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Abstract
We consider robust network design problems where an uncertain traffic vector belonging to a
polytope has to be dynamically routed to minimize either the network congestion or some linear
reservation cost. We focus on the variant in which the underlying graph is directed. We prove
that an O(

√
k) = O(n)-approximation can be obtained by solving the problem under static routing,

where k is the number of commodities and n is the number of nodes. This improves previous results
of Hajiaghayi et al. [SODA’2005] and matches the Ω(n) lower bound of Ene et al. [STOC’2016] and
the Ω(

√
k) lower bound of Azar et al. [STOC’2003]. Finally, we introduce a slightly more general

problem version where some flow restrictions can be added. We show that it cannot be approximated
within a ratio of k

c
log log k (resp. n

c
log log n ) for some constant c. Making use of a weaker complexity

assumption, we prove that there is no approximation within a factor of 2log1−ϵ k (resp. 2log1−ϵ n) for
any ϵ > 0.
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1 Introduction

Network optimization [38, 28] plays a crucial role for telecommunication operators since it
permits to carefully invest in infrastructures. As the traffic is continuously increasing, the
network’s capacity needs to be expanded through careful investments every year. However,
the dynamic nature of the traffic due to ordinary daily fluctuations, long term evolution
and unpredictable events requires to consider uncertainty on the traffic demand when
dimensioning network resources. In this context, we provide new approximability results on
two tightly related variants of the robust network design problem, the minimization of either
the congestion or a linear cost.

Let us consider a directed graph G = (V (G), E(G)) representing a communication network.
The traffic is characterized by a set of commodities h ∈ H associated to different node pairs
and traffic values dh. The demand vector d = (dh)h∈H is assumed to be uncertain and more
precisely to belong to a polyhedral set D. The polyhedral model was introduced in [6, 7] as
an extension of the hose model [14, 17], where limits on the total traffic going into (resp. out
of) a node are considered.
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6:2 Approximability of Robust Network Design: The Directed Case

The routing of a commodity h can be represented by a unit flow (also called routing
template) fh,. = (fh,e)e∈E(G) from the source s(h) to the sink t(h).

When solving a robust network design problem, several objective functions can be
considered. Given a capacity ce for each edge e, one might be interested in minimizing the
congestion given by maxe∈E(G)

ue

ce
where ue is the reserved capacity on edge e. Another

common objective function is given by the linear reservation cost
∑

e∈E(G) λeue. This can
also represent the average congestion by taking λe = 1

ce
. The goal is to choose a reservation

vector u so that the network is able to support any demand vector d ∈ D, i.e., there exists a
(fractional) routing serving every commodity such that the total flow on each edge e is less
than the reservation ue.

The robust network design problem that we are focusing on in this paper, is referred to
as dynamic routing in the literature since the network is optimized such that any realization
of traffic vector in the uncertainty set has its own routing (i.e., fh,. depends on d). The
robust network design problem where a linear reservation cost is minimized was proved to be
co-NP hard in [21] when the graph is directed. A stronger co-NP hardness result is given
in [12] where the graph is undirected (this implies the directed case result). Some exact
solution methods for robust network design have been considered in [13, 30]. Some special
cases where dynamic routing is easy to compute have been described in [8, 18, 31]. For each
of the two problems of congestion minimization and linear reservation cost minimization
under dynamic routing, it is proved in [1] that the optimal value cannot be approximated
within any constant (unless P = NP ) and within Ω( log n

log log n ) (under ETH assumption) for
an undirected graph having n vertices. This leads again to the same inapproximability result
for the directed case.

Routing with uncertain demands has received a significant interest from the community.
As opposed to dynamic routing, static routing or stable routing was introduced in [6]: it
consists in choosing a fixed flow fh,. of value 1 for each commodity h. Static routing is
also called oblivious routing in [2, 3]. In this case, polynomial-time algorithms to compute
optimal static routing (with respect to either congestion or linear reservation cost) have been
proposed [2, 3, 6, 7] based on either duality or cutting-plane algorithms.

To further improve solutions of static routing and overcome complexity issues related
to dynamic routing, a number of restrictions on routing have been considered to design
polynomial-time algorithms. This includes, for example, the approaches proposed in [5, 9,
27, 34, 35, 39].

Most of the literature studied the undirected case of the robust network design problem
while only a few papers, such as [3, 7, 21, 24], address the directed case. In this work, we
mainly focus on the approximability of robust network design problems under dynamic
routing in directed networks, while minimizing either congestion or some linear reservation
cost.

In the rest of this section, we summarize the main contributions of the paper and their
positioning with regard to prior work. Then, we review some related state of the art.

1.1 Our results
We prove that compared to dynamic routing, when static routing is considered, congestion
is multiplied by a factor less than or equal to

√
8k where k is the number of commodities.

This implies that the gap between static routing and dynamic routing for the congestion
minimization problem is O(

√
k) = O(n) where n is the number of nodes. The best-known

previous bound is O(
√

kn
1
4 log n) and was given by [24]. The same

√
8k bound applies

to the linear reservation cost problem. The new upper bound matches the Ω(
√

k) lower
bound of [3] and the Ω(n) lower bound of [16].
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We introduce a more general version of the two robust network design problems (related to
congestion and linear cost) by considering some flow restrictions (each commodity h can
only be routed through edges inside a given subset Eh). The upper bound

√
8k = O(n)

is still valid and the static versions of the problems can still be solved in polynomial-time.
We show some strong inapproximability results for this problem. More precisely, we
prove that unless NP ⊆ SUBEXP , neither minimum dynamic congestion nor optimal
linear cost can be approximated within a ratio of k

c
log log k (resp. n

c
log log n ) for some

constant c. Making use of a weaker assumption, we get that unless NP ⊆ QP , there is
no approximation within a factor of 2log1−ϵ k (resp. 2log1−ϵ n) for any ϵ > 0. This result
improves the Ω( log n

log log n ) inapproximability bound of [1] for the undirected case that also
applies to the directed one.

