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KINETIC MODELLING OF THE TRANSPORT OF DUST PARTICLES IN A RAREFIED ATMOSPHERE

We propose kinetic models to describe dust particles in a rarefied atmosphere in order to model the beginning of a Loss Of Vacuum Accident (LOVA) in the framework of safety studies in the International Thermonuclear Experimental Reactor (ITER). After having studied characteristic time and length scales at the beginning of a LOVA in ITER and underlined that these characteristic scales justify a kinetic approach, we firstly propose a kinetic model by supposing that the collisions between dust particles and gas molecules are inelastic and are given by a diffuse reflexion mechanism on the surface of dust particles. This collision mechanism allows us to take into account the macroscopic character of dust particles compared to gas molecules. This leads to establish new Boltzmann type kinetic operators that are non classical. Then, by noting that the mass of a dust particle is huge compared to the mass of a gas molecule, we perform an asymptotic expansion to one of the dust-molecule kinetic operators with respect to the ratio of mass between a gas molecule and a dust particle. This allows us to obtain a dust-molecule kinetic operator of Vlasov type whose any numerical discretization is less expensive than any numerical discretization of the original Boltzmann type operator. At last, we perform numerical simulations with Monte-Carlo and Particle-In-Cell (PIC) methods which validate and justify the derivation of the Vlasov operator. Moreover, examples of 3D numerical simulations of a LOVA in ITER using these kinetic models are presented.

Introduction

In the future International Thermonuclear Experimental Reactor (ITER), the abrasion of the facing surface of the tokamak by the deuterium-tritium plasma will lead to a production of a large amount of dust particles, essentially made up with the wall materials. These dust particles will lie on the inner surfaces of the tokamak after the functionning. In the case of a Loss Of Vacuum Accident (LOVA), the vessel filling may result in a mobilization of the dust particles, which may lead to several safety hazards, including possible release of activated dust particles or to a classical dust explosion. For these reasons, one of the aims of safety studies applied to the future ITER tokamak is to describe the evolution of dust particles in such a situation. In this context, diagnostics using optical, sampling or gravimetric systems [START_REF] Grisolia | Développement d'un diagnostic optique des poussières en suspension dans le tokamac iter[END_REF][START_REF] Rosanvallon | Dust control in tokamak environment[END_REF] are performed to study the extent of dust particle mobilization for a given set of flow conditions. At the same time, mathematical models are investigated in order to compare numerical simulations with experimental diagnostics, and to predict the onset of dust particle mobilization.

Several models for the description of a spray constitued by solid or liquid particles in suspension in a surrounding gas are used in this framework. One can distinguish different approaches, depending on the type of the partial differential equations used to describe the gas and the (solid or liquid) particles. A first approach consists in describing the gas-particles mixture like a multiphase fluid using hydrodynamic equations, like in the Gidaspow model [START_REF] Gidaspow | Hydrodynamics of fluidization and heat transfer: supercomputer modelling[END_REF] or in the Baer & Nunziato model [START_REF] Baer | A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive materials[END_REF] (which is used for situation of detonation -deflagration of dusty gas). These approaches have been extended in Ref. [START_REF] Garcia-Cascales | Extension of some numerical schemes to the analysis of gas and particle mixtures[END_REF] for the situation of dust particles mobilization in ITER. A major drawback of this method is that it can not deal with situations when the particles are not enough dense to be modeled as a continuous fluid.

A second approach consists in coupling an eulerian and a lagrangian approach. More precisely, the evolution of the gas is described by classical hydrodynamic equations, whereas the evolution of (solid or liquid) particles is described by a kinetic equation or by a system of ordinary differential equations. The interaction between the gas and the particles is taken into account by mean of a Stokes type drag force

