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This paper tracks the development of lattice models that aim to describe linear elasticity of solids and the field equations of which converge asymptotically toward those of isotropic continua, thus showing the connection between discrete and continuum. In 1759, Lagrange used lattice strings/rod dynamics to show the link between the mixed differential-difference equation of a one-dimensional (1D) lattice and the partial differential equation of the associated continuum. A consistent three-dimensional (3D) generalization of this model was given much later: Poincaré and Voigt reconciled the molecular and the continuum approaches at the end of the nineteenth century, but only in 1912 Born and von Kármán presented the mixed differentialdifference equations of discrete isotropic elasticity. Their model is a 3D generalization of Lagrange's 1D lattice and considers longitudinal, diagonal and shear elastic springs among particles, so the associated continuum is characterized by three elastic constants. Born and von Kármán proved that the lattice equations converge to Navier's partial differential ones asymptotically, thus being a formulation of continuous elasticity in terms of spatial finite differences, as for Lagrange's 1D lattice. Neglecting shear springs in Born-Kármán's lattice equals to Navier's assumption of pure central forces among molecules: in the limit, the lattice behaves as a one-parameter isotropic solid ("rari-constant" theory: equal Lamé parameters, or, equivalently, Poisson's ratio υ = 1/4). Hrennikoff and McHenry revisited the lattice approach with pure central interactions using a plane truss; the equivalent Born-Kármán's lattice in plane stress in the limit tends to a continuum with Poisson's Communicated by Andreas Öchsner.

Introduction

Connecting worlds at different scales has been the dream of philosophers and scientists in the quest for a rational understanding of fundamental laws in natural or human sciences. Bergson's famous quote "l'intelligence ne se représente clairement que le discontinu" (1907), that is "Intelligence depicts clearly only the discontinuous" can be understood as an invitation to question the behavior of interaction laws at a finer scales, possibly ruled by discontinuous variations, for a better understanding of the world at larger scales [START_REF] Bergson | L'évolution créatrice[END_REF]. As for economics, in 1926, Keynes said [START_REF] Keynes | Essays in Biography[END_REF]: "we are faced with the problem of organic unity, of discreteness, of discontinuity, the whole is not equal to the sum of the parts, small changes produce large effects, the assumptions of a uniform and homogeneous continuum are not satisfied." Thus, continuous models with smooth variation fields may be not sufficient to represent specific phenomena. These questions are echoed in physics and mechanics as well: understanding the behavior at a macroscopic scale, mathematically represented by some continuous representative variables, may be supported by the evolution of some discontinuous microstructure at a finer scale. The present paper aims to present, in a concise way, the main contributors who succeeded in connecting discrete (or lattice) and continuous models for linear elasticity. This can be viewed also as the first bridge between discrete and continuous mechanics, since linear elasticity can be viewed as the simplest constitutive law among all complex rheological laws that were developed during the two last centuries. From a mathematical point of view, lattice elasticity is ruled by mixed differential-difference equations, with spatial difference operators and time derivatives due to supposed time continuous dependence, whereas partial differential equations both in time and in space define continuous elasticity evolutions. Bridging discrete and continuous theories equals to relating mixed differential-difference equations with partial differential equations, assuming some smoothness of the field variables [START_REF] Myshkis | Mixed functional differential equations[END_REF].

Lattice elasto-dynamics was first solved through uniaxial models by Lagrange: in 1759, he presented both the mixed differential-difference equations of a 1D lattice and the related wave partial differential equation [START_REF] Lagrange | Recherches sur la nature et la propagation du son[END_REF][START_REF] Lagrange | 1788-3rd edn, Mallet-Bachelier, Gendre et successeur de Bachelier, Imprimeur-Libraire du bureau des longitudes[END_REF]. Lagrange studied the vibration of a discrete string composed of a finite number n of masses with fixed ends [START_REF] Lagrange | Recherches sur la nature et la propagation du son[END_REF]1788) and obtained the exact natural frequencies of this 1D lattice for any n, showing that its asymptotic behavior is that of a continuous string. In Lagrange [START_REF] Lagrange | Recherches sur la nature et la propagation du son[END_REF], it is also shown that this problem is mathematically analogous to that of a 1D axial (dubbed Lagrange's) lattice, composed of a finite number of particles joined by equal linear elastic springs, the asymptotic behavior of which is that of a continuous bar (see Fig. 3). Lagrange's equation for this lattice is

α (u i+1 -2u i + u i-1 ) = M üi ( 1 
)
where α is the spring stiffness; M is the mass; and u i is the axial displacement of each particle, initially at a distance a from each other (lattice spacing). Equation ( 1) is a mixed differential-difference equation that couples a spatial difference operator (matter is discrete in space) with some time differential operator (time is continuous) (see [START_REF] Myshkis | Mixed functional differential equations[END_REF] for a general presentation of mixed differential-difference equations). Equation [START_REF] Bergson | L'évolution créatrice[END_REF] was written explicitly by Lagrange in 1759 (see Figs. [START_REF] Bergson | L'évolution créatrice[END_REF][START_REF] Keynes | Essays in Biography[END_REF] for this equation related to the propagation of sound and to natural vibration). Lagrange's lattice is sometimes also referred to as a 1D Born-Kármán's lattice [START_REF] Born | On fluctuations in spatial grids[END_REF]; as a particular case of their 3D lattice model. As reported by Burkhardt [START_REF] Burkhardt | Entwicklungen nach oscillirenden Funktionen und Integration der Differentialgleichungen der mathematischen Physik[END_REF], Cannon and Dostrovsky [START_REF] Cannon | The Evolution of Dynamics: Vibration Theory from 1687 to 1742[END_REF] or more recently by Myshkis [3] that Bernoulli [START_REF] Bernoulli | Dechordis vibrantibls[END_REF] had already approximated the geometrical curvature of a string by some straight segments (for up to n = 7 elements), thus implicitly formulating a discrete Laplacian (or discrete second-order spatial difference operator in Eq. ( 1)). In this sense, Lagrange's mixed differentialdifference equation can also be attributed to the preliminary works of Bernoulli. Lagrange [START_REF] Lagrange | Recherches sur la nature et la propagation du son[END_REF] derived the exact solution for Eq. ( 1) by a discrete summation of trigonometric functions of time (which may be reinterpreted in terms of discrete Fourier transform method) [START_REF] Lagrange | Recherches sur la nature et la propagation du son[END_REF]. A very concise solution based on such finite trigonometric summation is presented by Filimonov et al. [START_REF] Filimonov | Some expected results in the classical problem of vibrations of the string with n beards when n is large[END_REF] for initial conditions based on Dirac distribution [START_REF] Filimonov | Some expected results in the classical problem of vibrations of the string with n beards when n is large[END_REF]. The exact solution of Eq. ( 1) was alternatively found elegantly during the twentieth century by Schrödinger [START_REF] Schrödinger | Zur Dynamik elastisch gekoppelter Punktsysteme[END_REF] for general initial conditions in terms of Bessel functions (see more recently [START_REF] Seeger | Historical note: on the simulation of dispersive wave propagation by elasticity models[END_REF][START_REF] Andrianov | Transition from discrete to continuous media: the impact of symmetry changes on asymptotic behavior of waves[END_REF] or [START_REF] Mühlich | Commented translation of Erwin Schrödinger's paper On the dynamics of elastically coupled point systems (Zur Dynamik elastisch gekoppelter Punktsysteme)[END_REF]) (Fig. 3). By setting the scaling parameters:

α = E S a and M = ρ Sa ( 2 
)
where E is the Young's modulus, S is the equivalent cross sectional area, and ρ the mass density per unit volume. Equation (1) may be expressed as:

E S u i+1 -2u i + u i-1 a 2 = ρ S üi (3) 
i.e., the lattice difference equations are equivalent to a central finite difference formulation of the continuous wave equation, as Maugin [START_REF] Maugin | Nonlinear Waves in Elastic Crystals[END_REF] pointed out [START_REF] Maugin | Nonlinear Waves in Elastic Crystals[END_REF]. In the asymptotic limit, for a sufficiently smooth function u i (t) = u (x = ai, t), the long wave approximation of Eq. ( 3) is:

E S ∂ 2 u (x, t) ∂ x 2 = ρ S ∂ 2 u (x, t) ∂t 2 (4) 
This continuous approximation of a discrete problem is particularly efficient in computing the low order frequencies of the finite system (see [START_REF] Lagrange | Recherches sur la nature et la propagation du son[END_REF]16,[START_REF] Challamel | Revisiting finite difference and finite element methods applied to structural mechanics within enriched continua[END_REF]). However, even in the linear elastic range, described by Eq. ( 1) with given elastic constant α for the lattice, the continuous approximation Eq. ( 4) is not able to reproduce its wave dispersive properties (see the extensive analyses of Born and von Kármán [START_REF] Born | On fluctuations in spatial grids[END_REF]-see also Born and Huang [START_REF] Born | Dynamical theory of crystal lattices[END_REF]; Maradudin et al. [START_REF] Maradudin | Theory of Lattice Dynamics in the Harmonic Approximation[END_REF]; Askar [START_REF] Askar | Lattice Dynamical Foundations of Continuum Theories: Elasticity, Piezoelectricity, Viscoelasticity, Plasticity[END_REF]; Eringen [START_REF] Eringen | On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[END_REF]; Maugin [START_REF] Maugin | Nonlinear Waves in Elastic Crystals[END_REF]; Eringen [START_REF] Eringen | Nonlocal Continuum Field Theories[END_REF]; Kittel [START_REF] Kittel | Introduction to Solid State Physics[END_REF]). Furthermore, it was shown by Filimonov et al. [START_REF] Filimonov | Some expected results in the classical problem of vibrations of the string with n beards when n is large[END_REF] that the solution of the continuous problem may be asymptotically significantly different from the lattice one for large time evolution (even in the linear range). Schrödinger [START_REF] Schrödinger | Zur Dynamik elastisch gekoppelter Punktsysteme[END_REF] also discussed the limits of the continuous approximation of the wave equation with respect to the lattice wave behavior (see also [START_REF] Seeger | Historical note: on the simulation of dispersive wave propagation by elasticity models[END_REF][START_REF] Andrianov | Transition from discrete to continuous media: the impact of symmetry changes on asymptotic behavior of waves[END_REF] or [START_REF] Mühlich | Commented translation of Erwin Schrödinger's paper On the dynamics of elastically coupled point systems (Zur Dynamik elastisch gekoppelter Punktsysteme)[END_REF]). However, this brief historical presentation will not address the strong mathematical difficulties related to the connection of nonlinear discrete lattices and nonlinear wave equations, including the soliton phenomenon [START_REF] Maugin | Solitons in elastic solids (1938-2010[END_REF]. The investigation of the complex behavior of nonlinear elastic lattices started with the pioneer works by Fermi et al. [START_REF] Fermi | Studies of nonlinear problems[END_REF], who studied the dynamic behavior of a 1D axial lattice with a nonlinear elastic restoring force [START_REF] Fermi | Studies of nonlinear problems[END_REF]. Continuous approximations have been developing since the 1960s to approximate such nonlinear dynamic models (see [START_REF] Kruskal | Stroboscopic-perturbation procedure for treating a class of nonlinear wave equations[END_REF][START_REF] Collins | A quasicontinuum approximation for solitons in an atomic chain[END_REF][START_REF] Rosenau | Dynamics of nonlinear mass-spring chains near the continuum limit[END_REF], for instance). The reader is directed to the seminal works of Rosenau [START_REF] Rosenau | Dynamics of nonlinear mass-spring chains near the continuum limit[END_REF], Maugin [START_REF] Maugin | Nonlinear Waves in Elastic Crystals[END_REF], Kosevich [START_REF] Kosevich | The Crystal Lattice-Phonons, Solitons, Dislocations, Superlattices[END_REF] or more recently to the monograph of Abramian et al. [START_REF] Abramian | Nonlinear Dynamics of Discrete and Continuous Systems[END_REF], for an extensive treatment of nonlinear lattices and enriched nonlinear wave equations. The present paper is, however, restricted to linear elasticity both for the lattice and its possible continuum representation.

The question about the relations of 2D or 3D elastic lattices with the relevant continua is tantamount to asking for the foundation of continuum mechanics from the lattice one. This question was first addressed by [START_REF] Boscovich | Theoria Philosophiae Naturalis[END_REF], who proposed the key idea of the molecular foundation of elasticity [START_REF] Boscovich | Theoria Philosophiae Naturalis[END_REF]. The link between discrete (or molecular) and continuous elasticity dates from the beginning of the nineteenth century, with the studies of French mechanists: indeed, a partial molecular theory of elasticity was first built by Navier [START_REF] Navier | Sur les lois de l'équilibre et du mouvement des corps solides élastiques[END_REF], Cauchy [START_REF] Cauchy | Sur l'équilibre et le mouvement d'un système de points matériels sollicités par des forces d'attraction ou de répulsion mutuelle[END_REF] and Poisson [START_REF] Poisson | Mémoire sur l'équilibre et le mouvement des corps élastiques[END_REF], inspired by Boscovich's fundamental assumption that elastic bodies are composed of particles interacting along their joining lines. These inner forces are supposed repulsive when the distance between particles becomes smaller than a given quantity, attractive when the distance is between such a lower limit and another quantity, called radius of molecular activity (which, however, is much smaller with respect to ordinary lengths), and vanish outside such radius ( [START_REF] Boscovich | Theoria Philosophiae Naturalis[END_REF]; see also the analysis of Boscovich's contribution in Thomson [START_REF] Thomson | On Boscovich's theory[END_REF]; Kelvin [START_REF] Kelvin | On the elasticity of a crystal according to Boscovich[END_REF]; Timoshenko [START_REF] Timoshenko | History of Strength of Materials with a Brief Account of the History of Theory of Elasticity and Theory of Structures[END_REF]). These theories rely on the concept of central forces between particles, and in the asymptotic limit of an isotropic continuum lead to a unique elastic constant: this is in contradiction with the energetic formulation of linear isotropic elasticity for continua leading to two independent elastic constants [START_REF] Green | On the reflection and refraction of light at the common surface of two non-crystallized media[END_REF]. Navier [START_REF] Navier | Sur les lois de l'équilibre et du mouvement des corps solides élastiques[END_REF] first elaborated the molecular theory leading to a single constant for isotropic solids ("rari-constant" theory), which Cauchy and Poisson generalized to orthotropic solids. This leads to a model of constrained elasticity where Poisson's ratio equal to 1/4 for 3D bodies (i.e., what we call Lamé parameters λ and μ coincide). For anisotropic elastic solids, Cauchy [START_REF] Cauchy | Sur l'équilibre et le mouvement d'un système de points matériels sollicités par des forces d'attraction ou de répulsion mutuelle[END_REF] found 15 constants basing on the central interaction assumption, while Green's energetic approach foresaw 21 (Green continuum theory of linear elastic anisotropic solids, [START_REF] Voigt | Lehrbuch der Krystallphysik[END_REF]). The controversy ended only at the end of the nineteenth century (see the historical analysis of Foce [START_REF] Foce | The theory of elasticity between molecular and continuum approach in the XIXth century[END_REF]; Capecchi et al. [START_REF] Capecchi | From classical to Voigt's molecular models in elasticity[END_REF]; Capecchi et al. [START_REF] Capecchi | Voigt and Poincaré's mechanistic-energetic approaches to linear elasticity and suggestions for multiscale modelling[END_REF]). Voigt [START_REF] Voigt | Lehrbuch der Krystallphysik[END_REF][START_REF] Voigt | L'état actuel de nos connaissances sur l'élasticité des cristaux[END_REF] considered molecules as small corpuscules with orientation, thus admitting that molecular interactions consist of both the usual central forces and additional moments depending on the orientation of the molecules (see also [START_REF] Voigt | Theoretische Studien über die Elasticitätsverhältnisse der Kristalle[END_REF]). Voigt thus obtained two elastic constants for isotropic solids, succeeding in reconciling the molecular and continuum elasticity theories. Poincaré [START_REF] Poincaré | Leçons sur la théorie de l'élasticité[END_REF] derived the same results by considering a multi-potential theory that generalizes pure central interactions, with an additional potential of angle variation for the three-body interaction [START_REF] Poincaré | Leçons sur la théorie de l'élasticité[END_REF]. In other words, the theory of the French mechanists at the beginning of the nineteenth century was partial, since it included only central forces, and may be viewed as a constrained discrete elasticity theory.

The consistent 3D generalization of the 1D lattice elasticity developed by Lagrange [START_REF] Lagrange | Recherches sur la nature et la propagation du son[END_REF] appeared much later: Born and von Kármán presented the mixed differential-difference equations of discrete isotropic elasticity in 1912 [START_REF] Born | On fluctuations in spatial grids[END_REF], based on a model that can be reduced to three parameters. Their mechanical model is a regular cubic lattice of body-points connected by longitudinal, diagonal and shear linear elastic springs. The lattice equations asymptotically converge to Navier's partial differential equations of elastodynamics for sufficiently small lattice spacing, thus coinciding with a spatial finite difference formulation of continuous elasticity, as for 1D Lagrange's lattice. When shear springs are neglected, Born-Kármán's lattice involves only central forces, in accord with Navier's molecular assumption [START_REF] Navier | Sur les lois de l'équilibre et du mouvement des corps solides élastiques[END_REF], and in the limit, follows the "rari-constant" theory. As a consequence, a truss (which is a discrete system composed of nodes connected by axial springs interacting only by central forces) is generally not able to reproduce elasticity at the microscale (for general macroscopic elastic properties): a complete lattice theory needs to incorporate rotational or shear springs (see also the extensive review on general lattice models for heterogeneous structures by Ostoja-Starzewski [START_REF] Ostoja-Sarzewski | Lattice models in micromechanics[END_REF]).

