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Transition from wave turbulence to acousticlike shock-wave regime

Guillaume Ricard∗ and Eric Falcon†

Université Paris Cité, CNRS, MSC, UMR 7057, F-75013 Paris, France

We report on the experimental observation of a transition from a dispersive wave turbulence
regime to a nondispersive regime involving shock waves on the surface of a fluid. We use a magnetic
fluid in a canal subjected to an external horizontal magnetic field to tune the dispersivity of the
system. For a low magnetic field, gravity-capillary wave turbulence is observed, whereas for a high
enough field, random steep coherent structures arise which are found to be shock waves. These
shock waves create singularities in the second-order difference of the surface elevation, leading to an
ω−4 frequency power spectrum. This spectrum is also found to be controlled by the number and
amplitude of the shocks and is well captured by a model based on a random Dirac-δ distribution
(Kuznetsov-like spectrum). Finally, the shock-amplitude statistics exhibits a power-law distribution
with an exponent close to the predictions of the one-dimensional random-forced Burgers equation.
This shock-wave regime, discovered here for surface waves, thus paves the way to better explore
their properties.

I. INTRODUCTION

Wave turbulence is a statistical state in which numerous random weakly nonlinear waves interact with each other.
This phenomenon is described by the weak-wave turbulence theory (WTT) which predicts a power-law cascade of
the wave energy spectrum from large to small scales [1–3]. This out-of-equilibrium stationary state occurs in various
domains with different scales such as ocean surface waves, plasma waves, hydroelastic waves, elastic waves on a
plate, internal or inertial waves on rotating stratified fluids, and optical waves [2]. Despite its success in predicting
analytically the wave spectrum, WTT requires many assumptions (e.g., infinite system, weak nonlinearity, constant
energy flux, timescale separation, and dispersive waves), which can be difficult to satisfy experimentally. Although
wave turbulence has been assessed in different experimental systems [4–9], it is of paramount interest to know the
validity domain of the theory in experiments regarding its assumptions. For example, finite-size effects are beginning
to be considered theoretically [10, 11] and experimentally [12–15] for hydrodynamics surface waves. Finite-amplitude
effects have also been tackled to address the existence of a transition from weak to strong wave turbulence [2].

In comparison, few studies have investigated whether or not wave turbulence exists in a nondispersive wave system.
In this case, waves of different frequencies travel with the same phase velocity and thus cannot transfer energy between
each other by resonant interactions [2]. This leads to the breaking of a main assumption of WTT, and coherent
structures such as solitons or shocks are thus expected due to cumulative effects of the nonlinearity [16, 17]. This has
been the source of a long-standing debate about whether acoustics waves should be considered as a random set of shocks
(leading to the Kadomtsev-Petviashvili spectrum) [18] or if WTT is applicable for their description [19]. Indeed, three-
dimensional acoustic WTT could be theoretically possible because the large range of possible wave directions in three
dimensions acts as an effective dispersion [2, 16, 17, 19], although yet unsupported by a rigorous proof [20]. Conversely,
WTT is not applicable for two-dimensional (2D) nondispersive acoustic waves, but can be regularized by weakly
dispersive effects leading to predictions for 2D weakly dispersive acoustic wave turbulence [20]. Weakly dispersive
wave turbulence also occurs theoretically or numerically for Alfvén waves in plasma [21], gravitational waves in the
early universe [22] and elastic waves on a stretched membrane [7]. Experimentally, a weakly dispersive wave regime can
be obtained on the surface of a magnetic fluid subjected to an external horizontal magnetic field. The latter modifies
the dispersion relationship of surface waves adding a nondispersive term that is tunable experimentally [23]. In this
case, dispersive wave turbulence is evidenced experimentally in two dimensions because of the anisotropic dispersion
relation, nondispersivity occurring only in the magnetic field direction [24, 25]. Another method to experimentally
control the wave dispersion is to decrease the fluid depth of gravity-capillary wave turbulence from a deep regime to
a shallow one [26, 27]. This deep-to-shallow transition leads to a less steep gravity wave spectrum, the formation of
a depth-dependent hump in the capillary spectrum (as an analog of a bottleneck effect) for a weak forcing [26], and
the formation of coherent structures as solitons when the forcing is strong enough [27, 28].

Here, we use a one-dimensional (1D) canal filled with a magnetic fluid subjected to an external horizontal magnetic
field to tune the dispersivity of the wave system within a deep-water regime. At a low magnetic field, the classical
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quasi-1D dispersive gravity-capillary wave turbulence is observed [29], whereas at a high enough field a nondispersive
regime is reached. In the latter, we observe the emergence of random shock waves, keeping their shape over time, with
a very steep profile close to the one derived from the 1D Burgers equation [30], although not reaching a fully vertical
front. They are characterized by a discontinuity that leads to a Dirac-δ singularity in the second-order difference
of their amplitude. We show that these shock waves are coherent structures rich in the frequency domain, which
carry energy over the canal. They thus become the main mechanism building the wave energy spectrum. Indeed, we
found that the energy spectrum of these shocks agrees with a model of a Kuznetsov-like spectrum of second-order
singularities [31]. The shock-wave statistics are also reported and show that their probability distribution is close to
the one of a diluted gas of shocks driven by the 1D random-forced Burgers equation [32–36]. A phase diagram of
the wave turbulence and shock-wave regimes is also reported as a function of the control parameters. The energy
transfer driven by the shock waves is thus fundamentally different from the local one occurring in wave turbulence by
nonlinear wave resonant interactions.

The article is organized as follows. We first present in Sec. II some theoretical background (dispersion relationship,
magnetic steepening, and energy spectrum predictions). Section III presents the experimental setup. Section IV
shows the experimental results on the wave energy spectrum (using spatiotemporal, time-frequency, and frequency
analyses), the energy flux, and timescales. Section V focuses on the nondispersive regime emphasizing the presence
of dissipative coherent structures as shock waves, and their statistics. Section VI presents the model used to predict
the shock wave spectrum and the conditions for an experimental agreement. We summarize in Sect. VII.

