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Abstract

In this work, we propose an a posteriori goal-oriented error estimator for the harmonic
A-ϕ formulation arising in the modeling of eddy current problems, approximated by non-
conforming finite element methods. It is based on the resolution of an adjoint problem
associated with the initial one. For each of these two problems, a guaranteed equilibrated
estimator is developed using some flux reconstructions. These fluxes also allow to obtain a
goal-oriented error estimator that is fully computable and can be split in a principal part
and a remainder one. Our theoretical results are illustrated by numerical experiments.

Keywords : Maxwell equations, potential formulations, goal-oriented a posteriori estimators,
finite element method.

1 Introduction

The finite element method is widely used to solve a large variety of electromagnetic problems,
and many papers have been devoted to this topic for the last decades. More particularly, in the
context of low-frequency electromagnetics allowing a quasi-static approximation, some specific
models are usually introduced. Among them, the so-called A-ϕ formulation consists in comput-
ing a magnetic vector potential A as well as an electric scalar potential ϕ, allowing to obtain
approximated values of the magnetic flux density B as well as of the electric field E arising in
the Maxwell equations. From there, an important question to address is to ensure the good
quality of the numerical solutions obtained. Consequently, some a posteriori error estimators
have been developed in order to provide a global upper bound of the numerical error, as well as
some local lower bounds, very useful to drive a mesh-refinement strategy. We refer to [11, 26, 5]
for residual estimators and to [12, 9] for equilibrated ones, allowing in this second case to obtain
a sharp upper bound of the error without any unknown multiplicative constant. All these es-
timators have been tested in several configurations, from academic to more industrial ones (see
e.g. [27, 28, 31]). In all the papers quoted above, the error to control is defined globally, and
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corresponds to the value of a global energy, directly linked to the bilinear form arising in the
variational formulation of the model.

Nevertheless, in many applications, engineers are interested in some local physical quantities,
that are called quantities of interest (QOI). To stay in the field of electromagnetic problems, let
us mention for example the computation of the magnetic flux through a coil [19] or the magnetic
flux density at a given point of an electromagnetic device [16, 20]. Some specific estimators,
called "goal-oriented estimators", have consequently to be developed in order to derive an upper
bound for this kind of errors. In the case of magnetostatic problems, we refer e.g. to [29] where
a dual formulation of the model is used.

In this paper, we derive a goal-oriented a posteriori estimator for the harmonic A-ϕ formu-
lation, to control an error defined by a linear form operating on the magnetic vector potential
A. Using some flux reconstructions of the direct and adjoint problems, the upper bound is ob-
tained without any multiplicative constant. Moreover, this fully computable estimator can be
split in a principal part and a remainder one, the last one being in some cases of higher order
and can be most of the time disgarded. This result can be seen as an extension of [10], which is
devoted to classical diffusion problems. Moreover, this new goal-oriented estimator is based on
some equilibrated error estimators developed for the direct and the adjoint problems. They are
based on equilibrated flux reconstructions, and have already been derived in a previous work for
conforming finite element approximations [9]. Let us note that the present work also allows to
generalize them to the case of non-conforming approximations.

The paper is organized as follows. Section 2 gives the continuous formulation of the eddy-
current problem in the A-ϕ formulation. Moreover, some regularity results are derived on the
solution (see Lemma 2.2 to 2.4), which have their own interest but will be useful in the inter-
pretation of our numerical results. Section 3 provides a guaranteed equilibrated error estimator
for general approximations (conforming or not) of the problem, leading to Theorem 3.2 ensuring
the guaranteed reliability of the estimation. Then, Section 4 details the goal-oriented functional
as well as the associated adjoint problem and its discrete approximation. In Section 5, the error
representation of the error is given in Theorem 5.1, and Theorem 5.2 allows to prove that the
remainder term can be controlled by the product of the equilibrated estimators devoted to the
direct and adjoint problems. Finally, the obtained theoretical results are illustrated by some
numerical experiments in Section 6.

2 The continuous formulation

Let us consider a bounded simply connected polyhedral domain D ⊂ R3 with a Lipschitz and
connected boundary Γ = ∂D. D is composed of two subdomains: the conducting domain Dc and
the non-conducting domain Dnc = D \ D̄c. Let us remark that Dc is supposed to be bounded,
simply connected with a Lipschitz connected boundary ∂Dc and strictly included into D, in
the sense that Dc ⊂ D. The source domain Ds where the divergence free current density Js
is imposed is usually included into Dnc, but our mathematical analysis does not require this
assumption. The eddy current problem is given by:

Find the electric field E and the magnetic field H solution of

curlE = −jωB in D, (1a)
curlH = Js + Je in D, (1b)
divB = 0 in D, (1c)
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where j2 = −1 is the unit imaginary number, ω is the pulsation that is supposed to be scalar,
namely a positive real number, and the magnetic flux B and the eddy current Je are given by
the constitutive laws

B = µH in D and Je = σE in Dc, (2)

where µ denotes the magnetic permeability and σ the electric conductivity. Here we suppose
that µ, σ ∈ L∞(D) and that there exists positive real numbers µ0, σ0 such that

µ ≥ µ0 a.e. in D
σ ≥ σ0 a.e. in Dc,

σ = 0 a.e. in Dnc.

Note that the divergence free property of Js, the fact that ∂Dc ⊂ D, and the second equation
of (1) implies that

divJe = 0 in Dc, (3)

as well as
Je · n = 0 on ∂Dc, (4)

where n stands for the unit outward normal to D or Dc depending on the context.
System (1)-(2) is completed with the following boundary conditions on Γ

B · n = 0 on Γ. (5)

Before stating the A-ϕ formulation of this problem, let us introduce some notations used
throughout the paper. On a given domain D, the L2(D)-norm is denoted by || · ||D, and the
corresponding L2(D)-inner product by (·, ·)D. In the case of D = D, the index D is dropped.
H1

0 (D) is the subspace of H1(D) with vanishing trace on ∂D and

H0(curl,D) =
{
F ∈ L2(D)3 : curlF ∈ L2(D)3,F× n = 0 on ∂D

}
.

Finally, in order to ensure later the uniqueness of the fields, let us introduce the gauge spaces:

X̃(D) =
{
F ∈ H0(curl,D) : (F,∇ξ)D = 0, ∀ξ ∈ H1

0 (D)
}
,

H̃1(D) =
{
f ∈ H1(D) : (f, 1)D = 0

}
.

The harmonic A-ϕ formulation is based on the introduction of a magnetic vector potential
A in D and an electric scalar potential ϕ in Dc such that:

B = curlA in D and E = −jωA−∇ϕ in Dc. (7)

From system (1), the harmonic A-ϕ formulation reads:

curl
(
µ−1curlA

)
+ σ

(
jωA +∇ϕ

)
= Js in D, (8a)

div(σ(jωA +∇ϕ)) = 0 in Dc, (8b)

with the boundary conditions, derived from (4)-(5), given by

A× n = 0 on Γ and σ(jωA +∇ϕ) · n = 0 on ∂Dc. (9)

As mentioned in [11], the great interest of the formulation (8)-(9) lies in its effectiveness in
both domains Dc and Dnc. The Coulomb gauge on A, namely divA = 0 in D, and the zero
mean of the potential ϕ in Dc are imposed to ensure the uniqueness of these potentials (see [11],
as well as [25, 30] for examples of practical implementations). Since ϕ does not make sense in
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Dnc, we fix an arbitrary extension of ϕ in the whole domain D. This choice does not impact the
problem since σ ≡ 0 in Dnc. Let us note that if Dc = ∅, then the formulation (8)-(9) remains
valid and corresponds to the classical magnetic vector potential A formulation for magnetostatic
problems (where ϕ does not exist any more). If Dnc = ∅ (or equivalently D = Dc), then the
formulation (8)-(9) remains also valid. In that case, no gauge condition is needed, if the so-called
A? formulation is used, where the sole unknown is then A∗ = jωA +∇ϕ.

The corresponding weak formulation is given by:

Find (A, ϕ) ∈ X̃(D)× H̃1(Dc) such that

B((A, ϕ), (A′, ϕ′)) = (Js,A
′), ∀(A′, ϕ′) ∈ X̃(D)× H̃1(Dc), (10)

where

B((A, ϕ), (A′, ϕ′)) =
(
µ−1curlA, curlA′

)
D

+jω−1
(
σ(jωA +∇ϕ), (jωA′ +∇ϕ′)

)
Dc
, ∀(A, ϕ), (A′, ϕ′) ∈ X̃(D)× H̃1(Dc).

Lemma 2.1 of [11] ensures the existence and uniqueness of the weak solution (A, ϕ) of this
problem since it was shown there that

‖(A′, ϕ′)‖B := |B((A′, ϕ′), (A′, ϕ′))|
1
2 , ∀(A′, ϕ′) ∈ X̃(D)× H̃1(Dc),

is a norm on X̃(D)× H̃1(Dc) equivalent to the natural one

‖(A, ϕ)‖V =
(
‖A′‖2D + ‖µ−1/2curlA′‖2D + |ϕ′|21,Dc

) 1
2
,∀(A′, ϕ′) ∈ X̃(D)× H̃1(Dc).