The full mixed differential-difference equations of discrete elasticity, valid for a monatomic cubic lattice, are given by Born and von Kármán [START_REF] Born | On fluctuations in spatial grids[END_REF] and their Eq. ( 10) (see Fig. 4), and include both central and non-central (shear in Born-Kármán's lattice) forces, even in the isotropic case. These maybe seen as axial springs, joining nearest particles and next-to-nearest particles), and shear springs joining nearest particles: on page 300 of Fig. 4 Mixed differential-difference equation-vibration of three-dimensional elastic lattice; Eq. ( 10) from Born and von Kármán [START_REF] Born | On fluctuations in spatial grids[END_REF] Born and von Kármán [START_REF] Born | On fluctuations in spatial grids[END_REF], one reads: "Es stammen dabei die erste und zweite klammer von den relativen x-Verschiebungen der 6 Punkte in der Entfernung a, wobei natürlich den beiden Punkten auf der x-Achse im allgemeinen ein anderer Faktor zukommt, als den 4 Punkten senkrecht dazu." that is "The first and second brackets [of their Eq. ( 10)] depend on the relative x-displacements of the 6 points at distance a, where of course, the two points on the x-axis generally have a different factor than the 4 points perpendicular to it." This fundamental statement introduces non-central (shear) forces, orthogonal to the lattice lines joining nearest particles and not incorporated in Navier's molecular theory [START_REF] Navier | Sur les lois de l'équilibre et du mouvement des corps solides élastiques[END_REF]. Born-Kármán's lattice is widely studied (see, e.g., the lattice model of Suiker et al. [START_REF] Suiker | Dynamic behaviour of a layer of discrete particles, part 1: analysis of body waves and eigenmodes[END_REF] and Zhang et al. [START_REF] Zhang | Modelling nano-plane structures with body force using Hencky bar-grid model, continualised nonlocal model and Eringen nonlocal model[END_REF]). For pure central forces, Born-Kármán's lattice is limited to horizontal, vertical and diagonal axial springs, with two stiffnesses, and its limit behavior implies a specific Poisson's ratio. This constrained lattice in 2D is generally dubbed square Bravais lattice in the literature, and was also widely used (see [START_REF] Blackman | Contributions to the theory of the specific heat of crystals. II. On the vibrational spectrum of cubical lattices and its application to the specific heat of crystals[END_REF][START_REF] Montroll | Dynamics of a square lattice[END_REF][START_REF] De Launay | Solid State Physics[END_REF][START_REF] Friesecke | Validity and failure of the Cauchy-Born hypothesis in a two-dimensional mass-spring lattice[END_REF][START_REF] Friesecke | Geometric solitary waves in a 2D mass-spring lattice[END_REF][START_REF] Patra | A spectral multiscale method for wave propagation analysis: atomisticcontinuum coupled simulation[END_REF][START_REF] Mikes | Quasicontinuum method extended to irregular lattices[END_REF]). It was revisited during the twentieth century in a truss framework analysis by Wieghardt [START_REF] Wieghardt | Über einen Grenzübergang der Elastizitätslehre und seine Anwendung auf die Statik hochgradig statisch unbestimmter Fachwerke. In: Verhandtlungen des Vereinz z[END_REF], Riedel [START_REF] Riedel | Beiträge zur Lösung des ebenen Problems eines elastischen Körpers mittels der Ayrischen Spannungsfunktion[END_REF], Hrennikoff [START_REF] Hrennikoff | Plane stress and bending of plates by method of articulated framework[END_REF], Hrennikoff [START_REF] Hrennikoff | Solutions of problems of elasticity by the framework method[END_REF], McHenry [START_REF] Mchenry | Discussion: Solution of problems of elasticity by the framework method, Hrennikoff A[END_REF] and McHenry [START_REF] Mchenry | A lattice analogy for the solution of stress problems[END_REF]. McHenry truss (re-considered by Hrennikoff, who introduced additional auxiliary bars [START_REF] Hrennikoff | Solutions of problems of elasticity by the framework method[END_REF]) is equivalent to the square Bravais lattice, or to Born-Kármán's limited to central forces. For plane stress, Poisson's ratio of the asymptotic continuum associated to these lattices is restricted to the value υ = 1/3. In contrast to McHenry-Hrennikoff truss, the complete Born-Kármán's lattice model leads to a "free" Poisson's ratio, bounded by υ = 1/4 for plane strain or 3D elasticity and υ = 1/3 for plane stress elasticity.

However, Born-Kármán's lattice does not comply with rotational invariance, which is required, together with invariance in translation, for a consistent lattice theory [START_REF] Lax | E1. The relation between microscopic and macroscopic theories of elasticity[END_REF][START_REF] Gazis | Conditions for rotational invariance of a harmonic lattice[END_REF][START_REF] Keating | Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure[END_REF][START_REF] Keating | Relationship between the macroscopic and microscopic theory of crystal elasticity. I. Primitive crystals[END_REF][START_REF] Alexander | Amorphous solids: their structure, lattice dynamics and elasticity[END_REF]. The non-central force term associated with shear forces is responsible for the violation of the rotational invariance principle, with confusion between rigid rotation and shear modes. As in Gazis and Wallis [START_REF] Gazis | Conditions for rotational invariance of a harmonic lattice[END_REF], the energy of the lattice should be expressed as a function of such invariant quantities as distances between pairs of atoms or angles formed by three atoms (idea also shared by Voigt and Poincaré). Gazis et al. [START_REF] Gazis | Surface elastic waves in cubic crystals[END_REF] gave a definite answer to the paradoxical properties of Born-Kármán's lattice by replacing the shear interaction with rotational springs. Gazis et al. lattice is consistent, in the sense that it fulfills both rotational and translational invariance, and asymptotically converges toward a linear isotropic elastic continuum with free equivalent Poisson's ratio. Thus, in Gazis et al. [START_REF] Gazis | Surface elastic waves in cubic crystals[END_REF], there is a bridge between discrete and continuous linear isotropic elasticity from a monatomic cubic lattice with central first and second neighborhood interactions, plus additional rotationally invariant angular forces [START_REF] Gazis | Surface elastic waves in cubic crystals[END_REF]. In the present paper, we do not discuss in detail other lattices with their mechanical representations; for instance, Clark et al. [START_REF] Kruskal | Stroboscopic-perturbation procedure for treating a class of nonlinear wave equations[END_REF] developed a consistent lattice model with four (two central and two angular) interactions for body-centered cubic lattices, which are rotationally invariant [START_REF] Clark | Frequency spectra of body-centered cubic lattices[END_REF]. This model is an alternative to De launay's lattice body-centered cubic lattice model [START_REF] De Launay | Solid State Physics[END_REF] which relies on four mechanical interactions, but with non-rotationally invariant angular forces. However, surprisingly, the frequency dispersive equations for these two models may coincide for some parameter equivalence, as shown by Bose et al. [START_REF] Bose | Noncentral forces in the study of lattice dynamics of metals[END_REF], Kothari and Singhal [START_REF] Kothari | Lattice dynamics of sodium-comparison of de Launay and CGW models[END_REF], Shukla [START_REF] Shukla | The non equivalence of angular force models of de Launay and Clark, Gazis and Wallis for FCC metals[END_REF] and Ramamurthy [START_REF] Ramamurthy | Nonequivalence of general tensor force and Clark, Gazis, and Wallis angular force models[END_REF]. Here, we show that Born-Kármán [START_REF] Born | On fluctuations in spatial grids[END_REF] and Gazis et al. lattice [START_REF] Gazis | Surface elastic waves in cubic crystals[END_REF] coincide only in the long wave range limit (isotropic continuous medium), but their mixed differential-difference equations and frequency dispersive equations differ, except in the case of central interactions. An alternative three-parameter linear elastic lattice model, also converging toward Navier's isotropic continuous equations, is the truss in Hrennikoff [START_REF] Hrennikoff | Solutions of problems of elasticity by the framework method[END_REF] (see also [START_REF] Hrennikoff | Framework method and its technique for solving plane stress problems[END_REF]), where the square Bravais lattice (central forces) foresees additional bars connected to the diagonal ones instead of the shear springs of Born and von Kármán. Triangular lattices (with unit hexagonal cell) with both central and angular interactions which also asymptotically converge toward isotropic linear elastic continuum may be also mentioned [START_REF] Raoult | Elastic lattices: equilibrium, invariant laws and homogenization[END_REF][START_REF] Ostoja-Starzewski | Microstructural Randomness and Scaling in Mechanics of Materials[END_REF]. As for the cubic lattice with angular interactions (Gazis et al. lattice [START_REF] Gazis | Surface elastic waves in cubic crystals[END_REF]), the angular interaction (non-central interaction) in the triangular regular lattice allows to calibrate the Poisson's ratio of the associated asymptotic linear elastic isotropic continuum solid. More recent lattices that also converge toward the isotropic elastic continua are those of Zhang et al. lattice with three parameters characterizing normal, secondary springs and rotational springs [START_REF] Zhang | Modelling nano-plane structures with body force using Hencky bar-grid model, continualised nonlocal model and Eringen nonlocal model[END_REF][START_REF] Zhang | Hencky bar-grid model for plane stress elasticity problems[END_REF], and that of Nannapaneni et al. [START_REF] Nannapaneni | Discrete lattice modeling of wave propagation in materials with heterogeneous microstructures[END_REF] with three parameters characterizing normal, diagonal and equivalent volumetric interactions. Even if these lattice models are physically and mathematically different, and also differ from their mixed differential-difference equations, it is worth noting that they all converge toward the isotropic continuum, always yielding Navier's partial differential equations of elastodynamics.

This paper also briefly presents the main contributions on discrete and continuous structural mechanics. Discrete beams (or lattice beams) were investigated by Hencky [START_REF] Hencky | Über die angenäherte Lösung von Stabilitätsproblemen im Raummittels der elastischen Gelenkkette[END_REF]; his model consists of rigid beam segments connected by frictionless hinges and elastic rotational springs, the stiffness of which is defined as the ratio of beam flexural rigidity to the segment length [START_REF] Hencky | Über die angenäherte Lösung von Stabilitätsproblemen im Raummittels der elastischen Gelenkkette[END_REF]. This system called Hencky-Bar-Chain system, asymptotically converges toward a continuous Euler-Bernoulli beam, for a sufficiently large number of segments, with a mathematical analogy between the difference equations of the lattice beam, and the finite difference formulation of the continuous Euler-Bernoulli beam (see [START_REF] Wang | Hencky-Bar-Chain/Net for Structural Analysis[END_REF] for the validity of this equivalence for various boundary conditions [START_REF] Wang | Hencky-Bar-Chain/Net for Structural Analysis[END_REF]). For all these one-dimensional problems (strings, rods or beams), discrete models may be built from repetition of simple structural elements, which asymptotically converge toward the associated onedimensional continuum. The difference equations of the discrete elasticity problem coincide with the finite difference formulation of the continuous one. Hencky's model of discrete beam was extended to discrete plate [START_REF] Wang | Hencky-Bar-Chain/Net for Structural Analysis[END_REF][START_REF] Wu | A discrete element method for linear and nonlinear stress and bifurcation problems of elastic structures[END_REF][START_REF] Wifi | A simple discrete element mechanical model for the stability analysis of elastic structures[END_REF][START_REF] El Naschie | Stress, Stability and Chaos in Structural Engineering: An Energy Approach[END_REF]. Bridging discrete and continuous models (for elasticity or even more general constitutive laws) is an old and fundamental topic in the history of physics and mechanics. This brief historical study may find a resonance today, with a regained interest in bridging scales, with the active development of metamaterials based on design-oriented macroscopic properties [START_REF] Wang | Hencky-Bar-Chain/Net for Structural Analysis[END_REF][START_REF]Discrete and Continuum Models for Complex Metamaterials[END_REF].

Below, we present several lattice models that are not mathematically equivalent, yet all converging asymptotically toward the continuous linear isotropic elastic solid if the lattice spacing goes to zero. It is not the scope of this paper to present more complex anisotropic or inelastic lattices. However, we shall close the paper with a brief discussion on the capability of nonlocal continua to bridge the scale from anisotropic cubic lattices to isotropic continuous elasticity.

3D discrete elasticity: the Born-Karman model

The lattice is assumed to be monatomic and cubic, composed of particles with equal mass M and lattice spacing a. The elastic interaction consists of nearest and next-to-nearest central forces corresponding to fictitious axial springs of stiffness α, for the links between nearest particles, and β, for the links among next-to-nearest particles (notations used by Gazis et al. [START_REF] Gazis | Surface elastic waves in cubic crystals[END_REF]) and non-central forces corresponding to fictitious shear springs of stiffness δ located along the lines between nearest particles. Thus, pure central forces (Navier, Poisson's or Cauchy's molecular assumption) are retrieved when δ = 0 and do not tend toward a general Hooke's law at the continuum limit with prescribed values of Poisson's ratio. Pure central forces do not allow in the case of direct interactions the formulation of a general Hooke's law at the continuum limit with prescribed values of Poisson's ratio. Born-Kármán's lattice thus depends on three stiffness parameters (α, β, δ) to simulate central and shear interactions, respectively. In the case of isotropy, a constraint equation for α, β, δ holds, so that the model has two independent parameters that can then be related to those of the elastic isotropic continuum. In the paper, we will restrict our analysis to linear difference equation of the displacement in space, so that nonlinear geometrical effects will be neglected.

The mixed differential-difference equation of the 3D Born-Kármán's lattice is expressed by Eq. ( 10) of Born and von Kármán [START_REF] Born | On fluctuations in spatial grids[END_REF]-(see Fig. 4)-and is originally written for a non-isotropic lattice (which converges toward a non-isotropic continuum) by the five-parameters α , β , γ , δ , χ :

Discrete and continuous models of linear elasticity

α u i+1, j,k -2u i, j,k + u i-1, j,k + β u i, j+1,k + u i, j-1,k + u i, j,k+1 + u i, j,k-1 -4u i, j,k + γ u i+1, j+1,k + u i-1, j+1,k + u i+1, j-1,k + u i-1, j-1,k + u i+1, j,k+1 +u i-1, j,k+1 + u i+1, j,k-1 + u i-1, j,k-1 -8u i, j,k + δ u i, j+1,k+1 + u i, j-1,k+1 + u i, j+1,k-1 + u i, j-1,k-1 -4u i, j,k + χ v i+1, j+1,k + v i-1, j-1,k -v i-1, j+1,k -v i+1, j-1,k +w i+1, j,k+1 + w i-1, j,k-1 -w i+1, j,k-1 -w i-1, j,k+1 = M üi, j,k (5) 
For isotropic solids (in the long wave limit), Born and von Kármán's model reduces to three parameters by setting:

δ = 0 and χ = γ (6)
It is more convenient to introduce the following equivalent parameters:

α = α; β = δ and γ = β 2 (7) 
so that the governing equation of the three-parameter Born-Kármán's model reduces to:

α u i+1, j,k -2u i, j,k + u i-1, j,k + β 2 u i+1, j+1,k + u i-1, j+1,k + u i+1, j-1,k + u i-1, j-1,k + u i+1, j,k+1 + u i-1, j,k+1 + u i+1, j,k-1 + u i-1, j,k-1 -8u i, j,k + β 2 v i+1, j+1,k + v i-1, j-1,k -v i-1, j+1,k -v i+1, j-1,k + w i+1, j,k+1 + w i-1, j,k-1 -w i+1, j,k-1 -w i-1, j,k+1 + δ u i, j+1,k + u i, j-1,k + u i, j,k+1 + u i, j,k-1 -4u i, j,k = M üi, j,k (8) 
where(α, β, δ) are the stiffnesses mentioned above, illustrated in Fig. 5. Born and von Kármán [START_REF] Born | On fluctuations in spatial grids[END_REF] did not detail the mechanical model behind these equations, since they wished to asymptotically attain the partial differential equation of Navier's elastodynamics in the continuum limit. It is worth mentioning that at the boundary, the stiffness of the vertical and longitudinal elements is α/4, the shear stiffness is δ/4 and the stiffness of the diagonal element is β/2 (see Fig. 5). Equation ( 8) may be viewed as a generalization of Lagrange's mixed differential-difference equation (1) for 3D lattices, and can be derived from a direct expression of equilibrium including inertia forces. It is also possible to derive this mixed differential-difference equation by an energy approach, based on the following potential energy:

U = i j k α 8 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ u i+1, j,k -u i, j,k 2 + u i+1, j+1,k -u i, j+1,k 2 + u i+1, j,k+1 -u i, j,k+1 2 + u i+1, j+1,k+1 -u i, j+1,k+1 2 + v i, j+1,k -v i, j,k 2 + v i+1, j+1,k -v i+1, j,k 2 + v i, j+1,k+1 -v i, j,k+1 2 + v i+1, j+1,k+1 -v i+1, j,k+1 2 + w i, j,k+1 -w i, j,k 2 + w i+1, j,k+1 -w i+1, j,k 2 + w i, j+1,k+1 -w i, j+1,k 2 + w i+1, j+1,k+1 -w i+1, j+1,k 2 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ + β 8 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ u i+1, j+1,k -u i, j,k + v i+1, j+1,k -v i, j,k 2 + u i+1, j,k -u i, j+1,k + v i+1, j,k -v i, j+1,k 2 + u i+1, j+1,k+1 -u i, j,k+1 + v i+1, j+1,k+1 -v i, j,k+1 2 + u i+1, j,k+1 -u i, j+1,k+1 + v i+1, j,k+1 -v i, j+1,k+1 2 + u i+1, j,k+1 -u i, j,k + w i+1, j,k+1 -w i, j,k 2 + u i+1, j,k -u i, j,k+1 + w i+1, j,k -w i, j,k+1 2 + u i+1, j+1,k+1 -u i, j+1,k + w i+1, j+1,k+1 -w i, j+1,k 2 + u i+1, j+1,k -u i, j+1,k+1 + w i+1, j+1,k -w i, j+1,k+1 2 + v i, j+1,k+1 -v i, j,k + w i, j+1,k+1 -w i, j,k 2 + v i, j+1,k -v i, j,k+1 + w i, j+1,k -w i, j,k+1 2 + v i+1, j+1,k+1 -v i+1, j,k + w i+1, j+1,k+1 -w i+1, j,k 2 + v i+1, j+1,k -v i+1, j,k+1 + w i+1, j+1,k -w i+1, j,k+1 2 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ + δ 8 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ u i, j+1,k -u i, j,k 2 + u i+1, j+1,k -u i+1, j,k 2 + u i, j+1,k+1 -u i, j,k+1 2 + u i+1, j+1,k+1 -u i+1, j,k+1 2 + w i, j+1,k -w i, j,k 2 + w i+1, j+1,k -w i+1, j,k 2 + w i, j+1,k+1 -w i, j,k+1 2 + w i+1, j+1,k+1 -w i+1, j,k+1 2 + v i+1, j,k -v i, j,k 2 + v i+1, j+1,k -v i, j+1,k 2 + v i+1, j,k+1 -v i, j,k+1 2 + v i+1, j+1,k+1 -v i, j+1,k+1 2 + w i+1, j,k -w i, j,k 2 + w i+1, j+1,k -w i, j+1,k 2 + w i+1, j,k+1 -w i, j,k+1 2 + w i+1, j+1,k+1 -w i, j+1,k+1 2 + u i, j,k+1 -u i, j,k 2 + u i+1, j,k+1 -u i+1, j,k 2 + u i, j+1,k+1 -u i, j+1,k 2 + u i+1, j+1,k+1 -u i+1, j+1,k 2 + v i, j,k+1 -v i, j,k 2 + v i+1, j,k+1 -v i+1, j,k 2 + v i, j+1,k+1 -v i, j+1,k 2 + v i+1, j+1,k+1 -v i+1, j+1,k 2 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (9) 
The kinetic energy of this lattice with concentrated masses at each "node" is reduced to:

