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ABSTRACT

Thanks to their giant nonlinear optical response, liquid crystals support the existence of spatial optical solitons
called nematicons. These solitons can be experimentally imaged in a microscope thanks to the fluctuation-
induced scattering of the laser beam, but the associated microscope images are generally hard to interpret due
to the partially incoherent nature of light scattering. In this contribution, we introduce a theoretical framework
allowing to simulate microscope images originating from bulk scattering sources. We apply this framework to the
visualization of laser beams and bouncing solitons in the weak nonlinear regime, and show that our framework
could be the basis for a novel tomography technique of optical fields.

Keywords: Liquid crystals, spatial optical solitons, light scattering, microscopy

1. INTRODUCTION

Liquid crystals (LCs) have led to countless technological applications in the domain of optics (displays, flat lenses,
modulators...) thanks to their optical anisotropy and facile response under external fields. One fascinating
development, initiated 2 decades ago in the groups of G. Assanto1 and M. Karpierz,2 is the generation and
manipulation of spatial optical solitons called nematicons. These self-focused beams can be generated at powers
as low as ∼ 1 mW, thanks to the giant Kerr-like non-linear optical response of LCs associated with the optical-
field-induced nonlocal reorientation of the director field. Since nematicons are effectively associated with a
localized waveguide along their axis and can be efficiently steered with bias voltage control of the beam walkoff,3

they are good candidates to carry optical informations in photonics applications. Nematicons can adopt complex
3D trajectories due to modulated interaction potentials,4,5 and have nontrivial interactions between themselves
with fascinating orbiting kinematics.6 Nematicons can also be used to assist random lasing in dye-doped LCs with
high efficiency and directional control.7 More generally, it was recently realized that the self-focusing properties of
optical solitons in LCs can not only come from the beam-induced modulation of the effective refractive index but
also from spin-orbit interactions without any effective index changes.8,9 Finally, the nonlinear optical interactions
at the core of optical solitons in LCs can be exploited to efficiently transform optical modes10 and even lead
to complex optomechanical interactions with topological solitons11—robust and localized birefringent structures
embedded in the continuous orientational field of the LC.
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In experiments, nematicons are usually directly imaged in a microscope without a conventional transmission
or reflection light source. Indeed, the orientational fluctuations of the LC scatter light from the soliton’s laser
beam, which can therefore form an image through the microscope’s objective. Such images are quite hard to
interpret quantitatively: for example, the apparent beam waist on the microscope image can be quite different
from the physical beam waist.12 We note that experimental optical setups allowing to image scattered fields
are commonly used in the context of dynamic light scattering of soft matterials (e.g. with differential dynamic
microscopy13 or photon correlation imaging14) or visualization of nanoscale objects (e.g. with interferometric
scattering microscopy15). However, the theory behind these setups is not directly applicable to the transverse
visualization of optical solitons or laser beams in scattering media since in this context there are a priori no
interferences with a fundamental beam (only scattered fields are captured by the microscopic objective) and
since a large number of fluctuation modes contributes to the final image.

To better understand how the intensity profile of laser beams is related to the imaged intensity of scattered
fields, we introduce a theoretical framework allowing to simulate microscope images originating from the scattered
fields of light propagating in a bulk scattering medium. We apply this framework to analyse microscope images
of simple Gaussian beams and more complex bouncing solitons in LCs5—self-focused beams bouncing between
the confining plates of an LC sample—and discuss specific features of scattered field imaging. Finally, we suggest
how our framework could be at the basis of a novel tomography technique of optical fields based on fluctuating
environments.

2. THEORETICAL MODEL

In this section, we derive the equations needed to simulate microscope images formed by the scattered optical
fields of a laser beam propagating in a scattering medium. We first derive a general formula for any media with
permittivity fluctuations, and then specialize our result to the case of oriented unixial liquid crystal layers with
orientational fluctuation.

2.1 Imaging of bulk scattering sources

We start from the wave equation for a monochromatic optical field E(r) exp (ik0ct):

∇×∇×E = k20ϵ ·E (1)

with k0 the wavevector in empty space and ϵ the relative permittivity tensor. We assume that ϵ = n2I + δϵ,
with δϵ a fluctuation field which is small with respect to the base isotropic permittivity n2. Let us define E0

as any solution of Eq. 1 without fluctuations (δϵ = 0), for a given light source. Using the Maxwell divergence
equation and Eq. 1, we then find that the scattered optical fields E′ are given at first order by:[

∆ + k20n
2
]
E′ = −k20δϵ ·E0 ≡ −k20Σ, (2)

with Σ ≡ δϵ ·E0 representing the bulk scattering source. Note that this equation is valid only in the quasi-static
approximation, assuming that the typical time scales for the fluctuation field are much larger than 1/(k0c)—which
is the case of the orientational fluctuations of the next subsection.