Recall that from the definition of B, we have

|B((A′, ϕ′), (A′, ϕ′))|
1
2 =

(∥∥∥µ−1/2curlA′
∥∥∥2

+
∥∥∥ω−1/2 σ1/2(jωA′ +∇ϕ′)

∥∥∥2

Dc

)1/2

,

for all (A′, ϕ′) ∈ X̃(D)× H̃1(Dc).

As Js is divergence free, it was further shown in Lemma 2.3 of [11] that (10) remains valid
for non divergence free fields A′, namely

B((A, ϕ), (A′, ϕ′)) = (Js,A
′), ∀(A′, ϕ′) ∈ H0(curl, D)× H̃1(Dc). (11)

As usual, the convergence of numerical schemes are related to regularity results of the solution
(A, ϕ) of (10). But up to now, such results are not available in the literature. Let us then give
some of them in some particular cases. Before stating them, we introduce the following subspace
of H0(curl, D) (see [1, 6]) defined that

XN (D) = {A′ ∈ H0(curl, D) : divA′ ∈ L2(D)},

that is a Hilbert space with its natural inner product. With this definition, we can formulate the
following results.

Lemma 2.1 If (A, ϕ) ∈ X̃(D)× H̃1(Dc) is solution of (10), then
1. A belongs to XN (D) and is solution of the (regularized) Maxwell problem∫

D
(µ−1curlA · curlA′ + divA divA′) =

∫
D
f ·A′, ∀A′ ∈ XN (D). (12)
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where for any extension ϕ̃ ∈ H1(D) of ϕ to D,

f = Js + σ(jωA +∇ϕ̃) (13)

belongs to L2(D)3 and is divergence free,
2. ϕ belongs to H̃1(Dc) and is solution of the non-homogeneous Neumann problem∫

Dc

σ∇ϕ · ∇ϕ̄′ = −j ω
∫
Dc

σA · ∇ϕ̄′,∀ϕ′ ∈ H1(Dc). (14)

Proof. The second property is a direct consequence of (10) by taking A′ = 0 (noticing that the
obtained identity remains valid for any ϕ′ ∈ H1(Dc)). For the first property, we notice that (11)
with ϕ′ = 0 yields∫

D
µ−1curlA · curlA′ −

∫
Dc

σ(jωA +∇ϕ) ·A′ = (Js,A
′), ∀A′ ∈ H0(curl, D).

As A is divergence free, it clearly belongs to XN (D), and as XN (D) is a subset of H0(curl, D),
the previous identity directly implies∫

D
(µ−1curlA · curlA′ + divA divA′)−

∫
Dc

σ(jωA +∇ϕ) ·A′ = (Js,A
′),∀A′ ∈ XN (D).

Since σ = 0 on D \Dc, the second term of this left-hand side can be written as∫
Dc

σ(jωA +∇ϕ) ·A′ =
∫
D
σ(jωA +∇ϕ̃) ·A′.

These two identity directly lead to (12). The divergence free property of f comes from the
divergence free of Js and from (14).

According to this Lemma, the regularity of A is related to the regularity of the Maxwell
problem (12), while the regularity of ϕ is related to the regularity of the Neumann problem (14).
Let us start with the regularity of A.

Lemma 2.2 Let (A, ϕ) ∈ X̃(D)× H̃1(Dc) be the unique solution of (10) with a divergence free
field Js ∈ L2(D). Then the next results hold:
1. If D has a C1,1 boundary and µ ∈ C0,1(D), then A ∈ H2(D)3.
2. If D is a convex polyhedron and µ = 1, then A ∈ H1+ε(D)3, for some ε ∈ (0, 1] that depends
on the interior angles along the edges of D and of the corner singularities of the Neumann problem
in D.
3. If D is a parallelepiped and µ = 1, then A ∈ H2(D)3.

Proof. Point 1 follows from the fact that the system associated with (12) is an elliptic system
of order 2 (see [8, §4.5]), hence the H2 regularity of A follows from a standard shift theorem as
f is in L2(D)3.

Points 2 and 3 follow from [6, §4.4.2 (b) and (c)].
For µ piecewise smooth and/or D a non convex polyhedron, some regularity results for (12)

are also available, see for instance [7].
Let us go on with the regularity of ϕ.

Lemma 2.3 Let (A, ϕ) ∈ X̃(D)× H̃1(Dc) be the unique solution of (10) with a divergence free
field Js ∈ L2(D)3. Then the next results hold:
1. If A ∈ H2(D)3, Dc has a C2,1 boundary, and σ ∈ C1,1(Dc), then ϕ ∈ H3(Dc).
2. If A ∈ H1(D)3, Dc has a C1,1 boundary and σ ∈ C0,1(Dc), then ϕ ∈ H2(Dc).
3. If A ∈ H1(D)3, Dc is a convex polyhedron and σ = 1, then ϕ ∈ H1+s(Dc), for all s ∈ (0, 1).
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Proof. As the strong formulation of (14) is (see (8b) and (9)){
div(σ∇ϕ) = −j ωdiv(σA) in Dc

σ∇ϕ · n = −j ωσA · n on ∂Dc,
(15)

both points follow from an appropriate shift theorem for the non-homogeneous Neumann problem
in Dc and trace theorems.

For point 1, the regularities on A and σ guarantee that σA ∈ H2(Dc)
3, hence div(σA) ∈

H1(Dc), and its trace σA ∈ H3/2(∂Dc)
3. From the regularity of the boundary of Dc, its normal

trace n belongs to C1,1(∂Dc) and therefore n ∈ W 2,p(∂Dc), for all p > 1. By Theorem 1.4.4.2
from [17] (multiplication in Sobolev spaces), we deduce that σA ·n ∈ H3/2(∂Dc). By a standard
shift theorem for (15), we deduce that ϕ ∈ H3(Dc).

Point 2 is obtained similarly, but here we only get σA ∈ H1(Dc)
3, hence div(σA) ∈ L2(Dv),

σA ∈ H1/2(∂Dc)
3. and n belongs to C0,1(∂Dc) (and therefore n ∈ W 1,p(∂Dc), for all p > 1).

Again by Theorem 1.4.4.2 from [17], we deduce that σA · n ∈ H1/2(∂Dc). By a standard shift
theorem for (15), we deduce that ϕ ∈ H2(Dc).

For the third point, the problem comes from the poor regularity of the normal trace along
∂Dc. In that case, we can only say that n is piecewise smooth, and therefore deduce that
σA · n ∈ H1/2(F ), for all faces F of ∂Dc. Owing to Corollary 1.4.4.5 of [17], we obtain that
σA · n ∈ Hs−1/2(∂Dc), for all s ∈ [0, 1). The conclusion then follows from Theorem 23.3 of [13].

Finally a bootstrapping argument allows to obtain improved regularities forA. For shortness,
we restrict ourselves to some particular cases.

Lemma 2.4 Let (A, ϕ) ∈ X̃(D)× H̃1(Dc) be the unique solution of (10) with a divergence free
field Js ∈ H1/2(D)3. Assume that Dc has a C1,1 boundary and σ ∈ C0,1(Dc) or Dc is a convex
polyhedron and σ = 1. Then if D has a C2,1 boundary and µ ∈ C1,1(D) or D is a parallelepiped
and µ = 1, A ∈ H2+s(D)3, for all s ∈ (0, 1/2).

Proof. The assumptions on D and µ allow to apply Lemma 2.2, and obtain A ∈ H2(D)3. In a
second step, due to our assumption on Dc and σ, we can apply Lemma 2.3 (point 2 or 3) and
get ϕ ∈ H1+s(Dc), for all s ∈ (0, 1). This regularity and the regularity of A yield

σ(jωA +∇ϕ) ∈ Hs(Dc),∀s ∈ (0, 1).

And again by Corollary 1.4.4.5 of [17], we deduce that

σ(jωA +∇ϕ̃) ∈ Hs(D),∀s ∈ (0, 1/2).

Using the definition (13) of f and the assumption on Js, we conclude that f belongs to Hs(D),
for all s ∈ (0, 1/2).

Coming back to problem (12), we find A ∈ H2+s(D)3, for all s ∈ (0, 1/2), by a standard shift
theorem if D has a C2,1 boundary and µ ∈ C1,1(D) or by [6, §4.4.2 (c)] if D is a parallelepiped
and µ = 1.

Remark 2.5 As usual, the regularity of the solution affects the performance of the chosen finite
element scheme, Lemmas 2.2 to 2.4 allow to quantify such a regularity and then to obtain a
priori error estimates, but they are not needed for the construction and the implementation of
our a posteriori error estimators. Nevertheless they will be useful in the interpretation of our
numerical results.
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3 A guaranteed equilibrated error estimator for conforming or
non conforming approximations of the A-ϕ formulation

In this Section, we obtain a guaranteed equilibrated error estimator for nonforming approxima-
tions of (10), extending the results from [9, §3.2 and §4] to nonconforming and higher order
approximations with general equilibrated fluxes.