T = i j k M u2 i, j,k + M v2 i, j,k + +M ẇ2 i, j,k (10) 
Hamilton's principle applied to the Lagrangian L = T -U yields Eq. ( 8). The difference equations can be extended to an equivalent continuum via a continualization method that is valid for a sufficiently smooth deflection function. The following relation between the discrete and the equivalent continuous system u i, j,k = u (x = ai, y = a j, z = ak), v i, j,k = v (x = ai, y = a j, z = ak) and w i, j,k = w (x = ai, y = a j, z = ak)holds true for sufficiently smooth displacements given by:

u i+1, j+1,k+1 = u (x + a, y + a, z + a) = e a(∂ x +∂ y +∂ z ) u (x, y, z) (11) 
where ∂ x , ∂ y and ∂ z are the spatial derivatives with respect to x, y and z. Equation ( 11) is based on the use of a Taylor-based asymptotic expansion of the discrete displacement field of a neighbored node around the considered node. The exponential differential operator in front of the continuous displacement field belongs to the so-called pseudo-differential operator. Such an expansion of difference operators was already known at the beginning of the nineteenth century (e.g., [START_REF] Cauchy | Sur les différences finies et les intégrales aux différences des fonctions entières d'une on de plusieurs variables[END_REF][START_REF] Piola | Nuova analisi per tutte le questioni della meccanica molecolare[END_REF]), see Figs. 6, 7, and was used in Piola [START_REF] Piola | Nuova analisi per tutte le questioni della meccanica molecolare[END_REF] for bridging discrete and continuum elasticity (a presentation of Piola's works is in Todhunter and Pearson [START_REF] Todhunter | A History of the Theory of Elasticity and of the Strength of Materials, from Galileo to the Present Time[END_REF] and Dell'Isola et al. [START_REF] Dell'isola | The complete works of Gabrio Piola: volume I commented English translation[END_REF][START_REF] Dell'isola | At the origins and in the vanguard of peridynamics, nonlocal and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola[END_REF]). Piola [START_REF] Dell'isola | The complete works of Gabrio Piola: volume I commented English translation[END_REF] considered central force potential and made an asymptotic expansion with respect to the small quantities in the associated molecular energy. Piola also mentioned angular interactions as possible additional potential interactions. A modern treatment of this expansion method related to the numerical efficiency of finite difference schemes can be found in Shokin [START_REF] Shokin | The Method of Differential Approximation[END_REF] and Godunov and Ryabenkii [START_REF] Godunov | Difference Schemes-An Introduction to the Underlying Theory[END_REF].

Discrete and continuous models of linear elasticity The system of spatial difference equations in Eq. ( 8) leads to the continuous formulations at the long wave limit:

(α + 2β) ∂ 2 u ∂ x 2 + 2β ∂ 2 v ∂ x∂ y + 2β ∂ 2 w ∂ x∂z + (δ + β) ∂ 2 u ∂ y 2 + (δ + β) ∂ 2 u ∂z 2 = ρa ∂ 2 u ∂t 2 (12)
where we used the mass scaling identity M = ρa 3 . Equation ( 12) can be identified with Navier's partial differential equation of linear elasticity for material with the constant (c 11 , c 12 , c 44 ) of cubic symmetry, using Voigt's notation [START_REF] Born | On fluctuations in spatial grids[END_REF]:

c 11 ∂ 2 u ∂ x 2 + (c 12 + c 44 ) ∂ 2 v ∂ x∂ y + (c 12 + c 44 ) ∂ 2 w ∂ x∂z + c 44 ∂ 2 u ∂ y 2 + c 44 ∂ 2 u ∂z 2 = ρ ∂ 2 u ∂t 2 (13) 
Navier's partial differential equation of linear isotropic elasticity can be derived as a particular case, for c 11 = c 12 + 2c 44 :

(λ + 2μ) ∂ 2 u ∂ x 2 + (λ + μ) ∂ 2 v ∂ x∂ y + (λ + μ) ∂ 2 w ∂ x∂z + μ ∂ 2 u ∂ y 2 + μ ∂ 2 u ∂z 2 = ρ ∂ 2 u ∂t 2 with ⎧ ⎨ ⎩ c 11 = λ + 2μ c 44 = μ c 12 = λ (14)
where λ and μ are Lamé coefficients. By comparing Eq. ( 12) with Eq. ( 14), it is clear that the lattice parameters can be identified through (see also Eq. ( 13) of Born and von Kármán [START_REF] Born | On fluctuations in spatial grids[END_REF]):

⎧ ⎨ ⎩ α = a (c 11 -c 12 -c 44 ) = μ a δ = a 2 (c 44 -c 12 ) = a 2 (μ -λ) β = a 2 (c 44 + c 12 ) = a 2 (μ + λ) (15) 
Equation [START_REF] Maugin | Nonlinear Waves in Elastic Crystals[END_REF] shows that Born and von Kármán's lattice model asymptotically converges toward a continuum linear elastic material with cubic symmetry, which contains the linear elastic isotropic medium for some constrained material parameters. In fact, Eq. ( 15) can be inverted to furnish

μ = α a ; λ = β -δ a and δ = α -β (16)
which clearly shows that the three microscopic parameters can be constrained so that they can be identified from Lamé parameters of macroscopic elasticity. Keating [START_REF] Keating | Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure[END_REF] remarked that if β = 0, i.e., by neglecting the next-nearest interaction, one obtains unsatisfactory macroscopic physical results, with a negative Lamé coefficient:

β = 0 ⇒ μ = α a ≥ 0 and λ = -α a ≤ 0 (17) 
A possible answer to this is that the positivity of the microscopic shear stiffness implies:

δ ≥ 0 ⇒ λ ≤ μ ⇒ υ ≤ 1/4 (18) 
In the particular case of pure central forces, one obtains:

δ = 0 ⇒ μ = λ ⇒ υ = 1/4 (19) 
which is Eq. ( 14) of Born and von Kármán [START_REF] Born | On fluctuations in spatial grids[END_REF], equivalently written as c 44 = c 12 , and known as Cauchy-Poisson's relation. In this case, we also have:

δ = 0 ⇒ α = β ( 20 
)
In the 3D McHenry-Hrennikoff truss (which is equivalent to the 3D Born-Kármán lattice with central forces), we have α = β, i.e., no shear interactions (δ = 0). Born and von Kármán [START_REF] Born | On fluctuations in spatial grids[END_REF] noticed that central forces (δ = 0) in the limit lead to constrained continuum elasticity with a single constant λ = μ, as obtained by Navier and Poisson; assuming central forces, Kelvin [START_REF] Kelvin | On the elasticity of a crystal according to Boscovich[END_REF] came to the same conclusion for the compressibility modulus K :

K = 3λ + 2μ 3 = 5α 3a with α = β = μa = λa (21)
In this last case, for λ = μ, Navier's partial differential equation Eq. ( 14) reduces to:

3 ∂ 2 u ∂ x 2 + 2 ∂ 2 v ∂ x∂ y + 2 ∂ 2 w ∂ x∂z + ∂ 2 u ∂ y 2 + ∂ 2 u ∂z 2 = ρ μ ∂ 2 u ∂t 2 (22) 
and is usually labelled as given by the so-called "rari-constant" theory, Fig. 8. Using the stiffness calibration Eq. ( 15), the mixed difference-differential equations of Born von Karman [6] are a spatial finite difference formulation of Navier's continuous partial differential equations, as for Lagrange's 1D lattice: An asymptotic expansion of Born-Kármán's mixed differential-difference equations Eq. ( 23), leads to higherorder gradient elasticity partial differential equations of the lattice:

μ u i+1, j,k -2u i, j,k + u i-1, j,k + λ + μ 4 u i+1, j+1,k + u i-1, j+1,k + u i+1, j-1,k +u i-1, j-1,k + u i+1, j,k+1 + u i-1, j,k+1 + u i+1, j,k-1 + u i-1, j,k-1 -8u i, j,k + λ + μ 4 v i+1, j+1,k + v i-1, j-1,k -v i-1, j+1,k -v i+1, j-1,k + w i+1, j,k+1 + w i-1, j,k-1 -w i+1, j,k-1 -w i-1, j,k+1 + μ -λ 2 u i, j+1,k + u i, j-1,k + u i, j,k+1 + u i, j,k-1 -4u i, j,k = ρa 2 üi, j,k (23) 
μ ∂ 2 u ∂ x 2 + a 2 12 
∂ 4 u ∂ x 4 + λ + μ 4 4 ∂ 2 u ∂ x 2 + 2 ∂ 2 u ∂ y 2 + a 2 ∂ 4 u ∂ x 2 ∂ y 2 + a 2 3 ∂ 4 u ∂ x 4 + a 2 6 ∂ 4 u ∂ y 4 + 2 ∂ 2 u ∂z 2 + a 2 ∂ 4 u ∂ x 2 ∂z 2 + a 2 6 ∂ 4 u ∂z 4 + μ -λ 2 ∂ 2 u ∂ y 2 + a 2 12 ∂ 4 u ∂ y 4 + ∂ 2 u ∂z 2 + a 2 12 
∂ 4 u ∂z 4 + λ + μ 4 4 ∂ 2 v ∂ x∂ y + 2 3 a 2 ∂ 4 v ∂ x∂ y 3 + 2 3 a 2 ∂ 4 v ∂ y∂ x 3 + 4 ∂ 2 w ∂ x∂z + 2 3 a 2 ∂ 4 w ∂ x∂z 3 + 2 3 a 2 ∂ 4 w ∂z∂ x 3 = ρ ∂ 2 u ∂t 2 (24)
The zeroth order of this expansion is Navier's elastodynamic partial differential equation; the terms proportional to the square of the lattice spacing account for scale effects. Born-Kármán's model may also include long range interactions and is extensively presented in the seminal books of Born and Huang [START_REF] Born | Dynamical theory of crystal lattices[END_REF] and Askar [START_REF] Askar | Lattice Dynamical Foundations of Continuum Theories: Elasticity, Piezoelectricity, Viscoelasticity, Plasticity[END_REF]. Exact solutions exist for the dispersion wave propagation equation in 2D or 3D elastic lattices: Born and von Kármán [START_REF] Born | On fluctuations in spatial grids[END_REF] presented the 3D case [START_REF] Born | On fluctuations in spatial grids[END_REF].

Two-dimensional discrete elasticity: the Born-Karman model

A 2D version of Born-Kármán's lattice is studied in detail by Suiker et al. [START_REF] Suiker | Dynamic behaviour of a layer of discrete particles, part 1: analysis of body waves and eigenmodes[END_REF] (Fig. 9), and is governed by: which results from a direct equilibrium of normal (N ) and shear (V ) forces around the node (i,j):

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ α u i+1, j -2u i, j + u i-1, j + β 2 u i+1, j+1 + u i-1, j-1 + u i-1, j+1 + u i+1, j-1 -4u i, j + β 2 v i+1, j+1 -v i-1, j+1 -v i+1, j-1 + v i-1, j-1 + δ u i, j+1 -2u i, j + u i, j-1 = M üi, j α v i, j+1 -2v i, j + v i, j-1 + β 2 v i+1, j+1 + v i-1, j-1 + v i-1, j+1 + v i+1, j-1 -4v i, j + β 2 u i+1, j+1 -u i-1, j+1 -u i+1, j-1 + u i-1, j-1 + δ v i+1, j -2v i, j + v i-1, j = M vi, j (25) 
⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ N i+1/2, j -N i-1/2, j + √ 2 2 N i+1/2, j+1/2 + √ 2 2 N i+1/2, j-1/2 - √ 2 2 N i-1/2, j+1/2 - √ 2 2 N i-1/2, j-1/2 + V i, j+1/2 -V i, j-1/2 = M üi, j N i, j+1/2 -N i, j-1/2 + √ 2 2 N i+1/2, j+1/2 + √ 2 2 N i-1/2, j+1/2 - √ 2 2 N i-1/2, j-1/2 - √ 2 2 N i+1/2, j-1/2 + V i+1/2, j -V i-1/2, j = M vi, j (26) 
with

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ N i+1/2, j = α u i+1, j -u i, j N i-1/2, j = α u i, j -u i-1, j N i, j+1/2 = α v i, j+1 -v i, j N i, j-1/2 = α v i, j -v i, j-1 N i+1/2, j+1/2 = β √ 2/2 u i+1, j+1 -u i, j + v i+1, j+1 -v i, j N i+1/2, j-1/2 = β √ 2/2 u i+1, j-1 -u i, j -v i+1, j-1 + v i, j N i-1/2, j+1/2 = β √ 2/2 u i, j -u i-1, j+1 + v i-1, j+1 -v i, j N i-1/2, j-1/2 = β √ 2/2 -u i-1, j-1 + u i, j -v i-1, j-1 + v i, j V i, j+1/2 = δ u i, j+1 -u i, j V i, j-1/2 = δ u i, j -u i, j-1 V i+1/2, j = δ v i+1, j -v i, j V i-1/2, j = δ v i, j -v i-1, j (27) 
Figure 10 shows a scheme of forces with central (longitudinal, vertical and diagonal) and non-central (shear) forces: Eqs. ( 27) and ( 26) provide Eq. ( 25). The latter are obtained in an equivalent way starting from the following potential energy:

U = i j α 4 u i+1, j -u i, j 2 + u i+1, j+1 -u i, j+1 2 + v i, j+1 -v i, j 2 + v i+1, j+1 -v i+1, j 2 + β 4 u i+1, j+1 -u i, j + v i+1, j+1 -v i, j 2 + u i+1, j -u i, j+1 -v i+1, j + v i, j+1 2 + δ 4 v i+1, j -v i, j 2 + v i+1, j+1 -v i, j+1 2 + u i, j+1 -u i, j 2 + u i+1, j+1 -u i+1, j 2 (28) 
Equation ( 28) agrees with Eq. ( 5) of Montroll [START_REF] Montroll | Dynamics of a square lattice[END_REF] where the shear is neglected (only longitudinal and diagonal interaction). Montroll's square lattice is purely central, and can be viewed as a particular case of Born-Kármán's one without shear interaction, i.e., δ = 0, and coincides with Navier's lattice (lattice with pure central interactions):

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ α u i+1, j -2u i, j + u i-1, j + β 2 u i+1, j+1 + u i-1, j-1 + u i-1, j+1 + u i+1, j-1 -4u i, j + β 2 v i+1, j+1 -v i-1, j+1 -v i+1, j-1 + v i-1, j-1 = M üi, j α v i, j+1 -2v i, j + v i, j-1 + β 2 v i+1, j+1 + v i-1, j-1 + v i-1, j+1 + v i+1, j-1 -4v i, j + β 2 u i+1, j+1 -u i-1, j+1 -u i+1, j-1 + u i-1, j-1 = M vi, j (29) 
These mixed differential-difference equations were also obtained by Blackman [START_REF] Blackman | Contributions to the theory of the specific heat of crystals. II. On the vibrational spectrum of cubical lattices and its application to the specific heat of crystals[END_REF] from a direct approach [START_REF] Blackman | Contributions to the theory of the specific heat of crystals. II. On the vibrational spectrum of cubical lattices and its application to the specific heat of crystals[END_REF]. Another particular case is the model of Rosenstock and Newell [START_REF] Rosenstock | Vibrations of a simple cubic lattice[END_REF], which is equivalent to that of Montroll and Potts [START_REF] Montroll | Effect of defects on lattice vibrations[END_REF], who considered direct neighboring interactions only with central and non-central (shear) contributions. The model of Montroll and Potts [START_REF] Montroll | Effect of defects on lattice vibrations[END_REF] is equivalent to considering β = 0 in Eq. ( 25) (i.e., no diagonal springs):