II. THEORETICAL BACKGROUND

A. Dispersion relation

The dispersion relation of one-dimensional linear deep-water inviscid gravity-capillary waves reads ω2 = gk +
(γ/ρ)k3, with ω = 2πf the angular frequency, k the wave number, g the acceleration of gravity, γ the surface tension,
and ρ the density of the liquid [37]. For a magnetic liquid subjected to a horizontal magnetic induction B (collinear
to the wave propagation), an additional nondispersive term, i.e., acousticlike term in ω ∼ k, has to be taken into
account for which its strength is controlled by B. The corresponding dispersion relation then reads [23, 38]

ω2 = gk +
γ

ρ
k3 + v2A(B)k2, (1)

where v2A = µ0M
2

1+µ/µ0
is the characteristic nondispersive velocity analogous of the Alfvén wave velocity in plasma [39],

M(B) is the magnetization within the liquid depending on the applied magnetic field induction B, µ0 = 4π ×
10−7 Tm/A is the magnetic permeability of a vacuum, and µ = µ0(1 + ∂M

∂B ) is the liquid permeability [23]. Note that
B should not be confused with the external magnetic field, H = B/µ−M , even if B will be hereafter referred to as
the magnetic field. The dispersion relation can be rewritten as

ω = vA(B)k
√

1 + αk−1 + βk, (2)

with α = g/v2A and β = γ/(ρv2A). A nondispersive regime ω ∼ k could be obtained if the gravity and the capillary
terms are much smaller than the magnetic one, i.e., if

αk−1 < C and βk < C , (3)

where C is a chosen constant quantifying the ratio between the magnetic term and the gravity or capillary one.
Using the dispersion law of Eq. (1), we plot in Fig. 1 the theoretical diagram of the predominance of the gravity,
capillary, and magnetic regimes [24] as a function of the parameter C. From our ranges of experimental parameters
used afterward, we can reach C ∼ 20, i.e., a magnetic term larger than 20 times each of the other two. This will
be possible because of the use of a ferrofluid with a high magnetic susceptibility and a relatively low viscosity (see
below).

B. Magnetic wave steepening

It is worth noting that in the dispersion law of Eq. (1) the magnetic term comes from the spatiotemporal fluctuations
of the magnetic field generated at the liquid-gas wavy interface to satisfy the magnetic boundary conditions at the
interface [23]. The magnetic fluctuations h at the interface in the direction Ox of the constant horizontal field
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FIG. 1. Theoretical diagram of the predominance of the gravity, capillary, and magnetic regimes. Here, C is defined as how
much the magnetic term is bigger than the two others. The experimental ranges are f < 100 Hz and vA < 0.55 m/s (i.e.,
B < 760 G). The white vertical dashed line corresponds to the run at vA = 0.51 m/s.

H are obtained due to a calculation similar to the one performed in [23] for a vertical magnetic field and read
h1 = h2 = Mηk(1 + µ/µ0), where indices 1 and 2 refer to the magnetic liquid and the gas, respectively. The more
important the surface perturbation is, the more the fluctuation in the magnetic field appears. With typical values used
here (B ≈ 760 G, µ0M ≈ 340 G, µ/µ0 ∼ 1.05, k ≈ 500 m−1, and η ≈ ±1 mm), the magnetic induction fluctuations
b1 = µh1 and b2 = µ0h2 are about ±80 G, that is to say, about ±10% of the applied value. We can thus infer the
magnetic force Fm acting on the fluid in the x direction as Fm = µ0M

ρ
∂h
∂x = ρv2Ak

2η. Fm acts more at the extrema

of a wave than at its base (η = 0) and thus leads to a steepening of the wave and a difference of the fluid velocity
along the wave height. This mechanism is the source of the appearance of shock waves as it is for the Burgers shock
waves [30] (see Sec. IV B). Note that no experimental comparison is performed here to check the above theoretical
predictions on the field fluctuations h, but such a comparison is done to explain qualitatively the physical process
of the shock-wave formation observed below. Note also that magnetic stress, called Maxwell stress, occurs at the
interface of a magnetic fluid [23]. For a horizontal magnetic field, this stress sn = − 1

2µ0H
2, normal to the surface,

tends to flatten the surface wave acting as a stabilizer. This higher-order effect will be not visible here but might
appear at higher vA, although not achievable experimentally.

C. Energy spectra

Wave turbulence arises from the interaction of weakly nonlinear waves and is described by the weak turbulence
theory [1, 2]. The latter predicts that the wave energy spectrum follows a power-law cascade of the scale (frequency or
wavenumber) only for a system involving a single term in its dispersion relation ω(k). For example, in one dimension,
pure gravity waves dominated by five-wave resonant interactions are predicted to have a power spectrum of the surface
elevation η as Sη ∼ ω−17/4 [40]. It has been also observed experimentally that 1D capillary waves are dominated by

five-wave resonant interactions and follow a power spectrum in Sη ∼ ω−31/12 [29]. Thus, for a 1D gravity-capillary
system (with no magnetic field), these two asymptotic spectra are thus expected, the pure gravity spectrum for large
enough scales (f . 5 Hz) and the pure capillarity one for small enough scales (f & 50 Hz) [9]. However, the finite size
of our experimental system and the nonvanishing viscosity of the fluid used here will lead to work in the intermediate-
frequency scales and thus to an entanglement of the gravity and capillary effects [9]. Indeed, for a 1D gravity-capillary
system, we previously reported experimentally a power-law spectrum in Sη ∼ ω−3.3±0.2 in the intermediate-scale range
as a result of the occurrence of three-wave interactions [29] [see also the purple curve in Fig. 7(a)].

Coherent structures are more likely to appear in one dimension than in higher dimensions [28]. For instance, transi-
tions from wave turbulence to solitonic regimes have been predicted theoretically [28] and observed experimentally [27]
for 1D gravity waves in shallow water, coherent structures such as Korteweg–de Vries solitons occurring as a result
of the weak dispersion. For 1D deep-water gravity waves, other types of solitons, e.g., Peregrine solitons or envelope
solitons, were observed experimentally [41, 42], but are not expected in our study. Nevertheless, since our system is
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nondispersive at high vA, other coherent structures could arise such as singularities [28]. Singularities can be defined
by local discontinuities of order n in the wave field, i.e., leading to a Dirac-δ distribution on the nth-order derivative of
the wave field ∂nη. As discontinuities contain energy at all frequency scales [31, 43], these coherent structures would
lead to a spectrum only driven by their geometry, i.e., the order of the discontinuity. Since the power spectrum of a
Dirac-δ distribution occurring on ∂nη is a white noise, i.e., S∂nη ∼ const, one has thus, by integration, the spectrum
of η in Sη ∼ ω−2n. For discontinuities of the first order n = 1 (e.g., shock waves in the Burgers’ equation) an acoustic
spectrum in Sη ∼ ω−2 is thus excepted, i.e., the Kadomtsev-Petviashvilli spectrum [18, 44, 45]. If discontinuities are
of second order n = 2, e.g., sharp-crested waves, or shock waves not reaching a fully vertical front, one thus expects
to obtain a spectrum in Sη ∼ ω−4 (or Kuznetsov-like spectrum) [31].

η(t)

η(x,t)

xy

z

L

Ly

d

B
Coil

Coil
laser

FIG. 2. Experimental setup. A pair of Helmholtz coils generates a horizontal homogeneous magnetic field B on the ferrofluid
surface. Random waves are driven by a wave maker linked to a shaker at one end of the canal. The wave elevation η(t) is
measured at a single point using a capacitive wire gauge, and resolved in space and time η(x, t) with a laser sheet profilometry
using a camera and a laser sheet illuminating a horizontal line of the free surface.