More precisely, to discretize problems (10), we suppose that we are given a partition T
of D into polyhedral elements T that covers exactly D. Each element T of T is assumed to
belong either to D̄c or to Dnc, furthermore we denote by hT its diameter. For simplicity, we set
Tc = {T ∈ T : T ⊂ Dc}. On such a mesh we introduce the so-called broken Sobolev space

H1(T ) = {v ∈ L2(D) | v|T ∈ H1(T ), ∀T ∈ T },
H1(Tc) = {v ∈ L2(Dc) | v|T ∈ H1(T ), ∀T ∈ Tc}.

As in [14, 21, 10], in order to analyse simultaneously different approximation schemes, the prob-
lem is approximated in a finite dimensional subspace Vh of H1(T )3 × H1(Tc). In other words,
we suppose given an approximation (Ah, ϕh) ∈ Vh of the solution (A, ϕ) of (10).

For the sake of simplicity, for A′h ∈ H1(T )3 (resp. ϕ′h ∈ H1(Tc)), we denote by curlhA
′
h

(resp. its ∇hϕ′h) its broken rotation (resp. its broken gradient), namely

curlhA
′
h = curlA′h on T, ∀T ∈ T ,

∇hϕ′h = ∇ϕ′h on T, ∀T ∈ Tc.

We now introduce the discrete couterparts of (7) by setting

Bh = curlhAh and Eh = − (j ωAh +∇hϕh). (16)

We further assume that a potential reconstruction (Sh, ψh) ∈ H0(curl, D) × H̃1(Dc) of
(Ah, ϕh), and some flux reconstructions Hh and Je,h are available (see Remark 3.1) that be-
long respectively to H(curl, D) and H(div, Dc) and satisfy the following conservation properties
(compare with [14, identity (18)] and [9, Lemma 4.1])

(curlHh − J̃e,h − Js, e)T = 0,∀T ∈ T , e ∈ C3, (17)
divJe,h = 0 in Dc, (18)

Je,h · n = 0 on ∂Dc. (19)

For further uses, we denote by J̃e,h the extension of Je,h by zero outside Dc, that remains
divergence free.

Note that Hh represents an approximation of µ−1curlA, while Je,h is an approximation of
σE.

Notice that (17) is a minimal assumption to guarantee that Hh is a correct approximation
of the continuous flux µ−1curlA, while (18) and (19) is the exact counterpart of (3) and (4),
therefore Je,h is a correct approximation of Je = σE.

Remark 3.1 1. The reconstruction of these fields is not the main goal of our paper, we refer to
Appendix A for some discussions on practical implementations of the reconstructed fluxes.
2. If (Ah, ϕh) is a conforming approximation of (A, ϕ) in the sense that (Ah, ϕh) belongs to
H0(curl, D)× H̃1(Dc), then there is no need to build up a reconstructed potential (Sh, ψh), since
we can simply choose (Sh, ψh) = (Ah, ϕh).

With these objects at hands, we now define the global estimator η as

η = 2ηNC + ηflux + ηO, (20)
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where the nonconforming estimator ηNC is defined by

ηNC =

(∥∥∥µ−1/2curlh(Ah − Sh)
∥∥∥2

(21)

+
∥∥∥ω−1/2 σ1/2 (j ω(Ah − Sh) +∇h(ϕh − ψh))

∥∥∥2

Dc

)1/2

,

the flux estimator ηflux is defined by (see [9, (15)])

ηflux =
(
η2

magn + η2
elec

)1/2
, (22)

where ηmagn and ηelec are defined by

ηmagn =
∥∥∥µ1/2(Hh − µ−1Bh)

∥∥∥
D
, ηelec =

∥∥∥(ωσ)−1/2(Je,h − σEh)
∥∥∥
Dc

, (23)

and finally the oscillation estimator ηO is defined by

ηO = CLµ
1
2
max

(∑
T∈T

cP,Th
2
T ‖Js − curlHh + J̃e,h‖2T

) 1
2

, (24)

where
µmax = sup

x∈D
µ(x).

For further uses, we also recall the following Poincaré inequality

‖u−MTu‖2T ≤ cP,Th2
T |u|21,T ,∀u ∈ H1(T ), T ∈ T , (25)

where MTu = |T |−1
∫
T u(x) is the mean of u on T , and cP,T is a positive constant depending

only on T . If T is convex, then cP,T ≤ 1
π2 (hence for pratical uses, in (25), we can replace cP,T

by 1
π2 ), see [2, 24]. For nonconvex T , some estimations of cP,T can be found in [3, Lemma 10.2]

or [15, §2].
Besides the above estimate, we also need the following consequence of [7, Thm 3.4] (see also

[4, p. 45]). Namely there exists a positive constant CL such that for all A′ ∈ X̃(D), there exist
a unique function Φ ∈ H1

0 (D) and a unique vector field Ψ ∈ H0(curl, D) ∩H1(D)3 such that

A′ = ∇Φ + Ψ, (26)

with
|Φ|1,D + |Ψ|1,D ≤ CL‖curlA′‖D. (27)

Note that CL = 1 if D is convex, due to [6, Theorem 1.1] and [7, Theorem 2.1 and Lemma 2.2]
since in that case Φ = 0 and Ψ = A′.

We are ready to prove the following upper error bound (compare with [9, Theorem 4.2]) of
the energy norm of the A-ϕ error εA,ϕ, given by:

εA,ϕ =

(∥∥∥µ−1/2curlhεA

∥∥∥2
+
∥∥∥ω−1/2 σ1/2(j ωεA +∇hεϕ)

∥∥∥2

Dc

)1/2

, (28)

where
εA = A−Ah and εϕ = ϕ− ϕh.

Theorem 3.2 Let us suppose that Js ∈ (L2(D))3, that Hh ∈ H(curl, D), and that Je,h ∈
H(div, Dc) satisfy (17)-(19). Then the following upper bound holds:

εA,ϕ ≤ η (29)
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Proof. Introduce
εS = A− Sh and εψ = ϕ− ψh,

as well as

εS,ψ = |B((εS , εψ), (εS , εψ))|
1
2 (30)

=

(∥∥∥µ−1/2curlεS

∥∥∥2
+
∥∥∥ω−1/2 σ1/2(j ωεS +∇εψ)

∥∥∥2

Dc

)1/2

.

By the triangular inequality, we directly deduce that

εA,ϕ ≤ εS,ψ + ηNC . (31)

Hence it remains to estimate εS,ψ.
From the definition of B, we have

B((εS , εψ), (εS , εψ)) =

∫
D
µ−1curl(A− Sh) · curlεS

+

∫
Dc

j σ

ω
(jω(A− Sh) +∇(ϕ− ψh)) · (jωεS +∇εψ).

By defining (compare with (16))

BS
h = curlSh and ESh = − (j ω Sh +∇hψh), (32)

and adding the quantities ±
∫
DHh ·curlεS± j

ω

∫
Dc

Je,h ·(jωεS +∇εψ), the above identity becomes

B((εS , εψ), (εS , εψ)) = B((A, ϕ), (εS , εψ))

+

∫
D

(Hh − µ−1BS
h) · curlεS

+
j

ω

∫
Dc

(σESh − Je,h) · (jωεS +∇εψ) +
j

ω

∫
Dc

Je,h · (jωεS +∇εψ)

−
∫
D
Hh · curlεS .

Using the weak formulation (10) valid for test-functions in H0(curl, D)×H̃1(Dc) see [11, Lemma
2.2]) and applying Green’s formula to the last term of this right-hand side, we find term

B((εS , εψ), (εS , εψ)) =

∫
D
Js · εS −

∫
D

curlHh · εS

+

∫
D

(Hh − µ−1BS
h) · curlεS +

j

ω

∫
Dc

(σESh − Je,h) · (jωεS +∇εψ)

+
j

ω

∫
Dc

Je,h · (jωεS +∇εψ).

Keeping unchanged the third and fourth terms of this right-hand side and rearranging the other
terms, we find

B((εS , εψ), (εS , εψ)) =

∫
D

(Hh − µ−1BS
h) · curlεS

+
j

ω

∫
Dc

(σESh − Je,h) · (jωεS +∇εψ)

+

∫
D

(Js − curlHh + J̃e,h) · εS

+
j

ω

∫
Dc

Je,h · ∇εψ.
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Using the assumptions (18)-(19), the last term vanishes, therefore by the identity (30), and the
triangular inequality, we arrive at

ε2S,ψ ≤
∣∣∣∣∫
D

(Hh − µ−1BS
h) · curlεS

∣∣∣∣ (33)

+
1

ω

∣∣∣∣∫
Dc

(σESh − Je,h) · (jωεS +∇εψ)

∣∣∣∣
+

∣∣∣∣∫
D

(Js − curlHh + J̃e,h) · εS
∣∣∣∣ .