1.2 Related work

Let us first consider that the graph is undirected and a linear cost is minimized. A result
attributed to A. Gupta ([11], see also [19] for a more detailed presentation) leads to an O(log n)
approximation algorithm for linear cost under dynamic fractional routing. Furthermore,
this approximation is achieved by a routing on a (fixed) single tree. In particular, this
shows that the ratios between the dynamic and the static solutions under fractional routing
( linsta-frac

lindyn-frac
) (lin denotes here the optimal linear cost of the solution) and between single

path and fractional routing under the static model ( linsta-sing
linsta-frac

) is in O(log n) and provides
an O(log n) approximation for static single path routing linsta-sing. On the other hand [33]
shows that the static single path problem cannot be approximated within a Ω(log

1
4 −ϵ n)

ratio unless NP ̸⊂ ZPTIME(npolylog(n)). As noticed in [19], this implies (assuming this
complexity conjecture) that the gap linsta-sing

linsta-frac
is in Ω(log

1
4 −ϵ n). [19] has shown that the gap

linsta-frac
lindyn-frac

is Ω(log n).
For the linear cost objective function and undirected graphs, an extensively studied

polyhedron is the symmetric hose model. The demand vector is here not oriented (i.e,
there is no distinction between a demand from i to j and a demand from j to i), and
uncertainty is defined by considering an upper-bound limit bi for the sum of demands related
to node i. A 2-approximation has been found for the dynamic fractional case [17, 21] based
on tree routing (where we route through a static tree that should be found) showing that
linsta-tree
lindyn-frac

≤ 2. It has been conjectured that this solution resulted in an optimal solution
for the static single path routing. This question has been open for some time and has
become known as the VPN conjecture. It was finally answered by the affirmative in [20]. The
asymmetric hose polytope was also considered in many papers. An approximation algorithm
is proposed to compute linsta-sing within a ratio of 3.39 [15] (or more precisely 2 plus the
best approximation ratio for the Steiner tree problem). If D is a balanced asymmetric hose
polytope, i.e.,

∑
v∈V bout

v =
∑

v∈V bin
v where bin

v (resp. bout
v ) is the upper bound for the traffic

entering into (resp. going out of) v, then the best approximation factor becomes 2 [15].
Moreover, if we assume that bout

v = bin
b , then linsta-sing is easy to compute and we get that

linsta-tree = linsta-sing [32]. In other words, there is some similarity with the case where D is
a symmetric hose polytope.

When congestion is considered, [36] proved the existence of an oblivious (or static) routing
with a competitive ratio of O(log3 n) with respect to optimum routing of any traffic matrix.
Then, [25] improved the bound to O(log2 n log log n) and gave a polynomial-time algorithm
to find such a static routing. Finally, [37] described an O(log n) approximation algorithm
for static routing with minimum congestion. Notice that the bound given by static routing

STACS 2022



6:4 Approximability of Robust Network Design: The Directed Case

cannot provide a better bound than O(log n) since a lower bound of Ω(log n) is achieved by
static routing for planar graphs [29, 4]. It has also been shown in [23] that the gap between
the dynamic fractional routing and a dynamic fractional routing restricted to a polynomial
number of paths can be Ω( log n

log log n ).
In a recent study on the approximability of robust network design [1] for the undirected

case, it was proved that minimum dynamic congestion and the optimal linear cost cannot
be approximated within any constant factor. Then using the ETH conjecture, it is shown
there that they cannot be approximated within Ω( log n

log log n ). This implies that the well-
known O(log n) approximation ratio established in [37] is tight. Using a Lagrange relaxation
approach, it is also shown in [1] that any α-approximation algorithm for the robust network
design problem with linear reservation costs directly leads to an α-approximation for the
problem of minimum congestion. This is used there to prove in a different way the O(log n)
result of [37] starting from the one of [22] (attributed to A. Gupta and related to the linear
cost minimization).

The closest papers to ours are [3, 16, 24]. When a directed graph is considered and
congestion is minimized, [3] has shown that the gap between static fractional routing and
dynamic fractional routing can be Ω(

√
k) while [24] proves that the gap is upper-bounded by

O(
√

kn
1
4 log n). Since the instance provided in [3] contains vertices with large degree, [24]

studied the version where the degree is less than some constant and all commodities have the
same sink. An instance with a Ω(

√
n) gap was then provided in [24], while the upper bound

becomes O(
√

n log n). [24] considered also the case of symmetric demands (in that paper,
symmetry means that for any two nodes u and v, the demand from u to v is equal to the
demand from v to u) and shows that the upper bound of the static to dynamic ratio becomes
O(
√

k log5/2 n). A general Ω(n) lower bound was later proposed in [16]. They also introduced
the notion of balance for directed graphs. A weighted directed graph is α-balanced if for
every subset S ⊆ V , the total weight of edges going from S to V \S is within a factor α of
the total weight of edges directed from V \S to S. Using this new parameter, they show that
for single source instances an upper bound of O(α log3 n

log log n ) holds for the competitive ratio of
static routing.

2 Preliminaries

In this section, we give more formal definitions of the robust network design problems
considered in this paper. Some notation and basic results are also recalled. The congestion
minimization variant takes as input a graph G = (V, E), a vector of link capacities c ∈ RE

+
and a set of commodities H. Each commodity h ∈ H has a source s(h) and destination
t(h) in V . We also have as input a polytope D of all possible demand vectors d ∈ RH

+
specifying the demand dh that needs to be sent from s(h) to t(h). An instance I of the
congestion minimization problem might be denoted by I = (G, c,H,D). We use n to denote
the number of nodes (n = |V |), while k denotes the number of commodities (k = |H|). Given
two nodes s, t ∈ V , a routing template (also called a unit flow) from s to t is a vector f ∈ RE

+
satisfying the standard flow conservation constraints. For each vertex v,

∑
e∈δ+(v)

fe−
∑

e∈δ−(v)
fe

is required to be equal to 1,−1 or 0 when v is respectively the source s, the destination t

or any other node, where δ+(v) (resp. δ−(v)) denotes the set of edges going out of (resp.
entering into) v.

A vector f ∈ RH×E
+ is a routing if for each commodity h ∈ H, fh,. = (fh,e)e∈E is a

routing template from s(h) to t(h). The set of all possible routing schemes is denoted by
F ⊆ RH×E

+ . The total flow on each link e ∈ E is
∑

h∈H
fh,edh and its congestion is the total



Y. Al-Najjar, W. Ben-Ameur, and J. Leguay 6:5

flow on the link e divided by its capacity ce. Let cong(f, d) denote the maximum congestion
over all links e ∈ E, i.e. cong(f, d) = max

e∈E

∑
h∈H

fh,edh

ce
. Two problems can be considered

depending on whether the routing can be adapted to each demand vector d in D or if only
one fixed routing f ∈ F can be used. In the first case, the routing is said to be dynamic.
The dynamic congestion is formally defined as: congdyn(I) = max

d∈D
min
f∈F

cong(f, d). In the

second case, the routing is said to be static (or oblivious). This static congestion is formally
defined as: congsta(I) = min

f∈F
max
d∈D

cong(f, d). Notice that when clear from the context, we

might use notation congdyn(D) and congsta(D) to insist on the dependency on D when all
other parameters of the instance I are fixed.