By solving Eq. 2, one can, in principle, find the total scattered field anywhere in space. Here, we want
to restrict the calculation of the scattered field on the image plane of a 2f lens projection setup (with f the
focal length of the lens), which will serve as a minimalistic model for the objective of a microscope (neglecting
magnification since it can always be absorbed in a scaling operation16). Such a system is shown schematically
in Fig. 1. We assume that the scattering volume (layer z ∈ [−h/2, h/2]) is confined between a lower and upper
glass plate (layer z ∈ [h/2, h/2 + e]) of refractive index ng. The distance between the lens and upper glass plate
is ∆, and we consider the general case of an immersion medium with refractive index ni. For simplicity, we
assume that the mean isotropic refractive index of the scattering volume matches the one of glass.

Having defined the geometry of our system, we can now explicitly solve Eq. 2 by switching to the transverse
Fourier plane: {

∂2
z + k20

[
n(z)2 − |p⊥|2

]}
Ẽ⊥(p⊥, z) = −k20Σ̃⊥(p⊥, z), (3)
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Figure 1. Schematics for the optical setup studied here. A laser beam (in green) propagates in a scattering volume confined
between glass plates, and produces scattered fields which are collected by a lens and projected onto the image plane. The
origin of the z-axis is placed at the center of the scattering volume.

where the subscript ⊥ indicates a projection onto the xy plane and where we defined the transverse Fourier
transform of any function f as:

f̃(p⊥, z) ≡
∫

d2r⊥ f(r⊥, z) exp [ik0p⊥ · r⊥] (4)

Following the conventional approach of Fourier optics16 we model the lens as an ideal diffraction-limited Fourier
filter t with object-side immersion medium of index ni:

t(p⊥) = P∗(ni, 2f,p⊥)P∗(1, 2f,p⊥)Θ (NA − |p⊥|) , (5)

with NA the numerical aperture of the lens, Θ the Heaviside function, and P(n, l,p⊥) ≡ exp
[
ik0l

√
n2 − |p⊥|2

]
the Helmhotz phase propagator. We solve Eq. 3 assuming only forward propagating modes and neglecting Fresnel
reflections at the index discontinuity surfaces. By using the Green function of the Helmholtz equation inside
the scattering layer16 and then composing with the appropriate Helmhotz propagators and lens filter in each
subsequent layer of Fig. 1, we find the Fourier-transformed optical fields on the image plane:

Ẽ
(im)
⊥ =

ik0
2ng

∫ h/2

−h/2

dz P(1, 2f,p⊥) t(p⊥)P(ni,∆,p⊥)P(ng, ls − z,p⊥) Σ̃⊥(p⊥, z) (6)

with ls ≡ e + h/2. Coming back to real-space and applying the Fourier convolution theorem, we finally find the
optical fields on the image plane:

E
(im)
⊥ (r⊥) =

∫ h/2

−h/2

dz

∫
d2u⊥T (u⊥, z)Σ(r⊥ − u⊥, z) (7)

where we introduced the amplitude point-spread-function (PSF) of the lens (up to a constant phase factor which
was removed):

T (u⊥, z) ≡ iπe−ik0ngz

λ3
0ng

∫
d2p⊥ eik0p⊥·u⊥+iϕ(|p⊥|,z)Θ(NA − |p⊥|)

=
2iπ2e−ik0ngz

λ3
0ng

∫ NA

0

dp eiϕ(p,z)J0(k0p|u⊥|) p, (8)

ϕ(p, z) = k0

[(√
n2
g − p2 − ng

)
(ls − z) +

(√
n2
i − p2 − ni

)
(∆ − 2f)