F(v, r) = D p m p (r) (u g -v) (1)
where D p is an empirical coefficient depending on the surrounding gas and particles, u g (t, x) is the macroscopic velocity of the gas and m p (r) is the mass of a particle of radius r. We refer to Ref. [START_REF] Hylkema | Modélisation cinétique et simulation numérique d'un brouillard dense de gouttelettes[END_REF][START_REF] Dufour | Modélisation multi-fluide eulérienne pour les écoulements diphasiques à inclusions dispersées[END_REF][START_REF] Dufour | Étude d'un modèle de fragmentation secondaire pour les brouillards de gouttelettes[END_REF] for examples for such kinetic-fluid models in the case of thin polydispersed sprays and to Ref. [START_REF] Mathiaud | Étude de systèmes de type gaz-particules[END_REF] in the case of thick sprays (which are used for example in the code KIVA II. [START_REF] Orourke | The TAB method for numerical calculation of spray droplet breakup[END_REF]) This approach is used in the accidental situation of a LOVA in ITER in Ref. [START_REF] Takase | Three-dimensional numerical simulations of dust mobilization and air ingress characteristics in a fusion reactor during a LOVA event[END_REF],

Ref. [START_REF] Xu | Benchmarking validations for dust mobilization models of gasflow code[END_REF] and Ref. [START_REF] Paci | Bases for dust mobilization modelling in the light of STARDUST experiments[END_REF], where it is shown by numerical simulations that dust particles may be mobilized. Moreover, Takase [START_REF] Takase | Three-dimensional numerical simulations of dust mobilization and air ingress characteristics in a fusion reactor during a LOVA event[END_REF] shows also that the crucial phenomenoms take place during the beginning of the LOVA that is to say during the first milliseconds. However, the atmosphere inside the vessel is initially rarefied, and hydrodynamic models are consequently not suitable to describe the flow of the gas just after the air ingress in the vessel. Indeed, it is possible to compute some Knudsen numbers associated to this situation such as where λ 21 and λ 22 are the mean free pathes of gas molecules respectively for the dust-molecule collisions and for the molecule-molecule collisions. In [START_REF] Baer | A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive materials[END_REF],

δ dust := 1 n • 1 
1/3 may be seen as an average distance between dust particles at the macroscopic level [START_REF] Bird | Molecular Gas Dynamics and the Direct Simulation of Gas Flows[END_REF] n • 1 being an order of magnitude of the number density of dust particles -and d is a characteristic length scale of the emissive source that is responsible for the LOVA in ITER. Then, by supposing for the sake of simplicity that the dust particles and the gas molecules are respectively only tungsten and N 2 (nitrogen), by taking n • 1 = 10 14 m -3 (this order of magnitude will be justified in § 2.1) and d = 10 -2 m, by supposing that the initial order of magnitude of the number density in gas molecules and the initial temperature in ITER are respectively equal to n • 2 = 10 20 m -3 and to T • = 300 K and by supposing that the radius of a dust particle is smaller than 10 -5 m, [START_REF] Grisolia | Développement d'un diagnostic optique des poussières en suspension dans le tokamac iter[END_REF] we obtain Kn 21 ≥ 1 and Kn 22 ≥ 1. As a consequence, the initial atmosphere in ITER is rarefied which justifies to model the beginning of a LOVA in ITER with a kinetic approach where, in particular, the gas molecules should not be at thermodynamical equilibrium. In other words, we have to propose a kinetic model for a spray in a rarefied gas. In Ref. [START_REF] Ferrari | Modelling and numerical methods for the dynamics of impurities in a gas[END_REF], a kinetic model for the transport of solid particles in a gas is proposed. Nevertheless, in this approach, the gas is supposed to be at thermodynamical equilibrium and is described by a maxwelian distribution. As a consequence, the density in number of solid particles is solution of a linear kinetic equation. Another approach to model dust particles in a rarefied atmosphere is proposed in Ref. [START_REF] Østmo | Kinetic theory study of steady evaporation from a spherical condensed phase containing inert solid particles[END_REF] for the steady evaporation from a spherical condensed phase contening solid particles. In this model, the evolution of the gas molecules is described by a BGK-Boltzmann type equation and the evolution of dust particles is described by a fluid model without pressure. A similar model has been applied later in Ref. [START_REF] Crifo | Direct Monte Carlo and multifluid modelling of the circumnuclear dust coma spherical grain dynamics revisited[END_REF] in the 3D modelling of cometary flows by Monte-Carlo simulations. Let us note that it is shown in Ref. [START_REF] Crifo | Direct Monte Carlo and multifluid modelling of the circumnuclear dust coma spherical grain dynamics revisited[END_REF] that some physical phenomena which are characteristic of a dust-molecule flow in the coma of a comet can only be obtained with a kinetic description of the gas molecules. In Ref. [START_REF] Zhang | Numerical modeling of ionian volcanic plumes with entrained particulates[END_REF], a dust-molecule kinetic model is proposed to model the interaction between dust particles coming from an intensive volcanic plume and a rarefied atmosphere as in the case of volcanoes on Jupiter's moon Io. In this kinetic model, the dust-molecule collisions are treated with classical (elastic) multispecies Boltzmann operators for nano-sized dust particles and with a drag model of type [START_REF] Alexandre | On the Landau Approximation in Plasma Physics[END_REF] for the micron-sized dust particles -this drag model being deduced from the classical (elastic) multispecies Boltzmann operators -, and the feedback of dust particles on the gas molecules is not taken into account.