III. EXPERIMENTAL SETUP

Experiments were performed in a canal made of polytetrafluoroethylene, i.e., Teflon, to decrease the wetting,
with a length L = 15 cm and a width Ly = 2 cm (see Fig. 2). This hydrophobic canal is filled up to a depth
d = 2 cm with a ferrofluid (see below). A shaker linked to a wave maker is located at one end to inject energy
in a narrow random frequency bandwidth f0 ± ∆F , with f0 = 8.5 Hz and ∆F = 2.5 Hz. Since L � Ly, waves
propagate only in the longitudinal (Ox) direction and are thus considered to be quasi-1D [29]. The whole setup is
located between two vertical coils in Helmholtz configuration, 25 cm in internal diameter, generating a horizontal
magnetic field (B ∈ [0, 800] G) homogeneous on the liquid surface. Two measurement methods of surface elevation
are used: a single point measurement and a laser sheet profilometry (LSP). The temporal variations of the surface
elevation η(t) are measured at a single point using a homemade capacitive wire gauge (0.22 mm in diameter and
10 µm vertical resolution) [4] with a 2 kHz sampling frequency leading thus to a resolved frequency up to 1 kHz
and thus to a discretization time dt = 0.5 ms. A space- and time-resolved wave-field measurement η(x, t) is reached
by the LSP method. A camera (Basler, 200 frames/s) is located above the canal and the wave field is illuminated
over 8 cm with a laser sheet at an angle of α = 45◦ with respect to the horizontal (see Fig. 2). The horizontal
shift ∆y(x, t) of the laser sheet along Oy detected by the camera is hence directly linked to the surface elevation
by η(x, t) = ∆y(x, t)/ tan (α) = ∆y(x, t) [46]. The horizontal and vertical resolutions of LSP are 43 µm. The wave
elevation is monitored for both measurements for T = 15 min.

We use a Ferrotec PBG400 ferrofluid. This black-brown opaque ferrofluid offers high magnetization, high colloidal
stability, and superparamagnetic properties. It is a water-based (with polyethylene glycol) suspension synthesized
with 7.9% by volume of ferromagnetic particles (Fe3O4 iron oxide, 10 nm in diameter). The properties of the liquid are
density ρ = 1400 kg/m3, surface tension γ = 34 mN/m, kinematic viscosity ν = 2.86×10−6 m2/s, magnetic saturation
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FIG. 3. Power spectrum Sη(k, ω) of the wave elevation for (a) vA = 0, (b) vA = 0.3, and (c)vA = 0.47 m/s. The constant
wave steepness ε ' 0.07. The solid line shows the theoretical dispersion relation ω(k) of Eq. (1) in the (a) dispersive, (b)
intermediate, and (c) nondispersive cases. In the latter case, the slope of the straight line is 1/vA. The dashed line shows the
spread dispersion relation ω(k)± δω with δω = 30 Hz. The white rectangle shows the fixed frequency forcing range between 6
and 11 Hz. The color bar is on a logarithmic scale.

Msat = 440 G, and initial susceptibility χi = 3.28. Note that Msat = lim
B→∞

M and χi = ∂M
∂B |B=0 are obtained due to

the magnetization curve M(B) provided by Ferrotec. Here M(B) is also used to compute the characteristic velocity
vA(B) used in Eq. (1) (see Appendix A). The ferrofluid high sensibility to magnetic effects with a relatively low
viscosity is crucial to reach experimentally a significant inertial range (see Fig. 1). To quantify nonlinearities, we
measure the wave steepness as ε ≡ σkm, where σ is the standard deviation of the surface elevation signal, computed

as

√
η(t)2 or

√∫
L
η(x, t)2dx/L (the overline is time average), and km is the wave number for which the wave spectrum

is maximum (typically at the forcing scale) [13, 47]. We keep ε ' 0.07 to validate the weak nonlinearity assumption
from WTT.

IV. EXPERIMENTAL RESULTS

A. Spatiotemporal spectral analysis

From LSP measurements, applying to the surface elevation η(x, t) a double space and time Fourier transform
η̂(k, ω), we compute the spatiotemporal power spectrum Sη(k, ω) = |η̂(k, ω)|2/(T L). Note that the signal η(x, t) has
been increased in length using its spatial symmetry to reach symmetric boundary conditions to compute Sη(k, ω). A
Hanning windowing (hanning Matlab function) has also been performed to improve the quality of the spectrum. The
space-time power spectra Sη(k, ω) are shown in Fig. 3 for different applied magnetic field B, that is, for different vA.
In Fig. 3(a), vA = 0 m/s, meaning that the wave field is only driven by gravity and capillary effects. In this case, the
wave energy is found to cascade over small scales and is concentrated around the gravity-capillary dispersion relation
(white solid line). This is a clear indication of the presence of wave turbulence as previously reported in Ref. [29]. A
spectral broadening δω of the wave energy around this dispersion relation is also observed due to nonlinearities [29]
and is estimated1. When the magnetic field is increased [Figs. 3(b) and 3(c)], the energy still cascades following
the dispersion relation, but is now influenced by the magnetic effects lowering significantly the spectrum [see solid
lines in Figs. 3(b) and 3(c)]. For vA = 0.47 m/s, the nondispersive term in Eq. (1) is at least ten times larger than
the dispersive ones in the range of interest (20 < f < 100 Hz) as quantified in Fig. 1. As a consequence of this
quasinondispersive dispersion relation, the wave energy is then found to be concentrated around a straight line of
slope close to 1/vA as shown in Fig. 3(c). We thus evidence a transition from a dispersive gravity-capillary wave field
to a nondispersive magnetic wave field where all waves travel at a constant velocity vA. The operator thus controls the
dispersivity of the system via the parameter vA(B). Note that a slight mismatch between the theoretical dispersion
relation and the experimental data occurs at large vA. This might be due to the inhomogeneous magnetic fluctuations

1For each k, δω is estimated by fitting the spectrum Sη(k, ω) by a Gaussian function of ω. The standard deviation of this fit gives an
estimate of δω whose average over the k values is δω = 30 Hz, which is almost constant for all values of vA.
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appearing along the wave height as explained in Sec. II B. The fluctuations of the field, involving fluctuations of vA,
explain the mismatch but are not quantified in the present study. Note also that for vA = 0.47 m/s a weaker branch of
the energy appears at the top of Fig. 3(c). Although the maximum visible frequency in the spectrum is fe/2 = 100 Hz,
i.e., half the sampling frequency, energy at higher frequencies f > fe, i.e., k/(2π) > 198 m−1 for vA = 0.47 m/s,
can be seen, however, due to the spectrum aliasing effect. Despite viscous effects acting from about 100 Hz, energy
occurring at higher frequencies is a consequence of singularities that give energy to all frequencies (see below). Note
also that no other coherent structure such as bound waves appears in Fig. 3.

