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Abstract—We present a novel formalism for describing the
evolution of dynamic-link network parameters; it is based on
the Cellular Automaton (CA) model. Such formalism is of wide-
use for modeling natural (e.g., physical, chemical, etc.) processes.
We propose a particular model and survey the related work,
with respect to the use of CA to simulate various communication
networks. We showcase the flexibility of the proposed approach
to model different evolution patterns. These patterns can be
used to emulate / simulate different network scenarios (states
of the network parameters), and test novel implementations
under distinct conditions. Additionally, we propose an algorithm
for guaranteeing that the described patterns hold properties of
interest, within a bounded time.

Index Terms—Dynamic-link networks, network prediction /
evolution, Cellular automata, Formal models

I. INTRODUCTION

The rapid growth of network communications and their
capabilities is driven by the creation of innovative solutions
that require flexible, dynamic and manageable capabilities to
operate [1]. As a consequence, the verification and validation
process of those novel solutions is critical to reduce risks and
save time before their final deployment into a real network
[2]. A well-known strategy is to evaluate new components
on an emulated environment. In contrast to using operational
networks for testing, emulations allow to replicate the behavior
of real networks without extensive hardware components [3].
Moreover, emulation facilitates testing novel implementations
under different scenarios, topologies, environment, and overall
input values.

However, the emulation of dynamic-link networks, i.e.,
networks whose parameters may change at different time
instances, is usually time consuming and computationally
demanding. This is mainly because emulators try to repli-
cate all the hardware and software functions of a network
environment with its components as if those were real ones.
For example, satellite networks require not only the emulation
of the hardware components of the network, but also the
links whose parameters may vary due to external interference,
propagation conditions (weather), traffic variations (due to the
shared medium) or transmitters’ displacement [4]. Therefore,
in some instances where many emulations are required for
finding interesting configurations, alternative methods and
approaches are needed. Such methods should on the one
hand, take away certain hardware / software constrains and
requirements, and on the other, decrease the time to produce

the network instances of interest. The latter represents one
of the objectives of this work. We thus rely on the network
simulation and related mathematical models.

Note that simulation has proven to be more flexible, scalable
and less time consuming on large networks (we provide a
comparison in Section IV), but with limited applicability1. In
this paper, we propose a novel approach for simulating the
evolution of dynamic-link network parameters based on cel-
lular automata [5]. Indeed, CA have shown their effectiveness
in modeling dynamic processes, such as physical or chemical
ones [6]–[8], for example. They allow both to showcase the
evolution of the process itself, and to visualize the process ac-
cordingly. A current configuration of the automaton represents
the state of the process at time t, that is afterwards changed
according to the update functions defined in each cell.

In this paper, we show how a CA formalism is suitable for
modeling dynamic-link network parameters, i.e, parameters
that can change iteratively w.r.t. some update pattern. This
pattern is thus utilized for the update function construction.
Note that we rely on a two dimensional (2D) CA where
the possible space has only two components and each cell
contains the current parameter value (or several of them, if
needed). We take advantage of the visualization capabilities of
the 2D CA and showcase several static network instances (for
different time instances). At the same time, we use the CA
to quickly model the network evolution and potentially fast
transfer to a configuration where network parameters reach
some critical values. This provides a way of generating initial
network configurations that can be further used in testing novel
(e.g., routing or network prediction) solutions for dynamic-link
networks.

The paper is organized as follows. Section II gives a
brief introduction to the concepts of this work. Section III
summarizes the related work. Our CA approach for modeling
dynamic-link networks is presented in Section IV. Finally, we
conclude and describe foreseen future work in Section V.

II. PRELIMINARIES

A. Cellular Automata

Cellular Automata [8] are mathematical systems constructed
from many (identical) components, thought of as cells, that

1For example, run-time performance, resource usage or protocol interoper-
ability evaluations are difficult to qualify at this level of abstraction.979-8-3503-9730-7/22/$31.00 ©2022 IEEE



have proved useful to model complex behavior of non-
linear dynamics from cells cooperative effects. Each cell state
evolves in time steps according to update functions, also
called local rules, based on the states of their neighboring
cells. CA were first introduced by J. von Neumann [5] as
formal models of self-reproducing organisms, systems capable
of producing exact copies of themselves. Nevertheless, the
applicability of CA extends not only to biology [9], but also
to a wide range of scientific fields such as diffusion models
in chemistry and physics [6], urban sprawl in geography
[10], non equilibrium dynamics in physics [7], and simulation
games as the very well-known “Game of Life” [11], [12] in
which it was demonstrated that CA models are capable of
producing dynamic patterns.

