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In this paper, we derive the Γ-limit of functionals pertaining to some optimal material distribution problems that involve a variable exponent, as the exponent goes to infinity. In addition, we prove a relaxation result for supremal optimal design functionals with respect to the weak- * L ∞ (Ω; [0, 1]) × W 1,p 0 (Ω; R m ) weak topology.

Introduction

In this paper, we study the asymptotic behavior of a sequence of functionals related to optimal design problems and defined on Sobolev spaces with variable exponent in space, as the exponent goes to infinity. It is a generalization of a previous work dealing with the constant exponent case [START_REF] Zorgati | A Γ-convergence result for optimal design problems[END_REF].

Variable exponent spaces are connected with variational integrals verifying non standard growth and coercivity conditions [START_REF] Acerbi | Regularity results for a class of functionals with non-standard growth[END_REF]. Such functionals are used in the modeling of electrorheological fluids [START_REF] Rajagopal | Mathematical modeling of electrorheological materials[END_REF][START_REF] Ružička | Electrorheological fluids: modeling and mathematical theory[END_REF][START_REF] Wineman | On constitutive equations for electrorheological materials[END_REF] and thermorheological fluids [START_REF] Antontsev | On stationary thermo-rheological viscous flows[END_REF] and in image processing [START_REF] Chen | Variable Exponent, Linear Growth Functionals in Image Restoration[END_REF][START_REF] Li | Variable exponent functionals in image restoration[END_REF]. The energy functionals considered correspond to a two-phase mixture of different properties, such as stiffness or electric resistivity, in different regions of the domain under consideration. The optimal design models, describe the optimal distribution of such a mixture with respect to some specific criterion. Minimizing such energies makes it possible to improve the mechanical or electrical performance by optimizing the distribution of these properties.

In order to perform our analysis, we use Γ-convergence techniques (see section 2). These techniques were already used in the study of optimal design models in the works [START_REF] Fonseca | 3D-2D asymptotic analysis of an optimal design problem for thin films[END_REF][START_REF] Braides | 3D-2D asymptotic analysis for inhomogeneous thin films[END_REF] in the context of a dimension reduction process for thin films.

In this work, we consider a sequence of optimal design models described by functionals of the form J(χ, u) = ||χW 1 (∇u) + (1 -χ)W 2 (∇u)|| p n (.) , where χ(x) ∈ {0, 1} denotes the characteristic function of the first phase, ∇u the gradient of u and W i , i = 1, 2 models the energy density of the ith phase. The norm ||.|| p n (.) is the Luxembourg norm associated with the Lebesgue spaces with variable exponents L p n (.) (Ω; R m ) (see Section 2.2), defined by L p n (.) (Ω; R m ) = {u : Ω -→ R m , measurable, such that Ω |u(x)| p n (x) dx < ∞}.

Then, we proceed with an asymptotic analysis when the exponent p n (.) of the energy density goes to infinity in a sense specified below.

We obtain a limit energy of supremal kind that can model, for example, dielectric breakdown for double phase composites (see [START_REF] Garroni | Dielectric breakdown: Optimal bounds[END_REF] and the references therein) or some simplified models of polycrystal plasticity (see [START_REF] Bocea | Γ-convergence of power-law functionals, variational principles in L ∞ , and applications[END_REF]). In the last two references, analogous asymptotic analyses using Γ-convergence techniques for functionals involving a single phase elastic density can be found. See also [START_REF] Ansini | Power-law approximation under differential constraints[END_REF][START_REF] Ansini | On the lower semicontinuity of supremal functional under differential constraints[END_REF], where the authors obtain limit models under some differential constraints, involving supremal functions and A-quasiconvex envelopes. We also mention [START_REF] Champion | Γ-convergence and absolute minimizers for supremal functionals[END_REF] where the authors obtain an L p approximation and a lower semicontinuity result for supremal functionals.

In [START_REF] Eleuteri | Γ-convergence for power-law functionals with variable exponents[END_REF], the authors present an analogous analysis as in [START_REF] Ansini | Power-law approximation under differential constraints[END_REF], generalizing to the variable exponent case. We mention that in these works, the authors make use of the technique of Young measures which we do not use in our analysis.

Let p 0 > 1. Suppose that Ω is a regular domain in R N with |Ω| < +∞. Let (p n ) = ( p n (x)) be a sequence of Lipschitz, positive, continuous functions defined on Ω and satisfying p - n → +∞ and lim

n→+∞ p + n p - n = 1,
where p - n = inf p n and p + n = sup p n < ∞. Notice that the last hypothesis imply that p + n ≤ βp - n , for some β > 1.

