that the governing equation of the three-parameter Born—Karman’s model reduces to:
B
a (i1 jk —2ui jk +ui-1jk) + > (Wit 1k i1k + Uil -1k
Fui—1, i1k U1 k1 T U= k41 T Wi k=1 Ui k-1 — Sui,j,k)
B
+ §<Ui+1,j+1,k F Vi1, -1k — Vi—1,j+1,k = Vit+l,j—1k T Witl,jk+1 + Wi—1 jk—1 @®)

— Wit jk—1 — wi—l,j,k-i—l)

+ 8 (i, j1 ki o1k F et Ui k-1 — b k) = M

where(a, 8, §) are the stiffnesses mentioned above, illustrated in Fig. 5.

Born and von Karman [6] did not detail the mechanical model behind these equations, since they wished
to asymptotically attain the partial differential equation of Navier’s elastodynamics in the continuum limit.
It is worth mentioning that at the boundary, the stiffness of the vertical and longitudinal elements is «/4,
the shear stiffness is §/4 and the stiffness of the diagonal element is 8/2 (see Fig. 5). Equation (8) may be
viewed as a generalization of Lagrange’s mixed differential-difference equation (1) for 3D lattices, and can be
derived from a direct expression of equilibrium including inertia forces. It is also possible to derive this mixed
differential-difference equation by an energy approach, based on the following potential energy:

(i1, — i) + (i1 ok — i j418)°

2 2
+ (ui+1,j,k+1 - Mi,j,2k+1) + (ui+1,j+1,k+1 - “é’,j—i-l,k—i-l)
+ (visj+1.k — vijk) "+ (Vi1 j+1k — Viel,jik) )
+ (Ui,j+l,k+l - Ui,j,k+1) + (Ui+1,j+l,k+1 - Ui+1,j,k+1)

2 2

+ (wi,j,k—H - wi,j,k) + (wi+l,j,k+1 - wi+1,j,k) )
+ (wi,j+1,k+1 - wi,j+1,k) + (wi+1,j+1,k+1 - wi+1,j+1,k) N
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Vi j+1,k+1 — Vi jk + Wi j4+1k+1 — wi,j,k)2

Vi j+1.k — Vi jk+1 T Wi j+1k — wi,j,k+1)2

Vi1, j+1,k+1 — Vil jk T Wit j+1,k+1 — wi+],j‘k)
Vi1, j+1,k — Vi1, jk+1 T Witl, j+1k — wi+l,j,k+1)2

++++ A+t

—_~

Ui j+1k — ui,j,k)2 + (Wit j41k — ui+1,j,k)2

(wijr1 k41 — “i,j,k-i—l)z A (Wit 1 j 1k — Uit1 jks1)
(wi, j+1.k — wi, jk)2 + (Wit 1.k — wi+1,j,k)2

(wl JjHLk+1 — Wi j, k+1) + (wi+l,j+1,k+1 - wi+1,j,k+1)
(U +1,j,k — Vi,j, k)2 + (vi+1,j+1,k - Ui,j+l,k)2

(Vi1 jart — Vijks1) + Vit ket — Vijeihsl)
(Wit1jk = wijk)” + (Wit j41k — Wij41k) ? ©
(wl+l,j,k+l - wi,j,k+1)2 + (wi+1,j+1,k+1 - 120[,/+1,1<+1)2
(
(i,
(
+(

2

2

Ui, jk+1 — Mi,j,k) + (”i+1,j,k+1 - Mi+1,j,k)
Ui j+1,k+1 — ui,jJrl,k) + (Mi+1,j+1,k+1 - ui+1,j+1.,k)
2
Vi, jk+1 — Vi, j,k)
2 2
Vitl,jk+1 = Vitl, Jk) + (Ui,j+1,k+1 - Ui,j+1,k)
2
L+ (vi+1,j+1,k+1 - Ui+1,j+1,k) _

BB SSS S S S S

The kinetic energy of this lattice with concentrated masses at each “node” is reduced to:
T=3 0 D M+ MO +M (10)
i j Kk

Hamilton’s principle applied to the Lagrangian L = T — U yields Eq. (8). The difference equations
can be extended to an equivalent continuum via a continualization method that is valid for a suffi-
ciently smooth deflection function. The following relation between the discrete and the equivalent con-
tinuous system u; jx = u(x =ai,y =aj,z=ak), vijx = v(x=ai,y=aj,z=ak) and w; jr =
w (x = ai,y = aj, z = ak)holds true for sufficiently smooth displacements given by:

2)x+3y+31)u (x’ ¥, Z) (11)

Uitl,jrik+1 =ux+a,y+a,z+a)= e
where 9,, 0, and 9, are the spatial derivatives with respect to x, y and z. Equation (11) is based on the use
of a Taylor-based asymptotic expansion of the discrete displacement field of a neighbored node around the
considered node. The exponential differential operator in front of the continuous displacement field belongs
to the so-called pseudo-differential operator. Such an expansion of difference operators was already known
at the beginning of the nineteenth century (e.g., [84,85]), see Figs. 6, 7, and was used in Piola [85] for
bridging discrete and continuum elasticity (a presentation of Piola’s works is in Todhunter and Pearson [86] and
Dell’Isola et al. [87,88]). Piola [87] considered central force potential and made an asymptotic expansion with
respect to the small quantities in the associated molecular energy. Piola also mentioned angular interactions as
possible additional potential interactions. A modern treatment of this expansion method related to the numerical
efficiency of finite difference schemes can be found in Shokin [89] and Godunov and Ryabenkii [90].
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(© ()

Fig. 5 Mechanical representation of Born and von Kdrman [6] lattice

Dans le cas particulier ot I'on suppose m=1, les formules symboliques (10) et
(11) se réduisent &

(19) ,Au:(c"p—l)u=a“,u—u,
(13) A"u=(c"D—x)"u;
et I'on en conclut
h> h?
(14) Au=kDu+T;D’u+ x.a.s-D’“+°'°""

Fig. 6 Asymptotic expansion of difference operators through differential operators; From Cauchy, page 157, Exercices de math-
ématiques; Cauchy [33] — Sur les différences finies et les intégrales aux différences des fonctions entieres d’une ou de plusieurs

variables; page 155-159
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The system of spatial difference equations in Eq. (8) leads to the continuous formulations at the long wave
limit:
( +_2/8)32”_%% a%v Iy 3w 4—(8+—ﬁ)82u-+(84—ﬁ)82” 9
o — — — — = pa—
9x2 dxdy 0x9z dy?2 02 P

(12)

where we used the mass scaling identity M = pa>. Equation (12) can be identified with Navier’s partial
differential equation of linear elasticity for material with the constant (c11, c12, c44) of cubic symmetry, using
Voigt’s notation [6]:

92u + (e1a + cas) 92v + (e1 + cas) 92w n 9%u n 92u 92u
Cll—= c c c c Ca4—— +Caa— = p—
11 8)62 12 44 axay 12 44 9x0z 44 3y2 44 8Z2 1% 31‘2

(13)

Navier’s partial differential equation of linear isotropic elasticity can be derived as a particular case, for
c11 = c12 + 2ca4:

Ot 2u0) 9%u O+ ) 9% Ot ) 02w n 92u n 0%u 9%u ith
— —_— — — =p— wi
Py H xdy H) axoz “ayz Hazz =P
cil=r+2u
Cq4 = L (14)
cr2 =X

where A and p are Lamé coefficients. By comparing Eq. (12) with Eq. (14), it is clear that the lattice parameters
can be identified through (see also Eq. (13) of Born and von Karman [6]):

a=a (c11 —Cl2—C44) = L a
§=5(caa—cr)=5M—2) (15)
B=73(caa+c2) =5+

Equation (15) shows that Born and von Kdrmdn’s lattice model asymptotically converges toward a continuum

linear elastic material with cubic symmetry, which contains the linear elastic isotropic medium for some
constrained material parameters. In fact, Eq. (15) can be inverted to furnish

:3_

a

o

nw=—; A= andd =a — f8 (16)
a

which clearly shows that the three microscopic parameters can be constrained so that they can be identified

from Lamé parameters of macroscopic elasticity. Keating [64] remarked that if § = 0, i.e., by neglecting

the next-nearest interaction, one obtains unsatisfactory macroscopic physical results, with a negative Lamé

coefficient:

>0 and A= 2 <0 (17)
a

QR

A possible answer to this is that the positivity of the microscopic shear stiffness implies:
§>0 = A=spu = vl/4 (18)
In the particular case of pure central forces, one obtains:
=0 = pu=1r = v=1/4 19)

which is Eq. (14) of Born and von Kdrméan [6], equivalently written as c44 = c12, and known as Cauchy-
Poisson’s relation. In this case, we also have:

5=0 = a=§ (20)

In the 3D McHenry-Hrennikoff truss (which is equivalent to the 3D Born—Kérman lattice with central forces),
we have @ = 8, i.e., no shear interactions (§ = 0). Born and von Karman [6] noticed that central forces (§ = 0)
in the limit lead to constrained continuum elasticity with a single constant A = pu, as obtained by Navier and
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A g b=l b L2 A g B A a2 A

okt s gy S0NE=D) A A o Y=NE=0) A A &
2a* a af a b ay a ¢
E=B)e—bmf) As .\ =D A o (bmtl(bmomy) A
BN A .
ﬁ;-—@A .x-o-—?'—-A‘ ‘x-i- £ A ax-a- ec

Fig. 7 Piola, p 179; asymptotic expansion of difference operators through differential operators; Nuovo analisi del moto e dell’
equilibrio de’ corpi omogenei considerati come ammassi di molecule, in Memorie di Matematica e di Fisica della Societa Italiana

delle Scienze, Modena, 1836

( 1861) e
L'équation d'équilibre ci-dessus douncra done dabord les équations
indéfinies
—_—X = {3 o + s + =4 2 o - 2 e
da? di de* dadb dede)’
- dy . dy 'y 'x d':
— Y= — o+ J == + - 2 T
da* " dbr + de* =+ . dadb ® db de'’
b dz d'=z e d's d'x dy
—Z = . T e e 2 de)’

qui expriment des conditions communes i tous les points du coros.

Fig. 8 Navier [32]—Navier’s elastodynamics partial differential equations for the rare-constant theory; A = p

Poisson; assuming central forces, Kelvin [36] came to the same conclusion for the compressibility modulus
K:

_3a+2u Sa

K — with a =8=pua=»>xa 20
3 3a

In this last case, for A = u, Navier’s partial differential equation Eq. (14) reduces to:

02u 9%v 92w 2u  0%u P 02u

22— 2 — = 22
a2 T 8x8y+ 8x8z+8y2+822 w o2 22)

3

and is usually labelled as given by the so-called “rari-constant” theory, Fig. 8.