Let us estimate each term of the right hand-side of this estimate. But we first transform (and
then estimate) the third term of this right-hand side. For that purpose, we use the Helmholtz
decomposition of [22, Lemma 4.5]

H0(curl, D) = ∇H1
0 (D)

⊥
⊕ X̃(D), (34)

so that
εS = ∇φ + ε⊥ , (35)

with φ ∈ H1
0 (D) and ε⊥ ∈ X̃(D) and

‖εS‖2D = ‖∇φ‖2D + ‖ε⊥‖2D. (36)

This decomposition, Green’s formula and the divergence free property of J̃e,h allow to get∫
D

(Js − curlHh + J̃e,h) · εS =

∫
D

(Js − curlHh + J̃e,h) · ε⊥. (37)

Now as ε⊥ ∈ X̃(D), there exist a unique function Φ ∈ H1
0 (D) and a unique vector field Ψ ∈

H0(curl, D) ∩H1(D)3 such that (see (26) and (27))

ε⊥ = ∇Φ + Ψ, (38)

with
|Φ|1,D + |Ψ|1,D ≤ CL‖curlε⊥‖.

Furthermore since curlεS = curlε⊥, the previous estimate implies

|Φ|1,D + |Ψ|1,D ≤ CL ‖curlεS‖

≤ CL µ
1
2
max‖µ−1/2curlεS‖.

Therefore by the defintion of εS,ψ, we get

|Φ|1,D + |Ψ|1,D ≤ CLµ
1
2
maxεS,ψ. (39)

Using (38) into (37) and using Green’s formula and the divergence free property of Js−curlHh+
J̃e,h, we obtain ∫

D
(Js − curlHh + J̃e,h) · εS =

∫
D

(Js − curlHh + J̃e,h) ·Ψ.

By the property (17), we obtain∫
D

(Js − curlHh + J̃e,h) · εS =

∫
D

(Js − curlHh + J̃e,h) · (Φ−MhΨ),
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whereMhΨ ∈ H1(T )3 is defined by

(MhΨ)|T =MT (Ψ|T ), ∀T ∈ T .

By (continuous and discrete) Cauchy-Schwarz’s inequality and Poincaré’s inequality (25), we
deduce that∫

D
(Js − curlHh + J̃e,h) · εS ≤

(∑
T∈T

cP,Th
2
T ‖Js − curlHh + J̃e,h‖2T

) 1
2

|Ψ|1,D.

Using the estimate (39), we arrive at∣∣∣∣∫
D

(Js − curlHh + J̃e,h) · εS
∣∣∣∣ ≤ ηO εS,ψ. (40)

A simple consequence of (continuous and discrete) Cauchy-Schwarz’s inequality allows to
estimate the first two terms of the right-hand side of (33) as follows∣∣∣∣∫

D
(Hh − µ−1BS

h) · curlεS

∣∣∣∣+
1

ω

∣∣∣∣∫
Dc

(σESh − Je,h) · (jωεS +∇εψ)

∣∣∣∣ (41)

≤
∥∥∥µ1/2(Hh − µ−1BS

h)
∥∥∥
D

∥∥∥µ−1/2curlεS

∥∥∥
D

+
∥∥∥ (ω σ)−1/2(Je,h − σESh)

∥∥∥
Dc

∥∥∥σ1/2ω−1/2(jωεS +∇εψ)
∥∥∥
Dc

≤
(∥∥∥µ1/2(Hh − µ−1BS

h)
∥∥∥2

D
+
∥∥∥ (ω σ)−1/2(Je,h − σESh)

∥∥∥2

Dc

) 1
2

εS,ψ.

Let us now transform the first factor of this right-hand side in order to display the estimator
ηflux. Indeed inserting ±Eh and ±Bh and using the discrete Cauchy-Schwarz’s inequality, and
using the definition (22) of ηflux, we have(∥∥∥µ1/2(Hh − µ−1BS

h)
∥∥∥2

D
+
∥∥∥ (ω σ)−1/2(Je,h − σESh)

∥∥∥2

Dc

) 1
2

≤ ηflux +

(∥∥∥µ−1/2(Bh −BS
h)
∥∥∥2

D
+
∥∥∥ω−1/2σ1/2(Eh −ESh)

∥∥∥2

Dc

) 1
2

.

The definition of Eh, ESh , Bh and BS
h directly give

Bh −BS
h = curlh(Ah − Sh), and Eh −ESh = jω(Ah − Sh) +∇(ϕh − ψh),

which leads to (∥∥∥µ−1/2(Bh −BS
h)
∥∥∥2

D
+
∥∥∥ω−1/2 σ1/2(Eh −ESh)

∥∥∥2

Dc

) 1
2

= ηNC .

Therefore we have found that(∥∥∥µ1/2(Hh − µ−1BS
h)
∥∥∥2

D
+
∥∥∥ (ω σ)−1/2(Je,h − σESh)

∥∥∥2

Dc

) 1
2

≤ ηflux + ηNC .

This estimate in (41) leads to∣∣∣∣∫
D

(Hh − µ−1BS
h) · curlεS

∣∣∣∣+
1

ω

∣∣∣∣∫
Dc

(σESh − Je,h) · (jωεS +∇εψ)

∣∣∣∣
≤ (ηflux + ηNC)εS,ψ.

Using this last estimate and (40) in (33), we arrive at

εS,ψ ≤ ηflux + ηNC + ηO.

With the help of (31), we conclude that (29) holds (using the definition (20) of η).
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4 The goal oriented functional and the adjoint problem

We here consider the output functional that represents the physical quantity of interest given by

Q(A) =

∫
D
q · curlĀ dx,∀A ∈ H(curl, D), (42)

where q ∈ L2(D)3 is a given function.

Remark 4.1 In many engineering applications, engineers are interested in the computation of
the flux through a coil. Indeed, in the case where a coil is included in D, in which a given current
Js of intensity i is imposed, N being the unit direction of the coil, it can be shown that the
magnetic flux through the surface S of a coil is given by

Φ =

∫
S
curlA · n dS,

and that it can be evaluated by [19]

Φ̄ =
1

i
Q(A) =

1

i

∫
D
q · curlĀ dx,

using q = Hs where curlHs = Js, and where as usual B = curlA. It corresponds to the
numerical test proposed in Subsections 6.1 and 6.2. In other applications, engineers can be
interested in the computation of the magnetic flux density at a given point of an electromagnetic
device, see [16, 20]. It corresponds to the numerical test proposed in Subsection 6.3.

Accordingly by setting

B∗((A, ϕ), (A′, ϕ′)) = B((A′, ϕ′), (A, ϕ))

=
(
µ−1curlA, curlA′

)
D

−jω−1
(
σ(jωA +∇ϕ), (jωA′ +∇ϕ′)

)
Dc
, ∀(A, ϕ), (A′, ϕ′) ∈ X̃(D)× H̃1(Dc),

the associated adjoint problem consists in looking for (A∗, ϕ∗) ∈ X̃(D)× H̃1(Dc) solution of the
adjoint problem

B∗((A∗, ϕ∗), (A′, ϕ′)) = Q(A′), ∀(A′, ϕ′) ∈ X̃(D)× H̃1(Dc), (43)

that also has a unique solution. Note that the Helmholtz decomposition (34) implies that (43)
remains valid for any test-functions in H0(curl, D)× H̃1(Dc), namely the next Lemma holds.

Lemma 4.2 If (A∗, ϕ∗) ∈ X̃(D) × H̃1(Dc) is the unique solution of the adjoint problem (43),
then we have

B∗((A∗, ϕ∗), (A′′, ϕ′′)) = Q(A′′), ∀(A′′, ϕ′′) ∈ H0(curl, D)× H̃1(Dc). (44)

Proof. Fix (A′′, ϕ′′) ∈ H0(curl, D) × H̃1(Dc), then the Helmholtz decomposition (34) implies
that there exist ψ ∈ H1

0 (D) and A′ ∈ X̃(D) such that

A′′ = ∇ψ + A′.

Therefore, by the sesquilinearity of B∗ and (43), we have

B∗((A∗, ϕ∗), (A′′, ϕ′′)) = B∗((A∗, ϕ∗), (∇ψ, 0)) +B∗((A∗, ϕ∗), (A′, ϕ′′))

= B∗((A∗, ϕ∗), (∇ψ, 0)) +Q(A′).
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Since Q(∇ψ) = 0, we then obtain

B∗((A∗, ϕ∗), (A′′, ϕ′′)) = B∗((A∗, ϕ∗), (∇ψ, 0)) +Q(A′′). (45)

Finally as we readily check that

B∗((A∗, ϕ∗), (∇ψ, 0)) = B∗((A∗, ϕ∗), (0, jωψ)).

and since ∇ψ = ∇(ψ −MDcψ), whereMDcψ is the mean of ψ in Dc, again by (43), we find

B∗((A∗, ϕ∗), (∇ψ, 0)) = B∗((A∗, ϕ∗), (0, jω(ψ −MDcψ)))) = 0.

This property in (45) yields (44).
This Lemma implies that the strong formulation of (43) is

curl
(
µ−1curlA∗

)
− σ

(
jωA∗ +∇ϕ∗

)
= curlq in D,

div(σ(jωA∗ +∇ϕ∗)) = 0 in Dc.

Let us notice that Lemmas 2.2, 2.3 and 2.4 remain valid for the adjoint problem.