We propose in this work purely kinetic models of Boltzmann and/or Vlasov type to describe the dust-molecule mixture. These models are devoted to complete previous models, especially in the context of the beginning of a LOVA in ITER for which any fluid model cannot be valid since the atmosphere is initially rarefied. In particular, to take into account the fact that dust particles are macroscopic compared to molecules, we suppose that the dust-molecule collision mechanism is analogous to a diffuse reflexion boundary condition [START_REF] Cercignani | The Boltzmann Equation and its Applications[END_REF] and, thus, is inelastic, which implies that we have to introduce a random process in the multispecies kinematic relations of the dust-molecule collision. As a consequence, the proposed dust-molecule (inelastic) kinetic operators are not classical (elastic) multispecies Boltzmann operators. Let us note that the proposed dustmolecule kinetic model takes into account the feedback of the dust particles on the gas molecules, which is not the case in previous works except in Ref. [START_REF] Østmo | Kinetic theory study of steady evaporation from a spherical condensed phase containing inert solid particles[END_REF][START_REF] Zhang | Numerical modeling of ionian volcanic plumes with entrained particulates[END_REF]. Moreover, we derive a Vlasov-Boltzmann type model by performing an asymptotic expansion of one of the dust-molecule kinetic operators with respect to the ratio of mass between a gas molecule and a dust particle. This allows us to obtain a dust-molecule kinetic operator whose any numerical discretization is less expensive than any numerical discretization of the original Boltzmann type model. Let us note that the obtained Vlasov operator allows us to generalize the dust-molecule drag model [START_REF] Alexandre | On the Landau Approximation in Plasma Physics[END_REF] to a rarefied atmosphere where the dust-molecule interaction is inelastic. At last, let us underline that the proposed dust-molecule kinetic models could also describe the interaction between dust particles coming from an intensive volcanic plume and a rarefied atmosphere as, for example, in the case of volcanoes on Jupiter's moon Io. [START_REF] Zhang | Simulation of gas dynamics and radiation in volcanic plumes on Io[END_REF][START_REF] Zhang | Numerical modeling of ionian volcanic plumes with entrained particulates[END_REF] The outline of this paper is the following: In Section 2, we introduce basic modelling hypothesis and we estimate characteristic time and length scales in the context of a LOVA in ITER. This allows us, firstly, to justify the fact that dust-dust collisions may not be taken into account in this context, secondly, to justify the use of a kinetic model to describe the beginning of a LOVA in ITER, and, thirdly, to justify the fact that the dust-molecule kinetic model cannot be a classical (elastic) multispecies Boltzmann model because of the macroscopic character of dust particles compared to gas molecules. Then, we introduce the general formulation of the proposed dust-molecule kinetic model. In Section 3, we derive the Boltzmann type operators which model the dust-molecule collisions. In Section 4, we derive a Vlasov-Boltzmann type model by performing an asymptotic expansion. In Section 5, we study the dust-molecule kinetic model of Vlasov-Boltzmann type at different time and length scales. This study allows us to estimate the appropriate characteristic time and length scales of the proposed kinetic modelling in the context of a LOVA in ITER, which is in particular important for numerical simulations. In Section 6, we propose numerical simulations with Monte-Carlo and Particle-In-Cell (PIC) methods. These numerical results validate and justify the derivation of the dust-molecule kinetic operator of Vlasov type. Moreover, examples of 3D numerical simulations of a LOVA scenario using the proposed dust-molecule kinetic models are presented. At last, we conclude in Section 7.