Consider the sequence of functionals I n defined on L ∞ (Ω; [0, 1])×L p0 (Ω; R m ) by

I n (χ, u) = ||χW 1 (∇u) + (1 -χ)W 2 (∇u)|| p n (.) if (χ, u) ∈ L ∞ (Ω; {0, 1}) × W 1,p n (.) (Ω; R m ), +∞ otherwise,
where W i are continuous functions verifying that there exist α i > 0 and

γ i > 0 i = 1, 2, such that W i (A) ≥ α i |A| γi . (1.1)
The functional I n represents, for example, the elastic energy of a solid occupying the domain Ω and undergoing the deformation u, while χ represents the characteristic function of the first phase of stiffness.

Let V : [0, 1] × M m×N -→ R defined by V (κ, A) = κW 1 (A) + (1 -κ)W 2 (A). (1.2) Let I defined on L ∞ (Ω; [0, 1]) × L p0 (Ω; R m ) by I(χ, u) = ||V (χ, ∇u)|| ∞ if u ∈ W 1,∞ (Ω; R m ), +∞ otherwise,
where

V (κ, A) := lim p→+∞ inf θ,ϕ Q V (θ(x), A + ∇ϕ(x)) p dx 1 p , ϕ ∈ W 1,p # (Q; R m ), θ ∈ L ∞ (Ω; {0, 1}), Ω θ(x)dx = κ .
Our main result is the following Theorem.

Theorem 1.1 The sequence of functionals I n Γ-converges with respect to the L ∞ (Ω; [0, 1]) weak- * × W 1,p0 (Ω; R m ) weak topology to I as n goes to ∞.

In the next section we present some brief preliminaries on the notions of Γ-convergence, Lebesgue-Sobolev spaces with variable exponent and cross quasiconvexity. The following section contains a relaxation result, Proposition 3.1, which is a consequence of the Γ-limit result obtained in [START_REF] Zorgati | A Γ-convergence result for optimal design problems[END_REF]. Its proof is based on Theorem 6.1 where we recover the same result as in [START_REF] Zorgati | A Γ-convergence result for optimal design problems[END_REF], by writing the limit functional in a different form, see the Appendix section. The proof of Theorem 1.1 is given in section 4. Section 5 is then devoted to some auxiliary results.

Preliminaries

Γ convergence

Let (G n ) n be a sequence of functionals defined on a topological space X with values in R ∪ {+∞}. The Γ-lower limit and Γ-upper limit of (G n ) n are given by

Γ -lim inf G n (x) := sup U ∈N (x) lim inf n→∞ inf y∈U G n (y) and Γ -lim sup G n (x) := sup U ∈N (x) lim sup n→∞ inf y∈U G n (y),
where N (x) denotes the set of all neighborhoods of x in X. If there exist

G : X → R ∪ {+∞} such that Γ -lim inf G n = Γ -lim sup G n = G, then we say that (G n ) n Γ-converges to G and we write G := Γ -lim G n .
When X is first countable we have the equivalent definition in terms of sequences, that is, (G n ) n is said to Γ-converge to the limit functional G with respect to the topology of X if and only if the following two conditions are satisfied for every x ∈ X:

   ∀ x n → x, lim inf n→∞ G n (x n ) ≥ G(x), ∃ x n → x, lim sup n→∞ G n (x n ) ≤ G(x).
The main properties of Γ-convergence are first that, up to a subsequence, the Γ-limit always exists and second that if a sequence of almost minimizers stays in a compact subset of X, then the limits of any converging subsequence minimize the Γ-limit. In particular we have that, if G is the Γ-limit of G n and for every n, x n is a minimizer of G n with x n → x in X, then x is a minimizer of G. Also, when the limit functional verifies some coercivity properties, the limit minimization problem has always a solution due to the lower semicontinuity of the Γ-limit with respect to the considered topology (see [START_REF] Maso | An Introduction to Γ-Convergence[END_REF][START_REF] Giorgi | Sulla convergenza di alcune successioni di integrali del tipo dell area[END_REF]).