Using the stiffness calibration Eq. (15), the mixed difference-differential equations of Born von Karman [6]
are a spatial finite difference formulation of Navier’s continuous partial differential equations, as for Lagrange’s

1D lattice:

At
4
i1, 1k F Uil jk+1 Uit k1 Ui k-1 T U1 k-1 — 8Mi,j,k)

A+
4
— Witl,jk—1 — wi—l,j,k—H)

nw—A
2

w (i jk — 2uijk +ui-1,jk) + (sip1, j 1k + Wimt 1k + Wil j—1k

(vi+1,j+1,k FVi—1,j-1.k — Vi—1,j+1,k — Vi+l,j—1k + Witl,jk+1 + Wi—1,jk—1 (23)

2 .
+ (Wi jo vk + Witk + Wi jks1 + Ui j -1 — duij i) = pa’iii j i



cagri
Rubber Stamp


N. Challamel et al.

u;. 1j+1» Vi 1j+1 ulj+l IJ+1 u1+1l/+1’ i+1,j+1 Ilj+l’ Ilj+/ ulJ+1’ ij+1 ul+1J+l’ i+1j+1

Ui J ul+1J" vi+l,j 278 1/9 i-1,j 1+1J9 1+]j
a a

Uigjrs Vierjr Wi Vijr Wislj1s Vivlj-1 Uigjors Vierjr Wijors Vijer Uivlj1s Vit j-1

I I | i 1 |
r T 1 r T 1

(a) (b)

Fig. 9 Two-dimensional Born and Karman [6] lattice with longitudinal and vertical elastic springs (of stiffness «), diagonal elastic
springs (of stiffness f), and shear springs (of stiffness §)

An asymptotic expansion of Born—-Karman’s mixed differential-difference equations Eq. (23), leads to higher-
order gradient elasticity partial differential equations of the lattice:

3%u n a® 3*u
o2 T 125x0
n ()» + M) (482u 28214 , dtu a?d*u  a?d*u 02u , tu a? 84u)

hllied T I, Sl gt 22"
4 e T T e T3 T et T2 T 02 T 6 ot

n w—>x 82u+a284u+82u+a284u
2 ay2  129y*  9z2 1297
n At 4 3%v %az v %az v Pw 2 2 dtw %cﬂ d*w _ pa2_u
4 9xdy 3 9xdy? 3 0ydx3 axdz 37 Bx0z | 3" Bzox2 012
(24)
The zeroth order of this expansion is Navier’s elastodynamic partial differential equation; the terms proportional
to the square of the lattice spacing account for scale effects. Born—-Karmén’s model may also include long
range interactions and is extensively presented in the seminal books of Born and Huang [18] and Askar [20].
Exact solutions exist for the dispersion wave propagation equation in 2D or 3D elastic lattices: Born and von
Karman [6] presented the 3D case [6].

3 Two-dimensional discrete elasticity: the Born—-Karman model

A 2D version of Born—Kdrman’s lattice is studied in detail by Suiker et al. [47] (Fig. 9), and is governed by:

o (i1, — 2uij +uim1,j) + 5§ (i1t + ot jo1 + st + uisrjo1 — 4ui )
+§ (Ui+1,j+1 —Vi—1,j+1 — Vi+l,j—1 + Ui—l,j—l) + 0 (ui,j-i-l —2u; j + ui,j_l) =Mii
o (vij11 = 2vij +vij-1) + % (Vig1,j+1 + Vie1j—1 + Vie1, 1 + Vg1, j—1 — 4vij)

+ % (Wit jp1 — Uim jo1 — i1, j—1 + Uiz, j—1) + 8 (Vi1 — 2vij + vie1,j) = M ¥

(25)
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Ui 115 Vielj+l Wijels Vijel Bivlj+1s Vit lj+1

Niipy
Ui 1js Vi) -~

Uipjps Vierjr Yijrs Vijr Wil jo1s Vielj-1

Ui 1j1s Vielj+1 Wijrls Vijrl Witlj+1s Vit lj+1

UV ‘Vi-/l:,/ ‘V,‘*, :./.
i-1p Viety ) -0 1 T
1 ) Uispjs|Vielj

Uigjrs Vierjr Yijos Vil

Uirgj1s Vielj-1

i I I
F T 1

(a)

Fig. 10 Schematic diagram of the force equilibrium of two-dimensional [6] lattice

which results from a direct equilibrium of normal (V) and shear (V') forces around the node (i,j):

V2

Niy1y2,j — Ni—1p2,; + 4M+1/2,j+1/2 + 5 Nit12.j-1,2

_4Ni—1/2,j+1/2 - ‘/TQNi—l/z,j—l/z + Vijt12 = Vijj—12 = Mii; j

Nij+12 — Nijj—12 + 4M+1/2,j+1/2 + gNi—l/Z,j-i-l/z

—§Ni71/2,j71/2 - 4Ni+1/2,j71/2 + Vigi,j — Vicip,j = M, j

with

Nijip,j=«a
Ni—ip,j =«

Nig1y2,j—172 = BV2/2 (i1, j—1 — Ui,j — Vig1,j—1 + Vi j
Ni—1/2,j4+172 = BNV2/2 (wij — wi—1,j1 + Vi1, j4+1 — Vi)
Nici2j-172 = B2/2 (i1 j—1 + wij — vi—1,j-1 + vi.;)

Vij+i2 =8 (i j+1 — ui,j

Vij—172 =368 (ui,j — uj j—1

Vitr2,j =8 (vig1,j — vi,j

Vieiy,j =8 (vij —vi-1j

Uitl,j — Mi,j;
Ujj —Ui—1,j

Nijr12 = a (Vi j+1 = Vi

Nij—12 =a(vi,j —vij-1
Nig1/2,j4+172 = BV2/2 (i1, j41 — Ui j + Vigl j41 — Vi)

)
)
)

(26)

27)

Figure 10 shows a scheme of forces with central (longitudinal, vertical and diagonal) and non-central
(shear) forces: Egs. (27) and (26) provide Eq. (25). The latter are obtained in an equivalent way starting from

the following potential energy:

Uu=> Z%‘ [(Mi+l,j — i)+ (it g1 — i 1)+ (i = vi) A+ (Vi 1 — v,-+1,j)2]
i

p
7

1)
4

2 2
[(”i+1,j+l — Ui j A+ Vit = Vi) (Uit — i1 = Vi Vi) ]

2 [ = v0g) + Qg = v + (g = ) + (g g = i )’

(28)

Equation (28) agrees with Eq. (5) of Montroll [50] where the shear is neglected (only longitudinal and diagonal
interaction). Montroll’s square lattice is purely central, and can be viewed as a particular case of Born—
Karman’s one without shear interaction, i.e., § = 0, and coincides with Navier’s lattice (lattice with pure
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central interactions):

o (iv1,j —2uij +ui—1,j) + g (Uit jo1 F Uimjm1 F wim j1 + Uil j—1 — dui )
+§ (Vig1,j+1 = Viel,j+1 — Vigl,j—1 + Vie1,j—1) = M ii; (29)
@ (vij41 = 2vij +vij-1) + % (Vi1 j1 FVim1 o1 Vo1 1 F Vi1 o1 — 4 )

B R
+5 (Mi+1,j+1 —Ui—1,j+1 — Uit],j—1 +”i—l,j—l) =My

These mixed differential-difference equations were also obtained by Blackman [49] from a direct approach
[49]. Another particular case is the model of Rosenstock and Newell [91], which is equivalent to that of
Montroll and Potts [92], who considered direct neighboring interactions only with central and non-central
(shear) contributions. The model of Montroll and Potts [92] is equivalent to considering § = 0 in Eq. (25)
(i.e., no diagonal springs):

@ (it j = 2uj+ui-1,j) + 8 (ui jo1 — 2ui j +ui j-1) = Mii; j 30
@ (vij+1 = 2vi +vij—1) + 8 (vigrj — 2vij +vi1y) = M 0)
A consistent lattice theory should fulfil both translational and rotational invariance principle [62—-66]. The
energy of Born—Ké4rman’s model fulfils invariance in translation: since all particles have the same displacement,
it is trivial to check that Eq. (28) equals zero for any superposed translation. Lax [62], Keating [64,65]
highlighted that Born—Karmén’s lattice based on two central interactions and one non-central interaction (the
shear interaction) does not fulfill rotational invariance (see also [66]). The same critique concerns the lattice
model of Montroll and Potts [92] (equivalent to the model of Rosenstock and Newell [91]), particular cases of
Born-Karman’s without central second-neighboring interactions, as analyzed by Gazis and Wallis [63]. This
can be seen in the simple translation and rotation w of one cell around a point P; ;:

it1,j \ _ [ ij co (MY o (M mea) g (M) o (M T @) gy
Vitl,j v;,j + wa Vi, j+1 Vi, j Vitl,j+1 vi,j +wa

Inserting Eq. (31) in one cell of Eq. (28) furnishes
o

Ui,j = — (Mi+1,j - Mi,j)2 + (ui+1,j+1 - Mi,j+1)2 + (vi,j+1 - Ui,j)2 + (vi+1,j+1 - Ui+1,j)2
4

p 2 2
+ 1 [(ui+1,j+l —ti Vi1 1 = Vi j) " A (i1 — it = Vig1 A Vi) ]

8
+ 1 [(vi+1,j - Ui,j)2 + (Ui+1,j+1 - Ui,j+1)2 + (ui,j+1 - ui,j)2 + (ui+1,j+1 - ui+1,j)2]
= % [()2 +0%+0% + 02] + g [(—a)a + a)a)2 + (wa — wa)z] + % [(a)a)2 + (wa)2 + (a)a)2 + (wa)z]
= § (wa)® #0

(32)
which is nonzero due to non-central interactions, since § # 0. In conclusion, Born—Karmén’s lattice does not
fulfil the rotational invariance principle, in general, thus is inconsistent. The kinetic energy of this lattice with
concentrated masses has the simple form:

-2 .
T=ZZMui’j+Mvi’j (33)
i

Applying Hamilton’s principle to the Lagrangian L = T — U gives the mixed differential-difference equation
Eq. (25), which can be obtained equivalently by the direct approach, as for the 3D Born—-Karmén’s model.
Again, its asymptotic expansion shows that it converges to Navier’s partial differential equations of elasto-
dynamics. For this 2D problem, the following relation between the discrete and the equivalent continuum
ujj=u(x =ai,y =aj)and v; j; = v (x = ai, y = aj)holds for sufficiently smooth functions given by:

a(ou-+y)

Uitl,j+1 =u(x+a,y+a)=e u(x,y) (34)
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By using again an asymptotic expansion, one obtains the long wave continuum limit as:

2 2 92 2
(a+B) G5 + 285 + (6 +B) 55 = phGl

a?