α u i+1, j -2u i, j + u i-1, j + δ u i, j+1 -2u i, j + u i, j-1 = M üi, j α v i, j+1 -2v i, j + v i, j-1 + δ v i+1, j -2v i, j + v i-1, j = M vi, j (30) 
A consistent lattice theory should fulfil both translational and rotational invariance principle [START_REF] Lax | E1. The relation between microscopic and macroscopic theories of elasticity[END_REF][START_REF] Gazis | Conditions for rotational invariance of a harmonic lattice[END_REF][START_REF] Keating | Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure[END_REF][START_REF] Keating | Relationship between the macroscopic and microscopic theory of crystal elasticity. I. Primitive crystals[END_REF][START_REF] Alexander | Amorphous solids: their structure, lattice dynamics and elasticity[END_REF]. The energy of Born-Kármán's model fulfils invariance in translation: since all particles have the same displacement, it is trivial to check that Eq. ( 28) equals zero for any superposed translation. Lax [START_REF] Lax | E1. The relation between microscopic and macroscopic theories of elasticity[END_REF], Keating [START_REF] Keating | Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure[END_REF][START_REF] Keating | Relationship between the macroscopic and microscopic theory of crystal elasticity. I. Primitive crystals[END_REF] highlighted that Born-Kármán's lattice based on two central interactions and one non-central interaction (the shear interaction) does not fulfill rotational invariance (see also [START_REF] Alexander | Amorphous solids: their structure, lattice dynamics and elasticity[END_REF]). The same critique concerns the lattice model of Montroll and Potts [START_REF] Montroll | Effect of defects on lattice vibrations[END_REF] (equivalent to the model of Rosenstock and Newell [START_REF] Rosenstock | Vibrations of a simple cubic lattice[END_REF]), particular cases of Born-Kármán's without central second-neighboring interactions, as analyzed by Gazis and Wallis [START_REF] Gazis | Conditions for rotational invariance of a harmonic lattice[END_REF]. This can be seen in the simple translation and rotation ω of one cell around a point P i, j :

u i+1, j v i+1, j = u i, j v i, j + ωa ; u i, j+1 v i, j+1 = u i, j -ωa v i, j and u i+1, j+1 v i+1, j+1 = u i, j -ωa v i, j + ωa ( 31 
)
Inserting Eq. ( 31) in one cell of Eq. ( 28) furnishes

U i, j = α 4 u i+1, j -u i, j 2 + u i+1, j+1 -u i, j+1 2 + v i, j+1 -v i, j 2 + v i+1, j+1 -v i+1, j 2 + β 4 u i+1, j+1 -u i, j + v i+1, j+1 -v i, j 2 + u i+1, j -u i, j+1 -v i+1, j + v i, j+1 2 + δ 4 v i+1, j -v i, j 2 + v i+1, j+1 -v i, j+1 2 + u i, j+1 -u i, j 2 + u i+1, j+1 -u i+1, j 2 = α 4 0 2 + 0 2 + 0 2 + 0 2 + β 4 (-ωa + ωa) 2 + (ωa -ωa) 2 + δ 4 (ωa) 2 + (ωa) 2 + (ωa) 2 + (ωa) 2
= δ (ωa) 2 = 0 (32) which is nonzero due to non-central interactions, since δ = 0. In conclusion, Born-Kármán's lattice does not fulfil the rotational invariance principle, in general, thus is inconsistent. The kinetic energy of this lattice with concentrated masses has the simple form:

T = i j M u2 i, j + M v2 i, j (33) 
Applying Hamilton's principle to the Lagrangian L = T -U gives the mixed differential-difference equation Eq. ( 25), which can be obtained equivalently by the direct approach, as for the 3D Born-Kármán's model. Again, its asymptotic expansion shows that it converges to Navier's partial differential equations of elastodynamics. For this 2D problem, the following relation between the discrete and the equivalent continuum u i, j = u (x = ai, y = a j)and v i, j = v (x = ai, y = a j)holds for sufficiently smooth functions given by:

u i+1, j+1 = u (x + a, y + a) = e a(∂ x +∂ y ) u (x, y) (34)
By using again an asymptotic expansion, one obtains the long wave continuum limit as:

⎧ ⎨ ⎩ (α + β) ∂ 2 u ∂ x 2 + 2β ∂ 2 v ∂ x∂ y + (δ + β) ∂ 2 u ∂ y 2 = ρh ∂ 2 u ∂t 2 (α + β) ∂ 2 v ∂ y 2 + 2β ∂ 2 u ∂ x∂ y + (δ + β) ∂ 2 v ∂ x 2 = ρh ∂ 2 v ∂t 2 (35)
where h the depth of the plane element. From Eq. ( 35), it is possible to identify the constant of Navier's partial differential equations in plane stress elasticity (see, e.g., Love [START_REF] Love | A Treatise on the Mathematical Theory of Elasticity, 4th edn[END_REF]), which are:

⎧ ⎨ ⎩ E 1-υ 2 ∂ 2 u ∂ x 2 + E 2(1-υ) ∂ 2 v ∂ x∂ y + E 2(1+υ) ∂ 2 u ∂ y 2 = ρ ∂ 2 u ∂t 2 E 1-υ 2 ∂ 2 v ∂ y 2 + E 2(1-υ) ∂ 2 u ∂ x∂ y + E 2(1+υ) ∂ 2 v ∂ x 2 = ρ ∂ 2 v ∂t 2 (36)
with E the Young's modulus, υ the Poisson's ratio. One identifies:

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ α + β = Eh 1-υ 2 2β = Eh 2(1-υ) δ + β = Eh 2(1+υ) ⇒ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ α = Eh(3-υ) 4(1-υ 2 ) β = Eh 4(1-υ) δ = Eh(1-3υ) 4(1-υ 2 ) (37)
Equation ( 37) can be rewritten as

β α = 1+υ 3-υ δ α = 1-3υ 3-υ (38)
Note from Eq. [START_REF] Green | On the reflection and refraction of light at the common surface of two non-crystallized media[END_REF] implies that if δ = 0 (central forces), Poisson's ratio must be υ = 1/3, as reported by Hrennikoff [START_REF] Hrennikoff | Plane stress and bending of plates by method of articulated framework[END_REF], Hrennikoff [START_REF] Hrennikoff | Solutions of problems of elasticity by the framework method[END_REF], McHenry [START_REF] Mchenry | Discussion: Solution of problems of elasticity by the framework method, Hrennikoff A[END_REF], McHenry [START_REF] Mchenry | A lattice analogy for the solution of stress problems[END_REF] or Hrennikoff [START_REF] Hrennikoff | Framework method and its technique for solving plane stress problems[END_REF] for plane stress problems.

δ = 0 ⇒ υ = 1/3 (39) 
The truss composed of horizontal, vertical and diagonal bars, equivalent to Born-Kármán's lattice with central forces (or Navier's lattice with pure central interactions, also equivalent to McHenry-Hrennikoff truss), foresees a constraint for the stiffnesses of the bars in plane stress:

δ = 0 ⇒ α = 2β (40) 
i.e., the stiffness of the horizontal and vertical elements is twice that of the diagonal elements for a McHenry truss. For the equivalence, the stiffness parameters must be

υ = 1/3 ⇒ α = 3Eh 4 β = 3Eh 8 (41) 
In McHenry-Hrennikoff's truss, the cross sectional area of each horizontal or vertical bar is denoted by A N , that of each diagonal bar is denoted by A D , Young's modulus of each horizontal or vertical bar is denoted by E N , and the Young's modulus of each diagonal bar is denoted by E D :

A N E N = αa = Eh (3 -υ) 4 1 -υ 2 a = 3Eha 4 and A D E D = βa √ 2 = Eh 4 (1 -υ) a √ 2 = 3Eh 8 a √ 2 for υ = 1/3 (42) 
If Young's modulus is uniform, as in Hrennikoff [START_REF] Hrennikoff | Solutions of problems of elasticity by the framework method[END_REF] or McHenry [START_REF] Mchenry | A lattice analogy for the solution of stress problems[END_REF], Eq. ( 42) yields:

E N = E D = E ⇒ A N = 3ha 4 and A D = 3 √ 2ha 8 (43) 
For finite elastic solids, McHenry [START_REF] Mchenry | A lattice analogy for the solution of stress problems[END_REF] reported that the border springs must have stiffness α/2 for an accurate correspondence of the lattice with its asymptotic continuum (see Fig. 11). The uniaxial compression of a square specimen composed of McHenry trusses (or central Born-Kármán's lattice, often referred to as Bravais lattices in physics) is shown in Fig. 12 19) (see Fig. 13). For 3D McHenry-Hrennikoff lattices, the stiffness of each horizontal, vertical and diagonal bar derives from Eq. ( 20):

δ = 0 ⇒ υ = 1/4 ⇒ α = β ( 44 
)
It is remarkable that the strict equality between stiffness parameters α = 2β for plane stress differs from that of 3D elasticity α = β. From Eq. ( 44), using Eq. ( 14), one identifies easily that

υ = 1/4 ⇒ α = E N A N a = 2Ea 5 β = E D A D a √ 2 = 2Ea 5 ( 45 
)
For uniform Young's modulus, this gives the cross-section areas reported by Hrennikoff [START_REF] Hrennikoff | Solutions of problems of elasticity by the framework method[END_REF]:

E N = E D = E ⇒ A N = 2a 2 5 and A D = 2 √ 2 5 a 2 (46) 
Figure 13 shows some 3D Hrennikoff trusses in compression, with border springs having half the stiffness of the inner ones, under the central force assumption (with truss properties α = β or equivalently with the PDF Studio -PDF Editor for Mac, Windows, Linux. For Evaluation. https://www.qoppa.com/pdfstudio PDF Studio -PDF Editor for Mac, Windows, Linux. For Evaluation. https://www.qoppa.com/pdfstudio 46)). The macroscopic response of the n-cell specimen to a pure compression gives a ratio of the lateral to the vertical end displacement equal in absolute value to Poisson's ratio, which is 1/4 under the considered central force assumption.

For the energy of the 2D Born-Kármán's lattice (Fig. 14) to be positive definite, Poisson's ratio must be less than its critical value in plane stress, i.e.

δ ≥ 0 ⇒ υ ≤ 1/3 ( 47 
)
The mixed differential-difference equations of the 2D Born-Kármán's lattice in plane stress are:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ E(3-υ) 4(1-υ 2 ) u i+1, j -2u i, j + u i-1, j + E 8(1-υ) u i+1, j+1 + u i-1, j-1 + u i-1, j+1 + u i+1, j-1 -4u i, j + E 8(1-υ) v i+1, j+1 -v i-1, j+1 -v i+1, j-1 + v i-1, j-1 + E(1-3υ) 4(1-υ 2 ) u i, j+1 -2u i, j + u i, j-1 = ρa 2 üi, j E(3-υ) 4(1-υ 2 ) v i, j+1 -2v i, j + v i, j-1 + E 8(1-υ) v i+1, j+1 + v i-1, j-1 + v i-1, j+1 + v i+1, j-1 -4v i, j + E 8(1-υ) u i+1, j+1 -u i-1, j+1 -u i+1, j-1 + u i-1, j-1 + E(1-3υ) 4(1-υ 2 ) v i+1, j -2v i, j + v i-1, j = ρa 2 vi, j (48) 
Fig. [START_REF] Mühlich | Commented translation of Erwin Schrödinger's paper On the dynamics of elastically coupled point systems (Zur Dynamik elastisch gekoppelter Punktsysteme)[END_REF] Born-Kármán lattice with specific border springs under uniform compression Equation ( 48) can be expanded up to some higher gradient terms, to formulate a higher-gradient continuous Born-Kármán's lattice equations in plane stress, as an approximation of discrete elasticity:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ E(3-υ) 4(1-υ 2 ) ∂ 2 u ∂ x 2 + a 2 12 ∂ 4 u ∂ x 4 + E 8(1-υ) 2 ∂ 2 u ∂ x 2 + 2 ∂ 2 u ∂ y 2 + a 2 ∂ 4 u ∂ x 2 ∂ y 2 + a 2 6 ∂ 4 u ∂ x 4 + a 2 6 ∂ 4 u ∂ y 4 + E 8(1-υ) 4 ∂ 2 v ∂ x∂ y + 2 a 2 3 ∂ 4 v ∂ x∂ y 3 + 2 a 2 3 ∂ 4 v ∂ y∂ x 3 + E(1-3υ) 4(1-υ 2 ) ∂ 2 u ∂ y 2 + a 2 12 ∂ 4 u ∂ y 4 + o a 4 = ρ ü E(3-υ) 4(1-υ 2 ) ∂ 2 v ∂ y 2 + a 2 12 ∂ 4 v ∂ y 4 + E 8(1-υ) 2 ∂ 2 v ∂ x 2 + 2 ∂ 2 v ∂ y 2 + a 2 ∂ 4 v ∂ x 2 ∂ y 2 + a 2 6 ∂ 4 v ∂ x 4 + a 2 6 ∂ 4 v ∂ y 4 + E 8(1-υ) 4 ∂ 2 u ∂ x∂ y + 2 a 2 3 ∂ 4 u ∂ x∂ y 3 + 2 a 2 3 ∂ 4 u ∂ y∂ x 3 + E(1-3υ) 4(1-υ 2 ) ∂ 2 v ∂ x 2 + a 2 12 ∂ 4 v ∂ x 4 + o a 4 = ρ v (49) 
For plane strain, Navier's elastodynamic continuous equations are given by:

⎧ ⎨ ⎩ (λ + 2μ) ∂ 2 u ∂ x 2 + (λ + μ) ∂ 2 v ∂ x∂ y + μ ∂ 2 u ∂ y 2 = ρ ∂ 2 u ∂t 2 (λ + 2μ) ∂ 2 v ∂ y 2 + (λ + μ) ∂ 2 u ∂ x∂ y + μ ∂ 2 v ∂ x 2 = ρ ∂ 2 v ∂t 2 (50) 
One identifies for the 2D Born-Kármán's lattice (see also Suiker et al. [START_REF] Suiker | Dynamic behaviour of a layer of discrete particles, part 1: analysis of body waves and eigenmodes[END_REF]), under plane strain:

⎧ ⎪ ⎨ ⎪ ⎩ α + β = (λ + 2μ) h 2β = (λ + μ) h δ + β = μh ⇒ ⎧ ⎪ ⎨ ⎪ ⎩ α = λ+3μ 2 h β = λ+μ 2 h δ = μ-λ 2 h ( 51 
)
For central forces in plane strain from Eq. ( 51), we obtain:

δ = 0 ⇒ λ = μ ⇒ α = 2β (52) 
and Poisson's ratio υ = 1/4, which is the value given by the "rari-constant" molecular theory of Poisson and Cauchy; Eq. ( 52) was obtained in plane strain by Suiker et al. [START_REF] Suiker | Dynamic behaviour of a layer of discrete particles, part 1: analysis of body waves and eigenmodes[END_REF]. We can summarize that the stiffness of the 2D McHenry-Hrennikoff truss (or equivalently, Born-Kármán's lattice with central forces) in plane strain or plane stress, foresees α = 2β, whereas 3D truss (or 3D lattice with central forces) foresees α = β.

In plane strain, the positive definiteness of the energy imposes that:

δ ≥ 0 ⇒ υ ≤ 1/4 ( 53 
)
The constraint Eq. ( 18) for Poisson's ratio still holds and the central forces require υ = 1/4. The mixed differential-difference equations of 2D Born-Kármán's lattice model in plane strain are given by:

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ λ+3μ 2 u i+1, j -2u i, j + u i-1, j + λ+μ 4 u i+1, j+1 + u i-1, j-1 + u i-1, j+1 + u i+1, j-1 -4u i, j + λ+μ 4 v i+1, j+1 -v i-1, j+1 -v i+1, j-1 + v i-1, j-1 + μ-λ 2 u i, j+1 -2u i, j + u i, j-1 = a 2 üi, j λ+3μ 2 v i, j+1 -2v i, j + v i, j-1 + λ+μ 4 v i+1, j+1 + v i-1, j-1 + v i-1, j+1 + v i+1, j-1 -4v i, j + λ+μ 4 u i+1, j+1 -u i-1, j+1 -u i+1, j-1 + u i-1, j-1 + μ-λ 2 v i+1, j -2v i, j + v i-1, j = a 2 vi, j (54) 
The mixed differential-difference equations of the 2D Born-Kármán's lattice model (in plane strain) can be expanded using the higher-order differential operators, in the following form:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ λ+3μ 2 ∂ 2 u ∂ x 2 + a 2 12 ∂ 4 u ∂ x 4 + λ+μ 4 2 ∂ 2 u ∂ x 2 + 2 ∂ 2 u ∂ y 2 + a 2 ∂ 4 u ∂ x 2 ∂ y 2 + a 2 6 ∂ 4 u ∂ x 4 + a 2 6 ∂ 4 u ∂ y 4 + λ+μ 4 4 ∂ 2 v ∂ x∂ y + 2 a 2 3 ∂ 4 v ∂ x∂ y 3 + 2 a 2 3 ∂ 4 v ∂ y∂ x 3 + μ-λ 2 ∂ 2 u ∂ y 2 + a 2 12 ∂ 4 u ∂ y 4 + o a 4 = ρ ü λ+3μ 2 ∂ 2 v ∂ y 2 + a 2 12 ∂ 4 v ∂ y 4 + λ+μ 4 2 ∂ 2 v ∂ y 2 + 2 ∂ 2 v ∂ x 2 + a 2 ∂ 4 v ∂ x 2 ∂ y 2 + a 2 6 ∂ 4 v ∂ y 4 + a 2 6 ∂ 4 v ∂ x 4 + λ+μ 4 4 ∂ 2 u ∂ x∂ y + 2 a 2 3 ∂ 4 u ∂ x∂ y 3 + 2 a 2 3 ∂ 4 u ∂ y∂ x 3 + μ-λ 2 ∂ 2 v ∂ x 2 + a 2 12 ∂ 4 v ∂ x 4 + o a 4 = ρ v (55) 
4 Three-dimensional discrete elasticity: Gazis et al. model