Lebesgue-Sobolev spaces with variable exponent

We recall the following properties of Lebesgue and Sobolev spaces with variable exponent (see [START_REF] Diening | Lebesgue and Sobolev Spaces with Variable Exponents[END_REF]). Let p : Ω -→ [1, ∞] be a measurable function with p + := ess sup p(x) and p -:= ess inf p(x). We define the Lebesgue space with variable exponent L p(.) (Ω; R m ) by

L p(.) (Ω; R m ) = {u : Ω -→ R m , measurable, such that Ω |u(x)| p(x) dx < ∞}.
Endowed with the Luxembourg norm introduced by I. Sharapudinov in [START_REF] Sharapudinov | On the topology of the space L p(t)[END_REF] ||u|| p(.) = inf{λ > 0;

Ω | u(x) λ | p(x) dx ≤ 1},
it is a Banach space and the ||.|| p(.) norm is lower semicontinuous with respect to almost everywhere convergence. If we suppose p + < ∞, then it is also a separable space and

C ∞ 0 (Ω; R m ) is dense in L p(.) (Ω; R m ).
If in addition we suppose that p -> 1, then it is a uniformly convex and reflexive space.

Similarly, we define the Sobolev space W 1,p(.) (Ω; R m ) by

W 1,p(.) (Ω; R m ) = {u ∈ L p(.) (Ω; R m ) such that ∇u ∈ L p(.) (Ω; M m×N )},
where ∇u denotes the distributional gradient of u. It can be endowed with the norm ||u|| 1,p(.) = ||u|| p(.) + ||∇u|| p(.) , that makes it a Banach space, which is separable when p is bounded and uniformly convex, thus reflexive, when 1 < p -. Similarly to the result stating that if |Ω| < ∞ we have lim

p→∞ ||u|| p = ||u|| ∞ , we have also that, if |Ω| < ∞, u ∈ L ∞ (Ω; R m ) and p n is a sequence of Lipschitz continuous functions verifying p - n → ∞ and there exist β > 0 such that p + n < βp - n , then, lim n→∞ ||u|| p n (.) = ||u|| ∞ . (2.1)
Let ρ p(.) : L p(.) ((Ω; R m )) → R be the modular of L p(.) ((Ω; R m )) defined by

ρ p(.) (u) = Ω |u(x)| p(x) dx.
This modular is (sequentially) lower semicontinuous with respect to weak convergence in L p(.) (Ω; R m ) and almost everywhere convergence. It verifies the unit ball property with the ||.|| p(.) norm, more precisely, for every u ∈ L p(.) (Ω; R m ), we have if ||u|| p(.) ≤ 1 then ρ p(.) (u) ≤ ||u|| p(.) and if ||u|| p(.) > 1 then ρ p(.) (u) ≥ ||u|| p(.) .

Moreover, we have that for every u ∈ L p(.) ((Ω; R m ))

||u|| p(.) ≤ max{(ρ p(.) (u)) 1 p -, (ρ p(.) (u)) 1 p + }. (2.2)
Finally, when p is bounded and there exist β > 0 such that p + ≤ βp -, we have (see Lemma 3.2 in [START_REF] Eleuteri | Γ-convergence for power-law functionals with variable exponents[END_REF]), that for every 1 ≤ q ≤ p -and u ∈ L p(.) ((Ω; R m )),

||u|| q ≤ max{|Ω| 1 q -1 p -, |Ω| β( 1 q -1 p + ) }[1 + q(β -1) p + ] 1 q ||u|| p(.) . (2.3)
We have also the following Lemma that will be useful for the computation of the upper bound in Theorem 1.1.

Lemma 2.1 Suppose that p is bounded and let v ∈ L ∞ (Ω), then we have

||v|| p(.) ≤ 2 1 p -max{||v|| p + , ||v|| p -, ||v|| p + p - p + , ||v|| p - p + p -}. (2.4) 
Proof Using (2.2), we have that

||v|| p(.) ≤ max{(ρ p(.) (v)) 1 p -, (ρ p(.) (v)) 1 p + }. (2.5) Let A = {x ∈ Ω, |v(x)| ≥ 1}. Then we have ρ p(.) (v) ≤ A |v(x)| p + dx + Ω\A |v(x)| p - dx ≤ Ω |v(x)| p + dx + Ω |v(x)| p - dx.
Thus, we have (ρ p(.) (v))

1 p + ≤ 2 1 p + max{( Ω |v(x)| p + dx) 1 p + , ( Ω |v(x)| p - dx) 1 p + } ≤ 2 1 p + max{||v|| p + , ||v|| p - p + p -} (2.6) and (ρ p(.) (v)) 1 p -≤ 2 1 p -max{( Ω |v(x)| p + dx) 1 p -, ( Ω |v(x)| p - dx) 1 p -} ≤ 2 1 p -max{||v|| p -, ||v|| p + p - p + }. (2.7)
Using (2.6), (2.7), (2.5) and noticing that 2

1 p -≥ 2 
1
p + , we obtain the result.