2 2 2 2
(a—i—ﬂ)g}—g—i—Zﬁaia“y—F(S—i—ﬂ)%:phng

(35)

where £ the depth of the plane element. From Eq. (35), it is possible to identify the constant of Navier’s partial
differential equations in plane stress elasticity (see, e.g., Love [93]), which are:

E_ 3%u E__ 3% E_ 8% _ _d%u
=02 ox2 T 20—0) oxay T 200+0) 0 = Pz 36)
E 0, _E 9w _E 9% _ %
=02 3y2 T 2(—v) axdy © 2(0+v) ax2 — P a2
with E the Young’s modulus, v the Poisson’s ratio. One identifies:
_ _Eh _ EhGB—-v)
atB=10 = 1009
_ _Eh Eh
W=xim = {B=ay (37
— _Eh Eh(1-3
8+ﬂ—2(1+u) SZM
Equation (37) can be rewritten as
B _ ltv
{ ;i (38)
o= 3-v

Note from Eq. (38) implies that if § = 0 (central forces), Poisson’s ratio must be v = 1/3, as reported by
Hrennikoff [58], Hrennikoff [59], McHenry [60], McHenry [61] or Hrennikoff [73] for plane stress problems.

§=0 = v=1/3 (39)

The truss composed of horizontal, vertical and diagonal bars, equivalent to Born—Kéarmédn’s lattice with central
forces (or Navier’s lattice with pure central interactions, also equivalent to McHenry-Hrennikoff truss), foresees
a constraint for the stiffnesses of the bars in plane stress:

=0 = a=2p (40)
i.e., the stiffness of the horizontal and vertical elements is twice that of the diagonal elements for a McHenry
truss. For the equivalence, the stiffness parameters must be

3ER
b1 = {Z:@ (41)
- 8

In McHenry-Hrennikoff’s truss, the cross sectional area of each horizontal or vertical bar is denoted by Ay,
that of each diagonal bar is denoted by A p, Young’s modulus of each horizontal or vertical bar is denoted by
Ey, and the Young’s modulus of each diagonal bar is denoted by Ep:

Eh (3 — 3Eh Eh 3Eh
ANEN =aa = 4(](_ U;J))a = a and ApEp = ﬂaﬁ= 1= U)aﬁ: Tu«/ﬁ for v=1/3
(42)
If Young’s modulus is uniform, as in Hrennikoff [59] or McHenry [61], Eq. (42) yields:
3h 3V2h
a \/_ a (43)

En=Ep=FE = Ay=— and Ap =
4 8

For finite elastic solids, McHenry [61] reported that the border springs must have stiffness «/2 for an

accurate correspondence of the lattice with its asymptotic continuum (see Fig. 11). The uniaxial compression

of a square specimen composed of McHenry trusses (or central Born—-Kdrmén’s lattice, often referred to

as Bravais lattices in physics) is shown in Fig. 12 for several repetitions of McHenry cells. The boundary

conditions both in terms of border springs and given loads must be carefully set. Whatever the number of cells,
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Fig. 11 Representation of McHenry truss model
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Fig. 12 McHenry truss with specific border springs under uniform compression; o« = 28; u(n,n) = f%v(n, n);v = % for

McHenry truss in plane stress

the ratio of the horizontal displacement to the vertical displacement of the specimen is //3. For 3D McHenry
cells (3D Born—Karman’s lattice with central interactions), the equivalent Poisson’s ratio is //4, as given by Eq.
(19) (see Fig. 13). For 3D McHenry-Hrennikoff lattices, the stiffness of each horizontal, vertical and diagonal
bar derives from Eq. (20):

5=0 = v=1/4 = a=4 (44)

It is remarkable that the strict equality between stiffness parameters « = 28 for plane stress differs from that
of 3D elasticity « = f. From Eq. (44), using Eq. (14), one identifies easily that

o = EnAN _ 2Ea
v=1/4 = | 5 _ Egan _ 2k (45)
a2 5
For uniform Young’s modulus, this gives the cross-section areas reported by Hrennikoff [59]:
2a? 24/2
- V2 2 (46)

Eny=Ep=E = ANZ? and Ap = 5

Figure 13 shows some 3D Hrennikoff trusses in compression, with border springs having half the stiffness
of the inner ones, under the central force assumption (with truss properties @ = f or equivalently with the
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Fig. 13 Three-dimensional McHenry truss with specific border springs under uniform compression; « = B;u(n,n,n) =
—}‘v(n, n,n) = —%w(n, n,n);v= % for three-dimensional McHenry truss; computation for three trusses 1 x 1 x 1,2 x 2 x 2
and3 x3 x3

cross sectional properties of Eq. (46)). The macroscopic response of the n-cell specimen to a pure compression
gives a ratio of the lateral to the vertical end displacement equal in absolute value to Poisson’s ratio, which is

1/4 under the considered central force assumption.
For the energy of the 2D Born—Karman’s lattice (Fig. 14) to be positive definite, Poisson’s ratio must be

less than its critical value in plane stress, i.e.

§>0 = v<1/3 7
The mixed differential-difference equations of the 2D Born—Kdrman’s lattice in plane stress are:

EGB—-v E
! )) (wi1,j —2u;j +ui,j) + HE=m] (i1 jr1 i1 jo1 i1 jr g jo1 — dug ) +

4(1-0?
E E(1-3v 2 .
g (Vig1,j+1 = Vi1, j+1 — Vi1, j—1 + Vie1,j—1) + —4((1_U2)) (wi j+1 — 2ui j + ui j—1) = pa®iij j

EGB—v E
L )) (Vi j+1 = 2vij + i j1) + 30-0) (Vi1 j1 F Vim 1,1 Vi1t Vi1 — 4 )

4(1-0?
E E(1-3 .
81—0) (i1, o1 — i1 jort — i1 jo1 i1, j1) + 4((1_1}})) (vig1.j = 2vij +vio1j) = pa* i
(48)
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Fig. 14 Born—Karman lattice with specific border springs under uniform compression

Equation (48) can be expanded up to some higher gradient terms, to formulate a higher-gradient continuous

Born—-Karman’s lattice equations in plane stress, as an approximation of discrete elasticity:

EG—v) [%u  a®d*u| E [H0%u  nd%u o 2 9% | a®d*u | a®d*u
a(1—02) [axZ T oo | Tsaw 252 T252 Ta amyr T 60 T 6 gy | T

E 9%v a® 9% a® 9% E(1-3v) [ 92%u a® 9*u
3(1-v) [43x8y +2 3 9xdy +2 3 dyoax’ + 4(1-v?) [ 9y? + 3yt +o
EG-v) [8%v | a* 8% E 9%v 9%y 2 9% a? 3ty | a? dt
a(1—0?) [ayZ T oot | Tsaw 2 T2 T nmr t 65 T 5o

E 9%u a® 3*u a’ _8%u E(1-3v) [ 3% | &% 8% 4 _ =
8(1—v) [48x8y +2 3 9x0y3 +2 3 Byaxs + 4(1_U2) 352 + 12 9.4 +ola’)=pv

—_
Q
~
I

For plane strain, Navier’s elastodynamic continuous equations are given by:

2 2 2 2
(o 21) 55 + O+ ) 5y +GE = 5t

a2 2 2
(h+20) 55 + O+ ) gy +ugh =058

One identifies for the 2D Born—Kéarman’s lattice (see also Suiker et al. [47]), under plane strain:

a+B=0+2u)h a:#h
2=+ wh = B ="t

For central forces in plane strain from Eq. (51), we obtain:

§=0 = A=u = aoa=28

(49)

(50)

G

(52)

and Poisson’s ratio v = 1/4, which is the value given by the “rari-constant” molecular theory of Poisson and
Cauchy; Eq. (52) was obtained in plane strain by Suiker et al. [47]. We can summarize that the stiffness of the
2D McHenry-Hrennikoff truss (or equivalently, Born—Karman’s lattice with central forces) in plane strain or

plane stress, foresees « = 28, whereas 3D truss (or 3D lattice with central forces) foresees o = f.
In plane strain, the positive definiteness of the energy imposes that:

§>0 = v<l/4

(53)
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The constraint Eq. (18) for Poisson’s ratio still holds and the central forces require v = 1/4. The mixed
differential-difference equations of 2D Born—Kdrman'’s lattice model in plane strain are given by:

A3 At

3 (Mi+1,j —2u; ; + Mi—l,j) + == (Mi+1,j+1 Fui—1j—1FUi—1j+1 F Ui j—1 — 4Mi,j) +
A (o L o S H=A (. . . — 25

7 (vl+l,j+1 —Vi—1,j+1 — Vi+1,j—1 +Ul—1,j—l)+T(ul,j+l _2’/‘1,/ +ul,j—l) =a"ujj (54)
30

A+
7 (Vi1 = 2005+ vij—1) 55 (Vi oot Vit et Vi o — dvi)

At i) 2
S (g — i1 i1 — wig1 -1+ uic1jo1) + 55 (i — 2vij +vicnj) = a” b

The mixed differential-difference equations of the 2D Born—Kéarman’s lattice model (in plane strain) can be
expanded using the higher-order differential operators, in the following form:

A+3u 2y a% d%u Atp 9%u 9%u 2 9t a® 3*u a® 9*u
(T)[erﬁm T ) P 2t ame T tear )t
At [ 4 9% a® oty a3t p=2\[ 0% | a®o*u 4y _
( 4 ) 43x8y +23 8x8y3 +23 ()y‘()x3 + 2 Byz + 12 9y +0(a ) =pu
(55)
i3\ [0 @t o () [0 4 090 4 2 o'y aitu | @ o%
( 2 ) | 92 +n 3yt 2 28}'2 +28x2 +a 9x20y2 +% ay4 + % x4 +
[ 4 92u a? 3*u a? 9*u H—A 9%v a? 9% 4\ e
( 7} )_4axay+2?axay3+2Tayax3 +(577) |52 + T2t | tol@) =p¥