In the same way, we can define the robust linear reservation problem. As already said in
Section 1, given a positive cost vector (λe)e∈E , we aim to reserve a capacity ue ≥ 0 on each
link e such that

∑
e∈E λeue is minimized and

∑
h∈H

fh,edh ≤ ue holds for any demand vector

d. An instance can then be denoted by (G, λ,H,D). We also have two variants depending
on routing. The optimal cost is then denoted by lindyn(I) (or lindyn(D)) and linsta(I) (or
linsta(D)). Notice that only fractional routing is considered in this paper (this is why the
subscript frac used in Section 1.2 is omitted in the rest of the paper).

For concise notation, the four variants of the robust optimization problems considered in
this paper will simply be denoted by linsta, lindyn, congsta and congdyn.

All previous definitions still make sense even when D is not a polytope. However, the
next lemma tells us that the optimal objective value does not increase when the uncertainty
set S is replaced by its convex-hull (this lemma can be considered as a folklore result that is
implicitly used in many robust optimization papers).

▶ Lemma 1. Let S ⊂ RH
+ be a compact set. Then congsta(S) = congsta (conv(S)),

congdyn(S) = congdyn(conv(S)), linsta(S) = linsta (conv(S)), and lindyn(S) =
lindyn(conv(S)).

Proof. Since S ⊆ conv(S), we have congsta(S) ≤ congsta (conv(S)) and congdyn(S) ≤
congdyn(conv(S)). The same holds for the robust linear cost problem. Moreover, given a static
routing solution f and the corresponding reservation vector u, we have

∑
h∈H

fh,edh ≤ ue for any

d ∈ S. Consider any point d′ of conv(S) written as d′ =
∑

d∈S αdd (αd ≥ 0,
∑

d∈S αd = 1). By
multiplying the previous inequalities by αd and summing them all, we get that

∑
h∈H

fh,ed′
h ≤ ue

implying that f and u are feasible. Therefore, we have linsta(S) = linsta (conv(S)). The
proof can be easily extended to the dynamic routing version and to the congestion objective
function. ◀

Let us now focus on the connection between the congestion problem and the linear cost
problem. The first proposition is from [19] and states that if the static to dynamic ratio is
less than or equal to α for the congestion problem, then the same applies to the robust linear
reservation problem.

▶ Proposition 2 ([19]). Let I = (G, c,H,D) and assume that congsta(I) ≤ α congdyn(I)
for some α ≥ 1 and for any vector c ∈ RH

+ . Then linsta(I ′) ≤ α lindyn(I ′) where I ′ =
(G, λ,H,D) for any cost vector λ ∈ RH

+ .

Proof. Given a cost vector λ, let c∗
dyn ∈ RE

+ be the reservation vector (i.e., u) obtained when
the linear cost is minimized under dynamic routing. Let then I = (G, c∗

dyn,H,D). We clearly
have congdyn(I) ≤ 1 and congsta(I) ≤ α congdyn(I) ≤ α. Therefore, α c∗

dyn is a feasible
reservation vector for the linsta problem related to instance I ′ = (G, λ,H,D) and its cost is
α times the cost of c∗

dyn. ◀

STACS 2022



6:6 Approximability of Robust Network Design: The Directed Case

A converse result is presented in [1]. While the proof in [1] was given in the context of
undirected graphs, it can be repeated verbatim for the directed case (the proof is based on a
Lagrange relaxation approach and a careful application of the ellipsoid method).

▶ Proposition 3 ([1]). Let I ′ = (G, λ,H,D) and assume that linsta(I ′) ≤ α lindyn(I ′) for
some α ≥ 1 and for any cost vector λ ∈ RH

+ . Then congsta(I) ≤ α congdyn(I) where
I = (G, c,H,D) for any capacity vector c ∈ RH

+ . Moreover, any β-approximation (β ≥ 1)
for lindyn leads to a β-approximation for congdyn.

To close this section, let us recall some notation and assumptions that will be used in the
rest of the paper. The uncertainty set (i.e., the set of demand vectors) D is assumed to be
polyhedral and down monotone (i.e., if d ∈ D, then d′ ∈ D for any 0 ≤ d′ ≤ d). Let dmax(D)
be the vector representing the maximum commodity values (i.e., dmax

h (D) = maxd∈D dh).
We will naturally assume that dmax

h > 0 for any h ∈ H since otherwise the commodity can
just be ignored. When the polytope D is clear from the context, we just write dmax (instead
of dmax(D)).

Let I, J be some set of indices. For a vector v ∈ RI×J and i ∈ I we denote by vi,. the
vector w ∈ RJ defined by wj = vi,j . Given a set X ∈ RI and λ ≥ 0, we denote by λX the
set {λx|x ∈ X}.

3 Approximation of dynamic congestion by static congestion

We are going to prove Theorem 4 stating that compared to dynamic routing, when static
routing is considered, congestion is multiplied by a factor less than or equal to

√
8k. This

result improves the upper bound O(
√

kn1/4 log n) from [24]. It implies that the gap between
static and dynamic congestion is O(

√
k) = O(n). By combining Proposition 2 with Theorem

4, we also obtain similar results for the minimization of a linear reservation cost, i.e., that
linsta(D) ≤

√
8k.lindyn(D).

▶ Theorem 4. congsta(D) ≤
√

8k.congdyn(D). Therefore congsta(D)
congdyn(D) = O(n).

To derive an upper bound for the ratio congsta(D)/congdyn(D), our strategy first consists
in approximating the uncertainty set either by a box or a simplex where congsta(D) =
congdyn(D). While this method yields an O(k) upper bound, we obtain further improvement
by partitioning the set of commodities into two sets H1, H2 and considering a box
approximation for D1 and a simplex approximation for D2, where D1 and D2 are respectively
the projections of D on RH1 and RH2 .

To prove Theorem 4, we first present some preliminary lemmas.
Lemma 5 states that if the uncertainty set D can be well approximated by another set

D′ for which congsta(D′) = congdyn(D′), then congsta(D) gives a good approximation of
congdyn(D).