Formulation of the dust-molecule kinetic model

To propose a dust-molecule kinetic model of Boltzmann and/or Vlasov type, we have to clearly introduce modelling hypothesis and to estimate time scales, length scales and Knudsen numbers in the physical context of a LOVA. This analysis, firstly, justifies the fact that dust-dust collisions may not be taken into account in the model, secondly, justifies the use of a kinetic model to describe the beginning of a LOVA, and, thirdly, justifies the fact that the dustmolecule kinetic model cannot be a classical (elastic) multispecies Boltzmann model because of the macroscopic character of dust particles compared to gas molecules. In particular, we briefly discuss the impact of the magnitude of the dust particle radius on the diluted gas hypothesis and on the molecular chaos hypothesis.

Basic modelling hypothesis

We introduce basic modelling hypothesis which will be used, in particular, to justify in § 2.2.3 the fact that the beginning of a LOVA has to be modelled with a kinetic modelling.

Hypothesis on the physical properties of dust particles and gas molecules

The first hypothesis concerns the incompressibility and the shape of dust particles and gas molecules:

Hypothesis 2.1. Dust particles and molecules are supposed to be hard spheres of respective radius r and r 2 . Moreover, we suppose that r ∈ [r min , r max ] with 0 < r min < r max < +∞.

In the context of ITER, a large size distribution range is expected for dust particles, with radius included between 10 -8 m and 10 -5 m. [START_REF] Onofri | Development of an in situ ITER dust diagnostic based on extinction spectrometry: Dedicated light scattering models[END_REF] However, we focus here our attention on the biggest of those dust particles, and we take r min 10 -6 m and r max 10 -5 m.

The tricky point of our modelling is the large difference in size between dust particles and gas molecules. Thus, considering for the sake of simplicity that the gas is constituted of only one type of molecule, we make this second hypothesis: Hypothesis 2.2. Dust particules are supposed to be macroscopic compared to gas molecules which means that

r 2 r min 1. (3) 
By supposing that gas molecules are nitrogen N 2 in the rarefied atmosphere, we have r 2 2 • 10 -10 m which implies that r 2 /r min 2 • 10 -4 .

A consequence of Hypothesis 2.2 concerns the magnitude of the mass of a dust particle compared to the magnitude of the mass of a gas molecule: Hypothesis 2.3. The mass m 2 of a molecule is very low compared to the mass m 1 (r) of a dust particle of radius r. In other words, we assume that

ε m 1 (4) with ε(r) := m 2 m 1 (r) and ε m := ε(r min ). (5) 
Of course, (4) implies that ∀r ∈ [r min , r max ] :

ε(r) 1 (6) 
since m 1 (r) = 4 3 πρr 3 where ρ is the volumic mass of the chemical component of dust particles. Hypothesis 2.2 and 2.3 are not equivalent but are linked. Indeed, by defining the dimensionless constant

η := 3m 2 4πρr 3 2 , ( 7 
)
we have

ε(r) = r 2 r 3 η. ( 8 
)
Thus, Hypothesis 2.2 only implies that

ε m η 1/3 1. (9) 
Relation [START_REF] Charles | Kinetic modelling and numerical simulations using particle methods for the transport of dust in a rarefied gas[END_REF] shows that Hypothesis 2.3 is satisfied under Hypothesis 2.2 when η is not too high. In the context of ITER, by only considering dust particles of tungsten (which is the heaviest material that should be considered) and by only considering nitrogen N 2 in the rarefied atmosphere, we have ρ = 19, 3 • 10 3 kg•m -3 , r 2 2 • 10 -10 m and m 2 = 4, 6 • 10 -26 kg. Thus, we obtain η 7, 2 • 10 -2 which implies that Hypothesis 2.3 is satisfied.