]
, (9)

with J0 the zeroth-order Bessel function of the first kind. In the previous equation, ∆ can be seen as an adjustable
parameter allowing us to vary the focusing of the lens in our optical setup. A perfect focus can be attained when



the phase in Eq. 9 is zero for all radial frequencies p, since it implies a maximal center amplitude for the PSF in
Eq. 8 (no fast phase variation which averages out the PSF). This is only possible when the glass and immersion
media are index-matched (ni = ng), in which case we find that the optical fields are perfectly focused in the
plane z = zf ≡ ls + ∆ − 2f . When ni ̸= ng, the focus is always non-ideal and one must rely on an approximate
criterion for finding the focusing plane. In practive, we found that solving ϕ(NA, z) = 0 works well for numerical
aperture lower than 0.4, which gives a more general definition than the previous one for the z-coordinate of the
focusing plane:

zf ≡ ls +

√
n2
i − NA2 − ni√

n2
g − NA2 − ng

(∆ − 2f) (10)

Note that Eq. 7 is very similar to the usual formula relating the optical fields at the object and image planes
of a lens through a convolution with the amplitude PSF,16 except that here our source object is not an plane
but a bulk scattering source represented by the quantity Σ. Since the latter is by nature a stochastistic quantity
related to the permittivity fluctuations, the image fields are also random quantities; we focus here on the (ergodic)
averaged intensity fields measured by a camera captor placed on the image plane:

I(α)(r⊥) ≡ ⟨
∣∣∣E(im)

α (r⊥)
∣∣∣2⟩

=

∫
V

d3u

∫
V

d3u′ [T (r⊥ − u⊥, uz)E0(u)]
⊺
G(α)(u,u′) [T (r⊥ − u′

⊥, uz)E0(u′)]
∗

(11)

In this formula, α = x, y is the polarisation of the measured optical fields (which can be selected with a polarizer),
V is the integration volume corresponding to the scattering layer z ∈ [−h/2, h/2], and G(α) is the correlation
matrix of permittivity fluctuations associated with α-polarized scattered fields:

G
(α)
ij (u,u′) ≡ ⟨δϵαi(u) δϵαj(u

′)⟩ (12)

Eq. 11 will be our master equation for simulating microscope images of bulk scattering source, and fully takes
into account the partially incoherent nature of scattering through the correlation function G(α). This formula is
very similar to one discussed at the beginning of Ref.17 in a context different than the microscopy setup discussed
here. We emphasize that our derivation of the PSF T in this formula is only approximate and quite similar to the
simple scalar approach described by Gibson and Lanni.18 However, it can be generalized without any technical
difficulties to include more complex phenomena such as vectorial abberations and Fresnel reflections.19 We focus
here on a simpler model of PSF in order to gain a general understanding of the image formation process of bulk
scattering sources, specialized in the next section to the case of orientational fluctuations in a nematic LC layer.

2.2 Scattering induced by orientational fluctuations

We now assume that the scattering layer is formed of a nematic LC layer oriented along n0 ≡ ez (i.e. with
homeotropic boundary conditions). The director field can be written as n = n0 + δn with δn the orientational
fluctuations induced by the thermal noise. Note that since the director field is unit normed, δn is necessarily
orthogonal to n0. At first order in the fluctuation, the relative permittivity tensor is given by ϵ = ϵm + δϵ, with
the fundamental and fluctuating contributions given by:

ϵm = ϵoI + ϵan0 ⊗ n0 (13)

δϵ = ϵa (n0 ⊗ δn + δn⊗ n0) (14)

with ϵo ≡ n2
o, ϵa ≡ n2

e−n2
o, and ne (no) the extraordinary (ordinary) index of the LC. Note that the unperturbed

permittivity tensor ϵm is not isotropic, contrary to what was assumed in the previous section. In practice, this
anisotropy can introduce vectorial aberations not taken into account by our simple PSF model. Here, we will
choose to ignore these abberations by assuming that the anisotropy of relative permittivity ϵa is sufficiently
small, in which case ϵm ≈ n2

oI.



Assuming that the director field is negligibly perturbed by the optical fields, a straightforward calcula-
tion gives us the permittivity correlation matrix as a function of the director correlation matrix gij(u,u

′) =
⟨δni(u)δnj(u

′)⟩:
G(α)(u,u′) = ϵ2a gαα(u,u′) ez ⊗ ez (15)

Assuming that the Frank elastic constants are all equal to K, we find that the director correlation function of a
homeotropic layer of thickness h calculated by Zel’dovich and Tabiryan20 simplifies to:

g(u,u′) =
kbT

πKh

∞∑
n=1

K0 (qn |u⊥ − u′
⊥|) sin

(
qn

[
uz +

h

2

])
sin

(
qn

[
u′
z +

h

2

])
[I− n0 ⊗ n0] , (16)

with qn ≡ nπ/h, kb the Boltzmann constant, and K0 the zeroth-order modified Bessel function of the second kind.
Since fluctuation modes are not confined in the xy plane, the correlation function is translationally invariant in
this plane and only depends on the difference u⊥−u′

⊥. For the z-direction, however, this translational invariance
is broken because of the confining glass plates, and the correlation function must fulfill the boundary conditions
g = 0 when either uz or u′

z is equal to ±h/2, which can be readily verified on the last equation.