B. Surface elevation signals and time-frequency analysis

Typical temporal signals of the surface elevation η(t) (black line) and of its first-order difference δη(t) = η(t+dt)−
η(t) (red lines) are shown in Fig. 4(a) for the dispersive case (vA = 0 m/s) and in Fig. 4(c) for the nondispersive
case (vA = 0.51 m/s). We also compute the corresponding wavelet transforms (using the continuous 1D wavelet
transform Matlab function) [48] to obtain a time-frequency analysis of the energy spectra as plotted in Figs. 4(b)–
4(d) (see Appendix B for longer signals). The wavelet transform is preferred to a short-time Fourier transform, e.g.,
spectrogram, that has issues with the frequency-time resolution trade-off. For the dispersive case (vA = 0 m/s), no
coherent structure appears for the temporal evolution of the surface elevation, its first-order difference δη remaining
close to 0. For the nondispersive case (vA = 0.51 m/s) the typical wave height is found to increase, whereas some peaks
occur in its first-order difference corresponding to discontinuities in η(t). As discussed in Sec. II B, a concentration
of the magnetic field lines occurs at the crests and troughs of the wavy interface to satisfy the magnetic boundary
conditions at the interface [23], leading to a stronger magnetic field and so to a stronger value of vA at the wave crest
than at its base. Thus, for a given wave, vA depends on the vertical coordinate z with ∂vA/∂z > 0. Since the wave
crest is faster than its base, it ends up creating a discontinuity, i.e., a singularity, called afterward shock wave. Shock
waves are also visible in the wavelet spectrum [Fig. 4(d)], where energy is present at all frequencies even beyond the
viscous scale of the order of 100 Hz. Although subjected to dissipation during their propagation, shock waves are
thus coherent structures rich in the frequency domain. Note that the Maxwell stress which should decrease the wave
height in the magnetic field direction [23, 25] is not reported here. This higher-order effect could occur at higher vA
not experimentally achievable in our parameter range (see Appendix C).
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FIG. 4. (a) Typical temporal evolution of the surface elevation η(t) (black line) and its first-order difference δη(t)/dt (red line)
and (b) corresponding time-frequency spectrum of η(t) obtained by a wavelet transform, for the dispersive case (vA = 0 m/s).
(c) and (d) Same as in (a) and (b) but for the nondispersive case (vA = 0.51 m/s). Here ε ' 0.07 in the two cases.
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FIG. 5. Enlargement of a typical shock wave η(t) (black solid line), its first-order difference δη(t)/dt (red solid line) and its

second-order one δ2η(t)/dt2 (blue solid line) in the nondispersive case (vA = 0.51 m/s). The value of δ(2)η/dt2 is divided by 500
to observe it on the same vertical scale as δη/dt. Dashed lines show the same but when the singularity is removed by numerical
postprocessing, thus smoothing the signals. The black arrow shows the direction of wave-front propagation. The purple arrow
shows the nonlinear timescale of a shock wave, τSnl, (see Sec. IV E). The inset shows the enlargement of the shock wave with
only experimental discrete data to evidence the jump at the second-order discontinuity.

A typical shock wave signal η(t) and its first- and second-order differences δη(t) = η(t + dt) − η(t) and δ(2)η(t) =
η(t+2dt)−2η(t+dt)+η(t) respectively, are plotted in Fig. 5 for the nondispersive case (vA = 0.51 m/s). We checked
that this localized singularity keeps its shape and travels along the canal at constant velocity with no breaking (see
Appendix D for the displacement of a single shock along the canal). The discontinuity in η(t) displayed in Fig. 5
corresponds to a rather long peak in its first-order difference δη and to a very thin peak in its second-order difference
δ(2)η. This short peak is assumed to be close to a Dirac peak, to claim that the singularity observed here is of
second order. It is worth noting that the nondispersive shock waves observed here do not exhibit a fully vertical
front. This observation is emphasized in the inset of Fig. 5, where only the experimental discrete data of the shock
wave are plotted. A jump in the signal is visible corresponding to a second-order discontinuity of η(t). Although a
fully vertical shock cannot be measured with a single-point gauge, the spatiotemporal measurement of the shock-wave
shape confirms that the latter does not reach a fully vertical front (see Appendix D). The shocks observed therefore
differ from classical shock waves driven by the 1D Burgers equation displaying singularities of the first order (Dirac-
δ distribution in their first-order difference) [30]. Even if its amount is small, dispersive effects might prevent the
formation of a vertical-front shock wave, and it is difficult to say if higher vA values would lead to a vertical front
since the Maxwell stress would occur, flattening the waves. Note that each singularity in the system can be removed
by numerical postprocessing, leading, as expected, to smoothing the signal around the discontinuity (see dashed lines
in Fig. 5).

To compare the typical shape of our coherent structures (Fig. 5), we solve numerically the 1D Burgers equation [30]

∂η

∂t
+Aη

∂η

∂x
= ν

∂2η

∂x2
, (4)

with A = vA/d (vA = 0.5 m/s and d = 2 cm) a constant chosen for dimensional homogeneity and ν = 2.86×10−6 m2/s
the kinematic viscosity of the liquid. We use an implicit scheme using the Crank-Nicolson formulation [49] and a
Thomas algorithm [50] with the initial condition η(x, t = 0) = sin(x). The numerical grid is resolved with 1024
points. The results are plotted for different times in Fig. 6(a). As expected, a steepening of the wavefront appears
before dissipation decreases slightly the amplitude of the shock. This kind of vertical shock would lead to breaking
experimentally. No fully vertical front appears experimentally, but rather a shape close to the one obtained just
before the Burgers shock, and that is conserved over time [see Figs. 5 and 6(b)]. Moreover, this shock-wave shape
exhibits both for the numerical and experimental results a long peak on the first-order difference δη and a short peak
(similar to a Dirac one) on the second-order difference δ(2)η. To sum up, as a consequence of the magnetic effects,
this nondispersive system generates coherent structures that are close to the Burgers shock waves with a slightly less
steep front (less than 0.1%) and a self-similar shape that is conserved over time. It is worth noting that even if strong
similarities occur between the numerical results of the Burgers equation and the experimental results found here, e.g.,
the presence of shock waves and nondispersive system, no rigorous analytical link is established in the present study.
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FIG. 6. Numerical solution of the 1D Burgers equation, η(x, t), following an implicit scheme from a sinusoidal initial condition
at t = 0 (blue). (a) Solutions for increasing values of t (from blue to orange). (b) Solution at a fixed time t (just before reaching

the vertical front) along with the corresponding first- (δη/dx, red solid line) and second-order difference (δ(2)η/dx2, blue solid
line). The abscissa is from right to left to be consistent with the experimental temporal measurements in Fig. 5. The arrows
show the direction of the wave-front propagation.

The link is only qualitative (see Sec. IV C for power spectra and Sec. V for probability density functions of the surface
elevation) but provides some interesting insights that deserve further theoretical work.