Cross quasiconvexity

The limit model obtained by Γ-convergence techniques, involves an energy functional that is lower semicontinuous with respect to the considered topology. Thus, we define the cross-quasiconvex envelope (see [START_REF] Fonseca | 3D-2D asymptotic analysis of an optimal design problem for thin films[END_REF][START_REF] Braides | 3D-2D asymptotic analysis for inhomogeneous thin films[END_REF][START_REF] Dret | Variational Convergence for Nonlinear Shell Models with Directors and Related Semicontinuity and Relaxation Results[END_REF]), which is a special case of the notion of A-quasiconvex envelope defined in [START_REF] Fonseca | Aquasiconvexity, lower semicontinuity and Young measures[END_REF], for

V : [0, 1] × M m×N → R, with V (κ, A) = κW 1 (A) + (1 -κ)W 2 (A), by V p (κ, A) := inf θ,ϕ Q V (θ(x), A + ∇ϕ(x)) p dx 1 p , ϕ ∈ W 1,p # (Q; R m ), θ ∈ L ∞ (Ω; {0, 1}), Ω θ(x)dx = κ , where W 1,p # (Q; R m ) = {ϕ ∈ W 1,p loc (R N ; R m ) : ϕ is Q periodic}, with Q being the unit cube in R N .
We have the following result proved in [START_REF] Zorgati | A Γ-convergence result for optimal design problems[END_REF], that will be useful for the computation of the lower bound of the Γ-limit.

Lemma 2.2 Let 1 < p < p < ∞. Then, for every (κ, A) ∈ [0, 1] × M m×N , we have V p (κ, A) ≤ V p (κ, A).
This Lemma enables us to define V : [0, 1] × M m×N → R by letting

V (κ, A) := lim p→+∞ V p (κ, A) = sup p>1 V p (κ, A).
The following Lemmas are a consequence of the dimension reduction studied in [START_REF] Fonseca | 3D-2D asymptotic analysis of an optimal design problem for thin films[END_REF][START_REF] Braides | 3D-2D asymptotic analysis for inhomogeneous thin films[END_REF]. Their proofs follow the same steps as in [START_REF] Fonseca | 3D-2D asymptotic analysis of an optimal design problem for thin films[END_REF][START_REF] Braides | 3D-2D asymptotic analysis for inhomogeneous thin films[END_REF] with simpler arguments since we have no dimension reduction process within it, we therefore omit them.

See also [START_REF] Dret | Variational Convergence for Nonlinear Shell Models with Directors and Related Semicontinuity and Relaxation Results[END_REF].

Lemma 2.3 Let 1 < p < ∞. Suppose u n u in W 1,p (Ω; R m ) and χ n * χ in L ∞ (Ω; [0, 1]), then lim inf n→∞ ||V p (χ n , ∇u n )|| p ≥ ||V p (χ, ∇u)|| p . Lemma 2.4 Let 1 < p < ∞. For every u ∈ W 1,p (Ω; R m ) and χ ∈ L ∞ (Ω; [0, 1]), there exist u n ∈ W 1,p (Ω; R m ) and χ n ∈ L ∞ (Ω; {0, 1}) such that u n * u in W 1,p (Ω; R m ) and χ n * χ in L ∞ (Ω; [0, 1]), with lim sup n→∞ ||V p (χ n , ∇u n )|| p ≤ ||V p (χ, ∇u)|| p .

Relaxation result

The following relaxation result is a consequence of the Γ-limit result obtained in [START_REF] Zorgati | A Γ-convergence result for optimal design problems[END_REF].

Proposition 3.1 Let p 0 > 1. For every χ ∈ L ∞ (Ω; [0, 1]) and u ∈ W 1,∞ (Ω; R m ) let J(χ, u) := ||V (χ, ∇u)|| ∞ (3.1) and G(χ, u) = ||V (χ, ∇u)|| ∞ .
Then, G(χ, u) is the lower semi-continuous envelope of J(χ, u) with respect to the weak- * L ∞ (Ω; [0, 1]) × W 1,p0 (Ω; R m ) weak topology.