▶ Lemma 5. Let D and D′ be two compact subsets of RH
+ and α ∈ R+ such that D′ ⊆ D ⊆ αD′

and congsta(D′) = congdyn(D′). Then congsta(D) ≤ α · congdyn(D).

Proof. The proof of this lemma relies on two simple facts. The first one is that if we scale
the demand values by a factor α, then the congestion (either static or dynamic) is also
scaled by the same factor α. The second fact is that congdyn and congsta are increasing
in D. In other words, if D1 and D2 are two subsets of RH

+ such that D1 ⊆ D2, then
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congdyn(D1) ≤ congdyn(D2) and congsta(D1) ≤ congsta(D2). Combining the two facts, we
can write the following:

congsta(D) ≤ congsta(αD′) = α · congsta(D′) = α · congdyn(D′) ≤ α · congdyn(D) (1)

◀

We now provide in Lemmas 6 and 7 two classes of polytopes, based on box and simplex
sets, for which congsta(D) = congdyn(D).

For a vector dmax ∈ RH
+ , let B(dmax) be the box set defined by {d ∈ RH| 0 ≤ d ≤ dmax}.

▶ Lemma 6. Let D = B(dmax) for some dmax ∈ RH
+ . Then congdyn(D) = congsta(D).

Proof. For a routing f ∈ F and a demand vector d ∈ D, we have cong(f, d) ≤ cong(f, dmax).
Since dmax ∈ D, it implies that max

d∈D
cong(f, d) = cong(f, dmax). Minimizing both sides

of the equality over f ∈ F , we get that congsta(D) = min
f∈F

cong(f, dmax). We can also

write that min
f∈F

cong(f, d) ≤ min
f∈F

cong(f, dmax). Taking the maximum over all d ∈ D leads

to congdyn(D) = max
d∈D

min
f∈F

cong(f, d) ≤ min
f∈F

cong(f, dmax). Since dmax ∈ D, the previous

inequality becomes congdyn(D) = min
f∈F

cong(f, dmax). ◀

For a vector d ∈ RH
+ , let ∆(d) be the simplex set whose vertices are the zero vector and

the k vectors dheh where eh denotes the vector in RH
+ with a component of 1 for commodity

h and 0 otherwise. Formally, we have ∆(d) = conv ({dheh|h ∈ D} ∪ {0}).

▶ Lemma 7. Let D = ∆(dmax) where dmax ∈ RH
+ . Then congdyn(D) = congsta(D).

Proof. Assume that congdyn(D) has been computed and consider the obtained dynamic
routing. The extreme points of D are the demand vectors {dmax

h eh|h ∈ H} ∪ {0}. For
each demand vector dmax

h eh, we consider the flow fh,. representing its routing. Let us
build a static routing f just by routing each commodity h in accordance to fh,.. By
construction, taking the extreme points of D, we have congsta({dmax

h eh|h ∈ H} ∪ {0}) =
congdyn({dmax

h eh|h ∈ H}∪ {0}). By considering the convex-hulls and applying Lemma 1, we
get that congdyn(D) = congsta(D). ◀

Let α1(D) = max
d∈D

∑
h∈H

dh

dmax
h

(remember that dmax
h = maxd∈D dh). It is then clear

that ∆(dmax) ⊆ D ⊆ α1(D)∆(dmax). Consider the box B(dmax) and let α2(D) be the
smallest factor α such that dmax/α belongs to D. In other words, α2(D) represents
the best approximation ratio that can be obtained through boxes. We obviously have

1
α2(D)B(dmax) ⊆ D ⊆ B(dmax). Figure 1 illustrates the approximations by boxes and
simplices for a 2-dimensional demand polytope D.

Since 1
kB(dmax) ⊆ ∆(dmax) ⊆ D ⊆ B(dmax), α2(D) is always less than or equal to k.

And by definition, α1(D) is also less than or equal to k.
It is easy to check that the upper bound k is reached since α1(B(dmax)) = k and

α2(∆(dmax)) = k. In other words, using box and simplex approximations with the approach
above, we cannot expect to prove a better upper bound for the ratio congsta(D)/congdyn(D)
for arbitrary uncertainty sets.

A more refined strategy is to take the best of the two bounds α1(D), α2(D). The next
proposition states that a better bound is obtained if D is permutation-invariant (i.e., by
permuting the components of any vector d of D we always get a vector inside D). The proof
is provided in Appendix.
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𝒟

𝑑2

𝑑1

𝑑𝑚𝑎𝑥

𝛼1(𝒟) =
3

2

𝛼2 𝒟 =
4

3

Figure 1 Approximation using boxes and simplices: example of a 2-dimensional demand
polytope D.

▶ Proposition 8. If D is permutation-invariant then min{α1(D), α2(D)} ≤
√

k.

One can wonder whether a general O(
√

k) bound can be obtained by trying to find a
better upper bound for min{α1(D), α2(D)}. The following example, on a specific polytope D,
shows that this is not possible. Let D be the product of a box B(d1) of dimension k/2 and a
simplex ∆(d2) of the same dimension. Using the remark above we know that α1(B(d1)) = k/2
and α2(∆(d2)) = k/2 implying that α1(D) ≥ k/2 and α2(D) ≥ k/2.

To overcome this difficulty, we are going to partition the set of commodities H into two
well-chosen subsets H1 and H2, then we approximate D1 (resp. D2) defined as the projection
of D on RH1 (resp. RH2) using a simplex (resp. a box). The algorithm used to partition the
set of commodities is an adaptation of an algorithm of [10] proposed in a different context.
We will also slightly improve the analysis of this algorithm (

√
8k instead of 3

√
k).

Let us start with Lemma 9 where we show how an approximation of congdyn in D can be
obtained from congsta using the approximations related to D1 and D2.

▶ Lemma 9. Let H1,H2 be a partition of H and D1,D2 be the projection of D on RH1

and RH2 . Suppose that for some α1, α2 ≥ 1 we have congsta(D1) ≤ α1congdyn(D1) and
congsta(D2) ≤ α2congdyn(D2), then congsta(D) ≤ (α1 + α2)congdyn(D).

