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1 Measurement of the helical twist power
To measure the Helical Twist Power (HTP) of the cholesteric mix-
tures studied in the main text, I prepared a Cano wedge sam-
ple as follows. Two glass plates were cleaned using the same
protocol than in the main text. 1g of PVA (poly[vinyl alcohol],
Mw = 85000–124000, 87–89 % hydrolyzed, Sigma Aldrich) was di-
solved in 50 cm3 of water and 3.22 cm3 of ethanol, and drops of
the resultant solution were filtered and spin-coated at 2000 rpm
during 20 s on the glass plates, which were subsequently baked at
110 °C during 1 h and rubbed with a rotating velvet cylinder. The
wedge sample was assembled from the treated glass plates by sep-
arating them with a calibrated tungstene wire of diameter 50 µm
(Goodfellow) on one side of the sample and nothing on the other
side of the sample. The plates were fastened using epoxy glue on
all sides of the sample, leaving only two holes for the filling. The
rubbing direction was orthogonal to the wedge direction x. Be-
cause of residual stresses, the thickness profile h(x) of the wedge
is not perfectly linear and was therefore accurately mapped with
a spectrometer as described in the main text. Finally, this sample
was filled by capillarity with a mixture of 5CB and a mass fraction
C = 0.96wt% of R811.

As reviewed by Oswald and Pieranski1, defects appear at posi-
tions xn such that hn ≡ h(xn) = P(2n−1)/4, with P the cholesteric
pitch and n the integer defect number. I measured experimen-
tally the defect positions xn using the same reference point as
for the thickness calibration curve h(x), and deduced the defect
thicknesses hn. Plotting hn against n and performing a linear fit
gives a line crossing the abscissa axis at 0.5, with a slope of P/2.
The results of this measurement and fit was P = 9.02± 0.03µm
at T − TNI = 5◦C, from which we can deduce HTP ≡ 1/(PC) =

0.1155±0.0004wt%−1µm−1.

2 Additional proofs for the case of small transverse
wavevectors

2.1 Eigenvalue equation

Let us first calculate the actions of the dissipation operators (as
defined in the main text) in the limit kkk⊥ → 0:
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with Z ≡ 2z/h and µ ≡ α2
2/(γ1ηc) as in the main text.

To calculate the expression of ΓTBu for any function u, let us
solve the differential equation v′′(Z) = u′(Z) with the Dirichlet
Boundary Conditions (BCs) v(±1) = 0. By integrating two times
this differential equation and using the BCs to find the integration
constants, one finds the following solution:
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]
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with the average operator ⟨u⟩ defined as in the main text. One
deduces from this solution the identity v′(Z) = u(Z)−⟨u⟩ and the
following expression for the action of ΓTB:
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with γ⋆1 ≡ γ1(1−µ).

To calculate the expression of ΓSBu for any function u, let us
solve the differential equation v′′′′(Z) = u′′(Z) with the Dirichlet
BCs v(±1) = 0 and Neumann BCs v′(±1) = 0. By integrating four
times this differential equation and using the BCs to find the in-
tegration constants, one finds the following solution:
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One deduces from this solution the identity v′′(Z) = u(Z)−⟨u⟩−
3Z⟨Z′u⟩ and the following expression for the action of ΓSB:
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By taking the limit |kkk⊥| → 0 in eqn (22) of the main text and
using eqn (4,6), one finds the following system of equations:(
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with φq ≡ (qh/2)(K2/K3) and φτ ≡ (h/2)

√
γ⋆1 f/K3 as in the main

text. One can eliminate the right-hand-side of eqn (7) by defining
the following auxilliaries variables:
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Finally, one can find ñSB and ñTB as functions of mSB and mTB by
noticing that:
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from which one deduces with eqn (8,9):
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ñTB = mTB −µ
[
⟨mTB⟩+

6φq(1−µ)
φ 2

τ
⟨Z′mSB⟩

]
(15)

Eqn (10,14,15) are the same than the ones given at the beginning
of Sec. 3.2.2 in the main text, and therefore conclude this proof.