4 Three-dimensional discrete elasticity: Gazis et al. model

The general violation of rotational invariance of Born—Kédrmadn’s lattice, encouraged researchers to replace the
non-central forces (shear forces) by angular ones. This idea was already employed by Born [94] in developing
a two-constant model for diamond, with both central and angular forces among nearest neighbors, an idea that
is already present in Voigt’s assumption of a potential that depends also on the orientation of molecules, or in
Poincaré’s three-body potential that accounts for angles formed by triples of molecules. A three-constant lattice
with vertical and longitudinal springs (central interaction between nearest neighbors), diagonal springs (central
interaction between next-nearest neighbors) and rotational springs (angular interaction) is due to Smith [95]
for the diamond structure [95]. De Launay [51] presented in detail Smith’s lattice and also referred to Nagendra
[96] for results [96]. To avoid theoretical inconsistencies, the lattice energy shall depend on invariant quantities,
such as distances between atoms or angles among triples of atoms [63]. Gazis et al. [67] gave a final answer to the
paradoxical properties of Born—Karman’s lattice by replacing the shear (non central) force therein with rotation
springs. The lattice of Gazis et al. [67] is monatomic, simple cubic, composed of particles of equal mass M and
lattice spacing a that interact by: nearest and next-to-nearest central forces as due to axial springs of stiffnesses
« (edges) and {3 (diagonal) (notation as in Born—Karman’s lattice); “angular forces” as due to rotation springs
of stiffness vy (the mechanical interactions of such a lattice are represented in Fig. 16 for the 3D Gazis et al.
lattice, and in Fig. 17 for the 2D Gazis et al. lattice). This lattice is energetically consistent, fulfilling invariance
in rotation and translation; its governing mixed differential-difference equations asymptotically converge to
Navier’s partial differential ones for elastodynamics. For plane stress, this system was also considered by Wu
(1989) in his PhD thesis where 2D elasticity was investigated by a three-parameter lattice with one angular and
two central interactions [80]. Central forces (Navier, Poisson’s or Cauchy’s molecular assumption) is retrieved
for y = 0, but do not lead to a general Hooke’s law at the continuum limit with free Poisson’s ratio. Gazis
et al. lattice coincides with Born—Kéarman’s for central forces, i.e., § = 0 (Born—Karman) and y = 0 (Gazis
et al.). The governing equation and the lattice of Gazis et al. are shown in Figs. 15 and 16. Exact solutions
are available for the dispersive wave propagation equation in 2D or 3D for these lattices (see for instance [67]
for 3D lattices [67]). Exact solutions for the in-plane shear vibration of such a lattice have been obtained by
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Fig. 15 Mixed differential-difference equation—yvibration of three-dimensional elastic lattice; Eq. (34) from Gazis et al. [67]

Mindlin [97]. The mixed differential-difference equation is given by Gazis et al. [67] (Fig. 15):
a (i1, jk — 2ui ik + ui-1,j.k)
B
+ E(”iJrl,jJrl,k F Ui, j+1k T Ui+l i1k T U1 -1k + Uit jk+1 T Ui—1,j k41

A i1, j k-1 + Uio1,jk—1 — 8 jk) 56)

+ (E + )/) (Vi1 j+1.k F Viel,j—1k — Viel,j+1k — Vitl,j—1k + Wit jk+1 + Wis,jk—1

= Witl,jk—1 — wi—l,j,k+1)
+ 4y (ijark i ok it + k-1 — dugjx) = Mg ji
The potential energy of the lattice of Gazis et al. is given by (Fig. 17):

i (ui+1,j,k - ui,j,k)2 + (Mi+1,j+1,k - ui,j+1,k)2
A (i, k1 — i 1) A (Wit 1 k1 — Ui jr 1 kt1)
P
U— Z Z Z o |+ (vijr1k —vigik) + (gi+1,j+1,k — Vit jik)
: 8 | 4 (viyja 1.kt — Vijik41) A+ (Vi1 jr1k+1 — Vikl, k1)
2 2
+ (Wi, jk+1 — Wi jk) ~ F (Wi, jk+1 — Wis1, k) ,
+ (Wi, jr 11 — Wi jr1 k) + (Wit jp1 k41 — Wit j41k) |

(Mi+l,j+1,k — Ui jk T Vitl j+1k — Ui,/xk)2

+ (i1, jk — Wi j+1,k + Vil jk — Vi, j+1.k)

(ui+1,j+1,k+1 — Ui jk+1 T Vil j+1k+1 — Ui,j,k+1)2

(Mi+1,j,k+l — Ui j+1,k+1 + Vitl,jk+1 — Ui,j+1,k+l)

(ui+1,j,k+1 — Ui j kT Witl,jk+1 — wi,j,k) + (Mi+1,j,k — U jk+1 T Wit jk — wi,j,k+1)2
(“i+1,j+1,k+1 — Ui j4+1,k T Witl, j+1,k+1 — wi,j+1,k)2

(ui+l,j+l,k — Ui j+1,k+1 T Witl, j+1.k — wi,j+l,k+l)
(
(
(
(

oo |

Vi j+1k+1 — Vi jk T Wi j+1k+1 — wi,j,k)
Vi j+1,k — Vi jk+1 T Wi j+1k — wi,j,k+1)
Vitl,j+1,k+1 — Vi+l,jk T Witl, j+1,k+1 — wi+1,j,k)2
Vitl,j+1,k — Vitl,jk+1 + Witl j+1,k — wi+1,j,k+l)2

G4+ o+
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Fig. 16 Three-dimensional [67] lattice with longitudinal and vertical elastic springs (of stiffness «), diagonal elastic springs (of

stiffness B), and rotational springs (of

stiffness y)
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Fig. 17 Two-dimensional [67] lattice with longitudinal and vertical elastic springs (of stiffness «), diagonal elastic springs (of
stiffness ), and rotational springs (of stiffness )
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Expanding Eq. (57) yields Navier’s partial differential equation and second-order terms:

5 ((3%u n a’ 3*u
ad” | — + —=—
9x2 12 0x*
+/3a2 482u+282u+ 2 0%u +a2 84u+a2 84u+282u+ 2 0%u _'_a2 d%u
2 0x2 ay2 0x20y2 3 ax* 6 oyt 972 9x29z2 6 9z*
fdyd 3%u n a® 3*u n 3%u n a® 3*u
Va oy T 120y T2 T 120
B\ [, v 2a* v 2a% 3t Pw 24 3w 24% Ftw .
+ a” (4 4 =Mu

v+ 2 0xdy + 78x3y3 + 78)638)/ + 0x0z + 3 9xdzd * 3 9x39z

(58)
Equation (58) is the lattice-based gradient elasticity model associated with Gazis et al. lattice. This equation
has been exactly derived by Mindlin [98]—see “Appendix A”.
Equation (56) may be approximated by the continuous formulations at the long wave limit:

92u 9%v 92w 9%u 2 92

0“u u
(a+2,3)ax—2+(2/3+4)/) 229y +(2ﬂ+4)/)m+(/3+4)/)3—yz+(5 +4)/)8—Z2 =pass (59)

so that it is possible to identify the lattice parameters from Navier’s elastodynamic equation of continuum
elasticity with cubic symmetry, which contains the linear elastic isotropic medium for some constrained
material parameters.:

a=a(cy1 —2c12) =C2u—»1)a cli=Ar+2u
B =acip=2a with Caa = 1L (60)
y =% (cas — 1) = “7%a ci2=2x

Equation (60) can also be inverted to furnish the values reported implicitly by Gazis et al. [67]:

p=TP P 22 F 61)
2a a 8
Equation (50) of Gazis et al. [67] in 3D elasticity here reads as:

— at28

L= —g-
B a clr=A+2u

€2 =4 with | cau=p (62)

Cl2 = A
caq = B

a
For central forces, Gazis et al.’s lattice coincides with Born—Karman’s and one obtains:
y=0 = pu=r = v=I1/4,a=8 (63)

For the potential energy to be positive definite, y must be positive, which is equivalent to u larger than A,
or equivalently v smaller than 1/4 , a constraint found also in Born—-Karman’s lattice.

5 Two-dimensional discrete elasticity: Gazis et al. model

For an isotropic material in a 2D framework (isotropic in the asymptotic limit), the governing equations of
Gazis et al. lattice are:

o (i1, — 2w +uim1,j) + 5§ (i1t + ot jo1 + o1 a1 + s jo1 — 4ui )

+ (% + V) (Vi1 j1 = Vim 1 = Vi1, ot Vi— 1) 4y (i1 — 2uij +ui 1) = M

a (vijj41 — 2vi +vij-1) + % (Vig1,j4+1 + Vie1j—1 + Vi1, 41 + Vg1, j—1 — 4vij)

+ (% + V) (i1, 01 = im1 1 = it jo1 F i1, j—1) + 4y (Vg1 — 200 +vie1j) = M U
(64)
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where (a, B, y) are positive stiffness parameters (see Fig. 17). Each particle has mass M = pa”h, where h is
the depth of the plane element and p is its material volumetric density. Equation (64) are obtained equivalently
starting from the following potential energy:

U=y Z% [(ui+1,j —ui ) (wisr o — i 1)+ ijer = vig) F (Vi — Ui+1,j)2]

2 2
+ 1 [(ui+1,j+1 — Ui j T Vg1, j+1 — Ui,j) + (Mi+1,j — Ui j+1 — Vitl,j T+ Ui,j+1) ] (65)
1 2 2
t oy (Mi,j+1 — Ui jF+Viy1,j — v,-,j) + (ut;l,jﬂ —Uit1,j T Vit1,j — v,-,j) )
+ (it = i+ Vi1t = Vigt)” (Ui = Wi Vit = Vi)

Gazis et al. [67] detail the last contribution, related to the angular stiffness y, which can be expressed in terms
of the rotation stiffness Cs via the scaling Cs = ya”. The energy in Eq. (65) is objective, as can be seen by
operating translation and rotation w of one cell around a point P; ;:

Wit Ui i ui uj i — wa Uit Ui j — wa
i+1,j ) _ i,j : Lj+l ) i,j and i+1j+1 ) i,j (66)
Vitl, ) vi,j +wa Vi, j+1 Vi, j Vi, j+1 vi,j twa
The energy of one cell is equal to:

Uij = % [(“H—l,j - ui,j)z + (wit1, 1 — Mi,j+1)2 + (vij+1 — Ui,j)2 + (Vi1 41— Ui+1,j)2]

B 2 2
+ [(ui+1,j+1 =i+ Vit = Vi) + (Ui — i = Vigrj Vi) ]

4
| 2 2
oy (i 1 —wij + i1 j = vi )"+ (i1 jo1 — i1+ vig1j — vi,j)
5 2
2 + (i ja1 — i j + Vig1 j1 — Vij1) F (Wit j1 — Ui, + Vil j+1 — Vi,j+1) (67)
B

= % [O2 +0>+0%+ 02] + 1 [(—a)a + a)a)2 + (wa — a)a)z]
+ Ey [(—wa + a)a)2 + (—wa + a)a)2 + (—wa + a)a)2 + (—wa + a)a)z]
=0

The kinetic energy of this lattice with concentrated masses at each centre has the simple form:
-2 -2
T=) ) Mii;+Mi}, (68)
i

Applying Hamilton’s principle to the Lagrangian L = T — U yields Eq. (64): its asymptotic expansion shows
that the difference equations of the lattice asymptotically converge toward the partial differential equations of
elastodynamics of Navier, with the lattice parameters:

2
8)62+'B<3x2+du>+4<é+y)r)x3y+4 du:aﬂz% (69)
3 M 9
Perp(Ly+y)+a(b4y) da rayiy =iy
This system of partial differential equatlons can be also rearranged in the following way:
2
@+ 55 +4(5+y) o+ @y +8) 0% = pht o

@+ Es+4(5+7) 8m+<4y+ﬁ)ﬁ’“ — ph®y

From Eq. (70), it is possible to identify the elastic constants of the continuous Navier’s equations for plane
stress (see for instance [93]) by Eq. (36). One identifies easily:

h
B+4y =51t = | B=1% 1)