Proof. We first show that we have congsta(D) ≤ congsta(D1) + congsta(D2).

congsta(D) = max
d∈D

min
f∈F

cong(f, d)

≤ max
d1∈D1,d2∈D2

min
f∈F

cong(f, d1) + cong(f, d2)

= max
d1∈D1

min
f∈F

cong(f, d1) + max
d2∈D2

min
f∈F

cong(f, d2)

= congsta(D1) + congsta(D2)

We now prove the lemma: congsta(D) ≤ congsta(D1) + congsta(D2) ≤ α1congdyn(D1) +
α2congdyn(D2) ≤ (α1 + α2)congdyn(D). ◀

Let us now present Algorithm 1 that can be seen as a direct adaptation of the partitioning
algorithm of [10] (Algorithm A, Fig. 1) for our dynamic routing problem. It has initially
been introduced for the analysis of affine policies in a class of two-stage adaptive linear
optimization problems. The main idea of Algorithm 1 is to partition the set of commodities
into two sets H1 and H2 and to produce a vector β ∈ RH

+ such that max
d∈D

∑
h∈H1

dh

dmax
h
≤ γ
√

k
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(i.e., α1(D1) ≤ γ
√

k for γ > 0) and βh ≥ dmax
h for any h ∈ H2. The returned vector β is built

as a sum of at most Z points of D where Z is the number of iterations of the algorithm. Since
the vector 1

Z β belongs to D, we deduce that α2(D2) ≤ Z. We will show in Lemma 10 that
Z is less than or equal to 2

√
k

γ leading to α2(D2) ≤ 2
√

k
γ . Notice that γ is equal to 1 in the

original algorithm of [10]. Let us describe more precisely the different steps of Algorithm 1.
At iteration i, Hi

1,Hi
2 denote the current partitions of commodities while Di

1,Di
2 denote the

projections of D on RHi
1 and RHi

2 . A vector bi is also defined and used to update Hi
1,Hi

2.
We start with H0

1 = H, H0
2 = ∅ and b0 = 0.

If α1(Di
1) > γ

√
k then we consider a traffic vector ui maximizing

∑
h∈Hi−1

1

dh

dmax
h

, otherwise

a partition is returned. The vector ui is then used to update bi (lines 5-7). Observe that
only the components related to commodities inside Hi−1

1 are updated while the others do
not change. This means that the returned vector β =

∑
1≤i≤Z

ui (line 19) is such that β ≥ bZ .

The sets Hi
1 and Hi

2 are updated by moving each commodity h ∈ Hi−1
1 to Hi

2 if bi
h ≥ dmax

h

(lines 8-15). Notice that we always have Hi
1 ⊆ Hi−1

1 . It is then clear that when the algorithm
stops, the obtained partition satisfies what is announced above. The only fact that remains
to be proved is that the number of iterations Z is bounded by 2

√
k

γ .

Algorithm 1 Commodity partitioning algorithm (adapted from [10]).

1: Initialize i← 0, H0
1 ← H,H0

2 ← ∅, b0 ← 0
2: while α1(Di

1) > γ
√

k do
3: i← i + 1
4: ui ∈ arg max

d∈D

∑
h∈Hi−1

1

dh

dmax
h

5: for all h ∈ H do
6: bi

h =
{

bi−1
h + ui

h if h ∈ Hi−1
1

bi−1
h otherwise

7: end for
8: for all h ∈ Hi−1

1 do
9: if bi

h ≥ dmax
h then

10: Hi
1 ← Hi−1

1 \{h}
11: Hi

2 ← Hi−1
2 ∪ {h}

12: else
13: Hi

1 ← Hi−1
1 , Hi

2 ← Hi−1
2

14: end if
15: end for
16: end while
17: Z ← i, H1 ← HZ

1 ,H2 ← HZ
2

18: β ←
∑

1≤i≤Z

ui

▶ Lemma 10. For any γ > 0, the commodity set H can be partitioned in two subsets H1,H2
such that α1(D1) ≤ γ

√
k and α2(D2) ≤ 2

√
k

γ where D1,D2 are the projections of D on RH1

and RH2 .

Proof. We only have to prove that Z ≤ 2
√

k
γ . This can be done by slightly modifying the

proof of Lemma 10 of [10].
We first argue that bZ

h ≤ 2dmax
h for all h ∈ H. For h ∈ H, let i(h) be the last iteration

number when h ∈ Hi
1. Therefore we have b

i(h)−1
h ≤ dmax

h . Also ui(h) ≤ dmax
h leading to

b
i(h)
h ≤ 2dmax

h . Now for i ≥ i(h) we have bZ
h = bi

h = b
i(h)
h implying that,

∑
h∈H

bZ
h

dmax
h
≤ 2k.
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Alternatively,
∑

h∈H

bZ
h

dmax
h

=
∑

h∈H

Z∑
i=1

bi
h−bi−1

h

dmax
h

=
Z∑

i=1

∑
h∈H

bi
h−bi−1

h

dmax
h

=
Z∑

i=1

∑
h∈Hi−1

1

ui
h

dmax
h
≥

Z∑
i=1

γ
√

k =

Zγ
√

k. Therefore we have that Zγ
√

k ≤
∑

h∈H

bZ
h

dmax
h
≤ 2k which implies that Z ≤ 2

√
k

γ . Since

β is the sum of Z points in D, we have B( 1
Z β) ⊆ D. Moreover, the projection β2 of β on

RH2 satisfies D2 ⊆ B(β2) and thus α2(D2) ≤ 2
√

k
γ . ◀

To prove Theorem 4, we only have to take γ =
√

2, use Lemma 10, and then invoke
Lemma 9 to conclude. Using k = O(n2), we get that the ratio congsta

congdyn
is O(n).

4 Inapproximability with flow restrictions

Let us consider a more general variant of the robust congestion problem where each commodity
can only be routed on a subset of allowed edges Eh ⊆ E. These restrictions seem to be quite
natural to ensure quality of service requirements such as delay constraints.

Observe first that congsta can still be computed in polynomial-time for this variant.
Moreover, the O(

√
k) bound of Section 3 still holds here since all the proofs presented there

do not change if we assume that each commodity h can only be routed using edges inside Eh.
The Ω( log n

log log n ) inapproximability bound shown for the undirected case [1] (under ETH
assumption) still applies to the directed case (with and without flow restrictions). It is
however quite far from the O(

√
k) approximation ratio deduced from Section 3. We will prove

stronger inapproximability results for the generalisation of congdyn with flow restrictions
under some classical complexity conjectures.

A standard way to prove this kind of results is to first prove that the problem is
inapproximable under some constant and then to amplify this constant, see for example [26].

