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ABSTRACT: A strategy allowing the straightforward synthesis of 1-C-phosphonomethyl and 1-C-phosphonodifluoromethyl 

iminosugars is reported. Conversion of sugar lactams to the corresponding imines with the Schwartz’s reagent followed by their 

reaction with LiCH2P(O)(OEt)2 and LiCF2P(O)(OEt)2 stereoselectively afforded the 1,2-cis and 1,2-trans glycosyl phosphonates 

respectively in modest to good yield. Application of this methodology to C-2 orthogonally protected sugar lactams paved the way to 

2-acetamido- and 2-deoxy-1-C-phosphonomethyl iminosugars.  

Glycosyl 1-phosphates, key structural motifs in a wide range of 

biological processes that involve carbohydrates,1,2 are 

commonly used by glycosyltransferases (GTs) to build up cell-

surface polysaccharides and peptidoglycans. These enzymes 

catalyze the transfer of the sugar moiety from the activated 

sugar donor to an acceptor molecule.3,4 Since the pioneering 

work of Blackburn5 and Mc Kenna6 in the early 1980's, 

hydrolytically stable glycosyl phosphate mimics have 

progressively appeared as attractive targets and inhibitors of 

glycosyl 1-phosphate processing enzymes and many examples 

of phosphonomethyl-C-glycosides have been 

reported.7,8,9,10,11,12,13,14 Due to the pivotal role of GT enzymes in 

the biosynthesis of polysaccharides and glycoconjugates, the 

rational design of potent glycosyltransferase inhibitors has 

attracted increasing interest during the last two decades. Since 

glycosyl transfer reactions are thought to proceed through 

transition states with an oxocarbenium ion character15 closely 

related to those of glycosidases,3 iminosugars16 have been 

envisaged as potential inhibitors. These small molecules must 

be able to mimic, at the transition state, the charge and shape of 

the carbohydrate moiety of the sugar-nucleotide. To mimic the 

pyrophosphate part of the natural substrate, incorporation of 

phosphonic acids as isosteric analogs in terms of geometry and 

polarity17 has been pursued. In contrast to the naturally 

occurring and hydrolyzable P–O bond, the strength of the P–C 

bond provides these synthetic surrogates metabolic resistance 

to phosphatase hydrolysis.18 Nevertheless, this area is still 

rather underexplored and only a few examples of so called 1-C-

phosphonomethyl iminosugars have been reported so far 

(Figure 1). This includes six-membered derivatives 1a–d 

designed respectively as α-D-Gal,19 β-D-Man,19 α-D-GlcNAc20 

and α-L-Ido21 analogs, five-membered compounds22 such as 1e, 

and a pseudodisaccharide 1f.23 Of note other analogs have also 

been disclosed in which the phosphonate moiety is connected 

to the nitrogen atom (1m)24 or directly attached to the C-1 

position (1n).25 This limited number of structures can be 

tentatively attributed to the lack of a general and efficient 

synthetic strategy to access α- and β-phosphonomethyl 

iminosugars in pyrrolidine or piperidine series. The main routes 

developed so far include a chemo-enzymatic approach,19 the 

early introduction of the phosphonate moiety on 

glycosylamines followed by the ring closure of the resulting 

acyclic molecule (Figure 2a),26 an intramolecular 

iodoamination followed by iodine displacement (Figure 2b).20 

Interestingly, two examples describe the addition of lithiated 

methylphosphonate on a furanose-derived nitrone27 and imine28 

(Figure 2c). Sugar-derived imines are attractive synthons to 

access natural products owing to their stereochemical diversity 

and enantiomeric purity.29 Several methods have been 

developed to access these chemical species including N-

chlorination/elimination of cyclic amines,30 

Staudinger/azaWittig cyclization31,32,33 and deoxygenation of 

the corresponding nitrones.34  However, these methods have 

their own limitations, respectively formation of regioisomeric 

mixtures, multistep synthesis of starting materials and 

phosphine contamination of the products. In last decade, 

Furman explored the potential of O-protected sugar lactams, 

that can be readily obtained from the corresponding 2,3,4,6-

tetra-O-benzylated pyranoses,35,36 as imine precursors. Their 

reduction with Schwartz’s reagent (Cp2Zr(H)Cl), that has a 

great functional group tolerance, provided in good yield the 

corresponding imines that were further reacted with various C-

nucleophiles to furnish a library of iminosugar C-

glycosides.37,38  We anticipated this efficient methodology 

could be exploited to rapidly access 1-C-phosphonomethyl 

iminosugars using lithiated phosphonates as nucleophiles 
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Figure 1. Structures of 1-C-phosphonomethyl and 1-C-

phosphonodifluoromethyl iminosugars and their analogues 

reported to date 

 

 