Formally, a Cellular Automaton A is a four-tuple ⟨d, S,N,
f⟩ [13], where:

• d ∈ Z+ is the dimension of the space;
• S is a finite set of states;
• N ∈ (Zd)m is a neighbourhood index (m-dimensional

vector of d-dimensional vectors);
• f : Sm → S is a transition or update function.

The neighbours of a cell at location x ∈ Zd are defined by
the neighbourhood index as: yi = x+xi,∀i ∈ {1, . . . ,m}. A
CA configuration c is a function that maps a cell index to a
state, i.e., c : Zd → S. The cellular automaton at time t + 1
has a configuration ct+1(x) = f(ct(x+ x1), . . . ct(x+ xm)),
for the neighbourhood index N = ⟨x1, . . . ,xm⟩. In this work,
we denote an initial configuration as c0(x). Furthermore, we
denote the configuration of the cells of interest at time t as
the matrix Ct, for example the matrix C0 denotes the initial
configuration for all the cells of interest.

B. Dynamic-link networks

As introduced in [14], a static network is a computer
network where each link has a set of parameters that do not
change, for example bandwidth (capacity) or delay. Differently
from static networks, the parameters of the links may change
in dynamic-link networks (in the scope of our current work, we
assume the network topology does not change); such change
can be the consequence of the physical medium (e.g., in
wireless / radio frequency networks) or due to logical changes
(e.g., rate limiting the capacity of a given link).

Static networks can be modeled as (directed) weighted
graphs (V,E, p1, . . . , pk), where V is a set of nodes, E ⊆
V × V is a set of directed edges, and pi is a link parameter
function pi : E → N, for i ∈ {1, . . . , k}; without loss of
generality, we assume that the parameter functions map to
non-negative integers (denoted by N) or related values can be
encoded with them. Similarly, dynamic-link networks can be
modeled as such graphs, however, pi maps an edge to a non-
empty set of integer values, i.e., pi : E → 2N \ ∅, where 2N

denotes the power-set of N. An example dynamic network is
depicted in Fig. 1, and its model N = (V,E, p1(e), p2(e)),
where:

V = {1, 2, 3, 4}
E = {(1, 2), (2, 1), (1, 3), (3, 1), (1, 4),

(4, 1), (2, 4), (4, 2), (3, 4), (4, 3)}
p1(e) = b((s, d)) = N256 = {0, 1, . . . , 255}

p2(e) = d((s, d)) =

{
{1, 2} if d = 2

{9, 10} otherwise
.

Semantically, this model represents a dynamic-link network
in which the link’s available bandwidth can vary according
to the function b (for bandwidth), and the link’s delay can
vary according to the function d (for delay). In this work, we
take advantage of such representation to further build a CA
simulating the evolution of the network itself, i.e., the dynamic
changes of the parameters.
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Fig. 1. Example dynamic-link network

III. RELATED WORK

In this section, we discuss the existing works on using the
CA for modeling and prediction in computer networks. In this
context, most of the CA models found in the literature are
used for either Wireless Sensor Networks (WSNs) or Mobile
Wireless Sensor Networks (MWSNs) [15].

Sen and Barman [16] proposed a CA model for find-
ing minimum spanning tree (in a WSN) with distinct edge
weights to obtain an efficient transmission mechanism for
data collection and data distribution. Fu et al. [17] proposed
a 2D CA model to mimic WSNs failure events. For that
matter, special failure states of sensor nodes were introduced,
namely, energy exhaustion, hardware/software malfunctions,
intentional attacks, random attacks and isolation from the sink
node. Heidari et al. [18] proposed a routing protocol named
Particle-based SMO to enhance the security while routing
the WSN sensor nodes. The algorithm’s performance was
analysed using a CA based node scheduling model and a CA
based malware propagation model. A probabilistic CA model
was considered in [19] in order to solve the problem of an
optimal coverage of a WSN area. The objective was to find
the CA rules able to form a sensor coverage pattern with a
minimum number of active sensors that cover the whole WSN.
Meanwhile, Graph Cellular Automata (GCA) were studied in



[20] for solving the Maximum Lifetime Coverage Problem
(MLCP) in WSN, i.e., using only some knowledge about
neighbors, a WSN is able to self-organize in such a way as to
prolong its lifetime and preserving the required coverage ratio
of the target area.