Similarly to the direct problem (see the beginning of Section 3), the adjoint one is approxi-
mated in a finite dimensional subspace V ∗h of H1(T )3 ×H1(Tc), that may be different from Vh.
In other words, we suppose given an approximation (Ah, ϕh) ∈ Vh of the solution (A, ϕ) of (10)
and (A∗h, ϕ

∗
h) ∈ V ∗h of the solution (A∗, ϕ∗) of (43). As already specified, we assume that some

flux reconstructions Hh and Je,h are available (using (Ah, ϕh) and the datum Js) that belong
respectively to H(curl, D) and H(div, Dc) and satisfy the conservation properties (17)-(19). In
the same manner, by assuming that q ∈ H(curl, D), we suppose that some flux reconstructions
H∗h and J∗e,h are available (using (A∗h, ϕ

∗
h) and the datum curlq) that belong respectively to

H(curl, D) and H(div, Dc) satisfy the following conservation properties:

(curlH∗h + J̃∗e,h − curlq, e)T = 0,∀T ∈ T , e ∈ C3, (46)
divJ∗e,h = 0 in Dc, (47)

J∗e,h · n = 0 on ∂Dc. (48)

Recall that Hh represents an approximation of µ−1curlA, Je,h an approximation of σE.
Similarly, note that H∗h represents an approximation of µ−1curlA∗ and J∗e,h an approximation of
σE∗ = −σ(jωA∗ +∇ϕ∗).

Let us now state a guaranteed error estimate for the adjoint problem. For that purpose, we
suppose given a potential reconstruction (S∗h, ψ

∗
h) ∈ H0(curl, D)× H̃1(Dc) of (A∗h, ϕ

∗
h). Then we

define the global estimator η∗ as follows

η∗ = 2η∗NC + η∗flux + η∗O, (49)

where the nonconforming estimator η∗NC is defined by

η∗NC =

(∥∥∥µ−1/2curlh(A∗h − S∗h)
∥∥∥2

(50)

+
∥∥∥ω−1/2 σ1/2 (j ω(A∗h − S∗h) +∇h(ϕ∗h − ψ∗h))

∥∥∥2

Dc

)1/2

,

the flux estimator η∗flux is defined by

η∗flux =
(
(η∗magn)2 + (η∗elec)

2)
)1/2

, (51)
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where η∗magn and η∗elec are defined by

η∗magn =
∥∥∥µ1/2(H∗h − µ−1B∗h)

∥∥∥
D
, η∗elec =

∥∥∥(ωσ)−1/2(J∗e,h − σE∗h)
∥∥∥
Dc

, (52)

and finally the oscillation estimator η∗O is defined by

η∗O = CLµ
1
2
max

(∑
T∈T

cP,Th
2
T ‖curlH∗h + J̃∗e,h − curlq‖2T

) 1
2

. (53)

The same arguments as the ones used in the proof of Theorem 3.2 allow to prove the following
guaranteed error estimate on the error

εA∗,ϕ∗ =

(∥∥∥µ−1/2curlhεA∗

∥∥∥2
+
∥∥∥ω−1/2 σ1/2(j ωεA∗ +∇hεϕ∗)

∥∥∥2

Dc

)1/2

, (54)

where
εA∗ = A∗ −A∗h and εϕ∗ = ϕ∗ − ϕ∗h.

Corollary 4.3 Under the assumptions from this Section, we have

εA∗,ϕ∗ ≤ η∗. (55)

5 The error representation

With the help of the equilibrated fluxes of the direct and adjoint problems, in the spirit of [23]
(see also [21, 10]), we here show that the error on the quantity of interest can be expressed into
a fully computable expression and a remainder that will be estimated by a fully computable
quantity (but is usually of higher order and can then be disregarded).

Theorem 5.1 Let (Sh, ψh) ∈ H0(curl, D) × H̃1(Dc) be a potential reconstruction of (Ah, ϕh),
then the error on the quantity of interest defined by

E =
∑
T∈T

∫
T
q · curl(A−Ah) dx,

admits the splitting
E = ηQOI +R, (56)

where the estimator ηQOI is given by

ηQOI =
∑
T∈T

∫
T
q · curl(Sh −Ah) dx (57)

+

∫
D
S∗h · (Js − curlHh + J̃e,h) dx

− jω−1

∫
Dc

σ−1J∗e,h · (σ(jωSh +∇ψh) + Je,h) dx

−
∫
D
H∗h · (curlSh − µHh) dx

while the remainder term R is defined by

R =

∫
D

(A∗ − S∗h) · (Js − curlHh + J̃e,h) dx (58)

+ jω−1

∫
Dc

(σ−1J∗e,h −E∗) · (σ(jωSh +∇ψh) + Je,h) dx

−
∫
D

(µ−1curlA∗ −H∗h) · (curlSh − µHh) dx

14



Proof. First we notice that

(Js,A
∗)D = B((A, ϕ), (A∗, ϕ∗)) = B∗((A∗, ϕ∗), (A, ϕ)) = Q(A).

Hence by the definition of the error, we have

E = (Js,A∗)D −
∑
T∈T

∫
T
q · curlAh dx.

Introducing artificially Sh and using (43) with (A′, ϕ′) = (Sh, ψh), this is equivalent to

E = (Js,A∗)D −
∑
T∈T

∫
T
q · curl(Ah − Sh) dx (59)

−
(
µ−1curlA∗, curlSh

)
D

+ jω−1 (σ(jωA∗ +∇ϕ∗), (jωSh +∇ψh))Dc
.

Using (16), and adding and subtracting the terms∫
D

curlA∗ ·Hh dx, and jω−1

∫
Dc

∇ϕ∗ · J̄e,h dx,

we find

E = (Js,A∗)D −
∑
T∈T

∫
T
q · curl(Ah − Sh) dx

−
∫
D

curlA∗ · (µ−1curlSh −Hh) dx

−
∫
D

curlA∗ ·Hh dx

−
∫
Dc

σA∗ · (jωSh +∇ψh) dx

+ jω−1

∫
Dc

∇ϕ∗ · (σ(jωSh +∇ψh) + Je,h) dx

− jω−1

∫
Dc

∇ϕ∗ · Je,h dx.

Using Green’s formula in the fourth and seventh terms of this right-hand side and using (18)-(19),
we find

E = (Js,A∗)D −
∑
T∈T

∫
T
q · curl(Ah − Sh) dx

−
∫
D

curlA∗ · (µ−1curlSh −Hh) dx

−
∫
D
A∗ · curlHh dx

−
∫
Dc

σA∗ · (jωSh +∇ψh) dx

+ jω−1

∫
Dc

∇ϕ∗ · (σ(jωSh +∇ψh) + Je,h) dx.
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Adding and subtracting the term
∫
Dc

A∗ · Je,h dx and rearranging the terms of this right-hand
side, we find equivalently

E = −
∑
T∈T

∫
T
q · curl(Ah − Sh) dx

+

∫
D
A∗ · (Js − curlHh + J̃e,h) dx

− jω−1

∫
Dc

E∗ · (σ(jωSh +∇ψh) + Je,h) dx

−
∫
D

curlA∗ · (µ−1curlSh −Hh) dx,

where we recall that J̃e,h means the extension by zero of Je,h outsideDc and that E∗ = −(jωA∗+
∇ϕ∗). Writing

A∗ = S∗h + A∗ − S∗h, E∗ = σ−1J∗e,h + E∗ − σ−1J∗e,h,

and
µ−1curlA∗ = H∗h + µ−1curlA∗ −H∗h,

we arrive at (56).
Let us now show that the remainder can be explicitly estimated using the error estimators

for (A, ϕ) and (A∗, ϕ∗) obtained in Section 3.

Theorem 5.2 With η (resp. η∗) defined before, we have

|R| ≤ 6ηη∗. (60)

Proof. We estimate each term of R separetely. For the first term,

R1 =

∫
D

(A∗ − S∗h) · (Js − curlHh + J̃e,h) dx,

as in the proof of Theorem 3.2 we use the Helmholtz decomposition

A∗ − S∗h = ∇φ∗ + ε∗⊥ , (61)

with φ∗ ∈ H1
0 (D) and ε∗⊥ ∈ X̃(D) and

‖A∗ − S∗h‖2D = ‖∇φ∗‖2D + ‖ε∗⊥‖2D. (62)

As Js − curlHh + J̃e,h is divergence free, we then get

R1 =

∫
D
ε∗⊥ · (Js − curlHh + J̃e,h) dx.