Figure 2. Most common methods for 1-C-phosphonomethyl and 

phosphonodifluoromethyl iminosugars synthesis and proposed 

strategy developed herein 

 

Optimisation of the reaction conditions, including generation 

of the sugar-derived imine followed by its reaction with 

LiCH2P(O)(OEt)2, was performed on the 2-OTES tri-O-

benzylated D-gluconolactam 2c39 for synthetic purposes. It 

allowed to identify LDA as the base of choice for the formation 

of lithiated methylphosphonate (see Table S1). Treatment of 

gluconolactam 2c with Cp2Zr(H)Cl (3 equiv.) in THF at room 

temperature furnished the resulting imine (TLC and MS 

monitoring) that was not isolated and directly added to a THF 

solution of LiCH2P(O)(OEt)2 at –78°C and stirred at this 

temperature for 30 min to produce the α-1-C-phosphonomethyl 

iminosugar 3c (J1,2 = 5.7 Hz) in 64% yield over two steps. To 

evaluate the impact of the C-2 protecting group on the outcome 

of the reaction, this sequence was applied to 2-OBn and 2-

OTBS39 gluconolactams 2a and 2b and afforded the α-

configured iminosugars 3a and 3b in 51% and 36% yields 

respectively over two steps. D-galactonolactams 2d (2-OBn) 

and 2e (2-OTES) proved less reactive and required more 

equivalents of Schwartz’s reagent for the reaction to be 

successful (Scheme 1, conditions b), providing the α-

configured iminosugars 3d (15%) and 3e (30%) in modest 

yield. Interestingly, the 2-OTES sugar lactams gave better 

yields compared to the 2-OBn derivatives. This reaction was not 

successful with D-mannonolactam, D-xylonolactam and L-

gulonolactam and compounds 3f, 3g and 3h could not be 

isolated although the corresponding imines were observed by 

MS and TLC suggesting a lower reactivity of these imines 

towards nucleophiles. Satisfyingly, this methodology was also 

compatible with a five-membered sugar lactam and the D-

arabinolactam 2i furnished the α-configured iminosugar 3i in 

30% yield (Scheme 1).  

 

Scheme 1. Synthesis of 1-C-phosphonomethyl iminosugars  

1-C-difluoromethylphosphonosugars are often considered to 

provide glycosyl phosphate surrogates with better mimicking 

abilities than the parent CH2 analogs due to steric and electronic 

factors.40 This was recently illustrated in iminosugar series by 

the superior GlfT2 galactofuranosyltransferase inhibition 

developed by a 1-C-difluoromethylphosphonoiminosugar 

compared to a 1-C-methylphosphonoiminosugar.26d Indeed, the 

C–CF2–P linkage closely resembles the C–O–P bond of 

phosphates in terms of size and charge distribution. In addition, 

the electron withdrawing effects of α-fluorination produce 

phosphonates with dissociation constant (pKa) values closer to 

those of the parent phosphate.41 These promising properties led 

to the development of many new synthetic methods to introduce 

difluoromethylene phosphonate in the past ten years.42,43  

However, a limited range of  1-C-phosphonodifluoromethyl 

iminosugars 1g–l have been reported so far (Figure 1).26b-d,44,45 
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We anticipated our strategy would also work with 

LiCF2P(O)(OEt)2 to furnish the corresponding fluorinated 

glycosyl phosphate surrogates. Lactams 2a–i were first 

converted to the corresponding imines with Cp2Zr(H)Cl and 

then treated with LiCF2P(O)(OEt)2 at –78°C in THF (Scheme 

2). In the D-glucose series, the corresponding iminosugars 4a 

(2-OBn) and 4c (2-OTES) were obtained in satisfactory 61% 

and 52% yield respectively over two steps. More importantly, 

their extensive NMR analysis assigned a β-configuration for the 

pseudoanomeric position (J1,2 = 9.3 Hz for 4a and J1,2 = 8.7 Hz 

for 4c). In the D-galactose series, no trace of iminosugar 4d (2-

OBn) was detected but the iminosugar 4e (2-OTES) was 

isolated in 17% yield. Unfortunately, we failed to assign its 

pseudoanomeric configuration either through its deprotection or 

extensive NMR experiments as only broad signals were 

obtained. Satisfyingly, this two steps transformation proved 

now effective in the D-mannose and L-gulose series, 

respectively providing the α-configured iminosugar 4f (53%) 

and the β-configured L-iminosugar 4g (16%). It was also 

successful with D-arabinolactam affording α-configured 

iminosugar 4i (53%). However, the D-xylonolactam was still 

not converted into the known 1-C-phosphonodifluoromethyl 

iminosugar45 4h under these conditions. The better results, in 

terms of yield and substrate scope, obtained with 

LiCF2P(O)(OEt)2 compared to LiCH2P(O)(OEt)2, can be 

attributed to its higher nucleophilicity resulting from its less 

delocalized negative charge. However, the mechanistic 

rationale for the opposite stereochemical outcome obtained for 

the CH2 and CF2 derivatives in the D-gluco and D-galacto series 

and the lack of reaction with the D-xylo and D-manno 

derivatives is still unclear and would require further 

investigation. 