Hypothesis on the initial thermodynamic state

The kinetic modelling of the dust-molecule mixture consists in introducing two density functions f 1 := f 1 (t, x, v, r) and f 2 := f 2 (t, x, v) which respectively represent the number density in dust particules and in gas molecules at the time t ∈ [0, T ], at the position x ∈ Ω ⊂ R 3 and at the velocity v ∈ R 3 . In our context, the subset Ω defines the interior of the ITER tokamak, and the LOVA is produced by a small opening on the frontier ∂Ω. We make two hypothesis on these number densities f 1 and f 2 which are especially adapted at the beginning of a LOVA and which will allow us to introduce characteristic time and length scales in § 2.2.1 and 2.2.2.

The first one of these two hypothesis is the following:

Hypothesis 2.4. The order of magnitude of the dust particle number density n 1 is very low compared to the order of magnitude of the gas molecule number density n 2 knowing that

         n 1 (t, x) := ˆR3 ˆrmax rmin f 1 (t, x, v, r)dvdr, n 2 (t, x) := ˆR3 f 2 (t, x, v)dv.
More precisely, we assume that

α • := n • 1 n • 2 1 ( 10 
)
with the two orders of magnitude

       n • 1 := sup [0,T ]×Ω n 1 (t, x) < +∞, n • 2 := inf [0,T ]×Ω n 2 (t, x) > 0.
Moreover, in the context of a LOVA, we suppose that

     sup Ω n 1 (t = 0, x) n • 1 , inf Ω n 2 (t = 0, x) n • 2 . ( 11 
)
Let us underline that by defining n • 1 and n • 2 respectively with the supremum of n 1 (•, •) and with the infimum of n 2 (•, •) on [0, T ] × Ω, under [START_REF] Charles | Small mass ratio limit of Boltzmann equations in the context of the study of evolution of dust particles in a rarefied atmosphere[END_REF], we assume that the number density of dust particles is always negligible compared to the number density of molecules during a LOVA. Let us estimate n • 1 in the context of ITER. We considere the situation where the abrasion of the walls leads to the formation of M = 10 2 kg of tungsten mobilizable dust particles (this value corresponds to the safety limit which has been set inside the vacuum vessel, and could be reached after approximately 500 plasma pulses. [START_REF] Rosanvallon | Dust control in tokamak environment[END_REF]) Then, with the estimate that the total surface of vessel is S = 5 • 10 2 m 2 , this quantity of dust particles corresponds to a width h = M/(ρS) = 10 -5 m of eroded tungsten. Moreover, we assume that at the initial time t = 0 (just after the beginning of the air ingress in the vacuum vessel), dust particles are hanging uniformly in a layer of l = 10 -2 m width on the surface of the vessel. Then, the density n 1 of dust particles in this layer verifies for dust particles of radius r

4 3 πr 3 n 1 lS = Sh.
Thus, when r ∈ [r min , r max ], we have

3h 4πr 3 max l ≤ n 1 ≤ 3h 4πr 3 min l , ( 12 
)
that is to say 2, 5

• 10 11 m -3 ≤ n 1 ≤ 2, 5 • 10 14 m -3 . ( 13 
)
Consequently, we can choose in our context the order of magnitude n • 1 = 10 14 m -3 . Moreover, when there will be thermonuclear reactions in ITER, the pressure and the temperature inside the ITER tokamak will be respectively of the order of 1 atm and of 1, 5 • 10 8 K. As a consequence, by using the perfect gas law, we find that the number density inside the ITER tokamak has to be of the order of 10 20 m -3 . As a consequence, we choose n • 2 = 10 20 m -3 . Consequently, we have α • = 10 -6 .