C. Experimental wave energy spectra

The frequency power spectrum Sη(ω) ≡ |η̂(ω)|2/T is now computed from the single-point measurement of the
surface elevation η(t) using its temporal Fourier transform η̂(ω). Sη(ω) is shown in Fig. 7(a) for different dispersion
strengths, i.e., different vA. For the dispersive case (vA = 0 m/s), the wave spectrum follows a power-law cascade
characteristic of wave turbulence although occurring over a rather small inertial range (bottom blue curve). This
frequency range (between 20 and 70 Hz) corresponds to the entanglement of gravity and capillary effects, whereas no
pure capillary wave turbulence is observed here due to viscous effects (f & 70 Hz). Note that the exponent of this
frequency power law Sη(ω) ∼ ω−3.0±0.3 is close to what was obtained with a low-viscosity fluid, e.g., mercury with
Sη(ω) ∼ ω−3.3±0.3, within a similar gravity-capillary frequency range [see purple curve in Fig. 7(a)] [29].

For quasi-nondispersive cases (high enough vA), two phenomena are visible on the power spectra. The first one
is the emergence of well-defined series of local peaks. These peaks are found to be separated by a frequency gap
∆f which is nearly constant for a single value of vA. The frequency gap is averaged for each spectrum and plotted
against vA in Fig. 7(b). Two sets of measurements corresponding to two different forcing are plotted and are well
fitted linearly by 〈∆f〉f = vA/L

′, i.e., 〈∆ω〉f = vA(2π/L′) with L′ = 13 cm the length of the canal L minus the
gap filled by the wave maker (∼ 2 cm). As all waves travel with the same nondispersive velocity, they are then
detected by the single-point gauge every same time 1/∆f . This implies the emergence of peaks of frequencies that
are directly linked to the main eigenmode of the canal 2π/L′. Finite-size effects thus emerge experimentally because
of the nondispersivity.

The second effect of the nondispersivity is visible at high frequencies of the power spectra. A very-well-defined
power law appears on one decade in the range f ∈ [30, 300] Hz, thus well beyond the beginning of viscous effects
around 100 Hz. This cascade scales in Sη(ω) ∼ ω−4.01±0.05 and is found to agree with the Kuznetsov spectrum of

singularities of second order n = 2, i.e., Dirac-δ distribution on the second-order difference δ(2)η, conserving their
shape, i.e., ω ∼ k [31]. The shock waves present in the signal thus spread energy at all frequency scales. When
removing the singularities from the signal (as in Fig. 5), the previous well-defined power law in ω−4 in the power
spectrum disappears and dissipative effects seem to drive the cascade after 90 Hz [see dashed lines in Fig. 7(a)]. These
results evidence a transition from gravity-capillary wave turbulence, in the dispersive case (vA = 0 m/s), for which
the cascade mechanism is due to resonant interactions between weakly nonlinear waves, to a nondispersive regime
(vA = 0.51 m/s) where the energy is mainly concentrated in second-order singularities (n = 2) and dissipated by
viscous effects.

Using the spatiotemporal measurements averaged over time, the wave-number power spectrum Sη(k) is plotted
in the inset of Fig. 7(b) for different values of vA. At vA = 0 m/s, a power law in k−2.4±0.1 is observed due to
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FIG. 7. (a) Frequency spectra Sη(f) for different vA (solid lines) and ε ' 0.07 on a log-log plot. Spectra have been shifted
vertically for clarity. The dashed lines show the same but with the singularities removed from the signal. The gray area is the
frequency bandwidth of the random forcing. The black dash-dotted line shows f−4.01 best fit for vA = 0.51 m/s, f−3.0 best fit
for vA = 0 m/s, and f−3.3 best fit for vA = 0 m/s using mercury [29]. Here ∆f is the frequency difference occurring between
two successive spectrum peaks. (b) Evolution of the mean frequency gap 〈∆f〉f between local spectral peaks as a function of
vA for two sets of forcing, either at constant ε or at constant standard deviation σ of the surface elevation. The dashed line
shows the best linear fit in vA/L

′ with L′ = 13 cm, the available canal length. Error bars come from the standard deviation
of the measurement of ∆f . The inset shows wave-number power spectra Sη(k) for different vA and ε ' 0.07 on a log-log plot.
Spectra have been shifted vertically for clarity. Black dash-dotted lines show the best fits in k−4.1 for vA = 0.47 m/s, k−2.4 for
vA = 0 m/s using ferrofluid, and k−3.2 for vA = 0 m/s using mercury [29].

gravity-capillary wave turbulence. This power-law exponent differs from the one found for a much less viscous fluid,
i.e., mercury [29], plotted also in the inset of Fig. 7(b). At large vA, a steeper power law in k−4.1±0.1 is found, and the
exponent is close to the one found for the frequency power spectrum Sη(ω) ∼ ω−4.01. This similarity thus confirms
that a nondispersive regime is achieved since the two spectra are linked by Sη(k)dk = Sη(ω)dω using ω ∼ k. The
spectrum close to k−4 is hence a spectrum of second-order discontinuities due to shock waves, which supports the
conclusion made with the temporal spectrum on the second-order singularities. Note that, in the inset of Fig. 7(b),
the forcing scale moves to smaller k with increasing vA as a result of Eq. (1) with a constant forcing frequency. Note
also that because of the lowering of the dispersion relation with increasing vA as observed in Fig. 3, the measurement
noise level appears at k/2π > 400 m−1 for vA = 0 m/s and at k/2π > 200 m−1 for vA = 0.47 m/s. The statistics of
the shock waves will be thus performed in Sec. V using the single-point measurements due to their better resolution
and signal-to-noise ratio than the spatiotemporal ones.

D. Energy flux

Weak turbulence theory aims to describe wave turbulence but requires strong hypotheses [1–3]. In particular, WTT
assumes a constant energy flux during the energy cascade through the scales. In this section, we test this hypothesis
when the wave turbulence regime occurs (vA = 0 m/s) and how the energy flux departs from a constant when reaching
the shock-wave regime (at high vA).