_ _Eh __ Eh(1-3v)
4y + B = 1010 Y= R(—0?)
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Equation (71) can be rewritten as

_ (72)

{ - 8(1-v)
The difference equations of Gazis et al.’s lattice are equivalent to a finite difference formulation of the contin-
uous Navier’s partial differential equations of elastodynamics for plane stress:

RIR RI™®

E E
T (i1 j = 2uij +uio1j) + m (wig1,j41 +uizt, /'—1 i1 i o1 — 4u )

E(1— ..
+g(1E ) (vi+1,j+1 —Vi—1,j+1 —Vi+1,j—1 + Ui—l,j—l) + 2((1 2) (uz j+1 = 2ui i + ui,j—1) = pa? uj,j
1+U (vi,j41 — 20 + vi j—1) + 2(11‘;—2)2) (Vig1,j+1 4 Vie1,j—1 F Vie1,j+1 + Vi1, j—1 — 4v; ;)

E(l ..
+8(1—_U) (i1, jr1 = i1 jrt = i1 j—1 + Ui—1j—1) + 2((1—1}2) (vit1,j = 2vij +vio1,)) = pa® b,
(73)
This mixed differential-difference equation system for plane stress can be expanded as:
_E a? 3*u 9%u 82u 2 3t a’ 3*u 'u
T+ [8x2 T 8x4:| + 2(1 =07 [2 o T2 ta gt Rt W]
3%y a® _at i E(1-3v) a? *u 4y _ e
+8(1 v) [46x3y +2% axay* +25 dydx3] + 2(1-v2) I:A}Z T 2a ]+0(a ) = pii (74)
E ()2+a64 + 2"”+2"”+2"” +aav+ﬁﬁ
(T+v) [ 9y2 12 9y4 2(1 v?) 9x29y2 6 9y+ 6 ox4
8%u a’ 9t E(1-3v) a? a*v —
e |4y + 2% g 2% dydx3] 30009 [+ 508 +o(at) =pi

From Eq. (72), if y = 0 (central forces assumption), then v = 1/3, as reported by McHenry [61] or
Hrennikoff [73] for plane stress and obtained in Born—Karman’s lattice with central forces.

y=0 = v=1/3 (75)

The truss analog equivalent to Born—Karman’s lattice model with central forces, composed of horizontal,
vertical and diagonal bars, also foresees constrained spring parameters:

y=0 = a=2p (76)

For the relevant lattice energy to be positive definite, the model of Gazis et al. [67] is valid for a Poisson’s ratio
lower than its critical value in plane stress:

y>0 = v<1/3 )

A simulation of the compression test of Gazis et al. lattice [67] is shown in Fig. 18, where the nodal forces and
the stiffness elements have been calibrated at the border.
For plane strain, Navier’s continuous equations are given by Eq. (50), and one identifies:

h
a+pB=R+2u)h “Zz“h:ﬁgh
2+t4y =R +wh = B =xrh= <l+u>2)1 —2v) 7%

4 = uh _ M* E(1-4v)
vth=un V= h = siroya—anyh

If y = 0 (central forces) here, then v = 1/4, which is the value provided by Cauchy-Poisson’s “rari-constant”
molecular theory where A = . The definiteness of energy requires that:

y=0 = v=<l/ (79
Gazis et al.’s difference equations are equivalent to a finite difference formulation of Navier’s continuous
partial differential equations of elastodynamics in plane strain:
)
2p (igr,j = 2uij +uiy ) + 5 (ipr jor o1 iy + i jo1 — 4ui )
At ..
+ 252 (Vig1,j+1 — Viel,j+1 — Vil j—1 F+ Vie1,j—1) + (= A) (i jo1 — 2uij +ui j—1) = pa*ii; j
2
20 (vij1 — 200+ vij—1) + 5 (Vi1 j4+1 + vie1j—1 + Vie1j4+1 + Vie1,j—1 — 4vij)

A .
+—J£M (”i+l,j+l —Ui—1,j+1 — Uit+1,j—1 + ui—],j—l) +(u—=2) (Ui+1,j —2v; +vio1,j) = pa’ i
(80)
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Fig. 18 Gazis et al. [67] lattice with specific border springs under uniform compression

This mixed differential-difference equations (2D Gazis et al. lattice in plane strain) can be expanded as:

9%u a® 9%u A 9%u 92u 2 3% a? 9*u a? 9*u
2 [8x2 +1 x4 +3 28x2 +28y2 +a 9x20y2 6 x* R

2 y
At 92 2 94 2 Bt 92 ] 4y _ -
4 4 x3y+2%3x3;3+2%3y3;3]+(:u/_)¥)[ﬁ+?_B_y4:|+0(a )—,OI/t (81)
a? 3t
1

v
a
2%y a? a*v A 2% 2% 2 3t a’ 'ty v
ZMI:W+_2_4 +5 2m+2m+a T %57 T 6ax2
v

3y 9x209y2 oyt

X
A 32 2 34 2 84 32 4\ _ .
e e N oler e

The model of Gazis [67] is valid for small values of Poisson’s ratio (v < 1/3 for plane stress, v < 1/4
for 3D elasticity) in order to preserve the positive definiteness of the associated energy. This restriction is
identical to that found for Born—Kéarmén’s lattice. However, the mixed differential-difference equations of
both lattices (Born—Kdrman’s lattice and Gazis et al.’s lattice) differ, and coincide only at the asymptotic limit.
For 2D problems, the coincidence of the asymptotic continuum corresponding to the two lattices gives, from
a comparison between Egs. (35) and (70):

ag =apk + 0Bk
Bc = Bk — 0Bk (82)

5
ye = 5K

where (g, B:, ) are the parameters of Gazis et al. [67], whereas («¢pg , BBk, 05k ) are the three parameters
of Born—Karman’s lattice [6]. Only the asymptotic isotropic continuous media coincide (with different wave
dispersive properties for the two-dimensional wave propagation). Comparing Eqs. (12) and (59) gives the
correspondence between the two lattices in 3D:

aG = agg + 20k

B = ,:?BK — 8Bk (83)
ve =5

The non-central contribution of Born—Kéarmén’s lattice is based on shear interactions with a shear stiffness
equal to dpg. It can be shown from the associated energy that this shear interaction is also equivalent to a
frame-dependent angular interaction of angular stiffness C g K — §pxa®, as opposed to Gazis et al. model [67]

which is composed of objective angular interactions of angular stiffness C SG = yga? (as shown in Fig. 19).
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(a) Born-Karman model (1912) (b) Gazis et al model (1960)

Fig. 19 Equivalent angular interactions of Born—Karman lattice model and Gazis et al. [67] lattice
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Fig. 20 Two-dimensional Hrennikoff cells

6 Two-dimensional discrete elasticity: Hrennikoff model

Gazis et al. [67] developed their three-parameter lattice model for crystal elasticity applications, and found
an alternative model to Born—Kéarman’s non-central lattice interactions. We have shown that these two models
are mathematically and physically different, even if they both converge asymptotically to Navier’s partial
differential equations of isotropic elastodynamics. Gazis et al.’s model [67] can be viewed as the consistent
generalization of 1D Lagrange equations for 3D linear elasticity. However, before Gazis et al. [67], Hrennikoff
[58,59,73] explored an other generalization of Born—-Kdrman’s central (or Bravais) lattice, considering an
enriched microstructure of central interactions. This could be seen as a meta-lattice, using modern concepts
of meta-material modeling [83]. Hrennikoff’s lattice method to model continuum elasticity is considered as
a cornerstone of discretized methods in solid mechanics, that led to the birth of the Finite Element Method
[99,100]. As shown in Figs. 20 and 21, Hrennikoff’s lattice consists of edge bars-springs of stiffness ¢, and
diagonal bars-springs of stiffness f joined at their quarter span by pinned auxiliary bars-springs of stiffness «.
All bars being hinged, Hrennikoff’s lattice is a truss with central forces. The diagonal bar can be decomposed

into three elements, one central of length a+/2/2, and two complementary ones of length a~/2/4. The equivalent
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Fig. 21 Two-dimensional Hrennikoff truss [59] with specific border springs under uniform compression; Computation for three
trusses 1 x 1,2 x 2and 3 x 3; u(n, n) = —vv(n, n) for various values of Poisson’s ratio v; Hrennikoff truss in plane stress
stiffness B of the diagonal bar results from those of its sub-elements connected in series:
! 2 + ! (84)
B B P
In a uniform bar, these are related to the cross-section properties and the length of each element:
EpAp EpAp EpAp
B=———,81=4———=4B and B =2 =2p (85)
J2a V2a V2a
The originality of Hrennikoff’s approach [58,59] is to add some auxiliary bars characterized by:
K = 2Eauanux (86)
a

Born and von Kdrman central (or Bravais) lattice is obtained as a particular case when k¥ = 0, i.e., in absence
of auxiliary bars, coinciding with McHenry’s lattice [60,61].
The mixed differential-difference system of equations for Hrennikoff s lattice is:

(05 + {;ﬁﬂﬁ) (wigrj —2uij+uiyj)+ (% + mgﬁ) (w1 jer +uin o1+ uiog 4 wig o1 — 4uij)
+ (% + ﬁﬁ) (Vi1 1 = Vimt 1 = Vit ot Vet 1) — g (i — 2 uijo) = Miis 87)
(a + &fﬁ) (vijs1 = 2vij 4+ vij1) + (% + légﬁ) (Vi1 +vic1j—1 +vic a1+ vie1 o1 — 4vij)

K K .
+ (g + 16,§W) (Wit jer = Wim jp1 — Mig1 jo1 +Uim1 j—1) — s;,sﬁﬁ (vig1,j =201 +vie1,j) = M

Hrennikoff [58,59] did not give these equations explicitly: he provided the calibration of his lattice from
the static analysis, neglecting inertia, of one cell and its relevant linear isotropic elastic expected behavior
at a macroscopic scale. We derived Eq. (87) assembling the stiffness matrix of each bar element around the
considered node.