The general violation of rotational invariance of Born-Kármán's lattice, encouraged researchers to replace the non-central forces (shear forces) by angular ones. This idea was already employed by Born [START_REF] Born | Zur Raumgittertheorie des Diamanten[END_REF] in developing a two-constant model for diamond, with both central and angular forces among nearest neighbors, an idea that is already present in Voigt's assumption of a potential that depends also on the orientation of molecules, or in Poincaré's three-body potential that accounts for angles formed by triples of molecules. A three-constant lattice with vertical and longitudinal springs (central interaction between nearest neighbors), diagonal springs (central interaction between next-nearest neighbors) and rotational springs (angular interaction) is due to Smith [START_REF] Smith | The theory of the vibrations and the Raman spectrum of the diamond lattice[END_REF] for the diamond structure [START_REF] Smith | The theory of the vibrations and the Raman spectrum of the diamond lattice[END_REF]. De Launay [START_REF] De Launay | Solid State Physics[END_REF] presented in detail Smith's lattice and also referred to Nagendra [START_REF] Nagendra Nath | The dynamical theory of the diamond lattice I[END_REF] for results [START_REF] Nagendra Nath | The dynamical theory of the diamond lattice I[END_REF]. To avoid theoretical inconsistencies, the lattice energy shall depend on invariant quantities, such as distances between atoms or angles among triples of atoms [START_REF] Gazis | Conditions for rotational invariance of a harmonic lattice[END_REF]. Gazis et al. [START_REF] Gazis | Surface elastic waves in cubic crystals[END_REF] gave a final answer to the paradoxical properties of Born-Kármán's lattice by replacing the shear (non central) force therein with rotation springs. The lattice of Gazis et al. [START_REF] Gazis | Surface elastic waves in cubic crystals[END_REF] is monatomic, simple cubic, composed of particles of equal mass M and lattice spacing a that interact by: nearest and next-to-nearest central forces as due to axial springs of stiffnesses α (edges) and β (diagonal) (notation as in Born-Kármán's lattice); "angular forces" as due to rotation springs of stiffness γ (the mechanical interactions of such a lattice are represented in Fig. 16 for the 3D Gazis et al. lattice, and in Fig. 17 for the 2D Gazis et al. lattice). This lattice is energetically consistent, fulfilling invariance in rotation and translation; its governing mixed differential-difference equations asymptotically converge to Navier's partial differential ones for elastodynamics. For plane stress, this system was also considered by [START_REF] Wifi | A simple discrete element mechanical model for the stability analysis of elastic structures[END_REF] in his PhD thesis where 2D elasticity was investigated by a three-parameter lattice with one angular and two central interactions [START_REF] Wu | A discrete element method for linear and nonlinear stress and bifurcation problems of elastic structures[END_REF]. Central forces (Navier, Poisson's or Cauchy's molecular assumption) is retrieved for γ = 0, but do not lead to a general Hooke's law at the continuum limit with free Poisson's ratio. [START_REF] Gazis | Surface elastic waves in cubic crystals[END_REF] for 3D lattices [START_REF] Gazis | Surface elastic waves in cubic crystals[END_REF]). Exact solutions for the in-plane shear vibration of such a lattice have been obtained by Mindlin [START_REF] Mindlin | Lattice theory of shear modes of vibration and torsional equilibrium of simple-cubic crystal plates and bars[END_REF]. The mixed differential-difference equation is given by Gazis et al. [START_REF] Gazis | Surface elastic waves in cubic crystals[END_REF] (Fig. 15):

α u i+1, j,k -2u i, j,k + u i-1, j,k + β 2 u i+1, j+1,k + u i-1, j+1,k + u i+1, j-1,k + u i-1, j-1,k + u i+1, j,k+1 + u i-1, j,k+1 + u i+1, j,k-1 + u i-1, j,k-1 -8u i, j,k + β 2 + γ v i+1, j+1,k + v i-1, j-1,k -v i-1, j+1,k -v i+1, j-1,k + w i+1, j,k+1 + w i-1, j,k-1 -w i+1, j,k-1 -w i-1, j,k+1 + 4γ u i, j+1,k + u i, j-1,k + u i, j,k+1 + u i, j,k-1 -4u i, j,k = M üi, j,k (56) 
The potential energy of the lattice of Gazis et al. is given by (Fig. 17): 

U = i j k α 8 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ u i+1, j,k -u i, j,k 2 + u i+1, j+1,k -u i, j+1,k 2 + u i+1, j,k+1 -u i, j,k+1 2 + u i+1, j+1,k+1 -u i, j+1,k+1 2 + v i, j+1,k -v i, j,k 2 + v i+1, j+1,k -v i+1, j,k 2 + v i, j+1,k+1 -v i, j,k+1 2 + v i+1, j+1,k+1 -v i+1, j,k+1 2 + w i, j,k+1 -w i, j,k 2 + w i+1, j,k+1 -w i+1, j,k 2 + w i, j+1,k+1 -w i, j+1,k 2 + w i+1, j+1,k+1 -w i+1, j+1,k 2 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ + β 8 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ u i+1, j+1,k -u i, j,k + v i+1, j+1,k -v i, j,k 2 + u i+1, j,k -u i, j+1,k + v i+1, j,k -v i, j+1,k 2 + u i+1, j+1,k+1 -u i, j,k+1 + v i+1, j+1,k+1 -v i, j,k+1 2 + u i+1, j,k+1 -u i, j+1,k+1 + v i+1, j,k+1 -v i, j+1,k+1 2 + u i+1, j,k+1 -u i, j,k + w i+1, j,k+1 -w i, j,k 2 + u i+1, j,k -u i, j,k+1 + w i+1, j,k -w i, j,k+1 2 + u i+1, j+1,k+1 -u i, j+1,k + w i+1, j+1,k+1 -w i, j+1,k 2 + u i+1, j+1,k -u i, j+1,k+1 + w i+1, j+1,k -w i, j+1,k+1 2 + v i, j+1,k+1 -v i, j,k + w i, j+1,k+1 -w i, j,k 2 + v i, j+1,k -v i, j,k+1 + w i, j+1,k -w i, j,k+1 2 + v i+1, j+1,k+1 -v i+1, j,k + w i+1, j+1,k+1 -w i+1, j,k 2 + v i+1, j+1,k -v i+1, j,k+1 + w i+1, j+1,k -w i+1, j,k+1 2 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
+ γ 4 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ u i, j+1,k -u i, j,k + v i+1, j,k -v i, j,k 2 + u i+1, j+1,k -u i+1, j,k + v i+1, j,k -v i, j,k 2 + u i+1, j+1,k -u i+1, j,k + v i+1, j+1,k -v i, j+1,k 2 + u i, j+1,k -u i, j,k + v i+1, j+1,k -v i, j+1,k 2 + u i, j+1,k+1 -u i, j,k+1 + v i+1, j,k+1 -v i, j,k+1 2 + u i+1, j+1,k+1 -u i+1, j,k+1 + v i+1, j,k+1 -v i, j,k+1 2 + u i+1, j+1,k+1 -u i+1, j,k+1 + v i+1, j+1,k+1 -v i, j+1,k+1 2 + u i, j+1,k+1 -u i, j,k+1 + v i+1, j+1,k+1 -v i, j+1,k+1 2 + u i, j,k+1 -u i, j,k + w i+1, j,k -w i, j,k 2 + u i+1, j,k+1 -u i+1, j,k + w i+1, j,k -w i, j,k 2 + u i+1, j,k+1 -u i+1, j,k + w i+1, j,k+1 -w i, j,k+1 2 + u i, j,k+1 -u i, j,k + w i+1, j,k+1 -w i, j,k+1 2 + u i, j+1,k+1 -u i, j+1,k + w i+1, j+1,k -w i, j+1,k 2 + u i+1, j+1,k+1 -u i+1, j+1,k + w i+1, j+1,k -w i, j+1,k 2 + u i+1, j+1,k+1 -u i+1, j+1,k + w i+1, j+1,k+1 -w i, j+1,k+1 2 + u i, j+1,k+1 -u i, j+1,k + w i+1, j+1,k+1 -w i, j+1,k+1 2 + v i, j,k+1 -v i, j,k + w i, j+1,k -w i, j,k 2 + v i, j+1,k+1 -v i, j+1,k + w i, j+1,k -w i, j,k 2 + v i, j+1,k+1 -v i, j+1,k + w i, j+1,k+1 -w i, j,k+1 2 + v i, j,k+1 -v i, j,k + w i, j+1,k+1 -w i, j,k+1 2 + v i+1, j,k+1 -v i+1, j,k + w i+1, j+1,k -w i+1, j,k 2 + v i+1, j+1,k+1 -v i+1, j+1,k + w i+1, j+1,k -w i+1, j,k 2 + v i+1, j+1,k+1 -v i+1, j+1,k + w i+1, j+1,k+1 -w i+1, j,k+1 2 + v i+1, j,k+1 -v i+1, j,k + w i+1, j+1,k+1 -w i+1, j,k+1 2 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (57) 
Expanding Eq. ( 57) yields Navier's partial differential equation and second-order terms: 58) is the lattice-based gradient elasticity model associated with Gazis et al. lattice. This equation has been exactly derived by Mindlin [START_REF] Mindlin | Theories of elastic continua and crystal lattice theories[END_REF]-see "Appendix A".

αa 2 ∂ 2 u ∂ x 2 + a 2 12 ∂ 4 u ∂ x 4 + β a 2 2 4 ∂ 2 u ∂ x 2 + 2 ∂ 2 u ∂ y 2 + a 2 ∂ 4 u ∂ x 2 ∂ y 2 + a 2 3 ∂ 4 u ∂ x 4 + a 2 6 ∂ 4 u ∂ y 4 + 2 ∂ 2 u ∂z 2 + a 2 ∂ 4 u ∂ x 2 ∂z 2 + a 2 6 ∂ 4 u ∂z 4 + 4 γ a 2 ∂ 2 u ∂ y 2 + a 2 12 ∂ 4 u ∂ y 4 + ∂ 2 u ∂z 2 + a 2 12 
∂ 4 u ∂z 4 + γ + β 2 a 2 4 ∂ 2 v ∂ x∂ y + 2a 2 3 ∂ 4 v ∂ x∂ y 3 + 2a 2 3 ∂ 4 v ∂ x 3 ∂ y + 4 ∂ 2 w ∂ x∂z + 2a 2 3 ∂ 4 w ∂ x∂z 3 + 2a 2 3 ∂ 4 w ∂ x 3 ∂z = M ü (58) Equation (
Equation ( 56) may be approximated by the continuous formulations at the long wave limit:

(α + 2β) ∂ 2 u ∂ x 2 + (2β + 4γ ) ∂ 2 v ∂ x∂ y + (2β + 4γ ) ∂ 2 w ∂ x∂z + (β + 4γ ) ∂ 2 u ∂ y 2 + (β + 4γ ) ∂ 2 u ∂z 2 = ρa ∂ 2 u ∂t 2 (59)
so that it is possible to identify the lattice parameters from Navier's elastodynamic equation of continuum elasticity with cubic symmetry, which contains the linear elastic isotropic medium for some constrained material parameters.:

⎧ ⎪ ⎨ ⎪ ⎩ α = a (c 11 -2c 12 ) = (2μ -λ) a β = ac 12 = λa γ = a 4 (c 44 -c 12 ) = μ-λ 4 a with ⎧ ⎨ ⎩ c 11 = λ + 2μ c 44 = μ c 12 = λ (60) 
Equation ( 60) can also be inverted to furnish the values reported implicitly by Gazis et al. [START_REF] Gazis | Surface elastic waves in cubic crystals[END_REF]:

μ = α + β 2a ; λ = β a and γ = α -β 8 (61) 
Equation ( 50) of Gazis et al. [START_REF] Gazis | Surface elastic waves in cubic crystals[END_REF] in 3D elasticity here reads as:

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ c 11 = α+2β a c 12 = β a c 44 = β+4γ a with ⎧ ⎨ ⎩ c 11 = λ + 2μ c 44 = μ c 12 = λ (62)
For central forces, Gazis et al.'s lattice coincides with Born-Kármán's and one obtains:

γ = 0 ⇒ μ = λ ⇒ υ = 1/4, α = β ( 63 
)
For the potential energy to be positive definite, γ must be positive, which is equivalent to μ larger than λ, or equivalently υ smaller than 1/4 , a constraint found also in Born-Kármán's lattice.

Two-dimensional discrete elasticity: Gazis et al. model

For an isotropic material in a 2D framework (isotropic in the asymptotic limit), the governing equations of Gazis et al. lattice are:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ α u i+1, j -2u i, j + u i-1, j + β 2 u i+1, j+1 + u i-1, j-1 + u i-1, j+1 + u i+1, j-1 -4u i, j + β 2 + γ v i+1, j+1 -v i-1, j+1 -v i+1, j-1 + v i-1, j-1 + 4γ u i, j+1 -2u i, j + u i, j-1 = M üi, j α v i, j+1 -2v i, j + v i, j-1 + β 2 v i+1, j+1 + v i-1, j-1 + v i-1, j+1 + v i+1, j-1 -4v i, j + β 2 + γ u i+1, j+1 -u i-1, j+1 -u i+1, j-1 + u i-1, j-1 + 4γ v i+1, j -2v i, j + v i-1, j = M vi, j (64) 
+ 1 2 γ u i, j+1 -u i, j + v i+1, j -v i, j 2 + u i+1, j+1 -u i+1, j + v i+1, j -v i, j 2 + u i, j+1 -u i, j + v i+1, j+1 -v i, j+1 2 + u i+1, j+1 -u i+1, j + v i+1, j+1 -v i, j+1 2 = α 4 0 2 + 0 2 + 0 2 + 0 2 + β 4 (-ωa + ωa) 2 + (ωa -ωa) 2 + 1 2 γ (-ωa + ωa) 2 + (-ωa + ωa) 2 + (-ωa + ωa) 2 + (-ωa + ωa) 2 = 0 (67) 
The kinetic energy of this lattice with concentrated masses at each centre has the simple form:

T = i j M u2 i, j + M v2 i, j (68) 
Applying Hamilton's principle to the Lagrangian L = T -U yields Eq. ( 64): its asymptotic expansion shows that the difference equations of the lattice asymptotically converge toward the partial differential equations of elastodynamics of Navier, with the lattice parameters:

⎧ ⎨ ⎩ α ∂ 2 u ∂ x 2 + β ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 + 4 β 2 + γ ∂ 2 v ∂ x∂ y + 4γ ∂ 2 u ∂ y 2 = M a 2 ∂ 2 u ∂t 2 α ∂ 2 v ∂ y 2 + β ∂ 2 v ∂ x 2 + ∂ 2 v ∂ y 2 + 4 β 2 + γ ∂ 2 u ∂ x∂ y + 4γ ∂ 2 v ∂ x 2 = M a 2 ∂ 2 v ∂t 2 (69) 
This system of partial differential equations can be also rearranged in the following way:

⎧ ⎨ ⎩ (α + β) ∂ 2 u ∂ x 2 + 4 β 2 + γ ∂ 2 v ∂ x∂ y + (4γ + β) ∂ 2 u ∂ y 2 = ρh ∂ 2 u ∂t 2 (α + β) ∂ 2 v ∂ y 2 + 4 β 2 + γ ∂ 2 u ∂ x∂ y + (4γ + β) ∂ 2 v ∂ x 2 = ρh ∂ 2 v ∂t 2 (70) 
From Eq. ( 70), it is possible to identify the elastic constants of the continuous Navier's equations for plane stress (see for instance [START_REF] Love | A Treatise on the Mathematical Theory of Elasticity, 4th edn[END_REF]) by Eq. ( 36). One identifies easily:

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ α + β = Eh 1-υ 2 2β + 4γ = Eh 2(1-υ) 4γ + β = Eh 2(1+υ) ⇒ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ α = Eh 1+υ β = Ehυ 1-υ 2 γ = Eh(1-3υ) 8(1-υ 2 ) (71)
Equation ( 71) can be rewritten as

β α = υ 1-υ γ α = 1-3υ 8(1-υ) (72)
The difference equations of Gazis et al.'s lattice are equivalent to a finite difference formulation of the continuous Navier's partial differential equations of elastodynamics for plane stress:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ E 1+υ u i+1, j -2u i, j + u i-1, j + Eυ 2(1-υ 2 ) u i+1, j+1 + u i-1, j-1 + u i-1, j+1 + u i+1, j-1 -4u i, j + E 8(1-υ) v i+1, j+1 -v i-1, j+1 -v i+1, j-1 + v i-1, j-1 + E(1-3υ) 2(1-υ 2 ) u i, j+1 -2u i, j + u i, j-1 = ρa 2 üi, j E 1+υ v i, j+1 -2v i, j + v i, j-1 + Eυ 2(1-υ 2 ) v i+1, j+1 + v i-1, j-1 + v i-1, j+1 + v i+1, j-1 -4v i, j + E 8(1-υ) u i+1, j+1 -u i-1, j+1 -u i+1, j-1 + u i-1, j-1 + E(1-3υ) 2(1-υ 2 ) v i+1, j -2v i, j + v i-1, j = ρa 2 vi, j (73) 
This mixed differential-difference equation system for plane stress can be expanded as:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ E (1+υ) ∂ 2 u ∂ x 2 + a 2 12 ∂ 4 u ∂ x 4 + Eυ 2(1-υ 2 ) 2 ∂ 2 u ∂ x 2 + 2 ∂ 2 u ∂ y 2 + a 2 ∂ 4 u ∂ x 2 ∂ y 2 + a 2 6 ∂ 4 u ∂ x 4 + a 2 6 ∂ 4 u ∂ y 4 + E 8(1-υ) 4 ∂ 2 v ∂ x∂ y + 2 a 2 3 ∂ 4 v ∂ x∂ y 3 + 2 a 2 3 ∂ 4 v ∂ y∂ x 3 + E(1-3υ) 2(1-υ 2 ) ∂ 2 u ∂ y 2 + a 2 12 ∂ 4 u ∂ y 4 + o a 4 = ρ ü E (1+υ) ∂ 2 v ∂ y 2 + a 2 12 ∂ 4 v ∂ y 4 + Eυ 2(1-υ 2 ) 2 ∂ 2 v ∂ y 2 + 2 ∂ 2 v ∂ x 2 + a 2 ∂ 4 v ∂ x 2 ∂ y 2 + a 2 6 ∂ 4 v ∂ y 4 + a 2 6 ∂ 4 v ∂ x 4 + E 8(1-υ) 4 ∂ 2 u ∂ x∂ y + 2 a 2 3 ∂ 4 u ∂ x∂ y 3 + 2 a 2 3 ∂ 4 u ∂ y∂ x 3 + E(1-3υ) 2(1-υ 2 ) ∂ 2 v ∂ x 2 + a 2 12 ∂ 4 v ∂ x 4 + o a 4 = ρ v (74) 
From Eq. ( 72), if γ = 0 (central forces assumption), then υ = 1/3, as reported by McHenry [START_REF] Mchenry | A lattice analogy for the solution of stress problems[END_REF] or Hrennikoff [START_REF] Hrennikoff | Framework method and its technique for solving plane stress problems[END_REF] for plane stress and obtained in Born-Kármán's lattice with central forces.