Proof

The proof is a consequence of the Γ-limit result obtained in [START_REF] Zorgati | A Γ-convergence result for optimal design problems[END_REF]. Indeed, it was proved in [START_REF] Zorgati | A Γ-convergence result for optimal design problems[END_REF] that the Γ-limit with respect to the weak- * L ∞ (Ω; [0, 1]) × W 1,p0 (Ω; R m ) weak topology of the sequence of functionals (I p ) p>p0 defined on

L ∞ (Ω; [0, 1]) × L p0 (Ω; R m ) into R by I p (χ, u) = ||V (χ, ∇u)|| p if χ ∈ L ∞ (Ω; {0, 1}), u ∈ W 1,∞ (Ω; R m ), +∞ otherwise.
is given by

Ī(χ, u) = G(χ, u) if u ∈ W 1,∞ (Ω; R m ), +∞ otherwise.
Let Jp0 be the lower semi-continuous envelope of J with respect to the weak- * L ∞ (Ω; [0, 1]) × W 1,p0 (Ω; R m ) weak topology. Following the same steps as in [START_REF] Zorgati | A Γ-convergence result for optimal design problems[END_REF] with minor changes (see Appendix), we prove that the same Γ-limit is given by

Ī(χ, u) = Jp0 (χ, u) if u ∈ W 1,∞ (Ω; R m ), +∞ otherwise, (3.2) 
which gives the result.

Proof of Theorem 1.1

As usual for the computation of the Γ-limit, we split the proof in two steps, the first dealing with the lower bound and the second dealing with the upper bound.

Step 1. The lower bound. We suppose that min{γ 1 , γ 2 } < 1, the proof when γ i > 1 is analogous with very minor changes. Let (χ, u)

∈ L ∞ (Ω; [0, 1]) × W 1,p0 (Ω; R m ) and (χ n , u n ) ∈ L ∞ (Ω; [0, 1]) × W 1,p0 (Ω; R m ) such that χ n * χ in L ∞ (Ω; [0, 1]
) and u n u in W 1,p0 (Ω; R m ). We will prove that

lim inf I n (χ n , u n ) ≥ I(χ, u).
We can suppose that M = lim inf I n (χ n , u n ) < ∞. There exist n 0 ∈ N such that for every n > n 0 we have I n (χ n , u n ) < M + 1, which means that for every n > n 0 , (χ n , u n ) ∈ L ∞ (Ω; {0, 1}) × W 1,p n (.) (Ω; R m ) and

I n (χ n , u n ) = ||V (χ n , ∇u n )|| p n (.) .
Let p > 1. Since p - n → +∞, there exist n 1 ∈ N such that for every n > n 1 we have p - n > p. Using (2.3), we have that for every n > max{n 0 , n 1 }

||V (χ n , ∇u n )|| p ≤ max{|Ω| 1 p -1 p - n , |Ω| β( 1 p -1 p + n ) }[1 + p(β -1) p + n ] 1 p (M + 1) := δ p,n .
Notice that, since χ n (x) ∈ {0, 1}, for a.e. x ∈ Ω, we have

|χ n W 1 (∇u n ) + (1 -χ n )W 2 (∇u n )| p = χ n W p 1 (∇u n ) + (1 -χ n )W p 2 (∇u n ).
Thus, using the coercivity condition and letting α = min{α 1 , α 2 }, γ = min{γ 1 , γ 2 }, we obtain that

δ p,n ≥ ( Ω χ n W p 1 (∇u n ) + (1 -χ n )W p 2 (∇u n )dx) 1 p ≥ α( Ω χ n |∇u n | γ1p + (1 -χ n )|∇u n | γ2p dx) 1 p ≥ α( {|∇un|>1} χ n |∇u n | γ1p + (1 -χ n )|∇u n | γ2p dx) 1 p ≥ α( {|∇un|>1} χ n |∇u n | γp + (1 -χ n )|∇u n | γp dx) 1 p = α( {|∇un|>1} |∇u n | γp dx) 1 p , which gives ( {|∇un|>1} |∇u n | γp dx) 1 γp ≤ ( δ p,n α ) 1 γ .
Next, we have

Ω |∇u n | γp dx = {|∇un|>1} |∇u n | γp dx + {|∇un|≤1} |∇u n | γp dx ≤ ( δ p,n α ) p + |Ω| and thus ||∇u n || γp ≤ ( δ p,n α ) 1 γ + |Ω| 1 γp .
Since lim n→+∞ δ p,n = δ p := max{|Ω|

1 p , |Ω| β p }(M + 1)
, we have the existence of n 2 ∈ N such that for every n > n 2 , δ p,n < δ p + 1. Thus, for every n > max{n 0 , n 1 , n 2 } we have

||∇u n || γp ≤ ( δ p + 1 α ) 1 γ + |Ω| 1 γp .
Next, using Poincaré's Inequality we prove that (u n ) is also uniformly bounded in L γp (Ω; R m ) and thus it is uniformly bounded in W 1,γp (Ω; R m ). Up to a subsequence we have that (u n ) converges weakly to u in W 1,γp (Ω; R m ). Next, we prove that u ∈ W 1,∞ (Ω; R m ). We have, for every x 0 ∈ Ω and t > 0 such that the open ball B t (x 0 ) ⊂ Ω, that