An expansion of Eq. (87) shows that the difference equations of the lattice converge asymptotically to
Navier’s partial differential ones for elastodynamics, with parameters:

92 a
a+p+ 4ﬂ+;<> Tg + (28 + 4ﬂ+/< 3x8y 5 = phys 88)
3_

B —
a+p+ 4,3ix) r+(28+ 4,3+K dx3) ﬁa)ﬂ = phigs
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Equation (88) shows that Hrennikoff’s lattice asymptotically converges toward a continuous elastic medium
with cubic symmetry, which contains the isotropic case. By Eq. (88), we can identify the elastic constants of
Navier’s equations (linear isotropic elasticity) Eq. (36) for plane stress:

_ _Eh __ Eh
°‘+5+4ﬁ+x—EF ©= Ty,
2B+ 351 = 20—v = B = 3arny (89)
I A o — Eh1430)
ﬁ - 2(1+U) (14+v)(1-2v)

The values reported by Hrennikoff are obtained from the calibration of the stiffness parameters:

EyAy = £
EpAp = Y32 (90)

B
_ Eha(=143v)
Equx Aqux = 2(1+v)(1-2v)

For uniform Young modulus, the cross-section area of each bar given by Hrennikoff [58,59] for plane stress
is:

An — ha
N = Tio
En=Ep=Eux=EFE = Ap = z{ha) On
A ha(—=143v)

aux = 3(+ou)(1—20)

For the potential energy to be positive definite, each stiffness parameter must be positive, thus, as mentioned
by Hrennikoff [58], Hrennikoff’s analysis is valid for plane stress if:

k>0 = v>1/3 (92)

Hrennikoff’s model is thus valid for large values of the macroscopic Poisson’s ratio for energetic consistency
and can be viewed as complementary to the lattice of Gazis et al. [67], which was shown to hold for lower
Poisson’s ratio (v < 1/3 for plane stress). Hrennikoff [58,59] also provided the 3D lattice based on the same
three interactions, including auxiliary members, and gave the identification rule in plane strain:

a+ﬁ+4ﬂ+K A4+2n)h oc_ZpVh_H_U

28 + 4,3+,( =@GA+twh = B = “h = 2(l+u) 93)
_ _ _Eh(=1+4v)

B = uh €= gt = TGty

For the potential energy to be positive definite, each stiffness parameter must be positive, thus as mentioned
by Hrennikoff [58], his analysis is valid for plane strain or 3D elasticity if:

11
>0 = € 94
K > v |:4 3] %94)
For uniform Young’s modulus, we identify the cross sectional area of each bar in plane strain:
_ h
AN =1y
En=Ep=FEux=E = Ap = % (CR))
A _ ha(—1+4v)

aux = 2(1+v)(1-3v)

The only difference with plane stress is the calibration of the auxiliary cross-section areas. The equations for
Hrennikoff’s lattice in plane stress after the previous calibration are:

E(3-v E

—4((1 ) (wig1,j —2uij +ui—1j) + = (Wip1,j1 Ui jo1 F wim jp1 + wigr,j—1 — dui )
i L E(1-3v) . .. — pali:

+8(1 1)) (vl-‘rl j4+1 = Vi—1,j+1 — Vi+l,j—1 + Ut—l,J—l) + a(1-0?) (ul j+1 — 2”1,] +ul,]—1) = pa- uj,;

EG-v) .. . E S Ay s

a(1—v 2) (Ul Jj+1 — Zvl,] + Ut,]—l) + 81—0v) (vl+1,]+1 +vi—1,j—1 F Vi—1,j+1 F Vi+1,j—1 4Uz,])

E(1-3v 2
+8(1,U) (ul+1,1+1 —Uji—1,j+1 — Uit+1,j—1 T Mi—l,j—l) =+ ﬁ (Ui+1,j —2v;; + Ui—l,j) = pa-v;

(96)
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Fig. 22 Two-dimensional Zhang et al. [76] Hencky bar grid model with longitudinal and vertical elastic springs (of stiffness '),
secondary axial springs (of stiffness '), and rotational springs (of stiffness y’)

which is exactly the mixed differential-difference system of Born—Kéarman’s lattice. We draw the same con-
clusion in plane strain, hence we see a strict mathematical equivalence of the equations of Born—Karman and
Hrennikoff lattices, which holds by the following identification:

Brky

OBK = U0y + —Sﬁ/§~1+2KH

Bsk = Bu + g5, 5 o7
K

gk = _SﬂHHJFZ(H

where (ay, BH, kg) pertain to Hrennikoff’s truss, whereas (¢pk, Bpk, dpk) characterize Born—-Karman’s
lattice. Note that this is a strict equivalence, valid for the full lattice, not only for its asymptotic continuous
limit: on the opposite, the correspondence between the lattices of Born and von Kdrmén and Gazis et al. was
shown to hold only at the asymptotic limit. Figure 21 shows the compression of a Hrennikoff specimen with
few cells. The adaptation of equivalent forces and springs at the border was repeated, as for a McHenry truss
without auxiliary bars: the border springs have half the stiffness of the inner ones. Whatever the number of
repetitions, the ratio of the horizontal to the vertical displacement of the specimen equals Poisson’s ratio.

It is not the scope of this paper to review all kinds of lattices at various scales, with sometimes surprising
macroscopic properties when so-called metamaterial or metalattices are considered. Specific lattices were
extensively studied such as auxetic lattices with negative equivalent Poisson’s ratio, strongly anisotropic lattices
or specific lattices that do not converge asymptotically to Navier’s elastodynamics partial differential equations
(see [83] for alternative discrete elasticity models with complex microstructures). Recent lattices that also
converge toward the isotropic elastic continuum are those of Zhang et al. [48,76], a three-parameter lattice
with normal, secondary and rotational springs (see Figs. 22, 23), and that of Nannapaneni et al. [77], a three-
parameter lattice with normal, diagonal and equivalent volumetric interactions (see also the paper of Chen
et al. [101] or the one of Yin, 2022 about volumetric interactions [102]). A numerical compression test of
several cells was performed on the model of Zhang et al. [48] to find Poisson’s coefficient as the ratio of the
lateral to the longitudinal displacement (see Fig. 23). Even if the lattice models presented here are physically
different, and so are their mixed differential-difference equations, it is worth noting that they all converge
toward the linear isotropic continuum, in that their asymptotic continuum limits are Navier’s elastodynamics
partial differential equations.

This paper is concerned with the change of scale from 2D and 3D discrete elasticity to 2D and 3D continuous
elasticity models. The same methodology can be applied as well for bridging the scale between discrete
structural mechanics in terms of discrete beams, plates or shells and in terms of continuous beams, plates or
shells (see [79,103] or [104]). As already discussed, discrete (or lattice) beams were introduced by Hencky
[78], see Fig. 23. The Hencky model comprises rigid beam segments connected by frictionless hinges with
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Fig. 23 Two-dimensional Zhang et al. [76] Hencky bar grid model with specific border springs under uniform compression;
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Fig. 24 Hencky bar chain: a lattice beam with concentrated bending rigidity

elastic rotational springs having stiffness equal to the flexural rigidity divided by the segment length (Fig. 24).
The idea of approximating a continuous curvature by a discrete one defined by the relative angle formed by two
adjacent segments was already formulated by Piola in 1825 [105]. The Hencky-Bar-Chain system (or lattice
beam) asymptotically converges toward a continuous Euler-Bernoulli beam when the number of segments
is sufficiently large. As for axial (Lagrange-type) lattices, there is also a mathematical analogy between the
difference equations of the lattice beam problem, and the finite difference formulation of the continuous Euler-
Bernoulli beams (see Wang et al. [79] for the validity of this equivalence for various boundary conditions).
For both problems (strings, rods or beams), discrete elasticity mechanical problems may be built from simple
repetitive structural elements, which asymptotically converge toward continuous elasticity. The difference
equations of the discrete elasticity problem coincide with the finite difference formulation of the continuous
one. Generalized Hencky beams were built by Kocsis and Challamel [106] to account for the possible axial
and shear coupling phenomena in the discrete beam model. Hencky’s discrete beam was also extended to
discrete plate mechanics by Wu [80]; Wifi et al. [81]; El Naschie [82] and Wang et al. [79] (Fig. 25). The
so-called Hencky-plate type model was shown again to be equivalent to the spatial finite difference formulation
of the continuous Kirchhoff-Love plate model [79]. Hencky-type models may be also used to develop micro-
structures with interesting macroscopic properties of 2D or 3D elastic media. The so-called Hencky-type
model of pantographic sheet considered by Dell’Isola et al. [107] is a kind of generalization of Gazis et al. [67]
model [67] (with central interaction with the first neighbors and angular interactions) plus additional rotational
springs at the connection of each node. Discrete Hencky-type and continuous elasticity may be also related
asymptotically, in presence of conservative and non-conservative loading [108].

7 Discrete, local and nonlocal elasticity

We show here the limits of the so-called local asymptotic continuous models in capturing wave dispersion
phenomena of the lattice systems, both for 1D and multi-dimensional lattices. Starting from the elementary
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Fig. 25 Figure of Hencky bar net plate

one-dimensional Lagrange lattice, the wave dispersion equation can be obtained from the following harmonic
wave formulation for the discrete displacement field:

u; (t)y =Uexp[J (wt —kx;)] with x; =ai 98)

where o is the propagating frequency, U is the amplitude, J = +/—1 is the imaginary unit and k is the wave
number. Introducing Eq. (98) in the mixed differential-difference equation of Lagrange Eq. (1) gives the well
known dispersion equation in Born and von Kdrmaén [6]:

. (ka . M
Q2 = 2sin (—) with Q = w,/ — 99)
2 o

One may also consider lattices with additional interactions of both short- and long-range (e.g., [109,110]
or [111] for instance). Small values of k a provide the long wave approximation, related to the wave equation
of local elasticity given by Eq. (4).

1
ka<<1 = Q:ka—ﬂ(ka)3+~-- (100)

A shown by Fig. 26, for asymptotic local elasticity, one has &2 = k a, which is not able to reproduce the
dispersion phenomena due to the discreteness of Lagrange’s lattice. Nonlocal elasticity models were developed
(in particular) to capture these specific nonlinear responses in the dispersion curve of lattice theories. One of
the simplest models, calibrated with respect to Lagrange lattice, is due to Eringen [21], who postulated the
following constitutive relation for 1D media:

2
y 200D pon and e rn = 28D (101)

, 1
o 0x2 x

where € (x, t), o (x, t) the uniaxial strain and stress, and /. the characteristic length related to the lattice spacing
a, which is introduced to fit the wave dispersive properties of the lattice. Coupling the one-dimensional balance
of a homogeneous rod of cross-section area S:

AN (x,1) 3%u (x,1)

3 5.2 and N (x,t) = So (x,1) (102)
X

with the nonlocal elastic constitutive law Eq. (101), one obtains the nonlocal wave elastic equation, which is
a correction of the local wave equation Eq. (4):

0%u (x, 1)
0x2

Otu(x, 1) 0%u(x,1)

ES _
axlarr P T a2

(103)

+12pS
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Fig. 26 Wave dispersive properties of Lagrange lattice—linear approximation of local elasticity and nonlocal continuous approx-
imation of Eringen’s model

This wave equation can be classified as a Boussinesq-type wave equation with coupled spatial and temporal
derivatives (see [112,113] or the analysis of Maugin [15]). This nonlocal wave equation has been derived
by Jaberolanssar and Peddieson [114] and Rosenau [28] from a continualization process of Lagrange lattice
equations (and also derived by Eringen, 1983 from a nonlocal phenomenological approach [21]). The wave
dispersion equation of this one-dimensional nonlocal medium can be obtained from the following harmonic
wave formulation for the continuous displacement field:

ux,ty=Uexp[J (wt —kx)] (104)

leading to the characteristic dispersion equation of Eringen’s nonlocal medium:

2 2 [
0} k E
— =——>— Wwith ¢p=,/— 105
co is the axial wave celerity. Equation (105) can be equivalently written in dimensionless form:
k [
Q=— "% with =22 and ¢ =< (106)

1+ 3(2) (ka)? 0 a

where e is a dimensionless parameter used to calibrate the nonlocal model with respect to the lattice one.
Clearly, Egs. (99) and (106) differ, which means that this nonlocal model differs from the original lattice.
However, the nonlocal model can be considered as an efficient mathematical tool to capture the dispersive
properties of the lattice. In the long wave approximation, the dimensionless parameter eg can be calibrated by
comparing Eq. (100) with Eq. (107):

2
/1
ka <<1 = Q:ka—%o(ka)3+--- = ey = 5%0.289 (107)

Eringen [21] suggested to calibrate his nonlocal model at the end of the Brillouin zone of Lagrange’s lattice:

2

472

Qtha=m)=2 = e = ~ 0.386 (108)

Figure 26 shows that this last approximation gives satisfactory results, as also highlighted by Eringen [21],
who in a certain sense closed the chasm between Lagrange’s lattice and 1D continua by a one-length scale

nonlocal continuum behaving like a lattice (sometimes referred to as a quasicontinuum—see Collins [27]).
The nonlocal model can be alternatively calibrated with respect to the long wave approximation based on Eq.
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(107), as suggested by Jaberolanssar and Peddieson [114], Rosenau [28], Andrianov and Awrejcewicz [115]
and Andrianov et al. [116]. This latter calibration is satisfactory for the long wavelength approximation, but it
gives inadequate results at the end of the Brillouin zone. The one length-scale nonlocal model of Eringen [21]
can be enriched by additional stress- or strain- gradient terms, for better calibrating the nonlocal model with the
lattice. Two length-scale models, generalizing Eringen’s, show satisfactory results (see e.g., [22,117-120]).
However, Eringen’s nonlocal model still remains very simple and efficient, and reveals the essential dispersive
properties of the discrete medium.

The use of a nonlocal elastic model to analyze the wave dispersion phenomena in 2D or 3D lattice appears
more complex. The wave dispersion equation of a 2D elastic lattice (we will consider both the Born—-Karman’s
lattice and that of Gazis et al.) can be obtained from the following harmonic wave formulation for the discrete
displacement field:

uij (6) = Uexp|J (0 —kixi —kyy;)| and
v, j (t) = Vexp LJ (a)t —kxxi —ky yj)J with x; =ai and yj=aj (1o

with w is the propagating frequency, U,V the wave amplitudes, and ky, k, the wave numbers in the x, y
directions respectively. Introducing Eq. (109) in the equation of the 2D Born—Karman’s lattice, Eq. (25), gives
the 2D wave dispersion equation [6]:

20 (1 —cp) 4281 —ciea) +28 (1 — ¢p) — pa’haw? 285152

2Bs152 20 (1 —c2) +2B8(1 —crep) + 28 (1 —Cl)—,oazhw2 =0 (110)
with the dimensionless parameters ¢; and s; for i € {1; 2} defined from:
c1 = cos (kya); c3 =cos(kya); s; =sin(kya) and s = sin (kya) (111)

Equation (110) was obtained equivalently by Suiker et al. [47] for 2D Born—Karman’s lattices. Note that the
3D wave dispersion equation of this lattice model with non-central forces is available in the original paper of
Born and von Karman [6]. Introducing Eq. (109) in the equation of the 2D Gazis et al. lattice [67], Eq. (64),
gives the two-dimensional wave dispersion equation:

20 (1—c1)+2B8 (1 —ciea) + 8y (I — ¢2) — pa’hew? B +4y) 5152 _
2B +4y) s152 20 (1 —c2) +2B8 (1 —cie2) + 8y (1 — ¢1) — pa’ho?

(112)
The 3D wave dispersion equation of this lattice with angular forces is in Gazis et al. [67]. Equation (110)

would be equivalent to Eq. (112) only for central interactions:

1
aG = apk, B = BBk, VG = Z5BK and B +2y¢ =Pk = Ve =20k =0 (113)

This confirms that both lattices are indeed mathematically and physically different. In the following, we will
focus on the 2D lattice with central forces (particular case of Born—-Karman’s lattice with §px = 0, or of that
Gazis et al. with yg = 0):

20 (1 —c1) +2B8 (1 — cic2) — pa’hw? 2B 5152
2B 51852 20 (1 — ) + 28 (1 — ci¢2) — pa*hw?

=0 (114)

Equation (114) was found by Blackman [49], Montroll [50] or De Launay [51] for 2D Ilattices with central
force (edge and diagonal) interactions among first and second neighbors. It is further necessary that « = 25,
for asymptotical convergence to an isotropic medium (as seen above):

‘ 2 (1 —c)) +a (1 —ciep) — /oazha)2 oS8

os182 20 (1 —¢2) +a (1 —cie) — pa’hw? =0 (115

Equation (115) covers the case v = 1/4 in plane strain (A = ), and v = 1/3 in plane stress, and can be
rewritten in dimensionless form:
2
ah
pah 2

=0 with Q%=

_ _ e Y
‘ 2(l—cp)+1—cier — Q2 51852 (116)

51852 2(1—C2)+l—c1c2—92
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Fig.27 Wave dispersive properties of two-dimensional Born—Karman lattice with pure central interactions—linear approximation
of local elasticity and nonlocal continuous approximation of Eringen’s model

Equation (116) is a quartic equation of the frequency, which in full reads:
Q' — Q2 (6 —2¢c1 —2¢2 — 2c162) + 9 — 6¢1 — 6¢2 — 2c1¢2 + 2¢Tcr + 2c165 + ¢icd —sis3 =0 (117)
and admits two branches of solutions
Q=2-ci—c; and QL =4—c|—c2—2¢c12 (118)

as obtained by Montroll [50]. In the particular case of propagation along one direction, i.e., k, = 0 (which is
equivalent to ¢ = 1 and s> = 0), the two frequency solutions are written as:

Q> =1-c¢ and Q2 =3(1—c)) (119)

These two branches, associated with shear (or transverse) and the compression (or longitudinal) waves,
respectively, are shown in Fig. 27. The long wave approximation yields:

2 6
Q= %_kxa and Q4 = \/T_kxa (120)

which is also equivalent, assuming plane strain with central interactions, i.e., « = 2uh = 2Ah:

. m [X+2u 3
w_ = kyCspear and w4 :kxclong with  Cspear = ; and Clong = P = 7 (121)

The response is very similar to that of 1D Lagrange’s lattice, with a wave dispersion phenomenon highlighted
by two branches associated with the shear (or transverse) wave and the compression (or longitudinal) wave
respectively. Equation (118) is the wave dispersion equation of this square lattice with central interactions, and
in the long wave limit provides:

@ =1
-2

A 3D representation of the dimensionless frequency 2 versus the dimensionless wave numbers in both
directions, kxa and kya , is a conic surface that confirms the lattice isotropic response in the low-frequency
regime for both shear and compression waves, see Fig. 28, and agrees with the asymptotic expansion Eq. (122).
In other words, Born—Kdrmén square lattice with central forces (or cubic lattice in 3D) has isotropic behavior
at low frequencies. Figures 29 and 30 show that this isotropy is lost in the high-frequency regime, where
the special symmetry of the lattice is revealed. This phenomenon is evidenced in Blackman [49], Montroll
[50], De Launay [51] for 2D square lattices with central forces (and more recently numerically highlighted in

[0 + (ya)*] + - and @3 = % [ tca)? + (kya)* | + - (122)
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Fig. 28 Q € [0; 1]; conic surface for low frequency range of both shear (orange surface) and compression (blue surface) waves;
isotropic behavior for low frequency range

Fig. 29 @ € [0; 2]; distorsion of the shear wave surface; loose of the isotropic nature of the frequency response for high-range
frequencies

Nannapaneni et al. [77]); it resembles for triangular or hexagonal lattices (that may behave as isotropic bodies
in the low-frequency regimes), showing some microstructure anisotropy in the high-frequency regimes (see
[121] or more recently [122] or [123]). Indeed, there is a strong coupling between lattice anisotropy (preserving
lattice symmetry) and nonlocal effects, far from the isotropic continuous long wave approximation.

An efficient approximation of the nonlocality causing the dispersion phenomena at the lattice scale can
rely on the 3D nonlocal (differential) isotropic constitutive law by Eringen [21]:

o —12Ag =) (trg)yrzug (123)

where [ being as in the uniaxial law Eq. (101), which Eq. (123) generalizes. We now investigate the capability
of this 3D (or 2D) nonlocal law to capture the dispersion in the Born and von Karman square lattice with central
forces in plane strain. In view of Eq. (123) and balance, including inertia, Navier’s nonlocal elastodynamic
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Fig. 30 @ € [0; 3]; strong distorsion of both the shear wave and the compression wave surfaces; loose of the isotropic nature of
the frequency response for high-range frequencies (cubic symmetry)

equations are:

92 92 52 32 52 2
200 555 + O 5y + s =0 [1 1 (3x2 + 8y2>] ot (124)
G420 L8 4 ) 2 20 — -2 (2 4 2

1% 8y2 122 dxay I'LBXZ =p c \ 522 ayz T

The wave dispersion equation of this nonlocal elastic continuum can be obtained from the following harmonic
wave continuous displacement fields:

ux,y,t)=Uexp[J (0t —kcx —kyy)] and v(x,y,0)=Vexp[J (0t —kex —kyy)] (125)

In view of Egs. (125) and (124), the wave dispersion equation of the isotropic nonlocal model (in the sense
of Eringen [21]) is given by

O+ 200) K2 + k2 — po? — pl2 (kf + kg) w? 0+ ) keky
Oh+ 1) koky O+ 20) K2 + k2 — po? — pi2 (k§ + kg) |
(126)
The frequency equation of both branches can be extracted from the determinant Eq. (126):
e kKi+ks  A+3uE 04w azn
1+2 (8 + 1) 2

which may be written equivalently as

w_a (ka)? + (kya)® wia (ke)? + (kya)® |
= d = with

an
Cshear \/1 +e? [(kxa)z 4 (kya)Z] Clong \/1 + €3 [(kxa)2 + (kya)z]

A+2
Cshear = \/% and Clong = P o (128)
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Fig. 31 Q € [0; 1.5]; shear wave dispersive surface; comparison between the local (isotropic) (blue right circular cone), the
lattice (orange surface with cubic symmetry) and the isotropic nonlocal model (green surface of revolution)

Referring to the 2D lattice with central interactions following the “rari-constant” theory A = u, the nonlocal
elasticity of Eringen [21] predicts the two dimensionless frequency equations:

V2 k) £ (kya)®

2
\/1 + e% [(kxa)2 + (kya)z]

2 2
q, - Y6 (ksa)” + (ya) with Q—,/phaw— P o= Y2 a0 (129)
4+ = — = —_ — _ _
2 V2 2 )
\/1 + 6(2) [(kxa)2 + (kya)Z] o W Cshea

Figures 31 and 32 show the capability of the isotropic nonlocal model to predict the anisotropic lattice response,
both for low- and high-frequency regimes. The length scale of the nonlocal model, depending on the lattice
spacing, is calibrated as for 1D Lagrange’s according to Eq. (108) (as also used for Fig. 27). Both local and
nonlocal elastic models are isotropic. The nonlocal isotropic elastic model gives satisfactory results when
compared to the cubic lattice, up to the end of the Brillouin zone, but is, as expected, unable to capture the
anisotropic dispersive phenomena of the 2D lattice at high frequencies. There is definitely a need to develop
anisotropic nonlocal elastic models in the high-frequency regime, even with this very elementary cubic cell. Itis
also possible to consider more lattice interactions in order to reduce this anisotropic effect at high frequencies,
as considered for instance by Askes and Metrikine [124]: they studied an extended hexagonal lattice with
additional interactions in order to make the discrete model isotropic in a second-order approximation, with
hexagonal lattices asymptotically converging to the local “rari-constant” theory (v = 1/4 at the continuous
limit).