When it comes to networking applications, the reader can
refer to Tavanpour et al. [21], for example, who proposed the
related CA model. A mobile network was modeled to track the
users’ upload status in a given coverage area, while utilizing
either a non-cooperative algorithm or Coordinated Multipoint
(CoMP) synchronization. A WSN was also modeled to investi-
gate the behavior of malware propagation and its effects on the
sensors’ energy consumption. Choudhury [22] proposed to use
the CA models to solve two well known optimization problems
in WSN, namely, to maximize the sensor coverage area and
minimize the sensor movement for energy conservation.

CA were also considered in the analysis and prediction for
mobile networks. Cardoso et al. [23] proposed a multilayered
CA solution for positioning flying cells to improve the net-
work capacity in heavy traffic situations such as congested
car avenues, crowded events, disasters, etc. The proposed
scheme considered both backhaul and radio access network
constraints, as well as user requirements in terms of down
link throughput. In [24], a CA based QoS-routing solution
for MANETs was proposed, taking into account the nodes’
energy and delay constraints. Tsompanas et al. [25] proposed
a CA based solution to tackle the shortest path problem in
different fields. For communication networks, different path
metrics were used to define the links’ cost such as propagation
delay, link congestion or reliability. Affine CA with linear
output operators were studied in [26] from the observability
point of view. Such an observer, mobile sensor, would allow
the use of the CA for control, diagnosis or general supervision
purposes such as, for instance, pollution or traffic monitoring.

To the best of our knowledge, no CA models were con-
sidered in the context of dynamic-link networks or the related
evolution of network parameters. Thus, this work proposes the
first CA model for such purpose.

IV. CELLULAR AUTOMATA FOR MODELING
DYNAMIC-LINK NETWORKS

In this section, we showcase the use of CA for creating
patterns of the evolution of dynamic-link networks. We do this
in order to be able to control this pattern, instead of simply
choosing random values from the set of possible values for
the links’ parameters. Indeed, this allows us to create natural
patterns for parameters such as, for instance, the bandwidth
capacity. As an example, consider a satellite link network. The
bandwidth capacity varies according to the weather conditions,
including the density of the clouds. With this in mind, the CA
that models the evolution of a cloud density over time, can also
model the bandwidth capacity for that link. Formally, we will
consider two-dimensional cellular automata models as follows.

Definition 1: For a given dynamic-link network N = (V,
E, p1, p2, . . . , pk), a dynamic-link parameter pattern for a

network parameter pj is a cellular automation Apj = ⟨2, S,
N, f⟩, where:

• S =
⋃

e∈E pj(e), where pj is the parameter function for
the j-th parameter;

• N is a neighbourhood index defined by all the incoming
or outgoing nodes from the cell (x, y), i.e., N = ⟨(0, 1),
(0, 2), . . . , (0, |V |), (0,−1), (0,−2), . . . (0,−|V |), (1, 0),
(2, 0), . . . , (|V |, 0), (−1, 0), (−2, 0), . . . , (−|V |, 0)⟩;

• f is an arbitrarily chosen computable function that does
not contradict the values of pj .

Note that the cell (i, j) represents the link from node i to node
j, accordingly.

As an example, consider the topology (and related dynamic-
link parameters) in Figure 1. Let us focus on the parameter b
(or p1). In this example, the bandwidth takes different values
ranging from zero to 255. However, for a given configuration,
what is the next configuration? There is no established pattern
of the evolution of these values. Likewise, there is no notion of
a sequence. Indeed, the formalism allows any possible value
(from the set of possible values). However, with the proposed
formalism, we can define, for example S = {0, . . . , 255}, and
the update function:

f(i, j) =

 ∑
yi∈N

ct((i, j) + yi) ∗
({

1 if (i, j) + yi ∈ E

0 otherwise

)%(max S+1).

With this update function, consider the following initial
configuration (of the cells of interest) C0 and configuration
C1 at the next time instance t = 1:

C0 =


0 5 0 0
15 0 0 0
0 0 0 0
0 0 0 0

 , C1 =


0 5 5 5
15 0 0 15
15 0 0 0
15 5 0 0

 .

Note that in the introduced model, Cj configuration rep-
resents the adjacency matrix of the graph corresponding to
the static network instance for the parameter pj . We can
derive various CA models for various parameters or we can
also consider a composite CA, if needed. Furthermore, as an
example, we will focus on the CA model introduced for the
bandwidth parameter.

As mentioned above, it is interesting to use the CA in order
to obtain network parameter patterns of interest. For instance,
in order to test and validate novel network implementations it
is desirable to set the environment of these implementations
to different states. Moreover, not only in different states but,
in order to stress test applications, to change them with
high frequency and low predictability. For testbeds based on
emulations this is perhaps the most desirable feature.