Let us first introduce some additional notations. Taking into account the flow restrictions
and given a subset of edges C ⊆ E, let HC ⊆ H be the set commodities such that each valid
path related to any commodity h ∈ HC intersects C. Even if C is not necessarily a cut
in the standard sense of graph theory, C is called a cut in what follows. Given a demand
vector d ∈ D and a cut C,

∑
h∈HC

dh/
∑

e∈C

ce, is obviously a lower bound of congdyn(D). The

maximum over all demand vectors d ∈ D and all cuts C of the ratio
∑

h∈HC

dh/
∑

e∈C

ce is called

cut congestion and denoted by congcut(D). We also use EH to denote the set of all flow
restrictions: EH = (Eh)h∈H. An instance of congdyn with flow restrictions is then defined by
(G, c,H,D, EH).

In Lemma 11, we will prove that it is NP-hard to distinguish between instances where
congdyn(D) is less than or equal to 1 and those where the cut congestion congcut(D) is greater
than or equal to 1 + ρ for some constant ρ > 0. Then, in Lemma 12, we will show that given
two instances of this problem, it is possible to build some kind of product instance whose
dynamic congestion is less than or equal to the product of the dynamic congestion of the two
instances and the cut congestion is greater than or equal to the product of the cut congestion
of the two initial instances. Finally, by repetitively using the product of Lemma 12 on the
instance of Lemma 11, we can amplify the gap leading to some strong inapproximability
results.

Given a 3-SAT instance φ, val(φ) denotes the maximum proportion of clauses that
can be simultaneously satisfied (thus φ is satisfiable when val(φ) = 1 ). We will consider
polytopes D that can be expressed through linear constraints and auxiliary variables ξ, i.e.,
D = {d ∈ RH|Ad + Bξ ≤ b} where A and B are matrices of polynomial size (the maximum
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of the number of columns and the number of rows is polynomially bounded). Notice that it
is important to consider polytopes that can be easily described (otherwise the difficulty of
solving congdyn would be a consequence of the difficulty of describing the polytope).

▶ Lemma 11. For 0 < ρ < 1, there is a polynomial-time mapping from a 3-SAT instance φ

to an instance I = (G, c,H,D) of congdyn where D = {d ∈ RH|Ad + Bξ ≤ b} such that:
If val(φ) ≤ 1− ρ then congdyn(I) ≤ 1
If φ is satisfiable then congcut(I) ≥ 1 + ρ.

Furthermore, |V (G)|, |E(G)|, |H| and the size of the matrices A and B defining D are all
O(m) where m is the number of clauses of φ.

Proof. Given a 3-SAT instance φ with m clauses, we build an instance of congdyn as follows.
We consider two nodes: a source s and a destination t. Then, for each i = 1, ..., m we
create a path form s to t containing three directed edges ei,j of capacity 1 for j = 1, 2, 3
corresponding to the i− th clause of φ. For each i = 1, ..., m and j = 1, 2, 3, H contains a
commodity hi,j with the same source and destination as edge ei,j . We also add a commodity
hs,t from s to t. The polytope D is defined as follows. We set dhs,t

= ρ ·m. For each literal
l (i.e. a variable or its negation) of the 3-SAT instance φ we add an auxiliary variable ξl.
Intuitively ξl = 1 will correspond to setting the literal l to true. For each variable v, we add
the constraint ξv + ξ¬v = 1 in addition to non-negativity constraints ξv ≥ 0 and ξ¬v ≥ 0.
For each i = 1, ..., m and j = 1, 2, 3, we consider the constraint dhi,j

= ξli,j
where li,j is the

literal appearing in the i − th clause in the j − th position. Observe that the size of D is
O(m). The numbers of nodes, edges and commodities are also O(m).

Consider first the case val(φ) ≤ 1− ρ. The set of extreme points of D is such that the
ξl variables take their values in {0, 1}. The maximum dynamic congestion is attained for a
demand vector of this form (see Lemma 1). Let d be such a demand vector and consider the
corresponding solution of the 3-SAT instance φ. Notice that demand dhi,j can only be routed
on ei,j . If for some i = 1, ..., m the i− th clause is false, then the demands dhi,1 , dhi,2 , dhi,3

are equal to 0 and therefore one unit of flow of the commodity hs,t can be routed on the path
(ei,1, ei,2, ei,3). Since val(φ) ≤ 1− ρ, there are at least m · ρ such indices i (i.e., false clauses)
and therefore the demand dhs,t

can be routed with a congestion less than or equal to 1.
We now consider the case where φ is satisfiable. Let d be the demand vector corresponding

to a truth assignment satisfying φ. For each i = 1, ..., m, let j(i) be the position of a literal
set to true in the i− th clause. Therefore we have dhi,j(i) = 1 for all i = 1, ..., m. Consider
the cut C = {ei,j(i)|i = 1, ..., m}. C intersects the paths related to the m demands dhi,j(i) of
value 1 in addition to demand dhs,t

of value m · ρ. The total capacity of this cut is m while
the sum of demands belonging to C is m + m · ρ. Therefore the congestion of this cut is
m+m·ρ

m = 1 + ρ. ◀

Next Lemma (whose proof is provided in Appendix) shows how to build a product instance
leading to some gap amplification.

▶ Lemma 12. Given two instances of congdyn with flow restrictions I1 = (G1, c1,H1,D1, EH1)
and I2 = (G2, c2,H2,D2, EH2), we can build a new instance I = I1 × I2 = (G, c,H,D, EH)
such that:

congdyn(I) ≤ congdyn(I1) · congdyn(I2)
congcut(I) ≥ congcut(I1) · congcut(I2).

Furthermore, we have |E(G)| = |E(G1)| · (|E(G2)|+ 2|V (G2)|), |V (G)| = |V (G1)|+ |V (G2)| ·
|E(G1)|, |H| = |H1| · |H2| and the size of D is less than or equal to the product of the sizes
of D1 and D2.
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Combining the two previous lemmas, one can amplify the gap as follows.

▶ Lemma 13. For some 0 < ρ < 1 and each p ∈ N, each 3-SAT instance φ can be
mapped to an instance Ip = (Gp, cp,Hp,Dp, EHp) of congdyn with flow restrictions where
Dp = {d ∈ RHp |Apd + Bpξ ≤ bp} such that:

If val(φ) ≤ 1− ρ then congdyn(Ip) ≤ 1
If φ is satisfiable then congcut(Ip) ≥ (1 + ρ)p.

Furthermore, there exists a positive constant θ such that |V (Gp)|, |E(Gp)|, |Hp| and the size
of the matrices Ap and Bp defining Dp are all less than or equal to (θm)p where m is the
number of clauses of φ.