The energy flux P is computed as P (ω∗) =
∫ ωm

ω∗ E(ω)D(ω)dω with E(ω) = gSη(ω) + v2AkSη(ω) + (γ/ρ)k2Sη(ω)

the total wave-energy density, D = k(ω)
√
νω/2 the main contribution of the viscous energy dissipation rate for a

contaminated interface [29, 37, 47, 51], ωm/(2π) = 1000 Hz, and k(ω) as in Eq. (1). The variation of P over frequency
scales is plotted in Fig. 8 for different vA with (solid lines) and without (dashed lines) shock waves. For low values
of vA, the energy flux is, as expected, constant in the inertial range (as in [29]), showing that no dissipation occurs
in this range and that the energy cascades over scales continuously because of wave interactions following WTT
predictions. P is found to increase with vA as a consequence of the increase of the energy at the forcing scales that is
required to keep a constant wave steepness [because vA increases the wavelength as shown by Eq. (1)]. Furthermore,
for large values of vA, P is no longer constant and is found to decrease with f . This can be explained by dissipation
that occurs at all scales [51]. As shock waves travel by conserving their shape, they transport energy over space
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FIG. 8. Evolution of the indirectly measured energy flux P with the frequency f , for ε ' 0.07. Solid lines correspond to
different vA. Dashed lines show the same but with singularities removed by signal postprocessing. The gray area indicates the
forcing frequency bandwidth.

without any interactions. While they transport this energy, viscous dissipation occurs reducing their amplitude until
they disappear (see Appendix D). Note that the presence of the discontinuity in the shock wave does not have any
significant impact on the energy flux (solid and dashed lines are almost superimposed in Fig. 8), even when the
discontinuity is removed, the energy is still in the shock wave and continues to travel and to be dissipated.

E. Timescales

We now test another WTT assumption, namely, the timescale separation between the linear time τl, the nonlinear
time τnl, the dissipation time τdiss (quantifying dissipative effects), and the discreteness time τdisc (quantifying finite-
size effects of the canal) [9, 15, 29]. Indeed, WTT assumes [2]

τl(ω)� τnl(ω)� [τdiss(ω); τdisc(ω)], (5)
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FIG. 9. Wave turbulence timescales as a function of the frequency scale f for different vA. The solid black line shows the
linear timescale τl = 1/ω. Circles show the nonlinear timescale τnl estimated from Fig. 3. Colored solid lines show the linear
viscous dissipation timescale τdiss (see the text). Colored dashed lines show the discreteness time τdisc (see the text). The
purple dash-dotted line shows the nonlinear shock-wave timescale τSnl estimated from Fig. 5.
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FIG. 10. (a) Phase diagram between the dispersive wave turbulence regime and the shock-wave regime as a function of the
magnetic parameter vA and the wave steepness ε. The dash-dotted line distinguishes the predominance of each regime (random
waves or localized shock-wave structures) and corresponds to a fixed shock rate Γ ≈ 0.1 s−1. (b) PDF of the time dtS between
two successive shocks for all vA values and Γ > 0.1 s−1. The color bar is the same as in (a). The black-dashed line is the best
fit in e−0.78dtS .

regardless of ω = 2πf in the inertial range. The nonlinear evolution is thus assumed to be slow compared to the
fast linear oscillations (wave period) but short compared to the typical wave dissipation time and the time linked to
finite-size effects, enabling then an energy cascade to occur in the inertial range. The evolutions of these timescales
with f are plotted in Fig. 9. The linear timescale is defined as τl = 1/ω (black solid line). The nonlinear timescale τnl
(colored circles) is estimated by the broadening of the energy around the dispersion relation as 1/δω (see Fig. 3). τnl
follows a frequency power law close to f−1/2 and decreases slightly with vA. The dissipation timescale τdiss (colored

solid lines) is computed as τdiss = 2
√

2/[k(ω)
√
νω], the main viscous contribution from the surface boundary layer

with an inextensible film [37, 51]. This time increases with vA meaning that dissipative effects are less significant at
high vA. This effect can be observed in the spectra in Fig. 7(a), even when the discontinuities are removed (energy is
present until 250 Hz for vA = 0.51 m/s and less than 150 Hz for vA = 0 m/s). The discreteness time τdisc (colored
dashed lines) is computed as τdisc = 1/∆ωdisc with ∆ωdisc = (∂ω/∂k)∆k and ∆k = 2π/L′ the first eigenmode of the
canal [9]. No discreteness effect is expected for τnl(ω) < 2τdisc(ω), i.e., when the nonlinear spectral widening is larger
that the half-frequency separation between adjacent eigenmodes. This discreteness time decreases with increasing vA,
meaning that finite-size effects are more significant at large vA. These effects are highlighted in the spectra of Fig. 7(a)
by the emergence of well-defined series of local peaks separated by a constant frequency gap ∆ω = vA(2π/L′) [see
Fig. 7(b) and Sec. IV C]. Note that, neglecting gravity and capillary effects, ∆ω = ∆ωdisc = 1/τdisc. Figure 9 then
evidences that the timescale separation of Eq. (5) is well validated experimentally in the inertial range, for all values
of vA. However, it is worth noting that the estimation of τnl from the spatiotemporal spectrum of Fig. 3 does not
include shock waves (as they do not explicitly appear in such a plot). To solve this issue, we define another nonlinear
timescale τSnl that only takes into account the shock waves (purple dash-dotted line). τSnl is defined as the width of the

corresponding peak of the second-order difference δ(2)η/dt2 (see Fig. 5). We find τSnl ∼ 10−3 s which is of the same
order of magnitude for every shock wave regardless of the value of vA. Figure 9 then shows that τl(ω) > τSnl(ω) which
means that when shock waves are prevalent the timescale separation hypothesis is no longer verified and a critical
balance is achieved [2]. This supports the fact that the energy is stored in coherent structures at large enough vA,
whereas at low vA an energy transfer through the scales occurs due to wave turbulence.

V. SHOCK-WAVE STATISTICS

We focus now on the statistics of shock waves as a function of the magnetic parameter vA. To count the number
of shock waves, an arbitrary thresholding criterion on the first-order difference signal δη, is fixed to δη > 5σδη, with

σδη =

√
δη2 its standard deviation. This criterion thus selects if and when a peak within the signal corresponds to a

shock wave. The shock rate Γ is defined as the average number of shocks found per second and dtS the time between
two successive shocks. The number of shocks depends on vA as well as on the forcing strength quantified by the
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FIG. 11. (a) Probability distribution functions of the first-order difference δη normalized by its standard deviation σδη for
increasing vA (from blue to orange) for ε ' 0.07 on a log-log scales. The dashed line shows the Gaussian distribution. The
dash-dotted line shows the best power-law fit in δη−4.3 for vA = 0.51 m/s. The inset shows the same on a semilogarithmic

scale. (b) Same as in (a) but for the second-order difference δ(2)η with the best power-law fit in δ(2)η−3.0 for vA = 0.51 m/s.

measured steepness ε. Note that if the forcing is too weak, no shock can emerge because of viscous effects, even at
high vA.

Figure 10(a) displays the phase diagram in the (ε, vA) parameter space of the gravity-capillary wave turbulence
regime and the shock wave regime. The transition between the two regimes is shown at a chosen shock rate of
Γ ≈ 0.1 s−1 (see the dashed line). Moreover, we observe that Γ increases with ε and vA, as expected, and that no
shock appears, even for strong forcing, when vA is small enough (vA < 0.25 m/s). For these low vA, stronger forcing
(not achievable in our setup) would probably end up in wave breaking instead of shocks. Figure 10(b) shows the
probability distribution function (PDF) of the time lag dtS for all vA values and Γ > 0.1 s−1, i.e., the shock-wave
regime. The PDF is independent of vA and Γ and decreases exponentially, meaning that the shock waves are, as
expected, independent and random events.