The second one of these two hypothesis concerns the order of magnitude of the kinetic temperature of each species: Hypothesis 2.5. The kinetic temperatures involved in the mixture are of the same order of magnitude. Thus, we assume that

           T f1 (t, x, r) := m 1 (r) 3k B n 1 (t, x, r) ˆR3 f 1 (t, x, v, r) (v -u f1 (t, x, r)) 2 dv , (a) T f2 (t, x) := m 2 3k B n 2 (t, x) ˆR3 f 2 (t, x, v) (v -u f2 (t, x)) 2 dv (b) (14) where          u f1 (t, x, r) := 1 n 1 (t, x, r) ˆR3 f 1 (t, x, v, r)vdv u f2 (t, x) := 1 n 2 (t, x) ˆR3 f 2 (t, x, v)vdv ( 15 
)
verify

T f2 T • ,
and, as soon as particles are mobilized,

T f1 T • . In (14), k B 1, 38•10 -23 m 2 • kg• s -2 • K -1
is the Boltzmann's constant. Hypothesis 2.5 means that we suppose that there is a LOVA when the temperature in ITER is not too high that is to say when ITER is stopped. In this context, we can choose T • 300 K. Let us underline that when n • 2 10 20 m -3 and T • 300 K, the perfect gas law

P • 2 = n • 2 k B T • gives a pressure of P • 2 4
• 10 -6 atm, which justifies to model, when ITER is stopped, the beginning of a LOVA with a kinetic model: we detail this question in § 2.2.3.

A last basic modelling hypothesis

The last basic modelling hypothesis is essentially introduced for the sake of simplicity: Hypothesis 2.6. We neglect any external force field as magnetic field.

However, although gravity field is not written in the model for a sake of simplicity, it is taken into account in the spatially inhomogeneous 3D-simulations of § 6.2.3 and § 6.2.4. In the context of a LOVA, it is obvious that Hypothesis 2.1-2.4 cannot be affected by any external force field. Nevertheless, we may think that Hypothesis 2.5 could be affected by the high external magnetic field since, in that case, the dust particles of tungsten are heated by the hot hydrogen plasma or directly by the magnetic field (tungsten is a metal). Of course, when ITER is stopped, this potential problem does not exist.

Summary of the order of magnitudes

We now summarize the order of magnitude introduced in the previous subsections in Table 2.1.4. We recall that these orders of magnitude are characteristic of those at the beginning of a LOVA. Orders of magnitude of the physical parameters. 

r 2 r min r max m 2 ρ T • α • n • 1 n • 2 (m) (m) (m) (kg) kg•m -3 (K) m -3 m -3

Characteristic time and length scales, and Knudsen numbers

Let us now make a brief analysis of the orders of magnitude of time scales, length scales and Knudsen numbers.

Characteristic time scales

In order to point out the various characteristic time scales involved in the system, we make a brief analysis of the orders of magnitude of the mean collision time of each collision type in the dust-molecule mixture. We distinguish four types of collision which, thus, define four different mean collision times t ij :

• collisions between dust particles whose mean collision time is noted t 11 ;

• collisions between molecules whose mean collision time is noted t 22 ;

• collisions between dust particles and molecules -from the point of view of dust particles -whose mean collision time is noted t 12 ;

• collisions between molecules and dust particles -from the point of view of molecules -whose mean collision time is noted t 21 .

These four mean collision times t ij define four characteristic time scales. Under Hypothesis 2.1 and 2.5 and by supposing that all dust particles have the same radius r ∈ [r min , r max ], the characteristic time scales t ij are given by Ref.