Using Eqs. 15 and 16, we find that our master equation 11 simplifies to:

I(α)(r⊥) =

∫
d2u⊥

∫
d2u′

⊥

∞∑
n=1

Fn(r⊥,u⊥) gn (|u⊥ − u′
⊥|) Fn(r⊥,u

′
⊥)∗, (17)

with gn(u) ≡ kbTϵ
2
a/(πKh)K0(qnu) an effective in-sample-plane correlation function and Fn the input optical

field E0z averaged by the PSF and the n-th mode of fluctuation along z:

Fn(r⊥,u⊥) ≡
∫ h/2

−h/2

duz sin

(
qn

[
uz +

h

2

])
T (r⊥ − u⊥, uz)E0z(u). (18)

In the geometry considered here, the scattered intensity is fully depolarised which is why the right-hand-side of
Eq. 17 does not depend on the polarization index α. This result is fully expected since our system is invariant
by rotation around the axis z. In the following, we therefore omit the (α) index and denote by I(x, y, zf ) the
intensity measured at point {x, y} by the camera when the focusing plane of the lens is at z = zf . In experiments,
the 3D signal I can be measured using optical sectioning, i.e. by measuring images of the sample z-layer by
z-layer while changing the distance between sample and microscope objective.

In the next section, we numerically integrate Eq. 17 to calculate scattered images of Gaussian beams and
bouncing solitons propagating inside the LC layer, and discuss the influence of the focusing optics and possible
applications.

3. NUMERICAL RESULTS

3.1 Numerical methods

To calculate a scattered image for a given focus zf and input field E0, we repeatedly apply Eq. 17 with different
r⊥ taken from a Cartesian mesh defining our image. The 4D integral in Eq. 17 cannot be easily integrated using
traditional quadrature methods because of the high dimensionality. Instead, we used the stochastic Monte-Carlo
integration algorithm VEGAS, which uses adaptive importance sampling to accelerate the convergence. To
efficiently calculate the fields Fn, we used the discrete sine transform algorithm of type I (DST-I), with typically
256 z-discretization steps (which also corresponds to the cut-off limit for the discrete sum in Eq. 17). Our
numerical code implementing this calculation was written in C++, using the Cuba library21 for Monte-Carlo
integration and the FFTW library22 for the DST-I transform.

All our calculations were done with a wavelength λ = 0.5 µm for the optical fields, a thickness e = 1 mm for
the upper glass plate, and ng = 1.5 for the refractive index of glass. For the extraordinary and ordinary indices,
we took typical room-temperature values associated with thermotropic LCs:23 no ≈ ng and ne ≈ 1.75. For the
refractive index of the lens’ immersion medium, we chose either ni = 1 (dry objective) or ni = ng (oil immersion
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Figure 2. (a) Gaussian beam of waist w0 = 2 µm propagating in a 40 µm-thick homeotropic LC slab. (b) Simulated
bouncing optical soliton of waist w0 = 5 µm propagating in a 15 µm-thick homeotropic LC slab.

objective). In the VEGAS Monte-Carlo method, we chose to use the same Sobol quasi-random samples for all the
image points, which means that the calculated intensities at different point of the image are strongly correlated.
In short, the calculated images do not include very visible spatial noise, and typically corresponds to the exact
image up to a random multiplicative factor which approaches 1 when a sufficiently high number of integrand
evaluations was reached. We repeatedly evaluate the integrand until the L2-error (evaluated from the variance
of intermediate integral calculations in the VEGAS algorithm) for the calculated image is smaller than 0.1. On a
desktop computer with 12 threads, our code can evaluate 104 integrand values in typically 0.25 s. Depending on
the numerical aperture of the lens, between 4 103 and 105 integrand evaluations are needed to obtain sufficient
convergence, with lower numerical aperture being more difficult to integrate∗. All calculated images are rescaled
such that the maximal intensity is 1, which means that one can ignore the factor kbTϵ

2
a/(πKh) in the definition

of the correlation function gn and use arbitrary units for the input field E0.