 

Scheme 2. Synthesis of 1-C-phosphonodifluoromethyl 

iminosugars  

Taking advantage of the orthogonal protection of the C-2 

position in iminosugars 3b, 3c and 3e, we next explored the 

possibility to access 2-acetamido-1-C-phosphonomethyl 

iminosugars. There is only one example in the literature20 and 

we hypothesized that the NHAc moiety could be 

stereoselectively introduced exploiting endocyclic nitrogen 

participation (Scheme 3a).46,47 Iminosugar 3b was N-benzylated 

(BnBr, K2CO3) to afford the fully protected iminosugar 5 that 

led to the undesired bicyclic derivative 6 as a mixture of 

diastereomers upon desilylation. Efforts to open the 

phosphonate ring were unsuccessful as was the desilylation 

under acidic conditions to avoid trapping of the phosphonate 

group by the 2-OH group. We therefore turned our attention to 

the 2-OTES derivative 3c which N-benzylation and O-

desilylation under acidic conditions (TBAF, AcOH) smoothly 

afforded alcohol 7 (73%). Stereo-retentive displacement of the 

free OH in 7 with DPPA, PPh3 and DIAD in THF furnished the 

α-D-gluco-configured azidopiperidine 9 (72%) along with 

some azidopyrrolidine 9’ (14%) resulting from the opening of 

the transient fused piperidine-aziridinium ion at the methine 

carbon. Conversion of the azide moiety in 9 to the 

corresponding NHAc group was achieved in two steps (PPh3, 

H2O then Ac2O, pyr.) to afford the acetamido-iminosugar 11 

(61%) that was quantitatively hydrogenolyzed to produce the 

target D-gluco-configured 2-acetamido-1-C-phosphonomethyl 

iminosugar 13. To demonstrate the generality of this approach, 

the same sequence was applied to the D-galacto-configured 

iminosugar 3e to afford the alcohol 8 (57%), azide 10 (55%) 

and acetamide 12 (53%). Importantly, the broad NMR signals 

exhibited by compounds 8, 10 and 12 precluded their 

stereochemical assignment. Fortunately, hydrogenolysis of 12 

quantitatively afforded the D-galacto-configured 2-acetamido-

1-C-phosphonomethyl iminosugar 14 which NMR analysis 

confirmed its α-D-GalNAc configuration and retrospectively 

the stereochemistry of precursors 8, 10 and 12. We further 

exploited the 2-OH position in alcohol 7 to access other novel 

1-C-phosphonomethyl iminosugars (Scheme 3b). Treatment of 

7 with NaHMDS, CS2 and MeI followed by reaction with AIBN 

and Bu3SnH in toluene furnished the 2-deoxy-1-C-

phosphonomethyl iminosugar 15 in modest 24% (unoptimized) 

yield over two steps. In addition, the free alcohol in 7 was 

inverted to generate the new α-D-manno-configured 1-C-

phosphonomethyl iminosugar, a compound that could not be 

obtained from D-mannonolactam by our sequence. Oxidation 

of 7 with Dess-Martin periodinane produced the corresponding 

ketone that was treated with a range of hydride reagents. While 

NaBH4 or L-selectride failed to afford the axial alcohol 16, 

treatment with L-selectride in the presence of Rochelle’s salt 

led to the desired iminosugar 16 in 62% yield.  
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Scheme 3. Synthesis of 2-acetamido-α-1-C-phosphonomethyl 

iminosugars 13 and 14 and 2-deoxy and D-manno configured α-1-

C-phosphonomethyl iminosugars 15 and 16. 

In conclusion, we report the straightforward stereoselective 

synthesis of 1-C-phosphono-methyl and difluoromethyl 

iminosugars that are obtained in modest to good yields from 

easily available sugar lactams. The functional group tolerance 

of this methodology allowed us to access 2-deoxy and 2-

acetamido derivatives and new sugar stereochemistries. A 

different reactivity and opposite stereochemical outcome were 

observed with the LiCH2P(O)(OEt)2 and LiCF2P(O)(OEt)2 

reagents in the D-gluco and D-galacto series that needs to be 

further investigated.  

Associated content 

Supporting Information 

Optimization of reaction conditions, experimental procedures, 

and compounds characterization (2e, 2h, and 3−16), including 

one- and two-dimensional NMR spectra.  
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