γ = 0 ⇒ υ = 1/3 (75) 
The truss analog equivalent to Born-Kármán's lattice model with central forces, composed of horizontal, vertical and diagonal bars, also foresees constrained spring parameters:

γ = 0 ⇒ α = 2β ( 76 
)
For the relevant lattice energy to be positive definite, the model of Gazis et al. [START_REF] Gazis | Surface elastic waves in cubic crystals[END_REF] is valid for a Poisson's ratio lower than its critical value in plane stress:

γ ≥ 0 ⇒ υ ≤ 1/3 (77) 
A simulation of the compression test of Gazis et al. lattice [START_REF] Gazis | Surface elastic waves in cubic crystals[END_REF] is shown in Fig. 18, where the nodal forces and the stiffness elements have been calibrated at the border. For plane strain, Navier's continuous equations are given by Eq. ( 50), and one identifies:

⎧ ⎨ ⎩ α + β = (λ + 2μ) h 2β + 4γ = (λ + μ) h 4γ + β = μh ⇒ ⎧ ⎪ ⎨ ⎪ ⎩ α = 2μh = Eh 1+υ β = λh = Eυh (1+υ)(1-2υ) γ = μ-λ 4 h = E(1-4υ) 8(1+υ)(1-2υ) h ( 78 
)
If γ = 0 (central forces) here, then υ = 1/4, which is the value provided by Cauchy-Poisson's "rari-constant" molecular theory where λ = μ. The definiteness of energy requires that:

γ ≥ 0 ⇒ υ ≤ 1/4 ( 79 
)
Gazis et al.'s difference equations are equivalent to a finite difference formulation of Navier's continuous partial differential equations of elastodynamics in plane strain: 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 2μ u i+1, j -2u i, j + u i-1, j + λ 2 u i+1, j+1 + u i-1, j-1 + u i-1, j+1 + u i+1, j-1 -4u i, j + λ+μ 4 v i+1, j+1 -v i-1, j+1 -v i+1, j-1 + v i-1, j-1 + (μ -λ) u i, j+1 -2u i, j + u i, j-1 = ρa 2 üi, j 2μ v i, j+1 -2v i, j + v i, j-1 + λ 2 v i+1, j+1 + v i-1, j-1 + v i-1, j+1 + v i+1, j-1 -4v i, j + λ+μ 4 u i+1, j+1 -u i-1, j+1 -u i+1, j-1 + u i-1, j-1 + (μ -λ) v i+1, j -2v i, j + v i-1, j = ρa 2 vi, j (80) 
⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 2μ ∂ 2 u ∂ x 2 + a 2 12 ∂ 4 u ∂ x 4 + λ 2 2 ∂ 2 u ∂ x 2 + 2 ∂ 2 u ∂ y 2 + a 2 ∂ 4 u ∂ x 2 ∂ y 2 + a 2 6 ∂ 4 u ∂ x 4 + a 2 6 ∂ 4 u ∂ y 4 + λ+μ 4 4 ∂ 2 v ∂ x∂ y + 2 a 2 3 ∂ 4 v ∂ x∂ y 3 + 2 a 2 3 ∂ 4 v ∂ y∂ x 3 + (μ -λ) ∂ 2 u ∂ y 2 + a 2 12 ∂ 4 u ∂ y 4 + o a 4 = ρ ü 2μ ∂ 2 v ∂ y 2 + a 2 12 ∂ 4 v ∂ y 4 + λ 2 2 ∂ 2 v ∂ y 2 + 2 ∂ 2 v ∂ x 2 + a 2 ∂ 4 v ∂ x 2 ∂ y 2 + a 2 6 ∂ 4 v ∂ y 4 + a 2 6 ∂ 4 v ∂ x 4 + λ+μ 4 4 ∂ 2 u ∂ x∂ y + 2 a 2 3 ∂ 4 u ∂ x∂ y 3 + 2 a 2 3 ∂ 4 u ∂ y∂ x 3 + (μ -λ) ∂ 2 v ∂ x 2 + a 2 12 ∂ 4 v ∂ x 4 + o a 4 = ρ v (81) 
The model of Gazis [START_REF] Gazis | Surface elastic waves in cubic crystals[END_REF] is valid for small values of Poisson's ratio (υ ≤ 1/3 for plane stress, υ ≤ 1/4 for 3D elasticity) in order to preserve the positive definiteness of the associated energy. This restriction is identical to that found for Born-Kármán's lattice. However, the mixed differential-difference equations of both lattices (Born-Kármán's lattice and Gazis et al.'s lattice) differ, and coincide only at the asymptotic limit. For 2D problems, the coincidence of the asymptotic continuum corresponding to the two lattices gives, from a comparison between Eqs. ( 35) and ( 70):

⎧ ⎨ ⎩ α G = α B K + δ B K β G = β B K -δ B K γ G = δ B K 2 (82)
where (α G , β G , γ G ) are the parameters of Gazis et al. [START_REF] Gazis | Surface elastic waves in cubic crystals[END_REF], whereas (α B K , β B K , δ B K ) are the three parameters of Born-Kármán's lattice [START_REF] Born | On fluctuations in spatial grids[END_REF]. Only the asymptotic isotropic continuous media coincide (with different wave dispersive properties for the two-dimensional wave propagation). Comparing Eqs. ( 12) and [START_REF] Hrennikoff | Solutions of problems of elasticity by the framework method[END_REF] gives the correspondence between the two lattices in 3D:

⎧ ⎨ ⎩ α G = α B K + 2δ B K β G = β B K -δ B K γ G = δ B K 2 (83)
The non-central contribution of Born-Kármán's lattice is based on shear interactions with a shear stiffness equal to δ B K . It can be shown from the associated energy that this shear interaction is also equivalent to a frame-dependent angular interaction of angular stiffness C B K S = δ B K a 2 , as opposed to Gazis et al. model [START_REF] Gazis | Surface elastic waves in cubic crystals[END_REF] which is composed of objective angular interactions of angular stiffness C G S = γ G a 2 (as shown in Fig. 19). Gazis et al. [START_REF] Gazis | Surface elastic waves in cubic crystals[END_REF] developed their three-parameter lattice model for crystal elasticity applications, and found an alternative model to Born-Kármán's non-central lattice interactions. We have shown that these two models are mathematically and physically different, even if they both converge asymptotically to Navier's partial differential equations of isotropic elastodynamics. Gazis et al.'s model [START_REF] Gazis | Surface elastic waves in cubic crystals[END_REF] can be viewed as the consistent generalization of 1D Lagrange equations for 3D linear elasticity. However, before Gazis et al. [START_REF] Gazis | Surface elastic waves in cubic crystals[END_REF], Hrennikoff [START_REF] Hrennikoff | Plane stress and bending of plates by method of articulated framework[END_REF][START_REF] Hrennikoff | Solutions of problems of elasticity by the framework method[END_REF][START_REF] Hrennikoff | Framework method and its technique for solving plane stress problems[END_REF] explored an other generalization of Born-Kármán's central (or Bravais) lattice, considering an enriched microstructure of central interactions. This could be seen as a meta-lattice, using modern concepts of meta-material modeling [START_REF]Discrete and Continuum Models for Complex Metamaterials[END_REF]. Hrennikoff's lattice method to model continuum elasticity is considered as a cornerstone of discretized methods in solid mechanics, that led to the birth of the Finite Element Method stiffness β of the diagonal bar results from those of its sub-elements connected in series:

1 β = 2 β 1 + 1 β 2 (84) 
In a uniform bar, these are related to the cross-section properties and the length of each element:

β = E D A D √ 2a , β 1 = 4 E D A D √ 2a = 4β and β 2 = 2 E D A D √ 2a = 2β (85) 
The originality of Hrennikoff's approach [START_REF] Hrennikoff | Plane stress and bending of plates by method of articulated framework[END_REF][START_REF] Hrennikoff | Solutions of problems of elasticity by the framework method[END_REF] is to add some auxiliary bars characterized by:

κ = 2 E aux A aux a (86) 
Born and von Kármán central (or Bravais) lattice is obtained as a particular case when κ = 0, i.e., in absence of auxiliary bars, coinciding with McHenry's lattice [START_REF] Mchenry | Discussion: Solution of problems of elasticity by the framework method, Hrennikoff A[END_REF][START_REF] Mchenry | A lattice analogy for the solution of stress problems[END_REF]. The mixed differential-difference system of equations for Hrennikoff's lattice is:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ α + βκ 8β+2κ u i+1, j -2u i, j + u i-1, j + β 2 + βκ 16β+4κ u i+1, j+1 + u i-1, j-1 + u i-1, j+1 + u i+1, j-1 -4u i, j + β 2 + βκ 16β+4κ v i+1, j+1 -v i-1, j+1 -v i+1, j-1 + v i-1, j-1 -βκ 8β+2κ u i, j+1 -2u i, j + u i, j-1 = M üi, j α + βκ 8β+2κ v i, j+1 -2v i, j + v i, j-1 + β 2 + βκ 16β+4κ v i+1, j+1 + v i-1, j-1 + v i-1, j+1 + v i+1, j-1 -4v i, j + β 2 + βκ 16β+4κ u i+1, j+1 -u i-1, j+1 -u i+1, j-1 + u i-1, j-1 -βκ 8β+2κ v i+1, j -2v i, j + v i-1, j = M vi, j (87) 
Hrennikoff [START_REF] Hrennikoff | Plane stress and bending of plates by method of articulated framework[END_REF][START_REF] Hrennikoff | Solutions of problems of elasticity by the framework method[END_REF] did not give these equations explicitly: he provided the calibration of his lattice from the static analysis, neglecting inertia, of one cell and its relevant linear isotropic elastic expected behavior at a macroscopic scale. We derived Eq. ( 87) assembling the stiffness matrix of each bar element around the considered node. An expansion of Eq. [START_REF] Dell'isola | The complete works of Gabrio Piola: volume I commented English translation[END_REF] shows that the difference equations of the lattice converge asymptotically to Navier's partial differential ones for elastodynamics, with parameters:

⎧ ⎨ ⎩ α + β + βκ 4β+κ ∂ 2 u ∂ x 2 + 2β + βκ 4β+κ ∂ 2 v ∂ x∂ y + β ∂ 2 u ∂ y 2 = ρh ∂ 2 u ∂t 2 α + β + βκ 4β+κ ∂ 2 v ∂ y 2 + 2β + βκ 4β+κ ∂ 2 u ∂ x∂ y + β ∂ 2 v ∂ x 2 = ρh ∂ 2 v ∂t 2 (88) 
Discrete and continuous models of linear elasticity Equation [START_REF] Dell'isola | At the origins and in the vanguard of peridynamics, nonlocal and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola[END_REF] shows that Hrennikoff's lattice asymptotically converges toward a continuous elastic medium with cubic symmetry, which contains the isotropic case. By Eq. ( 88), we can identify the elastic constants of Navier's equations (linear isotropic elasticity) Eq. ( 36) for plane stress:

⎧ ⎪ ⎨ ⎪ ⎩ α + β + βκ 4β+κ = Eh 1-υ 2 2β + βκ 4β+κ = Eh 2(1-υ) β = Eh 2(1+υ) ⇒ ⎧ ⎪ ⎨ ⎪ ⎩ α = Eh 1+υ β = Eh 2(1+υ) κ = Eh(-1+3υ) (1+υ)(1-2υ) (89) 
The values reported by Hrennikoff are obtained from the calibration of the stiffness parameters:

⎧ ⎪ ⎨ ⎪ ⎩ E N A N = Eha 1+υ E D A D = √ 2Eha 2(1+υ) E aux A aux = Eha(-1+3υ) 2(1+υ)(1-2υ) (90) 
For uniform Young modulus, the cross-section area of each bar given by Hrennikoff [START_REF] Hrennikoff | Plane stress and bending of plates by method of articulated framework[END_REF][START_REF] Hrennikoff | Solutions of problems of elasticity by the framework method[END_REF] for plane stress is:

E N = E D = E aux = E ⇒ ⎧ ⎪ ⎨ ⎪ ⎩ A N = ha 1+υ A D = √ 2ha 2(1+υ) A aux = ha(-1+3υ) 2(1+υ)(1-2υ) (91)
For the potential energy to be positive definite, each stiffness parameter must be positive, thus, as mentioned by Hrennikoff [START_REF] Hrennikoff | Plane stress and bending of plates by method of articulated framework[END_REF], Hrennikoff's analysis is valid for plane stress if:

κ ≥ 0 ⇒ υ ≥ 1/3 ( 9 2 ) 
Hrennikoff's model is thus valid for large values of the macroscopic Poisson's ratio for energetic consistency and can be viewed as complementary to the lattice of Gazis et al. [START_REF] Gazis | Surface elastic waves in cubic crystals[END_REF], which was shown to hold for lower Poisson's ratio (υ ≤ 1/3 for plane stress). Hrennikoff [START_REF] Hrennikoff | Plane stress and bending of plates by method of articulated framework[END_REF][START_REF] Hrennikoff | Solutions of problems of elasticity by the framework method[END_REF]] also provided the 3D lattice based on the same three interactions, including auxiliary members, and gave the identification rule in plane strain:

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ α + β + βκ 4β+κ = (λ + 2μ) h 2β + βκ 4β+κ = (λ + μ) h β = μh ⇒ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ α = 2μh = Eh 1+υ β = μh = Eh 2(1+υ) κ = λ-μ 2μ-λ 4μh = Eh(-1+4υ) (1+υ)(1-3υ) (93) 
For the potential energy to be positive definite, each stiffness parameter must be positive, thus as mentioned by Hrennikoff [START_REF] Hrennikoff | Plane stress and bending of plates by method of articulated framework[END_REF], his analysis is valid for plane strain or 3D elasticity if:

κ ≥ 0 ⇒ υ ∈ 1 4 ; 1 3 (94) 
For uniform Young's modulus, we identify the cross sectional area of each bar in plane strain:

E N = E D = E aux = E ⇒ ⎧ ⎪ ⎨ ⎪ ⎩ A N = ha 1+υ A D = √ 2ha 2(1+υ) A aux = ha(-1+4υ) 2(1+υ)(1-3υ) (95) 
The only difference with plane stress is the calibration of the auxiliary cross-section areas. The equations for Hrennikoff's lattice in plane stress after the previous calibration are: which is exactly the mixed differential-difference system of Born-Kármán's lattice. We draw the same conclusion in plane strain, hence we see a strict mathematical equivalence of the equations of Born-Kármán and Hrennikoff lattices, which holds by the following identification:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ E(3-υ) 4(1-υ 2 ) u i+1, j -2u i, j + u i-1, j + E 8(1-υ) u i+1, j+1 + u i-1, j-1 + u i-1, j+1 + u i+1, j-1 -4u i, j + E 8(1-υ) v i+1, j+1 -v i-1, j+1 -v i+1, j-1 + v i-1, j-1 + E(1-3υ) 4(1-υ 2 ) u i, j+1 -2u i, j + u i, j-1 = ρa 2 üi, j E(3-υ) 4(1-υ 2 ) v i, j+1 -2v i, j + v i, j-1 + E 8(1-υ) v i+1, j+1 + v i-1, j-1 + v i-1, j+1 + v i+1, j-1 -4v i, j + E 8(1-υ) u i+1, j+1 -u i-1, j+1 -u i+1, j-1 + u i-1, j-1 + E(1-3υ) 4(1-υ 2 ) v i+1, j -2v i, j + v i-1, j = ρa 2 vi, j (96) 
⎧ ⎪ ⎨ ⎪ ⎩ α B K = α H + β H κ H 8β H +2κ H β B K = β H + β H κ H 8β H +2κ H δ B K = -β H κ H 8β H +2κ H ( 97 
)
where (α H , β H , κ H ) pertain to Hrennikoff's truss, whereas (α B K , β B K , δ B K ) characterize Born-Kármán's lattice. Note that this is a strict equivalence, valid for the full lattice, not only for its asymptotic continuous limit: on the opposite, the correspondence between the lattices of Born and von Kármán and Gazis et al. was shown to hold only at the asymptotic limit. Figure 21 shows the compression of a Hrennikoff specimen with few cells. The adaptation of equivalent forces and springs at the border was repeated, as for a McHenry truss without auxiliary bars: the border springs have half the stiffness of the inner ones. Whatever the number of repetitions, the ratio of the horizontal to the vertical displacement of the specimen equals Poisson's ratio. It is not the scope of this paper to review all kinds of lattices at various scales, with sometimes surprising macroscopic properties when so-called metamaterial or metalattices are considered. Specific lattices were extensively studied such as auxetic lattices with negative equivalent Poisson's ratio, strongly anisotropic lattices or specific lattices that do not converge asymptotically to Navier's elastodynamics partial differential equations (see [START_REF]Discrete and Continuum Models for Complex Metamaterials[END_REF] for alternative discrete elasticity models with complex microstructures). Recent lattices that also converge toward the isotropic elastic continuum are those of Zhang et al. [START_REF] Zhang | Modelling nano-plane structures with body force using Hencky bar-grid model, continualised nonlocal model and Eringen nonlocal model[END_REF][START_REF] Zhang | Hencky bar-grid model for plane stress elasticity problems[END_REF], a three-parameter lattice with normal, secondary and rotational springs (see Figs. [START_REF] Eringen | Nonlocal Continuum Field Theories[END_REF][START_REF] Kittel | Introduction to Solid State Physics[END_REF], and that of Nannapaneni et al. [START_REF] Nannapaneni | Discrete lattice modeling of wave propagation in materials with heterogeneous microstructures[END_REF], a threeparameter lattice with normal, diagonal and equivalent volumetric interactions (see also the paper of Chen et al. [101] or the one of Yin, 2022 about volumetric interactions [102]). A numerical compression test of several cells was performed on the model of Zhang et al. [START_REF] Zhang | Modelling nano-plane structures with body force using Hencky bar-grid model, continualised nonlocal model and Eringen nonlocal model[END_REF] to find Poisson's coefficient as the ratio of the lateral to the longitudinal displacement (see Fig. 23). Even if the lattice models presented here are physically different, and so are their mixed differential-difference equations, it is worth noting that they all converge toward the linear isotropic continuum, in that their asymptotic continuum limits are Navier's elastodynamics partial differential equations.