Q_ and

8 Conclusions

The history of searching a bridge between discrete and continuum elasticity starts in the eighteenth century with
the pioneering works of Lagrange, who first gave the mixed differential-difference equation of wave propagation
in a discrete 1D lattice and its continuum limit. During the nineteenth century, scholars investigated the
possibility to build 3D elasticity from molecular assumptions, which equals to connect discrete and continuum
elastic models. Born and von Karman [6] generalized Lagrange’s mixed differential-difference equation to 3D
elasticity, also establishing the link between a 3D monatomic cubic lattice and its continuum limit, governed
by Navier’s elastodynamics partial differential equation. The connection between discrete and continuum is
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Fig. 32 Q € [0; 2.5]; compression wave dispersive surface; comparison between the local (isotropic) (blue right circular cone),
the lattice (orange surface with cubic symmetry) and the isotropic nonlocal model (green surface of revolution)

consistent only if central interactions among the first and the second neighbors are considered, which equals to
model the lattice as a truss (dubbed McHenry’s or Hrennikoff’s) with bars transmitting axial loads that connect
each node-particle. With this assumption (“rari-constant” theory, equivalent to the molecular one of Navier,
Cauchy and Poisson), the macroscopic Poisson’s ratio appears to be restricted to 1/4 for 3D elasticity, and 1/3
for plane stress. Born and von Kédrmén [6] introduced additional non-central (shear) interactions to capture
general elastic properties at the macroscopic scale, including general values of Poisson’s ratio. However, this
was shown to be inconsistent, in the sense that the potential energy associated to these additional shear forces
is not invariant under superposed rigid body rotations, confusing them with shear modes. Hrennikoff [58]
gave a first consistent answer to this problem, generalizing Born—Kéarman cubic lattice with central forces by
adding auxiliary springs inside the cell: in this sense, his model is a meta-lattice, in that discrete cells exhibit a
microstructure. Hrennikoff’s lattice is energetically consistent, exhibiting only central interactions also among
the auxiliary bars inside each cell. We provided the mixed differential-difference equation of Hrennikoff’s truss
(absent in Hrennikoff [58,59,73]) and showed that it converges to Navier’s partial differential equations; it
coincides with that of Born—Kdrmaén’s cubic lattice. Hrennikoff’s model is valid for large values of macroscopic
Poisson’s ratio (v > 1/3 for plane stress) in order to preserve the definite positiveness of the associated discrete
energy.

The resolution of this problematic passage from discrete to continuum elasticity problem is probably due to
Gazis et al. [67] who generalized Born—Kéarman cubic lattice with central forces by adding rotation interactions
(as suggested earlier by Voigt and Poincaré). Indeed, Gazis and Wallis [63] have shown the necessity to build
a potential energy of the lattice which is invariant under rigid motion, by formulating this energy as a function
of the discrete invariant quantities such as distance between atoms and angles formed by triples of atoms. The
model of Gazis et al. [67] converges toward Navier’s partial differential equations in the continuum limit, and
is valid for small values of Poisson’s ratio (v < 1/3 for plane stress, or v < 1/4 for 3D elasticity) in order to
preserve the definite positiveness of the associated discrete energy: thus, it can be viewed as complementary to
Hrennikoff’s truss valid for large values of Poisson’s ratio. This would mean that the gap between molecular
elasticity and continuum elasticity has only been closed in the 60’s of the previous century, two hundred years
after the initial work of Lagrange [4]. However, Gazis et al. [67] did not explore the capability of nonlocal
continua to capture the full wave dispersive properties of the cubic lattice. Eringen [21] satisfactory solved this
question for 1D Lagrange’s lattice by fitting its frequency dispersive response with that of a one-parameter
nonlocal continuum. Eringen [21,22,118] also explored the possibility to capture the 3D lattice response with
an isotropic nonlocal continuous medium. We show in this paper that the isotropic nature of the cubic lattice is
lostin the high frequency regime, which highlights the need of an anisotropic nonlocal medium (consistent with
the symmetry properties of the considered lattice) in this regime. The full exploration of the lattice properties


cagri
Rubber Stamp


N. Challamel et al.

with some enriched nonlocal continuous media still merits some sophisticated research with the development
of anisotropic nonlocal modeling (which can be eventually explored within fractional nonlocal elasticity—see
[125]). The analysis presented herein is restricted to connecting linear lattices and continuum linear elasticity.
The connection between lattices and continuum nonlinear elasticity, especially in terms of wave propagation,
was not treated herein, and would deserve a complete analysis, basing on the pioneer works of Fermi et al.
[25] devoted to 1D nonlinear Lagrange lattices.

Appendix A: Equivalence of the lattice-based gradient elasticity model and Mindlin equation for Gazis
et al. model

The continualized lattice-based gradient elasticity equations derived for Gazis et al. lattice [67] are given by
Eq. (58) which is here reformulated:

2u  a?d*u
. (ﬁ " EW)
’B (482_14 3214 2—3414 +£84_u+a_284_u+282_u +a2—84u +ﬁ84_u>
ax2 Ty ax29y2 3 9x* 6 dy* 072 0x29z> 6 9z*
2u  a?d*u  ’u  a*d*u
(5 + o * 5 * T250)
+( ﬂ)<4 Pv 2 ot 2@ dt w20 at +ziza4_w):paﬁ
dxdy 3 9xdy? 3 9x39y 0xdz 3 9xdz3 3 9x30z

(A1)

Equation (A.1) can be reformulated in two terms with the zero-th order and the second-order strain gradient
expression:

82

u 9%y 9w 2u  9%u
S+ @B+ 4y) + +(B+4y) (o +
ox ay

2 -
(o +26) oxdy  0x0z dz2

n a? (@ +25) 9%u + (B +4y) 0*u n %u +6p 9%u n 0*u
bl O g i
12 x4 4 ay* 9zt x29y2  9x29z2

" a? B +27) 9%y " 9%y " 9*w + 9*w . (A2)
R = au .
3 v ox0y3  9x3dy  9x9dz3  9x39z P

Equation (A.2) can be compared to Navier’s partial differential equation Eq. (13) with cubic symmetry, for the
zero-th order medium.

a=a (c1] —2c12)
B =acn (A.3)
y = (caq — c12)

Injecting the stiffness calibration Eq. (A.3) into the second-order expansion Eq. (A.2) of Gazis et al. lattice
equations gives the gradient elasticity cubic model:

3%u v 9w Pu  *u

g3 + (c12 + c44) <8x8y + axaz> + caq (a—yz + 8_Z2>
a? a*u 'u  9tu 0*u 9*u

+ - [Cum + caq (B_y“ + B_Z4> +6c12 (8x28y2 + 8x2322>]

n a? (C1n + cas) a*v n % n 4w n 04w . (A4)
— (c c =pii )
6 2T Bxay3 T ax3ay | axoz’ | 9x30z P
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This partial differential lattice-based equation exactly coincides with Eq. (10) page 315, of Mindlin [98].

In case of asymptotic linear elastic isotropy, the micro elastic parameters are related to the macro elastic
parameters for Gazis et al. lattice by:

a=a (ci1 —2c12) =QRu—2»x) a cri=r4+2u
B =acip=ra with | cas=p (A5)
VZ?T(C44—012)=MT_)LG clpo=A

The gradient elasticity lattice-based equations are rewritten using Lamé parameters:

9%u 9%v 92w 92u 9%u
()»—I-ZM)@-F()»-FM) + +n +

9xdy | axdz ay? | a2
+f[(x+2u)a4—”+u(a4—”+@)+6x( Pu_ )}
12 dx* ay* 9zt 0x20y?  9x20z2
n ﬁ Gt ) ( 9%y n ERD) n 9w 4 9w ) — i (A6)
6 dxdy3  ax39y  axdzd  ax30z '

It is worth mentioning that the gradient elasticity lattice-based equation cannot be cast in the linear isotropic
strain gradient form which depends on 7 parameters, two classical Lamé parameters and 5 additional non-
classical material parameters of the strain gradient form [126—128]. In fact, the generalized wave equation
of the linear isotropic strain gradient medium can be shown to depend on two macroscopic additional length
scales that depend on the 5 additional parameters [126,127,129,130]:

(1—=BA) pAu+ (1= 15A) (A + p) (07u + 0,9yv + 9, 0.w) = pii with A =07+, 497 (A7)

where /1 and [, are the two additional length scales that depend on the 5 additional length scales of the linear
isotropic strain gradient medium. Equation (A.7) can be equivalently rewritten using Mindlin’s notations [126]:

O+ 2) (1= A (020 + .0y + B 0,w)

—u (1 — @A) (axayv + 3y dow — 02u — azzu) — pii with
2 P 3 ()
h="m (A.8)
5=10
2 1

Equation (A.7) can be also rewritten, with the full expression of the differential operators:

O+ 200) 02+ o (03 + 02u) + o+ ) (8,950 + 0,0,w)
—[Bu+B 0+ w]otu—[2580+13 0+ ] (afay%t + a,%afu)
B (9 + o) — 203 nd}o2u

(A + [axagv + 0,070 + 9x 0w + 00w + 0,05 0w + axayaz?v] =pii (A.9)

It is not possible to express the lattice-based gradient elasticity model Eq. (A.6) with the isotropic gradient
elasticity equation Eq. (A.9). The zero-th order continuous medium asymptotically derived from Gazis et
al. lattice can be enforced to be linear isotropic, but the second-order gradient elasticity medium cannot be
isotropic (cubic gradient elasticity medium, as already characterized by Mindlin, 1968 for strain gradient
elasticity models of the crystal class m3m). This also explains the loss of isotropy in the high frequency
regime, even if the cubic lattice may behave isotropically in the low frequency regime.
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