Again as in the proof of Theorem 3.2, as ε∗⊥ ∈ X̃(D), there exist a unique function Φ∗ ∈ H1
0 (D)

and a unique vector field Ψ∗ ∈ H0(curl, D) ∩H1(D)3 such that (see (26) and (27))

ε∗⊥ = ∇Φ∗ + Ψ∗,

with
|Φ∗|1,D + |Ψ∗|1,D ≤ CL‖curlε∗⊥‖D ≤ CLµ

1
2
max‖µ−1/2curl(A∗ − S∗h)‖, (63)

since curl(A∗ − S∗h) = curlε∗⊥. As Js − curlHh + J̃e,h is divergence free and using the property
(17), we then get

R1 =

∫
D

Ψ∗ · (Js − curlHh + J̃e,h) dx

=

∫
D

(Ψ∗ −MhΨ∗) · (Js − curlHh + J̃e,h) dx.
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Cauchy-Schwarz’s inequality and Poincaré’s inequality (25) yield

|R1| ≤ ηO‖µ−1/2curl(A∗ − S∗h)‖, (64)

where we have used the estimate (63) and (24). Coming back to A∗ −A∗h, we get

|R1| ≤ ηO(‖µ−1/2curlh(A∗ −A∗h)‖+ ‖µ−1/2curlh(A∗h − S∗h)‖)
≤ ηO(εA∗,ϕ∗ + η∗NC),

where we recall that εA∗,ϕ∗ is defined by (54). Owing to the estimate (55), we get finally

|R1| ≤ ηO (η∗ + η∗NC). (65)

For the second term

R2 = jω−1

∫
Dc

(σ−1J∗e,h −E∗) · (σ(jωSh +∇ψh) + Je,h) dx,

we use Cauchy-Schwarz’s inequality, to get

|R2| ≤ ‖(ωσ)−1/2(J∗e,h − σE∗)‖Dc‖(ωσ)−1/2 (σ(jωSh +∇ψh) + Je,h) ‖Dc .

Adding ±(ωσ)−1/2E∗h and ±(ωσ)−1/2Eh, and using the triangular inequality, we get

|R2| ≤
(
‖(ωσ)−1/2(J∗e,h − σE∗h)‖Dc + ‖ω−1/2σ1/2(E∗h −E∗)‖Dc

)
×(

‖(ωσ)−1/2 (−σEh + Je,h) ‖Dc + ‖ω−1/2σ1/2 (jωSh +∇ψh + Eh) ‖Dc

)
.

Reminding (7), (16), and the definitions of ηflux, ηNC , εA,ϕ, and εA∗,ϕ∗ , we find

|R2| ≤ (η∗flux + εA∗,ϕ∗) (ηflux + ηNC + εA,ϕ) .

By (29) and (55), we get finally

|R2| ≤ (ηflux + ηNC + η) (η∗flux + η∗) . (66)

Again for the third term

R3 = −
∫
D

(µ−1curlA∗ −Hh) · (curlSh − µHh) dx,

we use Cauchy-Schwarz’s inequality to obtain

|R3| ≤ ‖µ1/2(µ−1curlA∗ −Hh)‖D‖µ1/2(µ−1curlSh −Hh‖D.

Introducing curlhA
∗
h and curlhAh, the triangular inequality yields

|R3| ≤
(
‖µ1/2(µ−1curlA∗h −Hh)‖D + ‖µ−1/2curlh(A∗ −A∗h)‖D

)
×(

‖µ1/2(µ−1curlAh −Hh‖D + ‖µ−1/2curlh(Sh −Ah)‖D
)
.

As before, this means that

|R3| ≤ (ηflux + ηNC + εA,ϕ)(η∗flux + η∗NC),

and again (29) yields
|R3| ≤ (ηflux + ηNC + η)(η∗flux + η∗NC). (67)
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The estimates (65) to (67) lead to

|R| ≤ ηO (η∗ + η∗NC) + (ηflux + ηNC + η)(2η∗flux + η∗NC + η∗).

Using the respective definitions (20) and (49) of η and η∗, and simple calculations yield

|R| ≤ 9ηNCη
∗
NC + 9ηNCη

∗
flux + 3ηNCη

∗
O + 6ηfluxη

∗
NC + 6ηfluxη

∗
flux + 2ηfluxη

∗
O + 6ηOη

∗
NC + 4ηOη

∗
flux + 2ηOη

∗
O,

as wells as

ηη∗ = (2ηNC + ηflux + ηO)(2η∗NC + η∗flux + η∗O)

= 4ηNCη
∗
NC + 2ηNCη

∗
flux + 2ηNCη

∗
O + 2ηfluxη

∗
NC + ηfluxη

∗
flux + ηfluxη

∗
O + 2ηOη

∗
NC + ηOη

∗
flux + ηOη

∗
O.

As the smallest constant C such that

9ηNCη
∗
NC + 9ηNCη

∗
flux + 3ηNCη

∗
O + 6ηfluxη

∗
NC + 6ηfluxη

∗
flux + 2ηfluxη

∗
O + 6ηOη

∗
NC + 4ηOη

∗
flux + 2ηOη

∗
O

≤ C (4ηNCη
∗
NC + 2ηNCη

∗
flux + 2ηNCη

∗
O + 2ηfluxη

∗
NC + ηfluxη

∗
flux + ηfluxη

∗
O + 2ηOη

∗
NC + ηOη

∗
flux + ηOη

∗
O) ,

is C = 6, we have proved that (60) holds.

Before going on, if (Ah, ϕh) is a conforming approximation of (A, ϕ), let us give an estimate
on the error of quantity of interest that will be used for our numerical examples but has also its
own interest.

Lemma 5.3 Let Xh be a finite dimensional subspace of H0(curl, D)×H1(Dc) and denote by

Kh = {(A′h, ϕ′h) ∈ Xh : curlA′h = 0} = Xh ∩
(
∇H1

0 (D)×H1(Dc)
)
,

its subspace of elements whose first component is curl free. Then denote by

Vh = {(A′h, ϕ′h) ∈ Xh : (A′h,A
′′
h)D = 0, ∀ (A′′h, ϕ

′′
h) ∈ Kh and

∫
Dc

ϕ′h = 0},

the finite dimensional subspace of Xh made of elements whose first component is discrete diver-
gence free and second component is of zero mean. Let (Ah, ϕh) ∈ Vh be the Galerkin approxi-
mation of the solution (A, ϕ) ∈ X̃(D)× H̃1(Dc) of (10), namely the unique solution to

B((Ah, ϕh), (A′h, ϕ
′
h)) = (Js,A

′
h), ∀(A′h, ϕ′h) ∈ Vh. (68)

Then the error on the quantity of interest is equal to

E = B∗((A∗ −A′h, ϕ
∗ − ϕ′h), (A−Ah, ϕ− ϕh)),∀(A′h, ϕ′h) ∈ Xh. (69)

Proof. Let us first notice that by the definition of Vh, problem (68) has indeed a unique solution
because if (Ah, ϕh) ∈ Vh satisfy

B((Ah, ϕh), (Ah, ϕh)) = 0,

then recalling that D is simply connected, (Ah, ϕh) belongs to Kh, and therefore (Ah, ϕh) =
(0, 0). Now by its definition and our assumption on Vh, we have

E =

∫
D
q · curl(A−Ah) = Q(A−Ah).

Therefore as A−Ah belongs to H0(curl, D), by Lemma 4.2, we have

E = B∗((A∗, ϕ∗), (A−Ah, ϕ− ϕh)). (70)
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As Lemma 2.3 of [11] proved that

B((A−Ah, ϕ− ϕh), (A′h, ϕ
′
h)) = 0, ∀(A′h, ϕ′h) ∈ Xh,

by the definition of B∗, we get equivalently

B∗((A′h, ϕ
′
h), (A−Ah, ϕ− ϕh)), ∀(A′h, ϕ′h) ∈ Xh.

Subtracting this identity to (70), we obtain (69).

Corollary 5.4 Suppose that D and Dc are polyhedra and define (see [11])

Vh = X̃h × Θ̃h, (71)

where

X̃h = {A′h ∈ Xh :

∫
D
A′h · ∇ψh = 0,∀ψh ∈ Θ0

h},

Xh = {A′h ∈ H0(curl, D) : A′h|T ∈ ND1(T ),∀T ∈ T },

Θ̃h = {ϕ′h ∈ H̃1(Dc) : ϕ′h|T ∈ P1(T ), ∀T ∈ T ∩ D̄c},

Θ0
h = {ψh ∈ H1

0 (D) : ψh|T ∈ P1(T ),∀T ∈ T },

and for k ∈ N∗, NDk(T ) is the kth-order Nédélec element defined by

NDk(T ) = [Pk−1(T )]3 ⊕ Sk(T ), (72)

with Pk−1(T ) the space of polynomials of order at most k − 1 on T and Sk(T ) defined by

Sk(T ) = {p ∈ [P̃k(T )]3 : x · p(x) = 0,∀x ∈ T},

where P̃k(T ) is the space of homogeneous polynomials of order k on T . Let (Ah, ϕh) ∈ Vh be the
Galerkin approximation of the solution (A, ϕ) ∈ X̃(D) × H̃1(Dc) of (10). Suppose further that
the solution (A, ϕ) ∈ X̃(D)× H̃1(Dc) of (10) belongs to H2(D)3×H2(Dc) and that the solution
(A∗, ϕ∗) ∈ X̃(D)× H̃1(Dc) of (43) belongs to H2(D)3 ×H1+s(Dc), for some s ∈ (0, 1]. If T is
a regular triangulation, then

|E| ≤ Ch1+s, (73)

for a positive constant C that does not depend on h.