This paper is concerned with the change of scale from 2D and 3D discrete elasticity to 2D and 3D continuous elasticity models. The same methodology can be applied as well for bridging the scale between discrete structural mechanics in terms of discrete beams, plates or shells and in terms of continuous beams, plates or shells (see [START_REF] Wang | Hencky-Bar-Chain/Net for Structural Analysis[END_REF]103] or [104]). As already discussed, discrete (or lattice) beams were introduced by Hencky [START_REF] Hencky | Über die angenäherte Lösung von Stabilitätsproblemen im Raummittels der elastischen Gelenkkette[END_REF], see Fig. 23. The Hencky model comprises rigid beam segments connected by frictionless hinges with 

u i (t) = U exp [J (ω t -k x i )] with x i = a i ( 98 
)
where ω is the propagating frequency, U is the amplitude, J = √ -1 is the imaginary unit and k is the wave number. Introducing Eq. ( 98) in the mixed differential-difference equation of Lagrange Eq. ( 1) gives the well known dispersion equation in Born and von Kármán [START_REF] Born | On fluctuations in spatial grids[END_REF]:

= 2 sin ka 2 with = ω M α ( 99 
)
One may also consider lattices with additional interactions of both short-and long-range (e.g., [109,110] or [111] for instance). Small values of k a provide the long wave approximation, related to the wave equation of local elasticity given by Eq. ( 4).

k a << 1 ⇒ = k a - 1 24 (k a) 3 + • • • (100) 
A shown by Fig. 26, for asymptotic local elasticity, one has = k a, which is not able to reproduce the dispersion phenomena due to the discreteness of Lagrange's lattice. Nonlocal elasticity models were developed (in particular) to capture these specific nonlinear responses in the dispersion curve of lattice theories. One of the simplest models, calibrated with respect to Lagrange lattice, is due to Eringen [START_REF] Eringen | On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[END_REF], who postulated the following constitutive relation for 1D media:

σ (x, t) -l 2 c ∂ 2 σ (x, t) ∂ x 2 = Eε (x, t) and ε (x, t) = ∂u (x, t) ∂ x ( 101 
)
where ε (x, t), σ (x, t) the uniaxial strain and stress, and l c the characteristic length related to the lattice spacing a, which is introduced to fit the wave dispersive properties of the lattice. Coupling the one-dimensional balance of a homogeneous rod of cross-section area S:

∂ N (x, t) ∂ x = ρ S ∂ 2 u (x, t) ∂t 2 and N (x, t) = Sσ (x, t) (102)
with the nonlocal elastic constitutive law Eq. ( 101), one obtains the nonlocal wave elastic equation, which is a correction of the local wave equation Eq. ( 4): This wave equation can be classified as a Boussinesq-type wave equation with coupled spatial and temporal derivatives (see [112,113] or the analysis of Maugin [START_REF] Maugin | Nonlinear Waves in Elastic Crystals[END_REF]). This nonlocal wave equation has been derived by Jaberolanssar and Peddieson [114] and Rosenau [START_REF] Rosenau | Dynamics of nonlinear mass-spring chains near the continuum limit[END_REF] from a continualization process of Lagrange lattice equations (and also derived by [START_REF] Eringen | On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[END_REF] from a nonlocal phenomenological approach [START_REF] Eringen | On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[END_REF]). The wave dispersion equation of this one-dimensional nonlocal medium can be obtained from the following harmonic wave formulation for the continuous displacement field:

E S ∂ 2 u (x, t) ∂ x 2 + l 2 c ρ S ∂ 4 u (x, t) ∂ x 2 ∂t 2 = ρ S ∂ 2 u (x, t) ∂t 2 (103) 
u (x, t) = U exp [J (ω t -k x)] ( 104 
)
leading to the characteristic dispersion equation of Eringen's nonlocal medium:

ω 2 c 2 0 = k 2 1 + l 2 c k 2 with c 0 = E ρ ( 105 
)
c 0 is the axial wave celerity. Equation (105) can be equivalently written in dimensionless form:

= ka 1 + e 2 0 (ka) 2 with = ω a c 0 and e 0 = l c a ( 106 
)
where e 0 is a dimensionless parameter used to calibrate the nonlocal model with respect to the lattice one. Clearly, Eqs. ( 99) and (106) differ, which means that this nonlocal model differs from the original lattice.

However, the nonlocal model can be considered as an efficient mathematical tool to capture the dispersive properties of the lattice. In the long wave approximation, the dimensionless parameter e 0 can be calibrated by comparing Eq. (100) with Eq. (107):

ka << 1 ⇒ = ka - e 2 0 2 (ka) 3 + • • • ⇒ e 0 = 1 12 ≈ 0.289 (107) 
Eringen [START_REF] Eringen | On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[END_REF] suggested to calibrate his nonlocal model at the end of the Brillouin zone of Lagrange's lattice:

(ka = π) = 2 ⇒ e 0 = π 2 -4 4π 2 ≈ 0.386 (108) 
Figure 26 shows that this last approximation gives satisfactory results, as also highlighted by Eringen [START_REF] Eringen | On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[END_REF], who in a certain sense closed the chasm between Lagrange's lattice and 1D continua by a one-length scale nonlocal continuum behaving like a lattice (sometimes referred to as a quasicontinuum-see Collins [START_REF] Collins | A quasicontinuum approximation for solitons in an atomic chain[END_REF]). The nonlocal model can be alternatively calibrated with respect to the long wave approximation based on Eq. (107), as suggested by Jaberolanssar and Peddieson [114], Rosenau [START_REF] Rosenau | Dynamics of nonlinear mass-spring chains near the continuum limit[END_REF], Andrianov and Awrejcewicz [115] and Andrianov et al. [116]. This latter calibration is satisfactory for the long wavelength approximation, but it gives inadequate results at the end of the Brillouin zone. The one length-scale nonlocal model of Eringen [START_REF] Eringen | On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[END_REF] can be enriched by additional stress-or strain-gradient terms, for better calibrating the nonlocal model with the lattice. Two length-scale models, generalizing Eringen's, show satisfactory results (see e.g., [START_REF] Eringen | Nonlocal Continuum Field Theories[END_REF][117][118][119][120]). However, Eringen's nonlocal model still remains very simple and efficient, and reveals the essential dispersive properties of the discrete medium.

The use of a nonlocal elastic model to analyze the wave dispersion phenomena in 2D or 3D lattice appears more complex. The wave dispersion equation of a 2D elastic lattice (we will consider both the Born-Kármán's lattice and that of Gazis et al.) can be obtained from the following harmonic wave formulation for the discrete displacement field:

u i, j (t) = U exp J ω t -k x x i -k y y j and v i, j (t) = V exp J ω t -k x x i -k y y j with x i = a i and y j = a j ( 109 
)
with ω is the propagating frequency, U ,V the wave amplitudes, and k x , k y the wave numbers in the x, y directions respectively. Introducing Eq. ( 109) in the equation of the 2D Born-Kármán's lattice, Eq. ( 25), gives the 2D wave dispersion equation [START_REF] Born | On fluctuations in spatial grids[END_REF]:

2α (1 -c 1 ) + 2β (1 -c 1 c 2 ) + 2δ (1 -c 2 ) -ρa 2 hω 2 2βs 1 s 2 2βs 1 s 2 2α (1 -c 2 ) + 2β (1 -c 1 c 2 ) + 2δ (1 -c 1 ) -ρa 2 hω 2 = 0 (110)
with the dimensionless parameters c i and s i for i ∈ {1; 2} defined from:

c 1 = cos (k x a) ; c 2 = cos k y a ; s 1 = sin (k x a) and s 2 = sin k y a (111) 
Equation ( 110) was obtained equivalently by Suiker et al. [START_REF] Suiker | Dynamic behaviour of a layer of discrete particles, part 1: analysis of body waves and eigenmodes[END_REF] for 2D Born-Kármán's lattices. Note that the 3D wave dispersion equation of this lattice model with non-central forces is available in the original paper of Born and von Kármán [START_REF] Born | On fluctuations in spatial grids[END_REF]. Introducing Eq. (109) in the equation of the 2D Gazis et al. lattice [START_REF] Gazis | Surface elastic waves in cubic crystals[END_REF], Eq. ( 64), gives the two-dimensional wave dispersion equation:

2α (1 -c 1 ) + 2β (1 -c 1 c 2 ) + 8γ (1 -c 2 ) -ρa 2 hω 2 (2β + 4γ ) s 1 s 2 (2β + 4γ ) s 1 s 2 2α (1 -c 2 ) + 2β (1 -c 1 c 2 ) + 8γ (1 -c 1 ) -ρa 2 hω 2 = 0 (112)
The 3D wave dispersion equation of this lattice with angular forces is in Gazis et al. [START_REF] Gazis | Surface elastic waves in cubic crystals[END_REF]. Equation (110) would be equivalent to Eq. (112) only for central interactions:

α G = α B K , β G = β B K , γ G = 1 4 δ B K and β G + 2γ G = β B K ⇒ γ G = δ B K = 0 (113) 
This confirms that both lattices are indeed mathematically and physically different. In the following, we will focus on the 2D lattice with central forces (particular case of Born-Kármán's lattice with δ B K = 0, or of that Gazis et al. with γ G = 0):

2α (1 -c 1 ) + 2β (1 -c 1 c 2 ) -ρa 2 hω 2 2β s 1 s 2 2β s 1 s 2 2α (1 -c 2 ) + 2β (1 -c 1 c 2 ) -ρa 2 hω 2 = 0 (114)
Equation (114) was found by Blackman [START_REF] Blackman | Contributions to the theory of the specific heat of crystals. II. On the vibrational spectrum of cubical lattices and its application to the specific heat of crystals[END_REF], Montroll [START_REF] Montroll | Dynamics of a square lattice[END_REF] or De Launay [START_REF] De Launay | Solid State Physics[END_REF] for 2D lattices with central force (edge and diagonal) interactions among first and second neighbors. It is further necessary that α = 2β, for asymptotical convergence to an isotropic medium (as seen above):

2α (1 -c 1 ) + α (1 -c 1 c 2 ) -ρa 2 hω 2 αs 1 s 2 αs 1 s 2 2α (1 -c 2 ) + α (1 -c 1 c 2 ) -ρa 2 hω 2 = 0 (115)
Equation ( 115) covers the case υ = 1/4 in plane strain (λ = μ), and υ = 1/3 in plane stress, and can be rewritten in dimensionless form: Equation ( 116) is a quartic equation of the frequency, which in full reads:

2 (1 -c 1 ) + 1 -c 1 c 2 -2 s 1 s 2 s 1 s 2 2 (1 -c 2 ) + 1 -c 1 c 2 -2 = 0 with 2 = ρa 2 h α ω 2 (116) 
4 -2 (6 -2c 1 -2c 2 -2c 1 c 2 ) + 9 -6c 1 -6c 2 -2c 1 c 2 + 2c 2 1 c 2 + 2c 1 c 2 2 + c 2 1 c 2 2 -s 2 1 s 2 2 = 0 (117)
and admits two branches of solutions 2

-= 2 -c 1 -c 2 and 2 + = 4 -c 1 -c 2 -2c 1 c 2 (118) 
as obtained by Montroll [START_REF] Montroll | Dynamics of a square lattice[END_REF]. In the particular case of propagation along one direction, i.e., k y = 0 (which is equivalent to c 2 = 1 and s 2 = 0), the two frequency solutions are written as:

2 -= 1 -c 1 and 2 + = 3 (1 -c 1 ) (119) 
These two branches, associated with shear (or transverse) and the compression (or longitudinal) waves, respectively, are shown in Fig. 27. The long wave approximation yields:

-= √ 2 2 k x a and + = √ 6 2 k x a (120) 
which is also equivalent, assuming plane strain with central interactions, i.e., α = 2μh = 2λh:

ω -= k x c shear and ω + = k x c long with c shear = μ ρ and c long = λ + 2μ ρ = 3μ ρ ( 121 
)
The response is very similar to that of 1D Lagrange's lattice, with a wave dispersion phenomenon highlighted by two branches associated with the shear (or transverse) wave and the compression (or longitudinal) wave respectively. Equation (118) is the wave dispersion equation of this square lattice with central interactions, and in the long wave limit provides:

2 -= 1 2 (k x a) 2 + k y a 2 + • • • and 2 + = 3 2 (k x a) 2 + k y a 2 + • • • (122) 
A 3D representation of the dimensionless frequency versus the dimensionless wave numbers in both directions, k x a and k y a , is a conic surface that confirms the lattice isotropic response in the low-frequency regime for both shear and compression waves, see Fig. 28, and agrees with the asymptotic expansion Eq. (122). In other words, Born-Kármán square lattice with central forces (or cubic lattice in 3D) has isotropic behavior at low frequencies. Figures 29 and30 show that this isotropy is lost in the high-frequency regime, where the special symmetry of the lattice is revealed. This phenomenon is evidenced in Blackman [START_REF] Blackman | Contributions to the theory of the specific heat of crystals. II. On the vibrational spectrum of cubical lattices and its application to the specific heat of crystals[END_REF], Montroll [START_REF] Montroll | Dynamics of a square lattice[END_REF], De Launay [START_REF] De Launay | Solid State Physics[END_REF] for 2D square lattices with central forces (and more recently numerically highlighted in ). Indeed, there is a strong coupling between lattice anisotropy (preserving lattice symmetry) and nonlocal effects, far from the isotropic continuous long wave approximation.

An efficient approximation of the nonlocality causing the dispersion phenomena at the lattice scale can rely on the 3D nonlocal (differential) isotropic constitutive law by Eringen [START_REF] Eringen | On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[END_REF]:

σ -l 2 c σ = λ trε 1 + 2με (123) 
where l c being as in the uniaxial law Eq. ( 101), which Eq. ( 123) generalizes. We now investigate the capability of this 3D (or 2D) nonlocal law to capture the dispersion in the Born and von Kármán square lattice with central forces in plane strain. In view of Eq. ( 123) and balance, including inertia, Navier's nonlocal elastodynamic equations are:

⎧ ⎨ ⎩ (λ + 2μ) ∂ 2 u ∂ x 2 + (λ + μ) ∂ 2 v ∂ x∂ y + μ ∂ 2 u ∂ y 2 = ρ 1 -l 2 c ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 ∂ 2 u ∂t 2 (λ + 2μ) ∂ 2 v ∂ y 2 + (λ + μ) ∂ 2 u ∂ x∂ y + μ ∂ 2 v ∂ x 2 = ρ 1 -l 2 c ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 ∂ 2 v ∂t 2 (124) 
The wave dispersion equation of this nonlocal elastic continuum can be obtained from the following harmonic wave continuous displacement fields:

u (x, y, t) = U exp J ω t -k x x -k y y and v (x, y, t) = V exp J ω t -k x x -k y y (125)
In view of Eqs. ( 125) and (124), the wave dispersion equation of the isotropic nonlocal model (in the sense of Eringen [START_REF] Eringen | On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[END_REF]) is given by

(λ + 2μ) k 2 x + μk 2 y -ρω 2 -ρl 2 c k 2 x + k 2 y ω 2 (λ + μ) k x k y (λ + μ) k x k y (λ + 2μ) k 2 y + μk 2 x -ρω 2 -ρl 2 c k 2 x + k 2 y ω 2 = 0
(126) The frequency equation of both branches can be extracted from the determinant Eq. (126):

ρω 2 = k 2 x + k 2 y 1 + l 2 c k 2 x + k 2 y λ + 3μ ± (λ + μ) 2 (127) 
which may be written equivalently as Figures 31 and32 show the capability of the isotropic nonlocal model to predict the anisotropic lattice response, both for low-and high-frequency regimes. The length scale of the nonlocal model, depending on the lattice spacing, is calibrated as for 1D Lagrange's according to Eq. (108) (as also used for Fig. 27). Both local and nonlocal elastic models are isotropic. The nonlocal isotropic elastic model gives satisfactory results when compared to the cubic lattice, up to the end of the Brillouin zone, but is, as expected, unable to capture the anisotropic dispersive phenomena of the 2D lattice at high frequencies. There is definitely a need to develop anisotropic nonlocal elastic models in the high-frequency regime, even with this very elementary cubic cell. It is also possible to consider more lattice interactions in order to reduce this anisotropic effect at high frequencies, as considered for instance by Askes and Metrikine [124]: they studied an extended hexagonal lattice with additional interactions in order to make the discrete model isotropic in a second-order approximation, with hexagonal lattices asymptotically converging to the local "rari-constant" theory (υ = 1/4 at the continuous limit).

ω -a c shear = (k x a) 2 + k y a

Conclusions

The history of searching a bridge between discrete and continuum elasticity starts in the eighteenth century with the pioneering works of Lagrange, who first gave the mixed differential-difference equation of wave propagation in a discrete 1D lattice and its continuum limit. During the nineteenth century, scholars investigated the possibility to build 3D elasticity from molecular assumptions, which equals to connect discrete and continuum elastic models. Born and von Kármán [START_REF] Born | On fluctuations in spatial grids[END_REF] generalized Lagrange's mixed differential-difference equation to 3D elasticity, also establishing the link between a 3D monatomic cubic lattice and its continuum limit, governed by Navier's elastodynamics partial differential equation. The connection between discrete and continuum is , the macroscopic Poisson's ratio appears to be restricted to 1/4 for 3D elasticity, and 1/3 for plane stress. Born and von Kármán [START_REF] Born | On fluctuations in spatial grids[END_REF] introduced additional non-central (shear) interactions to capture general elastic properties at the macroscopic scale, including general values of Poisson's ratio. However, this was shown to be inconsistent, in the sense that the potential energy associated to these additional shear forces is not invariant under superposed rigid body rotations, confusing them with shear modes. Hrennikoff [START_REF] Hrennikoff | Plane stress and bending of plates by method of articulated framework[END_REF] gave a first consistent answer to this problem, generalizing Born-Kármán cubic lattice with central forces by adding auxiliary springs inside the cell: in this sense, his model is a meta-lattice, in that discrete cells exhibit a microstructure. Hrennikoff's lattice is energetically consistent, exhibiting only central interactions also among the auxiliary bars inside each cell. We provided the mixed differential-difference equation of Hrennikoff's truss (absent in Hrennikoff [START_REF] Hrennikoff | Plane stress and bending of plates by method of articulated framework[END_REF][START_REF] Hrennikoff | Solutions of problems of elasticity by the framework method[END_REF][START_REF] Hrennikoff | Framework method and its technique for solving plane stress problems[END_REF]) and showed that it converges to Navier's partial differential equations; it coincides with that of Born-Kármán's cubic lattice. Hrennikoff's model is valid for large values of macroscopic Poisson's ratio (υ ≥ 1/3 for plane stress) in order to preserve the definite positiveness of the associated discrete energy.