1 |B t (x 0 )| B t(x 0 ) |∇u|dx ≤ |B t (x 0 )| -1 γp ||∇u|| γp ≤ |B t (x 0 )| -1 γp lim inf n→∞ ||∇u n || γp ≤ |B t (x 0 )| -1 γp ( δ p + 1 α ) 1 γ + |Ω| 1 γp
.

Letting p → ∞, we obtain that

1 |B t (x 0 )| B t(x 0 ) |∇u|dx ≤ ( M + 2 α ) 1 γ + 1.
Then, letting t → 0 + , we obtain that for every Lebesgue point x 0 ∈ Ω we have

|∇u(x 0 )| ≤ ( M + 2 α ) 1 γ + 1
and thus, since Ω is bounded, we obtain that for a.e.

x 0 ∈ Ω |u(x 0 )| ≤ C(Ω) ( M + 2 α ) 1 γ + 1 , which gives that u ∈ W 1,∞ (Ω; R m ).
Finally, we have for every n > max{n 0 , n 1 }

I n (χ n , u n ) = ||V (χ n , ∇u n )|| p n (.) ≥ 1 η p,n ||V (χ n , ∇u n )|| p ≥ |Ω| γ-1 γp η p,n ||V (χ n , ∇u n )|| γp ≥ |Ω| γ-1 γp η p,n ||V γp (χ n , ∇u n )|| γp , with η p,n := δp,n M +1 . Since χ n * χ in L ∞ (Ω; [0, 1]) and u n u in W 1,γp (Ω; R m ), the cross quasiconvexity of V γp implies that lim inf I n (χ n , u n ) ≥ |Ω| γ-1 γp η p lim inf ||V γp (χ n , ∇u n )|| γp ≥ |Ω| γ-1 γp η p ||V γp (χ, ∇u)|| γp with η p = δp M +1 . Let q 0 < γp. We have that lim inf I n (χ n , u n ) ≥ |Ω| γ-1 γp η p |Ω| q 0 -γp q 0 γp ||V γp (χ, ∇u)|| q0 = |Ω| q 0 -p q 0 p η p ||V γp (χ, ∇u)|| q0 .
Letting p → ∞ we obtain that

lim inf I n (χ n , u n ) ≥ |Ω| -1 q 0 ||V (χ, ∇u)|| q0 .
Theorem 5.1 Consider the same hypothesis of Theorem1.1, supposing γ 1 = γ 2 = γ and the additional growth condition : there exist C 1 , C 2 > 0 such that We suppose that χ n = χ En , with E n ⊂ Ω and 0

W i (A) ≤ C i (1 + |A| γ ). (5.2) Let 0 < λ < 1, G λ (u) = inf {χn},{un} {lim inf ||V (χ n , ∇u n )|| p n (.) , χ n ∈ L ∞ (Ω; {0, 1}), u n ∈ W 1,p n (.) (Ω; R m ), u n u in W 1,p0 (Ω; R m ), 1 |Ω| Ω χ n (x)dx = λ} (5.3) and I λ (u) = inf χ {I(χ, u); 1 |Ω| Ω χ(x)dx = λ}. Then G λ = I λ . Proof of Theorem 5.1 Let u ∈ W 1,∞ (Ω; R m ). First notice that G λ (u) ≥ I λ (u). Indeed, let χ n ∈ L ∞ (Ω; {0, 1}) such that 1 |Ω| Ω χ n (x)dx = λ,
< |E n | |Ω| < λ. Let K n = |Ω| -|E n | λ|Ω| -|E n | ,
where [x] denotes the integer part of x. We have

0 < (1 -λ)|Ω| λ|Ω| -|E n | ≤ K n ≤ |Ω| -|E n | λ|Ω| -|E n | and since χ n * χ in L ∞ (Ω; [0, 1]) with 1 |Ω| Ω χ(x)dx = λ, then |E n | → λ|Ω| and thus K n → ∞. Next, since |Ω\E n | > (1 -λ)|Ω| > 0,
we can have the following disjoint decomposition

|Ω\E n | = ∪ Kn i=1 Êi ∪ B, with | Êi | = λ|Ω| -|E n |.
Then, the coercivity condition implies the existence of c > 0 such that