We focus our numerical study on two examples for the optical field E0. The first one is a simple Gaussian
beam with a z-polarization and propagating along the y axis in the mid-sample-plane of a h = 40 µm-thick
homeotropic LC slab:

E
(gaussian)
0 (x, y, z) =

(
yr

y − iyr

)
exp

[
ik

{
y +

x2 + z2

2(y − iyr)

}
− i arctan

(
y

yr

)]
ez (19)

with k = k0ne the wavevector in the LC slab, yr = kw2
0 the Rayleigh length and w0 = 2 µm the beam waist.

The second one is more complex and corresponds to the bouncing optical soliton experimentally observed in a
previous paper.5 We recall that a spatial optical soliton is a beam that can preserve its transverse profile as
it propagates in a medium with an optical nonlinearity. For the particular case of bouncing optical soliton in
homeotropic LC layers, the beam has an extroardinary polarization, propagates in the yz plane of the sample and
is bouncing between the confining glass plates of the sample thanks to total internal reflection. With a sufficiently
high beam power, the nonlocal molecular reorientation of LC molecules induced by the beam polarization acts
as a waveguide for the beam, which can therefore propagate without diffracting and can be addressed as an
optical soliton. We refer the reader to our previous paper5 for all details concerning the physics of these peculiar
solitons, and focus here on a simulated bouncing optical soliton with an input waist w0 = 5 µm and insertion
angle of 15◦ in a homeotropic LC slab of thickness h = 15 µm. The simulation was done thanks to a generalized
beam propagation method and a simple director relaxation algorithm that are described in the supplementary

information of Ref.,5 and gave us the optical field E
(bouncing)
0 . In Fig. 2, we show 3D volumetric rendering of the

optical fields intensity for the two example of beams that we study here.

3.2 Scattered images of a gaussian beam

Let us start by discussing our results with the Gaussian beam of Fig. 2a. All simulations presented in this
subsection assumes an oil-immersion microscope objective with ni = ng. On Fig. 3a and b, we show xy and
xz slices of the calculated microscope intensity field I(x, y, zf ), assuming a numerical aperture of 0.4. These
images suggest that the transverse profile of the Gaussian beam is well-captured by the microscope objective,
but that the axial resolution along z is limited. This is expected, since for NA=0.4 the typical axial resolution

∗Small NA are more difficult to integrate because the associated PSF covers a larger region of space, but the scale of
the transverse phase variations in the integrand (typically λ0) stays the same. These fast phase variations are difficult to
integrate accurately, but they are also a fundamental ingredient for correctly calculating the scattered intensity.



∆z ≡ 2ngλ/NA2 ≈ 9.4 µm for the associated PSF is bigger than the beam waist, whereas the transverse resolution
∆r ≡ λ0/(2NA) ≈ 0.63 µm is smaller than the beam waist†. To better visualize the axial and transverse resolution
of scattered fields, we analyzed the x and z profiles of the calculated optical stack I(x, y, zf ). In the following,

we indicate by Ĩ any profile of I rescaled by its maximal value. On Fig. 3c, we show x-profiles of Ĩ calculated for
NA = 0.4 at different foci zf . These profiles shows that the transverse resolution is optimal when the beam is
focused by the lens (zf = 0), but worsen when the beam is out-of-focus, similarly to conventional visualization of
micron-sized objects in a transmission microscope. Finally, Fig. 3d shows x and z-profiles calculated for different
NA. From these plots, we conclude that both transverse and axial resolution of the scattered fields improves with
higher numerical aperture. We note that this would not be the case if the index of the immersion medium would
not be matched to the one of glass, which we verified by direct simulations and can also be visible on Fig. 3
of Ref.,19 where a PSF model similar to ours was studied. More specifically, we noticed that when ni = 1, the
axial resolution of scattered fields in our simple PSF model is roughly the same as in index-matched objectives
for numerical aperture below 0.3, but is seriously degraded above this—an observation that can be intuitively
understood as a geometrical abberation induced by refraction at the glass-air interface.