Proof. First we notice our choice of Vh enters in the framework of Lemma 5.3 with Xh defined
by

Xh = {(A′h, ϕ′h) ∈ H0(curl, D)×H1(Dc) : A′h|T ∈ ND1(T ), and ϕ′h|T ∈ P1(T ),∀T ∈ T },

since we have (see [22, Lemma 5.38])
Kh = ∇Θ0

h.

By the identity (69) with A′h = INDA
∗
h and ϕ′h = ILϕ

∗, where IND (resp. IL) is the
(low-order) Nédélec (resp. P1 Lagrange) interpolant, we have

|E| ≤ C1(‖A∗ − INDA∗‖H(curl,D) + |ϕ∗ − ILϕ∗|H1(Dc))(‖A−Ah‖H(curl,D) + |ϕ− ϕh|H1(Dc)),

for some positive constant C1 independent of h. As there exists a positive constant C2 indepen-
dent of h such that

‖A−Ah‖H(curl,D) + |ϕ− ϕh|H1(Dc) ≤ C2(‖A− INDA‖H(curl,D) + |ϕ− ILϕ|H1(Dc)),

we conclude that

|E| ≤ C1 max{C2, 1}(‖A∗ − INDA∗‖H(curl,D) + |ϕ∗ − ILϕ∗|H1(Dc))

(‖A− INDA‖H(curl,D) + |ϕ∗ − ILϕ|H1(Dc)).

We conclude by standard interpolation error estimates for the Nédélec and Lagrange elements.
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6 Numerical validation

In this Section we propose a numerical test inspired by [11] (see Section 5.1), in order to underline
and confirm our theoretical predictions, using the FreeFem++ software [18]. The data are
built in order to have in hand an exact solution, allowing to compare the estimator to the
exact error. The domains are defined by D = [−2, 5] × [−2, 2] × [−2, 2], Ds = [−1, 1]3 and
Dc = [2, 4]× [−1, 1]× [−1, 1] (see Figure 1).

Ds

Dc

Figure 1: Domains configuration.

We set µ ≡ 1 in D, σ ≡ 1 in Dc and ω = 2π. Then, the exact solution is given by ϕ ≡ 0 and

A = curl

 f
0
0

 with f(x, y, z) =

{
(x2 − 1)4(y2 − 1)4(z2 − 1)4 in Ds,

0 in D\Ds.

The value of Js is computed accordingly using (8a), and is given by

Js = curl(curlA),

as the support of A is equal to Ds (that is disjoint from Dc).

First of all, we compute (Ah, ϕh) ∈ Vh, with Vh defined by (71), as the Galerkin approx-
imation of the solution (A, ϕ) ∈ X̃(D) × H̃1(Dc) of (10). The estimator η defined by (20) is
computed using Sh = Ah and ψh = ϕh as well as with the reconstructed fluxes Hh and Je,h
which are computed like explained in Appendix A. As mentioned in Remark 4.1, we choose

q = Hs = curlA, (74)

and we are interested in the value of E given by:

E =

∫
D
Hs · curl(A−Ah) dx

Consequently in order to validate the identity (56) and the estimate (60), it remains to compute
a numerical approximation (A∗h, ϕ

∗
h) of the solution (A∗, ϕ∗) of the adjoint problem (43), as well

as the estimator η∗. Let us first notice that for this example, we directly check that (A∗, ϕ∗) =
(A, 0). Here we take (A∗h, ϕ

∗
h) ∈ V∗h as the Galerkin approximation of (A∗, ϕ∗), with V∗h defined

by
V∗h = X̃∗h × Θ̃∗h, (75)
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where

X̃∗h = {A′h ∈ X∗h :

∫
D
A′h · ∇ψh = 0,∀ψh ∈ Θ∗,0h },

X∗h = {A′h ∈ H0(curl, D) : A′h|T ∈ ND2(T ),∀T ∈ T },

Θ̃∗h = {ϕ′h ∈ H̃1(Dc) : ϕ′h|T ∈ P2(T ), ∀T ∈ T ∩ D̄c},

Θ∗,0h = {ψh ∈ H1
0 (D) : ψh|T ∈ P2(T ),∀T ∈ T },

ND2(T ) being defined by (72). The estimator η∗ defined by (49) is computed using S∗h = A∗h
and ψ∗h = ϕ∗h, as well as with the reconstructed fluxes H∗h and J∗e,h which are computed like
explained in Appendix A. Finally, the estimator ηQOI is computed by (57).
Tests are performed using two sets of meshes as described below.

6.1 Results with globally refined meshes

The first set consists in some uniformly refined meshes. Figure 2 displays the fourth mesh of the
series (Mesh 4), and Table 1 indicates for each mesh the number of tetrahedra and the number
of degrees of freedom associated to each formulation (direct or adjoint one). Recall that since
the adjoint problem is computed with finite elements of higher degrees, the number of degrees
of freedom is more important on the same mesh.

Ds

Dc

Figure 2: Mesh 4, global refinement,138 404 elements : 9 826 elements in Ds, 9 428 elements in
Dc and 119 150 elements in D\(Ds ∪Dc).

Mesh Nb of elements Nb dof for (Ah, ϕh) Nb dof for (A∗h, ϕ
∗
h)

1 5 935 8 097 41 843
2 15 052 20 372 105 507
3 49 642 63 031 334 722
4 138 404 173 809 924 858
5 1 068 028 1 302 975 7 013 477

Table 1: The meshes used for the simulations, global refinement.

To begin with, we plot in Figure 3 the values of E , ηQOI and 6ηη∗ as a function of the number
of elements N , in a log-log scale. More precisely, the real parts are displayed in Figure 3(a) and
the imaginary ones in Figure 3(b). First, it can be seen in Figure 3(a) that <(E) goes towards
zero as O(N−2/3) = O(h2). This is a consequence of Corollary 5.4 (with s = 1), since in this
example A = A∗ are in H3(D)3, while ϕ = ϕ∗ = 0.
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Then it can be seen that the value of 6ηη∗ converges faster towards zero than the real part
<(E) and becomes smaller than <(E) when the mesh is sufficiently refined. Again from the
regularity of A and A∗, the error A −Ah (resp. A∗ −A∗h) will be of order h (resp. h2), and
therefore we may expect a convergence in h for η and in h2 for η∗. From Theorem 5.2 and
estimate (60), it follows that the remainder R is a superconvergent term. It is illustrated in
Figure 4 where the values of R (computed from (56) with the knowledge of E and ηQOI) and the
ones of 6ηη∗ have been plotted. Moreover, coming back to Figure 3(a), we observe that <(ηQOI)
has exactly the same behaviour as <(E), that once again from Theorem 5.1 and estimate (56)
shows that the remainder R can be neglected. Concerning the imaginary parts, it can be seen
in Figure 3(b) that the values are very small, these values and the bumps are therefore not
significant, even if the behaviour of the imaginary part =(E) and =(ηQOI) are once again exactly
the same. Then we plot in Figure 5 the values of <(E)/<(ηQOI) (Figure 5(a)) and =(E)/=(ηQOI)
(Figure 5(b)), defined as the real effectivity index and the imaginary effectivity index. We can
see that they are both exactly equal to one whatever the mesh in consideration. It illustrates
the fact that the estimator ηQOI gives a very accurate evaluation of the error E .

(a) <(E), <(ηQOI) and 6ηη∗ (b) =(E) and =(ηQOI)

Figure 3: Error and Estimator, global refinement, q = Hs.

Figure 4: |R| and 6ηη∗, global refinement, q = Hs.
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(a) <(E)/<(ηQOI) (b) =(E)/=(ηQOI)

Figure 5: Ratios of error over estimator, real and imaginary parts, global refinement, q = Hs.

Remark 6.1 In order to illustrate the consequence to use a higher order approximation of the
adjoint solution, we respectively display in Figures 6, 7 and 8 the same results as in Figures
3, 4 and 5, but computing this time (A∗h, ϕ

∗
h) ∈ Vh instead of (A∗h, ϕ

∗
h) ∈ V∗h. Similarly, we

compute (T∗h, Ω∗h) ∈ Ỹh × Z̃h (necessary for the computation of H∗h and J∗e,h, see Appendix A)
instead of (T∗h, Ω∗h) ∈ Ỹ ∗h × Z̃∗h. It can be seen that in Figure 6(a) that this time, the value of
6ηη∗ converges in h2 since the convergence remains in h for η, but becomes also in h for η∗.
Consequently, Theorem 5.2 and estimate (60) are not sufficient to prove the superconvergence of
the remainder R. Nevertheless, we see in Figure 7 that R remains much smaller than 6ηη∗, so
that the effectivity index remains equal to one as displayed in Figure 8.

(a) <(E), <(ηQOI) and 6ηη∗ (b) =(E) and =(ηQOI)

Figure 6: Error and Estimator, global refinement, q = Hs, with same finite element spaces for
direct and adjoint problems.
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Figure 7: |R| and 6ηη∗, global refinement, q = Hs, with same finite element spaces for direct
and adjoint problems.

(a) <(E)/<(ηQOI) (b) =(E)/=(ηQOI)

Figure 8: Ratios of error over estimator, real and imaginary parts, global refinement, q = Hs,
with same finite element spaces for direct and adjoint problems.