Proof. Let I1 be the instance defined in Lemma 11. We recursively build Ip as the product of
Ip−1 and I1. Using notation of Lemma 12, we take I1 = Ip−1, I2 = I1 and Ip = I = I1×I2.
Using what is already known about the size of the instance I1 of Lemma 11 and the results
of Lemma 12, a simple induction proves the existence of a constant θ such that (θm)p is an
upper bound of the number of vertices, number of edges, number of commodities and the
size of the matrices defining the polytope Dp. ◀

By making use of some standard complexity assumptions, inapproxiambility resuls can
be directly deduced from the previous lemma.

▶ Proposition 14. Unless NP ⊆ SUBEXP , congdyn with flow restrictions cannot be
approximated within a factor of k

c′
log log k (resp. n

c′
log log n ) for some constant c′.

Proof. SUBEXP is the class of problems that can be solved in 2nϵ time for all ϵ > 0.
Therefore, if NP ̸⊆ SUBEXP then there is a constant ϵ0 > 0 such that no algorithm can
solve the Gap-3-SAT problem in time O(2mϵ0 ) where m is the number of clauses of the
3-SAT instance.
Let ϵ1 < ϵ0 and let p(m) = mϵ1

log m . The size of the instance Ip(m) is polynomial in mp(m).
Therefore if we run a polynomial approximation algorithm on the instance Ip(m), the running
time will be mc1p(m) for some constant c1. Furthermore, mc1p(m) = mc1

mϵ1
log m = 2c1mϵ1

< 2mϵ0

for big enough m.
The number of commodities k in the instance Ip(m) is bounded by (θm)p(m). We

consequently have log k ≤ log(θm) mϵ1

log m implying that m > a log
1

ϵ1 k for some constant a and
big enough m.

The gap between the congestion of the instances Ip(m) corresponding to a 3-SAT instance
for which val(φ) < 1− ρ and those for which val(φ) = 1 is:

(1 + ρ)p(m) > (1 + ρ)p(a log
1

ϵ1 k) = (1 + ρ)
aϵ1 log k

1
ϵ1

log a log k
> k

c′
log log k for some constant c’.

Hence, if a polynomial-time algorithm could solve congdyn with flow restrictions within
an approximation ratio of O(k

c′
log log k ), we could use it to solve the Gap-3-SAT problem in

O(2mϵ0 ) time. The same proof applies if parameter n (the number of vertices) is considered
instead of k. ◀

A slightly weaker inapproximability result is obtained using a weaker complexity
assumption (the proof is provided in Appendix).

▶ Proposition 15. Unless NP ⊆ QP , congdyn with flow restrictions cannot be approximated
within a factor of 2log1−ϵ k (resp. 2log1−ϵ n) for any ϵ > 0.

Using the last part of Proposition 3, all inapproximability results stated for the congestion
problem congdyn are also valid for lindyn.
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A Appendix

Proof of Proposition 8. Let d∗ be the demand maximizing max
d∈D

∑
h∈H

dh

dmax
h

. Since D is

permutation-invariant, dmax
h = dmax

h′ for all h, h′ ∈ H and d∗ can be chosen such that
d∗

h = d∗
h′ for all h, h′ ∈ H. Consequently, we have α1(D) ≤ k

d∗
h0

dmax
h0

. Moreover, since
d∗

h0
dmax

h0
B(dmax) ⊆ D ⊆ B(dmax) we also have α2(D) ≤ dmax

h0
d∗

h0
. Therefore, using notation

x = d∗
h0

dmax
h0

, we get that min{α1(D), α2(D)} ≤ min{kx, 1
x} and x is such that 0 ≤ x ≤ 1. To

conclude, observe that max
0≤x≤1

min{kx, 1
x} =

√
k. ◀

Proof of Lemma 12. Let I1 = (G1, c1,H1,D1, EH1) and I2 = (G2, c2,H2,D2, EH2) be two
instances of congdyn with flow restrictions. We denote by G′

2 the graph obtained from G2 by
adding two nodes s(G2) and t(G2) to G2, an edge from s(G2) to each node of G2 having an
infinite capacity (i.e., |V (G2)| edges), and an edge from each node of G2 to t(G2) having
also an infinite capacity (i.e., |V (G2)| edges). We build a graph G by replacing each edge e

of G1 by a copy of G′
2 while identifying the node s(e) (resp. t(e)) with the node s(G2) (resp.
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𝑢1 𝑢2 𝑢3

ℎ′

𝑒1
′ 𝑒2

′

(a) G1, H1.

𝑢1 𝑢2 𝑢3

𝑣1

𝑣2

𝑣3 𝑣1

𝑣2

𝑣3

(ℎ′, ℎ1)

(ℎ′, ℎ2)

(ℎ′, ℎ3)

(𝑒1
′ , e1)

(𝑒1
′ , e2)

(𝑒1
′ , e3) (𝑒2

′ , e1)

(𝑒2
′ , e2)

(𝑒2
′ , e3)

(b) G, H.

𝑣1

𝑣2

𝑣3

ℎ2

ℎ3
ℎ1

𝑒1

𝑒2

𝑒3

(c) G2, H2.

𝑢1 𝑢2 𝑢3

𝑣1

𝑣2

𝑣3 𝑣1

𝑣2

𝑣3

(ℎ′, ℎ1)

(𝑒1
′ , e1)

(𝑒1
′ , e2)

(𝑒1
′ , e3) (𝑒2

′ , e1)

(𝑒2
′ , e2)

(𝑒2
′ , e3)

(d) E(h′,h1): the set of edges allowed for commodity (h′, h1).

Figure 2 Illustration of the construction of the product instance.

t(G2)). Figure 2 illustrates the construction of the product instance. We denote by (e1, e2)
the edge e2 in G′

2 corresponding to the copy of G′
2 related to e1 ∈ E(G1). The capacity of

the edge (e1, e2) is the product of the capacity of edges e1 and e2: c(e1,e2) = c1e1 · c2e2 .