Kn i=1 Êi |∇u n | γp n (x) dx ≤ Ω\En |∇u n | γp n (x) dx < c.
Thus, there exist 1 ≤ i(n) ≤ K n such that

K n Êi(n) |∇u n | γp n (x) dx ≤ c, which gives that lim n→+∞ Êi(n) |∇u n | γp n (x) dx = 0.
Using the growth condition, we obtain that

lim n→+∞ Êi(n) W 1 (∇u n ) p n (x) dx = lim n→+∞ Êi(n) W 2 (∇u n ) p n (x) dx = 0. ( 5.4) 
Let χn = χ En + χ Êi(n) . We have χn ∈ L ∞ (Ω; {0, 1}) with 1 |Ω| Ω χn (x)dx = λ.

Moreover,

||V ( χn , ∇u n )|| p n (.) = ||V (χ n , ∇u n ) + χ Êi(n) (W 1 (∇u n ) -W 2 (∇u n ))|| p n (.)
and thus 

||V ( χn , ∇u n )|| p n (.) ≤ ||V (χ n , ∇u n )|| p n (.) +||χ Êi(n) W 1 (∇u n )|| p n (.) +||χ Êi(n) W 2 (∇u n ))|| p n ( 

Appendix

In this section we will prove an analogous result to Theorem 1.1 in [START_REF] Zorgati | A Γ-convergence result for optimal design problems[END_REF] where the limit functional contains Jp0 instead of G, thus obtaining (3.2) in the proof of Theorem 5.1. The proof of the next Theorem follows the same steps as in [START_REF] Zorgati | A Γ-convergence result for optimal design problems[END_REF] with minor changes and thus we will focus on these changes.

Theorem 6.1 Let 1 < p 0 < ∞. Consider the sequence of functionals (I p ) p>p0 , where p denotes a sequence p n → +∞, defined on L ∞ (Ω; [0, 1]) × L p0 (Ω; R m ) by

I p (χ, u) =    Ω χW 1 (∇u) p + (1 -χ)W 2 (∇u) p dx 1 p if (χ, u) ∈ L ∞ (Ω; {0, 1}) × W 1,p (Ω; R m ), +∞ otherwise,
where W i : M m×N → R are continuous functions verifying linear growth and coercivity hypotheses: there exist α i , β i > 0 such that

β i |A| ≤ W i (A) ≤ α i (1 + |A|). (6.1) Let I be defined on L ∞ (Ω; [0, 1]) × L p0 (Ω; R m ) by I(χ, u) = Jp0 (χ, u) if u ∈ W 1,∞ (Ω; R m ), +∞ otherwise,
where J is defined in (3.1) and Jp0 is its lower semicontinuous envelope with respect to the weak- * L ∞ (Ω; [0, 1]) × W 1,p0 (Ω; R m ) weak topology. Then, the sequence of functionals (I p ) p>p0 Γ-converges to I as p goes to +∞ with respect to the L ∞ (Ω; [0, 1]) weak- * × W 1,p0 (Ω; R m ) weak topology.

Proof of Theorem 6.1

Step 1. The lower bound. Let (χ, u) ∈ L ∞ (Ω; [0, 1]) × L p0 (Ω; R m ) and (χ p , u p ) ∈ L ∞ (Ω; [0, 1]) × L p0 (Ω; R m ) such that χ p * χ in L ∞ (Ω; [0, 1]) and u p u in W 1,p0 (Ω; R m ). We will prove that lim inf p→∞ I p (χ p , u p ) ≥ I(χ, u).

We can suppose that M = lim inf p→∞ I p (χ p , u p ) < ∞, which implies that χ p ∈ L ∞ (Ω; {0, 1}) and u p ∈ W 1,p (Ω; R m ). As in [START_REF] Zorgati | A Γ-convergence result for optimal design problems[END_REF], we obtain that for some p 1 ≥ p 0 and for every r ≥ p 1 , (u p ) p is uniformly bounded in W 1,r (Ω; R m ) and thus, up to a sub-sequence, it converges weakly in W 1,r (Ω; R m ) to u ∈ W 1,∞ (Ω; R m ). Then, still as in [START_REF] Zorgati | A Γ-convergence result for optimal design problems[END_REF], we obtain that for every r ≥ This last inequality insures that we have Γ -lim inf I p (χ, u) ≥ I(χ, u), for every (χ, u) ∈ L ∞ (Ω; [0, 1]) × L p0 (Ω; R m ).