Let us now look at the probability distribution of the amplitude of the shock wave, e.g., those occurring in Figs. 4(a)
and 4(c). To do so, we compute the probability density functions of the first δη and second-order difference δ(2)η of
the shock-wave amplitude for different vA as shown in Fig. 11. For low enough vA, the distributions remain roughly
Gaussian, whereas for high enough vA they follow well-defined power-law tails. It is worth noting that the power-law
tail appears only for vA ≥ 0.3 m/s, as for the occurrence of shock waves (see Fig. 10). The power-law tail clearly
converges to δη−4.3 for the first-order difference and to δ(2)η−3.0 for the second-order difference at high vA.

A power-law tail distribution of the first-order difference is predicted in the case of diluted shocks driven by the
1D random-forced-driven Burgers equation [32–36]. The prediction of the power-law exponent is more controversial
and depends in particular on the forcing correlation degree [35]. The PDF tail is predicted either in δη−4 [32] for
finite viscosity or in δη−7/2 [33, 34] in the limit of vanishing viscosity. The observation in Fig. 11 of a power-law PDF
for the first- and second-order difference thus confirms that the shock waves drive the wave spectrum scaling. The
above prediction of the power-law exponents is close to the experimental one (−4.3). The deviation is probably due
to viscous dissipation and the fact that the experimental shocks do not generate a vertical front with a discontinuity
of order one. To our knowledge, the statistics of random shock waves involving second-order discontinuities, i.e., δ(2)η
is a Dirac-δ distribution, has not been addressed theoretically but would be of primary interest to compare with our
experimental results.

VI. SHOCK-WAVE SPECTRUM

We have experimentally observed in Sec. IV C that the power spectrum Sη(ω) scales as ω−4 when it is dominated by
second-order singularities. Let us now investigate the dependence of the spectrum Sη(ω) with the other parameters.
To derive analytically the spectrum, we follow the model of acoustic turbulence [44] but for second-order singularities,
as Kuznetsov did for pointlike surface singularities [31]. If we assume that the second-order difference of the signal
δ(2)η is only made of a set of N Dirac singularities, of amplitudes ∆2(η), located at the random times t = tS (N is
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FIG. 12. Frequency compensated spectra Sη(ω)ω4 for (a) different vA and almost constant shock rate 0.8 < Γ < 1 s−1 and (b)
different values of Γ ∈ [0, 1.2] s−1 (i.e., vA ∈ [0, 0.55] m/s) on a log-log plot. The horizontal blue (red) dashed lines separate
the wave turbulence from the intermediate (resp., full shock wave) regimes. The gray area is the frequency bandwidth of the
random forcing.

the total number of shocks and tS are the moments they appear), one has

∂2η

∂t2
=

T∑
t=0

∆2(η)δ(t− tS)/dt2, (6)

where ∆2[η(t)] ≡ η(t + 2dt) − 2η(t + dt) + η(t) is the second-order difference amplitude, dt = 1/fe, and δ is the

Dirac operator. Using the Fourier transform of the surface elevation η(t) as η̂ω =
∫ T
0
η(t)ei2πftdt, performing two

integrations by parts to include ∂2η/∂t2 in the Fourier transform, and then using Eq. (6) and the definition of the
spectrum Sη(ω) ≡ |η̂(ω)|2/T , we thus obtain

Sη(ω) = CS∆2
2Γω−4/dt2 , (7)

with CS = 1 and the shock rate Γ = N/T = 1/dtS with dtS the time between two successive shocks. The shock-wave
spectrum of Eq. (7) thus predicts a ω−4 scaling (as experimentally found above), is proportional to the number of

shocks, N , and to the variance of their amplitude ∆2
2, and is independent of vA. Note that the acoustic spectrum of

shock waves of first-order singularities scales as Γ∆2
1ω
−2, with ∆1 ≡ η(t+ dt)− η(t) [31, 44, 45]. More generally, for

singularities of order n, their power spectrum reads Sη(ω) = CS∆2
nΓω−2n/dt2(n−1), showing that the higher n is, the

denser the shocks have to be to dominate in the spectrum.
To test the prediction of Eq. (7), we compute experimentally the second-order difference of η(t) taking only the

shock waves into account, i.e., we keep the maxima of the detected shock-wave events and remove the residual noise
coming from the regular waves (see the red crosses in the inset of Fig. 13), the notation for ∆2 is not changed in
the following, for the sake of clarity. Figure 12(a) then shows the experimental compensated spectrum Sη(ω)ω4,
which is found to be constant over almost one decade in frequency and independent of vA, as expected from Eq. (7),
for a roughly constant shock rate Γ. This independence is of paramount interest and contrasts with the weak wave
turbulence case in which the energy cascade is strongly dependent on the dispersion relationship. In the shock-wave
regime, only the singularities and their statistics drive the spectrum once vA is high enough (vA > 0.4 m/s). The
increase of the experimental compensated spectrum with Γ is displayed in Fig. 12(b). It clearly shows that the shock
rate Γ drives the value of the spectrum amplitude. When Γ > 0.4 s−1, the scaling in ω−4 is achieved [see the flat
compensated spectra above the horizontal blue dashed line in Fig. 12(b)].

Looking experimentally at the scaling of the spectrum with the shock rate Γ and the variance of their amplitude

∆2
2 is more challenging since fixing their values independently is not possible. However, Fig. 13(a) shows that the

value of the compensated spectrum 〈Sη(ω)ω4〉f , averaged within 80 < f < 170 Hz, increases linearly with Γ∆2
2, as

expected from Eq. (7), when the shock-wave regime is reached, i.e., for Γ > 0.85 s−1. The theoretical spectrum of
Eq. (7) is thus fully verified experimentally since the experimental constant CS = 6.5 is found to be of the same order
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FIG. 13. (a) Compensated spectrum 〈Sη(ω)ω4〉f (averaged within 80 < f < 170 Hz) as a function of Γ∆2
2/dt

2. The error bars
are for the standard deviation of Sη(ω)ω4. The black line shows the best linear fit for 〈Sη(ω)ω4〉f > 0.2 m2/s3. The inset

shows the temporal evolution of the second-order difference δ(2)η(t) (black line) and the corresponding Dirac-peak maxima (red
crosses) for vA = 0.51 m/s and Γ = 0.97 s−1. The resulting point of the main figure is marked with an arrow. (b) Evolution of

Γ∆2
2/dt

2 with the shock rate Γ. The transitions between wave turbulence, intermediate, and full shock-wave regimes are shown
(see the blue and red dashed lines).

of magnitude as the expected unit value. For lower shock rates (0.4 < Γ < 0.85 s−1), the spectrum still scales in ω−4

[see Fig. 12(b)] but its amplitude does not follow Eq. (7), since it corresponds to an intermediate state between the

shock-wave and wave turbulence regimes [see Fig. 13(a)]. Finally, Fig. 13(b) displays the evolution of Γ∆2
2/dt

2 as a
function of the shock rate Γ. At low Γ, almost no shock wave is detected and a wave turbulence regime is present.
For moderate Γ, the quantity increases slightly with Γ, whereas for high Γ, it increases strongly leading to a full
shock-wave regime well described by Eq. (7).