We create a set of commodities H in G by taking H = H1 × H2 and assuming that
s(h1, h2) = sh1 and t(h1, h2) = th1 for (h1, h2) ∈ H. We also assume that edges of type
(s(G2) = s(e), v) can only be used by a commodity (h1, h2) ∈ H if s(h2) = v. Similarly, edges
of type (v, t(G2) = t(e)) can only be used by (h1, h2) if t(h2) = v. In other words, when a
commodity (h1, h2) is routed through the copy of G2 related to an edge e ∈ E(G1), then it
should enter from s(h2) and leave at t(h2) (cf. Figure 2). Other flow restrictions are added
by considering the restrictions related to I1 and I2. If h′ ∈ H1 is not allowed to use edge
e′ ∈ E(G1), then all commodities (h′, h2) are not allowed to be routed through the e′ copy
of G′

2. Moreover, if e2 ∈ E(G2) does not belong to Eh2 for some h2 ∈ H2, then for each
e1 ∈ E(G1) and each h1 ∈ H1, (e1, e2) cannot be used to route commodity (h1, h2).
Observe that |E(G)| = |E(G1)| · (|E(G2)|+ 2|V (G2)|), |V (G)| = |V (G1)|+ |V (G2)| · |E(G1)|.

We define D as the set of vectors d ∈ RH1×H2
+ such that there is a vector d1 ∈ D1 satisfying

dh1,. ∈ d1
h1
D2 for all h1 ∈ H1. The constraint dh1,. ∈ d1

h1
D2 can be enforced with linear

inequalities as follows. Suppose that D2 = {d2 ∈ RH2 |A2d2 + B2ξ ≤ b2} for some matrices
A2, B2. We also assume that this description contains the constraints d2

h2
/d2 max

h2
≤ 1 for all

h2 ∈ H2 in addition to the non-negativity constraints of demand values d2
h2

. Then we can
write the constraint dh1,. ∈ d1

h1
D2 as A2dh1,. + B2ξ′ − d1

h1
b2 ≤ 0. Indeed, d1

h1
= 0 implies

dh1,. = 0 while for d1
h1

> 0 we have A2dh1,. + B2ξ′ − d1
h1

b2 ≤ 0 if and only if dh1,./d1
h1
∈ D2.

Polytope D is then defined by constraints A2dh1,. + B2ξh1 − d1
h1

b2 ≤ 0 for each h1 ∈ H1 in
addition to A1d1 + B1ξ ≤ b1. Observe that a subscript h1 is added to express the fact that
the auxiliary variables ξh1 depend on h1 ∈ H1. Notice also that the size of the matrices
defining D is less than or equal to the product of the sizes of the matrices defining D1 and D2.

STACS 2022
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We will now prove that congdyn(I) ≤ congdyn(I1) · congdyn(I2). Let d be a vector in D
and let d1 ∈ D1 be a vector such that dh1,. ∈ d1

h1
D2. For h1 in H1, we define d2,h1 ∈ D2 by

d2,h1
h2

= dh1h2
d1

h1
if d1

h1
̸= 0 and d2,h1 = 0 if d1

h1
= 0. We clearly have dh1,h2 = d1

h1
· d2,h1

h2
for all

h1 ∈ H1, h2 ∈ H2.
Let f1, f2,h1 be the optimal routing schemes for d1 ∈ RH1 and d2,h1 ∈ RH2 for h1 ∈ H1. To
route commodity (h1, h2), we consider the following multi-commodity flow in G defined by
f(h1,h2),(e1,e2) = f1

h1,e1
f2,h1

h2,e2
. The total flow on the edge (e1, e2) is then given by:∑

(h1,h2)∈H1×H2

d1
h1

d2,h1
h2

f(h1,h2),(e1,e2) =
∑

h1∈H1

d1
h1

f1
h1,e1

∑
h2∈H1

d2,h1
h2

f2,h1
h2,e2

≤
∑

h1∈H1

d1
h1

f1
h1,e1

congdyn(I2)c2e2

≤ congdyn(I1) · congdyn(I2) · c1e1 · c2e2

= congdyn(I1) · congdyn(I2) · c(e1,e2).

Since this holds for any edge (e1, e2) of G (the other edges of G have an infinite capacity),
we deduce that congdyn(I) ≤ congdyn(I1) · congdyn(I2).

Let us now show that congcut(I) ≥ congcut(I1) · congcut(I2). Let C1 (resp. C2) be a cut
of G1 (resp. G2) achieving the maximal congestion congcut(I1) (resp. congcut(I2)), and let
d1 ∈ D1 (resp. d2 ∈ D2) be a demand vector for which the maximal cut congestion is obtained.
In other words, we have

∑
h1∈HC1

d1
h1

/
∑

e1∈C1

ce1 = congcut(I1) and
∑

h1∈HC2

d2
h2

/
∑

e2∈C2

ce2 =

congcut(I2).
Observe that the set of edges C1 × C2 is a cut of G that is intersecting all demands of
HC1 ×HC2 . Notice that the flow restrictions that have been considered are crucial here to
guarantee the previous fact. Let d ∈ RH be the demand defined by d(h1,h2) = d1

h1
· d2

h2
. Since

d1 ∈ D1 and d2 ∈ D2, we also have d ∈ D. The congestion on the cut C1 × C2 is given by:∑
(h1,h2)∈HC1 ×HC2

d(h1,h2)∑
(e1,e2)∈C1×C2

c(e1,e2)
=

∑
h1∈HC1

d1
h1∑

e1∈C1

c1e1
·

∑
h2∈HC2

d2
h2∑

e2∈C2

c2e2

= congcut(I1) · congcut(I2).

This clearly implies that congcut(I) ≥ congcut(I1) · congcut(I2). ◀

Proof of Proposition 15. Let us take p(m) = logc1(m) for an arbitrary constant c1. If we
run a polynomial-time algorithm on instance the instance Ip(m), we get an algorithm running
in poly-logarithmic time. The number of commodities k is bounded by (θm)p(m). Thus
log k ≤ logc1 m log θm < logc1+2 m for big enough m and therefore m > exp(log

1
c1+2 k).

The gap between the congestion of the instances Ip(m) corresponding to 3-SAT instances
such that val(φ) < 1− ρ and those such that val(φ) = 1 is:

(1 + ρ)p(m) > (1 + ρ)p(log
1

c1+2 k))

= (1 + ρ)log
c1

c1+2 k

> (1 + ρ)log1−ϵ k

for any ϵ > 0 if we take c1 such that c1
c1+2 > 1 − ϵ. The (1 + ρ) term can be replaced by

2 by observing that 2log1−ϵ′
k = o((1 + ρ)log1−ϵ k) for any ϵ′ < ϵ. The same proof applies if

parameter n is considered instead of k. ◀


	1 Introduction
	1.1 Our results
	1.2 Related work

	2 Preliminaries
	3 Approximation of dynamic congestion by static congestion
	4 Inapproximability with flow restrictions
	A Appendix