The resolution of this problematic passage from discrete to continuum elasticity problem is probably due to Gazis et al. [START_REF] Gazis | Surface elastic waves in cubic crystals[END_REF] who generalized Born-Kármán cubic lattice with central forces by adding rotation interactions (as suggested earlier by Voigt and Poincaré). Indeed, Gazis and Wallis [START_REF] Gazis | Conditions for rotational invariance of a harmonic lattice[END_REF] have shown the necessity to build a potential energy of the lattice which is invariant under rigid motion, by formulating this energy as a function of the discrete invariant quantities such as distance between atoms and angles formed by triples of atoms. The model of Gazis et al. [START_REF] Gazis | Surface elastic waves in cubic crystals[END_REF] converges toward Navier's partial differential equations in the continuum limit, and is valid for small values of Poisson's ratio (υ ≤ 1/3 for plane stress, or υ ≤ 1/4 for 3D elasticity) in order to preserve the definite positiveness of the associated discrete energy: thus, it can be viewed as complementary to Hrennikoff's truss valid for large values of Poisson's ratio. This would mean that the gap between molecular elasticity and continuum elasticity has only been closed in the 60's of the previous century, two hundred years after the initial work of Lagrange [START_REF] Lagrange | Recherches sur la nature et la propagation du son[END_REF]. However, Gazis et al. [START_REF] Gazis | Surface elastic waves in cubic crystals[END_REF] did not explore the capability of nonlocal continua to capture the full wave dispersive properties of the cubic lattice. Eringen [START_REF] Eringen | On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[END_REF] satisfactory solved this question for 1D Lagrange's lattice by fitting its frequency dispersive response with that of a one-parameter nonlocal continuum. Eringen [START_REF] Eringen | On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[END_REF][START_REF] Eringen | Nonlocal Continuum Field Theories[END_REF]118] also explored the possibility to capture the 3D lattice response with an isotropic nonlocal continuous medium. We show in this paper that the isotropic nature of the cubic lattice is lost in the high frequency regime, which highlights the need of an anisotropic nonlocal medium (consistent with the symmetry properties of the considered lattice) in this regime. The full exploration of the lattice properties with some enriched nonlocal continuous media still merits some sophisticated research with the development of anisotropic nonlocal modeling (which can be eventually explored within fractional nonlocal elasticity-see [125]). The analysis presented herein is restricted to connecting linear lattices and continuum linear elasticity. The connection between lattices and continuum nonlinear elasticity, especially in terms of wave propagation, was not treated herein, and would deserve a complete analysis, basing on the pioneer works of Fermi et al. [START_REF] Fermi | Studies of nonlinear problems[END_REF] devoted to 1D nonlinear Lagrange lattices.

Appendix A: Equivalence of the lattice-based gradient elasticity model and Mindlin equation for Gazis et al. model

The continualized lattice-based gradient elasticity equations derived for Gazis et al. lattice [START_REF] Gazis | Surface elastic waves in cubic crystals[END_REF] are given by Eq. ( 58) which is here reformulated: The gradient elasticity lattice-based equations are rewritten using Lamé parameters: It is worth mentioning that the gradient elasticity lattice-based equation cannot be cast in the linear isotropic strain gradient form which depends on 7 parameters, two classical Lamé parameters and 5 additional nonclassical material parameters of the strain gradient form [126-128]. In fact, the generalized wave equation of the linear isotropic strain gradient medium can be shown to depend on two macroscopic additional length scales that depend on the 5 additional parameters [126,127,129,130]:

α ∂ 2 u ∂ x 2 + a 2 12 
∂ 4 u ∂ x 4 + β 2 4 ∂ 2 u ∂ x 2 + 2 ∂ 2 u ∂ y 2 + a 2 ∂ 4 u ∂ x 2 ∂
(λ + 2μ) ∂ 2 u ∂ x 2 + (λ + μ) ∂ 2 v ∂
1 -l 2 1 μ u + 1 -l 2 2 (λ + μ) ∂ 2 x u + ∂ x ∂ y v + ∂ x ∂ z w = ρ ü with = ∂ 2 x + ∂ 2 y + ∂ 2 z (A.7)
where l 1 and l 2 are the two additional length scales that depend on the 5 additional length scales of the linear isotropic strain gradient medium. Equation (A.7) can be equivalently rewritten using Mindlin's notations [126]:

(λ + 2μ) 1 -l2 1 ∂ 2 x u + ∂ x ∂ y v + ∂ x ∂ z w -μ 1 -l2 2 ∂ x ∂ y v + ∂ x ∂ z w -∂ 2 y u -∂ 2 z u = ρ ü with l2 1 = l 2 1 μ+l 2 2 (λ+μ) λ+2μ l2 2 = l 2 1 (A.8)
Equation (A.7) can be also rewritten, with the full expression of the differential operators:

(λ + 2μ) ∂ 2 x u + μ ∂ 2 y u + ∂ 2 z u + (λ + μ) ∂ x ∂ y v + ∂ x ∂ z w -l 2 1 μ + l 2 2 (λ + μ) ∂ 4 x u -2l 2 1 μ + l 2 2 (λ + μ) ∂ 2 x ∂ 2 y u + ∂ 2 x ∂ 2 z u -l 2 1 μ ∂ 4 y u + ∂ 4 z u -2l 2 1 μ∂ 2 y ∂ 2 z u -l 2 2 (λ + μ) ∂ x ∂ 3 y v + ∂ y ∂ 3 x v + ∂ x ∂ 3 z w + ∂ z ∂ 3 x w + ∂ x ∂ 2 y ∂ z w + ∂ x ∂ y ∂ 2 z v = ρ ü (A.9)
It is not possible to express the lattice-based gradient elasticity model Eq. (A.6) with the isotropic gradient elasticity equation Eq. (A.9). The zero-th order continuous medium asymptotically derived from Gazis et al. lattice can be enforced to be linear isotropic, but the second-order gradient elasticity medium cannot be isotropic (cubic gradient elasticity medium, as already characterized by [START_REF] Mindlin | Theories of elastic continua and crystal lattice theories[END_REF] for strain gradient elasticity models of the crystal class m3m). This also explains the loss of isotropy in the high frequency regime, even if the cubic lattice may behave isotropically in the low frequency regime.
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  for several repetitions of McHenry cells. The boundary conditions both in terms of border springs and given loads must be carefully set. Whatever the number of cells, N. Challamel et al.
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 16 Fig.16Three-dimensional[START_REF] Gazis | Surface elastic waves in cubic crystals[END_REF] lattice with longitudinal and vertical elastic springs (of stiffness α), diagonal elastic springs (of stiffness β), and rotational springs (of stiffness γ )
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 18 Fig.[START_REF] Born | Dynamical theory of crystal lattices[END_REF] Gazis et al.[START_REF] Gazis | Surface elastic waves in cubic crystals[END_REF] lattice with specific border springs under uniform compression
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 19 Fig. 19 Equivalent angular interactions of Born-Kármán lattice model and Gazis et al. [67] lattice

  [START_REF] Zienkiewicz | The Finite Element Method[END_REF]100]. As shown in Figs.[START_REF] Askar | Lattice Dynamical Foundations of Continuum Theories: Elasticity, Piezoelectricity, Viscoelasticity, Plasticity[END_REF] and 21, Hrennikoff's lattice consists of edge bars-springs of stiffness α, and diagonal bars-springs of stiffness β joined at their quarter span by pinned auxiliary bars-springs of stiffness κ. All bars being hinged, Hrennikoff's lattice is a truss with central forces. The diagonal bar can be decomposed into three elements, one central of length a √ 2/2, and two complementary ones of length a √ 2/4. The equivalent
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 21 Fig. 21 Two-dimensional Hrennikoff truss [59] with specific border springs under uniform compression; Computation for three trusses 1 × 1, 2 × 2 and 3 × 3; u(n, n) = -vv(n, n) for various values of Poisson's ratio v; Hrennikoff truss in plane stress
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 22 Fig. 22 Two-dimensional Zhang et al. [76] Hencky bar grid model with longitudinal and vertical elastic springs (of stiffness α ), secondary axial springs (of stiffness β ), and rotational springs (of stiffness γ )
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 26 Fig. 26 Wave dispersive properties of Lagrange lattice-linear approximation of local elasticity and nonlocal continuous approximation of Eringen's model
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 27 Fig. 27 Wave dispersive properties of two-dimensional Born-Karman lattice with pure central interactions-linear approximation of local elasticity and nonlocal continuous approximation of Eringen's model
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 28 Fig. 28 ∈ [0; 1]; conic surface for low frequency range of both shear (orange surface) and compression (blue surface) waves; isotropic behavior for low frequency range

Fig. 29 ∈

 29 Fig. 29 ∈ [0; 2]; distorsion of the shear wave surface; loose of the isotropic nature of the frequency response for high-range frequencies

Fig. 30 ∈

 30 Fig. 30 ∈ [0; 3]; strong distorsion of both the shear wave and the compression wave surfaces; loose of the isotropic nature of the frequency response for high-range frequencies (cubic symmetry)

2 1 + e 2 0 2 1

 222 (k x a) 2 + k y a 2 and ω + a c long = (k x a) 2 + k y a + e 2 0 (k x a) 2 + k y a 2 with c shear = μ ρ and c long = λ + 2μ ρ (128)

Fig. 31 ∈(k x a) 2 + k y a 2 1 + e 2 0

 31222 Fig. 31 ∈ [0; 1.5]; shear wave dispersive surface; comparison between the local (isotropic) (blue right circular cone), the lattice (orange surface with cubic symmetry) and the isotropic nonlocal model (green surface of revolution)

Fig. 32 ∈

 32 Fig. 32 ∈ [0; 2.5]; compression wave dispersive surface; comparison between the local (isotropic) (blue right circular cone), the lattice (orange surface with cubic symmetry) and the isotropic nonlocal model (green surface of revolution)

+ a 2 6 (c 12 +

 612 c 44 ) ∂ 4 v ∂ x∂ y 3 + ∂ 4 v ∂ x 3 ∂ y + ∂ 4 w ∂ x∂z 3 + ∂ 4 w ∂ x 3 ∂z = ρ ü (A.4)This partial differential lattice-based equation exactly coincides with Eq. (10) page 315, of Mindlin[START_REF] Mindlin | Theories of elastic continua and crystal lattice theories[END_REF].In case of asymptotic linear elastic isotropy, the micro elastic parameters are related to the macro elastic parameters for Gazis et al. lattice by:⎧ ⎨ ⎩ α = a (c 11 -2c 12 ) = (2μ -λ) a β = ac 12 = λa γ = a 4 (c 44c 12 ) = μ-λ

  

  

  

  y 2 + ∂ 2 u ∂z 2 + a 2 ∂ 4 u ∂ x 2 ∂z 2 + Equation (A.2) can be compared to Navier's partial differential equation Eq. (13) with cubic symmetry, for the zero-th order medium.Injecting the stiffness calibration Eq. (A.3) into the second-order expansion Eq. (A.2) of Gazis et al. lattice equations gives the gradient elasticity cubic model:

														a 2 3	∂ 4 u ∂ x 4 +	a 2 6	∂ 4 u ∂ y 4 + 2	a 2 6	∂ 4 u ∂z 4
	+ 4 γ	∂ 2 u ∂ y 2 +		a 2 12	∂ 4 u ∂ y 4 +	∂ 2 u ∂z 2 +	a 2 12	∂ 4 u ∂z 4			
	+ γ +	β 2	4	∂ 2 v ∂ x∂ y	+	2a 2 3	∂ 4 v ∂ x∂ y 3 +	2a 2 3	∂ 4 v ∂ x 3 ∂ y	+ 4	∂ 2 w ∂ x∂z	+	2a 2 3	∂ 4 w ∂ x∂z 3 +	2a 2 3	∂ 4 w ∂ x 3 ∂z	= ρa	ü
																			(A.1)
	Equation (A.1) can be reformulated in two terms with the zero-th order and the second-order strain gradient
	expression:																	
	(α + 2β)	∂ 2 u ∂ x 2 + (2β + 4γ )	∂ 2 v ∂ x∂ y	+	∂ 2 w ∂ x∂z	+ (β + 4γ )	∂ 2 u ∂ y 2 +	∂ 2 u ∂z 2
		+	a 2 12			(α + 2β)	∂ 4 u ∂ x 4 + (β + 4γ )		∂ 4 u ∂ y 4 +	∂ 4 u ∂z 4 + 6β	∂ 4 u ∂ x 2 ∂ y 2 +	∂ 4 u ∂ x 2 ∂z 2
		+	a 2 3	(β + 2γ )		∂ 4 v ∂ x∂ y 3 +	∂ 4 v ∂ x 3 ∂ y	+	∂ 4 w ∂ x∂z 3 +	∂ 4 w ∂ x 3 ∂z	= ρa ü	(A.2)
													⎧ ⎨	α = a (c 11 -2c 12 )
													⎩	β = ac 12 4 (c 44 -c 12 ) γ = a	(A.3)
			c 11	∂ 2 u ∂ x 2 + (c 12 + c 44 )	∂ 2 v ∂ x∂ y	+	∂ 2 w ∂ x∂z	+ c 44	∂ 2 u ∂ y 2 +	∂ 2 u ∂z 2
			+	a 2 12	c 11	∂ 4 u ∂ x 4 + c 44	∂ 4 u ∂ y 4 +	∂ 4 u ∂z 4 + 6 c 12	∂ 4 u ∂ x 2 ∂ y 2 +	∂ 4 u ∂ x 2 ∂z 2

where (α, β, γ ) are positive stiffness parameters (see Fig. 17). Each particle has mass M = ρa 2 h, where h is the depth of the plane element and ρ is its material volumetric density. Equation [START_REF] Keating | Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure[END_REF] are obtained equivalently starting from the following potential energy:

Gazis et al. [START_REF] Gazis | Surface elastic waves in cubic crystals[END_REF] detail the last contribution, related to the angular stiffness γ , which can be expressed in terms of the rotation stiffness C S via the scaling C S = γ a 2 . The energy in Eq. ( 65) is objective, as can be seen by operating translation and rotation ω of one cell around a point P i, j :

The energy of one cell is equal to:

Discrete and continuous models of linear elasticity Fig. [START_REF] Maugin | Solitons in elastic solids (1938-2010[END_REF] Hencky bar chain: a lattice beam with concentrated bending rigidity elastic rotational springs having stiffness equal to the flexural rigidity divided by the segment length (Fig. 24).

The idea of approximating a continuous curvature by a discrete one defined by the relative angle formed by two adjacent segments was already formulated by Piola in 1825 [105]. The Hencky-Bar-Chain system (or lattice beam) asymptotically converges toward a continuous Euler-Bernoulli beam when the number of segments is sufficiently large. As for axial (Lagrange-type) lattices, there is also a mathematical analogy between the difference equations of the lattice beam problem, and the finite difference formulation of the continuous Euler-Bernoulli beams (see Wang et al. [START_REF] Wang | Hencky-Bar-Chain/Net for Structural Analysis[END_REF] for the validity of this equivalence for various boundary conditions).

For both problems (strings, rods or beams), discrete elasticity mechanical problems may be built from simple repetitive structural elements, which asymptotically converge toward continuous elasticity. The difference equations of the discrete elasticity problem coincide with the finite difference formulation of the continuous one. Generalized Hencky beams were built by Kocsis and Challamel [106] to account for the possible axial and shear coupling phenomena in the discrete beam model. Hencky's discrete beam was also extended to discrete plate mechanics by Wu [START_REF] Wu | A discrete element method for linear and nonlinear stress and bifurcation problems of elastic structures[END_REF]; Wifi et al. [START_REF] Wifi | A simple discrete element mechanical model for the stability analysis of elastic structures[END_REF]; El Naschie [START_REF] El Naschie | Stress, Stability and Chaos in Structural Engineering: An Energy Approach[END_REF] and Wang et al. [START_REF] Wang | Hencky-Bar-Chain/Net for Structural Analysis[END_REF] (Fig. 25). The so-called Hencky-plate type model was shown again to be equivalent to the spatial finite difference formulation of the continuous Kirchhoff-Love plate model [START_REF] Wang | Hencky-Bar-Chain/Net for Structural Analysis[END_REF]. Hencky-type models may be also used to develop microstructures with interesting macroscopic properties of 2D or 3D elastic media. The so-called Hencky-type model of pantographic sheet considered by Dell'Isola et al.

[107] is a kind of generalization of Gazis et al. [START_REF] Gazis | Surface elastic waves in cubic crystals[END_REF] model [START_REF] Gazis | Surface elastic waves in cubic crystals[END_REF] (with central interaction with the first neighbors and angular interactions) plus additional rotational springs at the connection of each node. Discrete Hencky-type and continuous elasticity may be also related asymptotically, in presence of conservative and non-conservative loading [108].

Discrete, local and nonlocal elasticity

We show here the limits of the so-called local asymptotic continuous models in capturing wave dispersion phenomena of the lattice systems, both for 1D and multi-dimensional lattices. Starting from the elementary