[6]

                 t 11 = 4πr 2 n 1 V rel 11 -1 , (a) t 22 = 4πr 2 2 n 2 V rel 22 -1 , (b) t 12 = π(r + r 2 ) 2 n 2 V rel 12 -1 , (c) t 21 = π(r + r 2 ) 2 n 1 V rel 21 -1 (d) (16) 
with, as soon as particles are mobilized,

               V rel 11 = 4 k B T • πm1(r) , V rel 22 = 4 k B T • πm2 , V rel 12 = V rel 21 = 8k B T • π 1 m1(r) + 1 m2 ( 17 
)
knowing that V rel ij is the thermal relative velocity between particles of type i and particles of type j supposed to be hard spheres. [START_REF] Bird | Molecular Gas Dynamics and the Direct Simulation of Gas Flows[END_REF] Then, under Hypothesis 2.2-2.4, we have

               t 21 t 11 4 2ε(r) 1, (a) 
t 12 t 22 4 √ 2 r 2 r 2 1, (b)
t 12 t 21 = n 1 n 2 ≤ α • 1. (c) (18) 
Moreover, we have also under Hypothesis 2.2 and 2.3

t 22 t 21 1 4 √ 2 n 1 n 2 r r 2 2 (19) 
and consequently

∀(t, r) ∈ 0×[r min , r max ] : 1 4 √ 2 α • r min r 2 2 ≤ t 22 t 21 ≤ 1 4 √ 2 α • r max r 2 2 . ( 20 
)
In the same way, we have under Hypothesis 2.4

∀(t, r) ∈ R + ×[r min , r max ] : t 22 t 11 = n 1 n 2 r r 2 2 ε(r) = n 1 n 2 η r r 2 ≤ α • η r max r 2 (21) 
where η is defined by [START_REF] Boltzmann | Leçons sur la théorie des gaz[END_REF]. By using [START_REF] Boltzmann | Leçons sur la théorie des gaz[END_REF] and Table 2.1.4, we obtain

                   1 4 √ 2 α • r min r 2 2 4, 4, (a) 
1 4 √ 2 α • r max r 2 2 4, 4 • 10 2 , (b) α • η r max r 2 6 • 10 -5 . (c) (22) 
Thus, we deduce from [START_REF] Desvillettes | On the convergence of splitting algorithms for some kinetic equations[END_REF], [START_REF] Desvillettes | About the splitting algorithm for Boltzmann and B.G.K. equations[END_REF] and [START_REF] Dufour | Modélisation multi-fluide eulérienne pour les écoulements diphasiques à inclusions dispersées[END_REF] that

       ∀(t, r) ∈ 0 × [r min , r max ] : t 22 t 21 ≥ 1. ∀(t, r) ∈ R + × [r min , r max ] : t 22 t 11 1.
Finally, in our context, the characteristic time scales t ij are such that

∀(t, r) ∈ 0 × [r min , r max ] : t 12 t 21 ≤ t 22 t 11 . ( 23 
)
We deduce from ( 23) that the dust-dust mean collision time t 11 is the largest characteristic time scale involved in the collisionsat the beginning of the LOVA. More precisely, hypothesis summarized in Table 2.1.4 implies that r = r min :

V rel 11 5, 1 • 10 -4 m • s -1 , r = r max : V rel 11 1, 6 • 10 -5 m • s -1 .
Then, we deduce that at the beginning of the LOVA, we have 0, 5 s ≤ t 11 ≤ 1, 5 s.

On the other hand, the time scale t LOV A in the context of the beginning of a LOVA is lower than 10 -3 s [START_REF] Takase | Three-dimensional numerical simulations of dust mobilization and air ingress characteristics in a fusion reactor during a LOVA event[END_REF]. Thus, we have

t LOV A t 11 .
Therefore, we can neglect dust-dust collisions in any modelling of the beginning of a LOVA . Let us note that we have

V rel 22 673 m • s -1
which implies that at t = 0

t 22 3 • 10 -5 s that is to say t 22 t LOV A .
As a consequence, t 22 seems to be a good time scale to study the beginning of a LOVA: we study in detail this question in Section 5 when t 22 t 21 (see Hypothesis 4.1 and 5.1).