As a particular example, consider the automaton as de-
scribed before with the configurations as previously mentioned
(c0(1, 2) = 5 and c0(2, 1) = 15). The bandwidth evolution is
shown in Figure 2.

Note that no bandwidth (zero) is represented by the color
white, and the highest intensity of bandwidth (255) is repre-
sented by a solid black color (the darker the more bandwidth
is available on the link, ranging in different tones of gray).
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Fig. 2. CA evolution for a sparse initial configuration

Notice that our model is flexible and an easy way to accel-
erate the frequency of change in the dynamic-link parameter
to create a less sparse initial configuration. For a randomly
chosen initial configuration, the same cellular automaton yields
the pattern shown in Figure 3. We furthermore discuss some
advantages of the introduced model.

C0 C200 C400

C600 C800 C1000

Fig. 3. CA evolution for a random initial configuration

Discussion – On using cellular automata simulation for
parameter evolution verification Cellular automata can be
useful not only as a proper model for dynamic-link parameter
evolution but, also through the use of simulation, different
properties of the model can be guaranteed. For instance,
consider the update function as previously discussed. The
bandwidth of all neighbouring nodes is added and then, the
modulo operator is applied. Notice how this function can
yield a configuration with value zero for all nodes in the
cellular automaton. In this case, the bandwidth is always zero,
from that point onward. In a real scenario, it means that the
network will never pass any more traffic. For this reason, it is
interesting to verify that the cellular automaton configuration
holds certain properties during the first τ steps. Algorithm 1
describes the process for this verification. As an example,
consider the predicate Ct ̸= 0|V |×|V | (the zero squared
matrix of size |V |), and τ = 1000. Using the aforementioned
algorithm, we can guarantee that during this amount of steps

the bandwidth never gets in a “deadlock” configuration.

Algorithm 1: Parameter evolution verification
input : A dynamic-link network graph

G = ⟨V,E, p1, . . . , pk⟩, a cellular automaton
model for parameter pj , Apj = ⟨2, S,N, f⟩, a
predicate over the configuration of the CA
π(C), an initial configuration c0, and τ the
number of steps

output: TRUE or FALSE
Set ct ← c0
Set Ct ← 0|V |×|V |
foreach e ∈ E do

Set Cte ← ct(e)// Set the matrix of
the cells of interest according
to the current configuration

for i← 1; i ≤ τ ; i← i+ 1 do
if π(Ct) =FALSE then

return FALSE
foreach e ∈ E do

Set ct+1(e)← f(ct(e+ x1), . . . ct(e+ xm)),
where N = ⟨x1, . . . ,xm⟩

Set Cte ← ct+1(e)// Set the new
values for the cells of
interest

Set ct ← ct+1

return TRUE

Discussion – On the simulation to emulation performance
ratio As previously mentioned, one of the objectives of this
work is to find interesting patterns to be able to test different
network components at emulation time. Nonetheless, it is dif-
ficult to launch an emulation and realizing after many minutes
or even hours that the result is not as expected. Furthermore,
repeating this process many times to find one interesting
configuration seems not viable. For this reason, we turned our
attention to the model which is easy to simulate and once
having interesting initial configurations, update functions or
both, we can inject them into the emulation testbed. But, how
fast is emulation as compared to simulation? Figure 4 shows
the running time of both, the application of the bandwidth
change in our dynamic-link network emulator [27], and the
CA-based simulation time. As can be seen, the simulation is
quite advantageous, keeping the running times low, even as
the size of the networks grow.

V. CONCLUSION

In this work, we have presented a cellular automata based
approach for dynamic-link network simulation. The proposed
method allows to properly model the evolution of different
network parameters. Several dynamic-link network parameters
(bandwidth, delay) can be modeled with our formalism, and
furthermore, we can guarantee that certain properties hold over
this evolution for τ time steps.
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As for future work, we consider searching for update
functions that can be of particular interest. For example, it
is known that certain update functions can yield pseudo-
random configurations with a large period. This is interesting
for testing novel implementations as the overall configurations
can be done in difficult-to-predict settings. Machine learning
strategies and stochastic properties are foreseen to be taken
into account in the future, for the update functions’ generation.
Likewise, we are interested in update functions that can vary at
different frequencies. Additionally, we envision to continue our
research in predicate verification over the cellular automata;
particularly, with an exact approach, and without the need of
simulation. It is also interesting to develop a dynamic-link
parameter evolution tool that allows using any pattern that can
be expressed as a computable function. Finally, it is interesting
to consider incorporating our proposed solution into existing
network emulators.
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