To summarize, these preliminary numerical experiments shows that, in terms of transverse and axial reso-
lution, the visualization of bulk scattering fields obeys very similar laws than classical microscope visualization
of objects under Köhler illumination, despite the partially incoherent nature of light scattering and nonlocalized
spatial extent of fluctuations. One could therefore hope, given an index-matched objective with a sufficiently
high NA, to be able to reconstruct in 3D the shape of a laser beam propagating in a scattering volume, similar
to the 3D visualization of microscopic objects using confocal microscopy or optical sectioning techniques. We
numerically examine the feasability of this new tomography technique in the next section by looking at bouncing
optical solitons, and also highlight other important features of scattered field visualization.

3.3 Scattered images of a bouncing soliton

As explained in Sec. 3.1, optical solitons in LCs are associated with a beam-induced reorientation of the director
field, which should in principle be taken into account in the calculation of the correlation function and scattered
fields. Here, we simplify the discussion by assuming that the reorientation angle needed to stabilize the optical
soliton is very small, which is the case for the large waist w0 = 5 µm of the simulated bouncing optical soliton
of Fig. 2b (|δn| ∼ 9 10−3). On Fig. 4a and b, we show xy-slices of the scattered intensity signal I at zf = 0,
calculated for different NAs with either a dry objective (a) or oil-immersion objective (b). Similar to what was
described in the previous subsection, the resolution increases with the numerical aperture when the immersion
index is matched to the one of glass, with well-separated maxima associated with the points where the beam
crosses the mid-sample-plane for the highest numerical aperture.

Interestingly, one also observe that the intensity along the soliton axis y is modulated with an alternance
of bright and dark areas. To understand the physical origin of this modulation, we plot on Fig. 4c yz-slices of
the signal I calculated for different NAs with ni = ng and x = 0. Therein, one observe that the dark (bright)
areas correspond to parts of the beam moving away from (towards) the objective lens, and conclude that the
modulation is due to the different cross-scattering sections of forward and backward scattering processes. More
precisely, let ki be the (local) wavevector of the bouncing soliton, kf ≡ k0ngez the mean observation wavevector
associated with the lens projection setup of Fig. 1, and q ≡ kf−ki the scattering wavevector. Since the scattering
cross section in nematic LCs scales like24 1/|q|2, we find that the intensity ratio between dark and bright areas

in Fig. 4 should typically be r ≡
∣∣q(+)

∣∣2 / ∣∣q(−)
∣∣2, with q(+) (q(−)) the scattering wavevector associated with

part of the soliton with kiz > 0 (kiz < 0). Using the theoretical expression of the extraordinary wavevector25 in
terms of the Poynting vector direction us = cos θ ey +± sin θ ez (with θ = 15◦ the angle between the beam and
the sample plane), we find:

r =

(
ngneff − n2

o sin θ
)2

+ n4
e cos2 θ

(ngneff + n2
o sin θ)

2
+ n4

e cos2 θ
(20)

†These formula for the axial and transverse resolutions can be obtained from the theoretical profiles of the PSF along
the transverse and longitudinal directions, and corresponds to the first zeros of the PSF in the paraxial limit.



(a)

y

x

⊙z

(b)

x

z

⊗
y

(c)

−6 −4 −2 0 2 4 6

0

0.5

1

x (µm)

Ĩ
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Figure 3. (a) Calculated xy-slice of the imaged scattered intensity for the Gaussian beam of Fig. 2a, with zf = 0 and
NA=0.4. (b) xz-slices along the dashed lines of (a). The white bars in (a,b) represent 5µm and apply to both horizontal
and vertical axes. (c) Rescaled scattered intensity profile Ĩ(x, 0, zf ) as a function of x for different zf , using the same
calculation parameters as in (a,b). (d) Profiles of Ĩ(x, 0, zf ) along x (left, y = zf = 0) or zf (right, x = y = 0) for different
numerical apertures.



Using the values of the parameters used in our simulations, we estimate r ≈ 0.67. To compare this with our
numerical simulations, we plotted on Fig. 4d the y-profiles calculated for a very low numerical aperture of
0.05, as well as the experimental profile obtained from the data of Ref.5 which was measured with a low-NA
microscope objective and a similar angle θ. To ease the comparison between experiments and simulations, these
signals are plotted as a function of y/Λ with Λ the signal periodicity (286 µm in the experiments, 140 µm in the
simulations). From this plot, we obtain r ≈ 0.6 for the numerical simulation and r ≈ 0.7 for the experiment,
in reasonable agreement with our estimation above. We emphasize that an intensity modulation can also be
experimentally observed on polarized optical micrographs of the solitonic sample due to the beam-induced
director field perturbation,5 with exactly the same periodicity Λ.