To sum up, we used a simple model showing very good agreement with the experiments. In particular, it explains
that the random shocks drive the frequency spectrum scaling in ω−4, whereas the number and amplitude of shocks
control the spectrum amplitude independently of the value of vA. We found three different regimes depending on
the shock rate value: When Γ < 0.4 s−1, the shock waves are not significant enough and gravity-capillary wave
turbulence occurs [below the blue dashed lines in Figs. 12(b), 13(a), and 13(b)]; when 0.4 < Γ < 0.85 s−1, shock
waves are significant enough to develop a spectrum of second-order singularities in ω−4 but not enough to get the full
spectrum of Eq. (7) [between the blue and red dashed lines in Figs. 12(b), 13(a), and 13(b)]; and when Γ > 0.85 s−1,
the full spectrum of discontinuities from Eq. (7) is achieved [beyond the red dashed lines in Figs. 12(b), 13(a), and
13(b)]. In the latter regime, note that despite nondispersivity, the Zakharov–Sagdeev spectrum of acoustic weak–wave
turbulence [19], recently observed numerically [52], is not achieved. Shock waves indeed prevent weak turbulence.
Note also that in this regime, the spectrum depends on the shock rate Γ and so is linked to the input power. Even
if a critical balance (τl > τSnl) is achieved (see Fig. 9) [2], the spectrum obtained here does not follow the Phillips
spectrum that is predicted to saturate and to be independent of the input power [53]. The agreement with a spectrum
of singularities, i.e., Kuznetsov-like spectrum, rather than the Phillips spectrum is here discovered experimentally for
hydrodynamics surface waves and has been also observed numerically for elastic plates [54, 55].

VII. CONCLUSION

We have studied the transition from quasi-1D dispersive wave turbulence to an acoustic-like nondispersive regime.
To do so, we used a magnetic fluid within a canal, subjected to an external horizontal magnetic field, to tune the
dispersivity of waves on the surface of the fluid. For a low magnetic field, we recovered the classical wave turbulence
regime driven by nonlinear resonant interactions [29]. For a high enough field, shock waves occur randomly involving
second-order discontinuities, i.e., the second-order difference of the wave amplitude is a Dirac δ. The frequency power
spectrum of this shock-wave regime is found to scale as ω−4 and to be proportional to the shock rate and to the variance
of the shock amplitudes, provided the shock rate is high enough. These experimental findings are well captured by a
Kuznetsov-like spectrum of a random Dirac-δ distribution involving second-order singularities. The transition from
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wave turbulence to the shock-wave regime is also evidenced by measuring the energy flux. As expected, the latter
is found to be constant in the wave turbulence regime and to decrease over scales in the shock-wave regime due to
the damping of shock waves storing energy at all scales. When shock waves are prevalent the timescale separation
hypothesis of weak turbulence theory is no longer validated experimentally and a critical balance occurs instead.
The shock-wave statistics is then studied and a phase diagram between wave turbulence and the shock-wave regime
is shown as a function of the control parameters. The probability density functions of the first- and second-order
differences of the surface elevation are computed and found to exhibit a power-law tail with an exponent close to the
predictions of the 1D random-forced Burgers equation [32–36].

The observation of this shock-wave regime, discovered here for surface waves, is significant for two reasons. First,
the assumption of weak turbulence theory of dispersive waves has been tested experimentally with this setup and
shows that the presence of shock waves prevents the possibility to reach a wave turbulence regime. Second, the energy
cascades in wave turbulence due to local resonant interactions, whereas in the shock-wave regime, the energy is mainly
stored in shock waves that are coherent structures rich in the frequency domain. These singularities travel over the
canal length, keeping their shapes, but are damped by viscous dissipation. Theoretical and numerical works would
be of paramount interest to understand in more detail the transition reported here. It would also be significant to
extend the bridge between the shock-wave regime reported here, as second-order singularities, and the 1D random-
forced Burgers equation. Finally, high-order statistics could be investigated experimentally in such shock-dominated
acoustic regime, in particular, to test intermittency and anomalous scalings of structure functions predicted by 1D
random-forced Burgers turbulence [56–58].
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Appendix A: Ferrofluid characteristics

The magnetization curve M(B) of the PBG400 ferrofluid is plotted in Fig. 14 and is provided by the Ferrotec
manufacturer. It enables us to compute the variation of vA with the magnetic induction B (see the inset of Fig. 14).

FIG. 14. Magnetization curve M(B) of the PBG400 ferrofluid provided by the Ferrotec manufacturer. The gray part represents
the fields achievable experimentally. The inset shows the theoretical velocity vA as a function of the applied magnetic induction
B corresponding to the gray part of the main figure.

Appendix B: Time-frequency spectrum

The time-frequency spectrum of the surface elevation obtained by a wavelet transform is plotted in Fig. 15. In the
dispersive case [Fig. 15(a)], the energy cascades continuously over frequency scales and time until viscous dissipation
occurs around 100 Hz. In the nondispersive case [Fig. 15(b)], localized coherent structures occur randomly and contain
energy to all frequency scales.

FIG. 15. Time-frequency spectrum of the surface elevation signals obtained by a wavelet transform for (a) the dispersive case
(vA = 0 m/s) and (b) the nondispersive case (vA = 0.51 m/s).
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Appendix C: Typical wave amplitude

The evolution of the typical wave amplitude σ with vA is plotted in Fig. 16. It increases with vA, except for the
maximum value of vA where Maxwell stress due to the external magnetic field probably flattens the wave amplitude.
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FIG. 16. Evolution of the standard deviation σ =

√
η2 of the surface elevation η(t) as a function of the magnetic parameter

vA for a constant steepness ε ' 0.07.

Appendix D: Shock wave formation

The response of the surface to a single pulse forcing is shown in Fig. 17 for different values of vA. No shock wave
occurs at small vA [Figs. 17(a) and 17(b)] due to the dispersion. In the nondispersive case [Fig. 17(c)], a shock wave
is formed and travels along the canal, keeping a constant shape with a discontinuity.
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FIG. 17. Spatial evolution of a surface wave in response to a single pulse forcing for increasing times (spaced from 25 ms, from
blue to purple) for the (a) dispersive (vA = 0 m/s), (b) intermediate (vA = 0.3 m/s), and (c) nondispersive (vA = 0.51 m/s)
cases. The arrows indicate the discontinuity location over time.
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