Step 2. The upper bound. We need to prove the converse inequality stating that Γ -lim sup I p (χ, u) ≤ I(χ, u)

for every (χ, u) ∈ L ∞ (Ω; [0, 1]) × L p0 (Ω; R m ). If u / ∈ W 1,∞ (Ω; R m ) then there is nothing to prove. Then, let (χ, u) ∈ L ∞ (Ω; [0, 1]) × W 1,∞ (Ω; R m ). In [START_REF] Zorgati | A Γ-convergence result for optimal design problems[END_REF], we obtained that Γ -lim sup I p (χ, u) = ||V (χ, ∇u)|| ∞ .

Thus, we have Γ -lim sup I p (χ, u) ≤ ||V (χ, ∇u)|| ∞ = J(χ, u).

Finally, taking the lower semicontinuous envelop with respect to the L ∞ (Ω; [0, 1]) weak- * × W 1,p0 (Ω; R m ) weak topology on both sides of the last inequality, we obtain that Γ -lim sup I p (χ, u) ≤ Jp0 (χ, u)

and thus the result.

1 |Ω|

 1 then, for a subsequence we haveχ n * χ in L ∞ (Ω; [0, 1]) with χ ∈ L ∞ (Ω; [0, 1]) which gives the first inequality.For the second inequality, let ε > 0, then there exist χ ∈ L ∞ (Ω; [0, 1]), with Ω χ(x)dx = λ such thatε + I λ (u) ≥ I(χ, u). Let χ n ∈ L ∞ (Ω; {0, 1}), u n ∈ W 1,pn(.) (Ω; R m ) such that χ n * χ in L ∞ (Ω; [0, 1]) and u n u in W 1,p0 (Ω; R m ) with lim n→+∞ ||V (χ n , ∇u n )|| p n (.) = I(χ, u) ≤ ε + I λ (u). If 1 |Ω| Ω χ n (x)dx = λ thenwe obtain the result letting ε → 0. Otherwise, we need to construct χn ∈ L ∞ (Ω; {0, 1}) with 1 |Ω| Ω χn (x)dx = λ and lim n→+∞ ||V ( χn , ∇u n )|| p n (.) ≤ lim n→+∞ ||V (χ n , ∇u n )|| p n (.) .

p 1 I 1 p

 11 p (χ p , u p ) ≥ |Ω| r-p pr ||V (χ p , ∇u p )|| r ,(6.2)where V is defined in (1.2). Making r → ∞, we obtain thatI p (χ p , u p ) ≥ |Ω| ||V (χ p , ∇u p )|| ∞ ,and thus, using the lower semicontinuity of Jp0 , we obtain that lim infp→∞ I p (χ p , u p ) ≥ lim inf p→∞ ||V (χ p , ∇u p )|| ∞ = lim inf p→∞ J(χ p , u p ) ≥ lim inf p→∞ Jp0 (χ p , u p )≥ Jp0 (χ, u).

  .) .

	Using (5.4), we obtain that		
		lim			
	which concludes the proof in the case	|E n | |Ω|	< λ. A similar construction can be
	made when	|E n | |Ω|	> λ setting K n =	|Ω| -|E n | |E n | -λ|Ω|	.

n→+∞ ||V ( χn , ∇u n )|| p n (.) ≤ lim n→+∞ ||V (χ n , ∇u n )|| p n (.) ,
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Finally, letting q 0 → +∞ we obtain that lim inf I n (χ n , u n ) ≥ ||V (χ, ∇u)|| ∞ , which concludes the lower bound.

Step 2. The upper bound.

and there is nothing to prove. Thus, we suppose that u ∈ W 1,∞ (Ω; R m ). Using the upper bound of the Γ-limit result obtained in [START_REF] Zorgati | A Γ-convergence result for optimal design problems[END_REF], we have the existence of (

We suppose that for some N ∈ N, we have p + n ≤ n for every n ≥ N , otherwise we chose a subsequence n verifying p + n ≤ n that we still label n. Then, using Lemma 2.1, we have for every n ≥ N ,

Using Hölder inequality, we obtain that

Making n → ∞ and using (4.1), we obtain that lim sup

which gives the result

An Auxiliary Result

In Theorem 1.1, we obtained the integral representation of the Γ-limit of the sequence of energy functionals defined with the variable exponent that is, for every .) (Ω; R m ), χ n * χ in L ∞ (Ω; [0, 1]), u n u in W 1,p0 (Ω; R m )}.

(5.1)

As in [START_REF] Fonseca | 3D-2D asymptotic analysis of an optimal design problem for thin films[END_REF], we can deduce the following result, using the same arguments.