We note that in the bouncing soliton experiments previously mentioned,5 the apparent full width at half
maximum FWHM ≈ 30 µm of the soliton is bigger than the one estimated from the director field perturbation
visualized in direct polarized optical microscopy (∼ 15 µm), which is really surprising since with a nonlocal
optical response one expect exactly the opposite. This suggests that the experimentally visualized scattered
fields are associated with a wider transverse profile than the true solitonic optical field inducing the director
field reorientation. Several explanations are possible. First, multiple scattering processes across the thickness of
the sample—which are neglected in this paper—could play a role in spreading the apparent profile, although we
think this explanation is unlikely since the mean photon free path (which can be estimated from the scattering-
induced beam power decrease along the beam axis) is typically 1 mm and therefore much bigger than the sample
thickness. Second, the low NA of the objective used in these experiments and possible out-of-focus effects could
also contributes to spreading the profile, as discussed in our simulations; although this effect is rather small in our
simple model of PSF even with low-NA objectives, additional vectorial geometrical abberations not taken into
account here could amplify the loss of transverse resolution. Third, the perturbed director field at the core of the
soliton could affect the structure of fluctuation modes and the propagation of the scattered fields—two effects
which are neglected in our simulations since we assumed |δn| ≪ 1. Finally, it is possible that the bouncing soliton
visualized in the experiment exists on top of another wider beam which does not contribute to the molecular
reorientation but still contributes to the scattered fields; this may happen if the input beam is strongly scattered
at the sample entrance by topological defects typically present near the boundary of thin homeotropic LC slabs.

We think the latter two possibilities are the most likely, since other solitonic experiments done in the group of
Assanto12 showed two relevant results in a system with much cleaner beam coupling at the sample entrance than
in the bouncing soliton experiments:5 small solitonic waist smaller than 5–10 µm (which are associated with a
strong reorientation of the director) are systematically overestimated from the scattered light images, whereas
bigger waists can be reliably measured. Nevertheless, more experiments and comparison with simulations are
likely needed to find which effect contributes the most, especially in the strongly nonlinear optical regime.

4. CONCLUSION

To conclude, we introduced a theory for modeling microscope images of scattered optical fields originating from
a laser beam propagating in a bulk scattering medium. We applied this theory to the case of fluctuating nematic
LCs, and demonstrated with simulations of scattered images of a Gaussian beam and a bouncing optical soliton
that the axial and transverse resolution of the scattered fields is comparable to the classical resolution of physical
objects visualized in a transmission microscope. We also discussed the role of the scattering wavevector in
the intensity modulation of the scattered images and additional mechanisms that can affect the resolution of
scattered images of localized beams in LCs.

Assuming that these mechanisms can be kept in check (for example by restricting the experiments to the
weakly nonlinear regime and controlling carefully the beam coupling at the sample entrance), our results suggest
that 3D tomography of optical fields propagating in scattering media is in principle possible with high-NA
immersion objective—as visible in Fig. 4c. Simple optical sectioning measurements with a standard microscope
could provide a first experimental test of this hypothesis, but ultimately the best axial resolution could be
attained with confocal microscopy. Of course, the proposed technique has some limitations: depending on the
director alignment, not all polarization of the optical fields can be visible in the scattering direction (i.e. the
sample normal), and the scattered intensity is modulated by the local scattering wavevector and the shape of the
correlation function. Provided that supporting simulations are used to analyze experiments, these limitations
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Figure 4. (a-b) xy-slices of the imaged scattered intensity for the bouncing optical soliton in Fig. 2b, calculated with
zf = 0 and either a dry objective (a) or oil-immersion objective (b) with different NAs indicated on the right. (c) xy-slice
of the same signal as in (b), calculated with x = 0 and an oil-immersion objective with different NAs indicated on the
right. The white bars in (a,b,c) represent 10µm and apply to both horizontal and vertical axes. (d) Longitudinal y-profile
Ĩ(0, y, 0) numerically calculated with a dry objective and NA=0.05, and comparison with the same signal experimentally
observed with similar parameters than in our simulations.5



should not be too much a problem and our suggested technique could be for example used to track in 3D the
mode transformation of optical solitons,10 or the complex 3D trajectories of interacting solitons.6
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