2.2 Dispersion relations

Let us now deduce the dispersion relation associated with the
eigenvalues of eqn (10). As explained in the main text, the modes
can be splitted into even-odd and odd-even profiles. Let us exam-
ine each case separately.

2.2.1 nSB is even and nTB is odd.

Even-odd solutions of eqn (10) have the following general form:

ñSB(Z) = A+ cos(Zφ+)+A− cos(Zφ−) (16)

ñTB(Z) = B+ sin(Zφ+)+B− sin(Zφ−) (17)

with φ± ≡
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φ 2
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τ ±φq. From eqn (10), one finds that the coef-
ficients of this solution must fulfill the identity A± = ±B±. From
the Dirichlet BCs nnn(Z =±1) = 000 and eqn (14,15), one also deduce
the following relations:

A+ cos(φ+)+A− cos(φ−) = µ [A+ sinc(φ+)+A− sinc(φ−)] (18)

B+ sin(φ+)+B− sin(φ−) = 0 (19)

using the identity ⟨cos(Z′φ)⟩= sincφ , valid for arbitrary φ . Using
the identity A± = ∓B± mentioned just above, one can eliminate
the coefficients B± from the previous system of equation:(
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The determinant of the previous system must be zero in order
to get non-trivial solutions, and therefore constitutes the disper-
sion relation of the eigenvalue φ 2

τ :
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τ . Using elementary trigonometric identities,
one can transform this dispersion relation under the same form
than the one given in the main text:
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with:

R1(φs)≡ cosφs −µ sincφs, (23)

R2(φs)≡ sincφs (24)
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3
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2.2.2 nSB is odd and nTB is even.

Odd-even solutions of eqn (10) have the following general form:

ñSB(Z) = A+ sin(Zφ+)+A− sin(Zφ−) (26)

ñTB(Z) = B+ cos(Zφ+)+B− cos(Zφ−) (27)

with φ± defined as in the previous subsection. From eqn (10), one
finds that the coefficients of this solution must fulfill the identity
A± = ∓B±. From this identity, the Dirichlet BCs nnn(Z = ±1) = 000
and eqn (14,15), one deduce the following relations:
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using the identities ⟨cos(Z′φ)⟩ = sincφ and ⟨Z′ sin(Z′φ)⟩ =

(sincφ − cosφ)/φ , valid for arbitrary φ . Similar to the previous
subsection, the next step is to impose that the determinant of the
system just above is zero. After a long but straightforward calcu-
lation based on the following relations:
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one finds the dispersion relation under the form given in the main
text:
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with:

R1(φs)≡ cosφs −µ sincφs, (35)

R2(φs)≡ sincφs −µ T (φs) , (36)
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2.3 Theoretical expressions of the eigenvalues for the soft
modes

Using the dispersion relations of the previous section, we can find
approximate expressions for the eigenvalues of the soft modes as-
sociated with vanishingly small decay frequency when φq → π/2,
i.e. when the sample approach the threshold of absolute desta-
bilization of the unwound phase with a mass fraction of chiral
molecules C equal to the critical fraction Cc. This calculation re-
lies on a Taylor series expansion of the dispersion relation in the
small parameter ε ≡ 1− (C/Cc)

2 and a solution of the following
form:

φ (α,0)
τ =

π
2

√
(1−µ)ε

1− µ
2 [ fα (µ)+gα (µ)(1− ε)]

(39)

The previous equation is the same than the one given in the main
text, apart from the explicit use of the small parameter ε instead
of C/Cc and the use of the rescaled eigenvalue φτ = (π/2)

√
τh/τ

instead of τh/τ.