6.2 Results with locally refined meshes

The second set of meshes consists of some locally refined meshes. Here, the meshes have been
further refined in Ds, which corresponds to the support of Js. Figure 9 displays the third mesh
of the series (Mesh 3), and Table 2 indicates for each mesh the number of tetrahedra and the
number of degrees of freedom associated to each formulation (direct or adjoint one). The same
tests are performed, and Figures 10, 11 and 12 display the same results as Figures 3, 4 and 5 on
this second set of meshes. The conclusions are very similar, and we can see moreover that the
value of 6ηη∗ goes towards zero faster than in the globally refined case, what can be explained
by the fact that the support of q = Hs, namely Ds, is here better refined.
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Ds

Dc

Figure 9: Mesh 3, local refinement, 352 162 elements : 243 232 elements in Ds, 5 794 elements
in Dc and 103 136 elements in D\(Ds ∪Dc).

Mesh Nb of elements Nb dof for (Ah, ϕh) Nb dof for (A∗h, ϕ
∗
h)

1 86 335 108 740 577 696
2 121 005 149 374 797 644
3 352 162 420 454 2 264 432
4 2 128 618 2 500 710 13 530 768

Table 2: The meshes used for the simulations, local refinement.

(a) <(E), <(ηQOI) and 6ηη∗ (b) =(E) and =(ηQOI)

Figure 10: Error and Estimator, local refinement, q = Hs.
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Figure 11: |R| and 6ηη∗, local refinement, q = Hs.

(a) <(E)/<(ηQOI) (b) =(E)/=(ηQOI)

Figure 12: Ratios of error over estimator, real and imaginary parts, local refinement, q = Hs.

6.3 Results with a singular solution of the adjoint problem

A last test is now proposed. It consists of the same setting as in Subsection 6.1, but instead of
defining q using (74), we choose:

q =

 ρs
0
0

 , (76)

with
ρs(x, y, z) = e

− (x−3)2+y2+z2

log(10)/4 , ∀(x, y, z) ∈ D.

The error we are interested in is given by (42). Figures 13 to 15 display the same results as
Figures 3 to 5 for this new error definition.
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(a) <(E), <(ηQOI) and 6ηη∗ (b) =(E) and =(ηQOI)

Figure 13: Error and Estimator, global refinement, q given by (76).

Figure 14: |R| and 6ηη∗, global refinement, q given by (76).

(a) <(E)/<(ηQOI) (b) =(E)/=(ηQOI)

Figure 15: Ratios of error over estimator, real and imaginary parts, global refinement, q given
by (76).
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The difference with the previous example relies on the limited regularity of ϕ∗. Indeed Lemma
2.2 (point 3) guarantees A∗ ∈ H2(D)3 and Lemma 2.3 (point 3) guarantees ϕ∗ ∈ H1+s(Dc), for
all s ∈ (0, 1). This means that η∗ could converge to 0 only in hs, for all s ∈ (0, 1). This is indeed
the case since it can be seen in Figure 13(a) that the quantity 6ηη∗ does no more converge faster
towards zero than the error E , and remains significantly higher. Nevertheless, the error E and
the estimator ηQOI remain nearly the same (see the real parts in Figure 13(a) and the imaginary
ones in Figure 13(b)). <(E) and <(ηQOI) converge towards zero in h2 (consequence of Corollary
5.4, with s as close as we want to 1). In this case as in previous ones, the estimation (60) given
by Theorem 5.2 strongly overestimates the value of R (see Figure 14). Nevertheless and despite
this phenomenon, the estimator ηQOI provides once again a very accurate evaluation of the error
E , as indicated by the ratios of the error over the estimator displayed in Figure 15, and once
again nearly equal to one.

A Practical computation of the estimators

As mentioned in Remark 3.1, the potential reconstruction (Sh, ψh) of (Ah, ϕh) as well as the
flux reconstructions Hh and Je,h fulfilling (17)-(18)-(19) and corresponding respectively to ap-
proximations of µ−1curlA and σE are supposed to be available. We explain here how these
reconstructions have been performed in Section 6 devoted to the numerical validation.

First of all, since the chosen finite element spaces imply that (Ah, ϕh) belongs to H0(curl, D)×
H̃1(Dc) (see (71) for the finite element spaces definition), we then simply take (Sh, ψh) =
(Ah, ϕh). Now, let us explain how we have computed Hh and Je,h.

Like specified in the introduction, we first recall that the A-ϕ formulation (8) with ad hoc bound-
ary conditions is derived from the eddy current system (1). More precisely, we introduce the
vector and scalar potentials A and ϕ given by (7). Then, using the constitutive laws (2), we
only have to reformulate equations (1b) and (3) in terms of the A and ϕ variables to obtain the
A-ϕ formulation (8).

Another choice can also be done. Indeed, from (3) we can introduce a vector potential T such
that Je = curlT in Dc. Moreover, introducing Hs as an arbitrary source magnetic field satisfying
curlHs = Js in D, from (1b) a scalar potential Ω can be introduced such that H = Hs+T−∇Ω.
Consequently, the T-Ω formulation of the eddy current problem (cf. [28] for more details) reads

curl(σ−1 curlT) + jωµ(Hs + T−∇Ω) = 0 in Dc, (77a)
div(µ(Hs + T−∇Ω)) = 0 in Dc, (77b)

div(µ(Hs −∇Ω)) = 0 in D. (77c)

The numerical approximation (Th,Ωh) of (T,Ω) is computed with similar finite element spaces
than the ones used for the previous Ah-ϕh formulation. More precisely, we look this time for
(Th,Ωh) ∈ Ỹh × Z̃h, with

Ỹh = {T′h ∈ Yh :

∫
Dc

T′h · ∇ψh = 0,∀ψh ∈ Z0
h},

Yh = {T′h ∈ H0(curl, Dc) : T′h|T ∈ ND1(T ),∀T ∈ T ∩ D̄c},

Z̃h = {Ω′h ∈ H̃1(D) : Ω′h|T ∈ P1(T ), ∀T ∈ T },

Z0
h = {ψh ∈ H1

0 (Dc) : ψh|T ∈ P1(T ), ∀T ∈ T ∩ D̄c},

where ND1(T ) is defined by (72). Now, it remains to respectively define Hh and Je,h by :

Hh = Hs + Th −∇Ωh and Je,h = curlTh,
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which by construction are good approximations of µ−1curlA and σE and fulfill (17)-(18)-(19).

Similarly, we evaluate the values of (A∗h, ϕ
∗
h) ∈ V∗h, approximation of the solution (A∗, ϕ∗)

of (43), where V∗h is defined by (75). Finally, the flux reconstructions H∗h (approximation of
µ−1curlA∗) and J∗e,h (approximation of σE∗ = −σ(jωA∗ + ∇ϕ∗)), that belong respectively to
H(curl, D) and H(div, Dc) and satisfy the conservation properties (46) are evaluated using the
corresponding T∗-Ω∗ formulation of the adjoint problem, namely

curl(σ−1 curlT∗)− jωµ(q + T∗ −∇Ω∗) = 0 in Dc, (78a)
div(µ(q + T∗ −∇Ω∗)) = 0 in Dc, (78b)

div(µ(q−∇Ω∗)) = 0 in D. (78c)

The numerical approximation (T∗h,Ω
∗
h) of (T∗,Ω∗) is computed with similar finite element

spaces than the ones used for the previous A∗h-ϕ
∗
h formulation. More precisely, we look this time

for (T∗h,Ω
∗
h) ∈ Ỹ ∗h × Z̃∗h, with

Ỹ ∗h = {T′h ∈ Y ∗h :

∫
Dc

T′h · ∇ψh = 0,∀ψh ∈ Z∗,0h },

Y ∗h = {T′h ∈ H0(curl, Dc) : T′h|T ∈ ND2(T ),∀T ∈ T ∩ D̄c},

Z̃∗h = {Ω′h ∈ H̃1(D) : Ω′h|T ∈ P2(T ),∀T ∈ T },

Z∗,0h = {ψh ∈ H1
0 (Dc) : ψh|T ∈ P2(T ),∀T ∈ T ∩ D̄c},

where ND2(T ) is defined by (72). Finally, it remains to respectively define H∗h and J∗e,h by :

H∗h = q + T∗h −∇Ω∗h and J∗e,h = curlT∗h,

which by construction are good approximations of µ−1curlA∗ and σE∗ and satisfy the conserva-
tion properties (46).

Let us note that in order to compute Hh, Je,h, H∗h and J∗e,h, we have to solve some global prob-
lems, namely the Th-Ωh one given by (77) and the T∗h-Ω

∗
h one given by (78). In that case, these

reconstructions are not local. Nevertheless, they depend neither on (Ah, ϕh), nor on (A∗h, ϕ
∗
h),

so that the computation of (Ah, ϕh), (A∗h, ϕ
∗
h), (Th,Ωh) and (T∗h,Ω

∗
h) can be done simultane-

ously. An alternative should be to compute Hh, Je,h, H∗h and J∗e,h locally by a post-processing
of (Ah, ϕh) and (A∗h, ϕ

∗
h), we refer to [9] section 3.2 for some explicit examples.
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