The eigenvalue φ (0,0) (resp., φ (1,0)) is associated with the even-
odd (resp., odd-even) dispersion relation. The calculation of the
Taylor series of these dispersion relations is a bit tedious and was
therefore facilitated with extensive use of Mathematica. Since
there are terms in 1/φ 4

τ and 1/φ 2
τ in the dispersion relations, one

could expect ill-defined behaviour when ε → 0. However, I found
out that for both dispersion relations, terms of order 1/ε2, 1/ε
and 1 cancels out, leading to well-defined solutions. Cancelling
out the terms of order ε and ε2 gives the following expressions of
fα and gα :

g0(µ) =
1
2
+

µ
8

[
1

1− µ
2

]
, (40)

g1(µ) = ν − µ
8

[
1−4ν −3ν2

1− µ
2 (1−ν)

]
, (41)

f0(µ) = 1−g0(µ), (42)

f1(µ) = 1−g1(µ)−ν , (43)

with ν ≡ 3/π2.
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Fig. 1 Relative error between eqn (39) and the numerically calculated
eigenvalues plotted against the rescaled mass fraction of R811, when
defining the functions fα and gα either from the Taylor expansion of this
section or the fitted functions from the main text.

Let us define r(α,0)
Taylor as the relative error between the numer-

ically calculated eigenvalue φ (α,0)
τ and its approximation calcu-

lated with eqn (39–43). For completeness, let us also define r(α,0)
Fit

as the same quantity calculated with the fitted functions fα and
gα introduced in the main text. These quantities are plotted as
a function of C/Cc on Fig. 1. One may observe that the Taylor
expansion formula gives, by construction, asymptotically good
accuracy near C = Cc, but is not particularly good near C = 0.
Conversely, using eqn (39) with the fitted functions fα and gα of
the main text gives much better accuracy over the whole range of
values for C.

2.4 Anomalous divergence of the pressure at small wavevec-
tor

Let us define vk ≡ vvv⊥ · eeek and nk ≡ nnn⊥ · eeek, with eeek ≡ kkk⊥/|kkk⊥| as in
the main text. Based on the equations of Sec. 3.1 and 3.2 in the
main text and the incompressibility condition, one can express
the pressure in terms of the relaxation rate of nk as follows:(

i|kkk⊥|h
2

)
P =

{
α2 +H SB

[
H SB

]−1

D,N
C SB

}
(∂Z∂tnk) , (44)

where we used the dimensionless coordinate Z = 2z/h as in the
main text. One immediately observe that if the right-hand-side of
eqn (44) does not goes to zero when kkk⊥ → 000, the pressure will
become singular. We therefore need to calculate and simplify the
limit of the right-hand-side, which can be done analytically with
the same method as in Sec 2.1 of this supplementary:

lim
kkk⊥→000

[(
i|kkk⊥|h

2

)
P
]
= α2

[
⟨u⟩+3Z⟨Z′u⟩

]
(45)

with u ≡ ∂ ′
Z∂tnk. Let us calculate the right-hand-side of eqn (45)

in the case of the fundamental eigenmode α = m = 0, using the
nomenclature of the main text. To simplify the calculation, let us
assume that there is no chirality (q = 0), so that the eigenvalue φτ
is the smallest positive solution of the dispersion relation cosφτ =

µ sincφτ . For this particular eigenmode and using the results of
Sec. 2.2.1 of this supplementary, we find the following profile for
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the splay-bend component of the director field:

nSB = A [cos(φτ Z)−µ sincφτ ] (46)

Since nk = nSB exp [ikkk⊥ · rrr⊥− t/τ], we can simplify eqn (45) using
eqn (46) and the dispersion relation cosφτ = µ sincφτ :

lim
kkk⊥→000

[(
i|kkk⊥|h

2

)
P
]
=

3α2Z(1−µ)Asincφτ
τ

exp [ikkk⊥ · rrr⊥− t/τ]

(47)
Since the right-hand-side of this equation is not zero, we conclude
that the pressure becomes singular in the small wavevector limit.
I emphasize that this result is not an artefact due to the calcula-
tion procedure, and was also observed numerically by solving the
Stokes equation when the forcing term associated with director
relaxation is a confined Fourier mode. As explained in the main
text, preliminary calculations indicate that the only way to avoid
this divergence is to take into account the compressibility of the
fluid.

Notes and references
1 P. Oswald and P. Pieranski, Nematic and Cholesteric Liquid Crys-

tals: Concepts and Physical Properties Illustrated by Experiments,
CRC Press, Boca Raton, 2006.
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