Characteristic length scales

The mean free path λ ij of the collision of a particle of type i with a particle of type j from the point of view of the particle of type i is given by

λ ij = V i t ij where V i = V rel ii / √
2 is the thermal velocity of the particle of type i. By using ( 16) and ( 17) (once again, we suppose that all dust particles have the same radius r ∈ [r min , r max ]), we obtain

                             λ 11 = 1 4 √ 2πr 2 n 1 , (a) 
λ 22 = 1 4 √ 2πr 2 2 n 2 , ( b 
)
λ 12 = m 2 m 1 (r) + m 2 • 1 π(r + r 2 ) 2 n 2
, (c)

λ 21 = m 1 (r) m 1 (r) + m 2 • 1 π(r + r 2 ) 2 n 1 . (d) (24) 
Then, under Hypothesis 2.2-2.4, we obtain

                 λ 21 λ 11 4 √ 2, (a) λ 12 λ 22 4 2ε(r) • r 2 r 2 1, (b) 
λ 12 λ 21 ε(r) • n 1 n 2 ≤ ε(r) α • 1, (c) (25) 
which implies

∀(t, r) ∈ R + × [r min , r max ] : λ 12 λ 11 λ 21 , λ 12 λ 22 . ( 26 
)
Moreover, we have also under Hypothesis 2.2 and 2.3

λ 22 λ 21 1 4 √ 2 • n 1 n 2 • r r 2 2 (27) 
which is exactly estimate [START_REF] Desvillettes | On asymptotics of the Boltzmann equation when the collisions become grazing[END_REF]. Thus, in our context, by using [START_REF] Dufour | Modélisation multi-fluide eulérienne pour les écoulements diphasiques à inclusions dispersées[END_REF] 2, 15 • 10 -5 m and d 10 -2 m are macroscopic characteristic length scales respectively related to the dust particles and to the emissive source that is responsible for the LOVA, [START_REF] Takase | Three-dimensional numerical simulations of dust mobilization and air ingress characteristics in a fusion reactor during a LOVA event[END_REF] we deduce from (24) that at t = 0

Kn 21 ≥ 1, 4 (29) 
for r ≤ r max and Kn 22 1, 4. 29) and [START_REF] Rosanvallon | Dust control in tokamak environment[END_REF] justify the modelling of the beginning of a LOVA with dust-molecule and molecule-molecule kinetic models.

Diluted gas hypothesis and molecular chaos hypothesis

In a binary gas mixture constituted of hard spheres, the classical multispiecies Boltzmann operators are valid when the mixture is diluted and when the molecular chaos hypothesis is satisfied. The dilution of the mixture is caracterised by the dilution parameter η ij := 4 3 πr 3 i n j , which has to verify η ij 1 (see Ref. [START_REF] Bird | Molecular Gas Dynamics and the Direct Simulation of Gas Flows[END_REF]): it means that collisions can be considered as binary. The molecular chaos hypothesis is that ζ ij := λ 3 ij n j has to verify ζ ij 1: [START_REF] Bird | Molecular Gas Dynamics and the Direct Simulation of Gas Flows[END_REF] it means that there are enough particles of each specie in the volume λ ij to define a particle density in the elementary volume. In our context, we have the following estimates: • Diluted gas hypothesis: We have

∀t ∈ R + :          r = r min : η 11 1, (a) r = r max : η 11 4 • 10 -1 , (b) η 21 1 (c) (31) 
and

t = 0 :          r = r min : η 12 4 • 10 2 , (a) r = r max : η 12 1, (b) 
η 22 1. (c) (32) 
•Molecular chaos hypothesis: We have 

∀t ∈ R + : r =
and t = 0 :

ζ 22 1 (34) 
(we do not estimate ζ 12 since λ 12 is not an appropriate characteristic length scale from a physical point of view: see § 2.2.2).

Estimates (31)(b), (32)(b) and ( 33)(b) show that the dust-molecule mixture may not be a diluted gas and/or may not satisfied the molecular chaos hypothesis at least for dust particles whose radius is of the order of r max = 10 -5 m: this is a direct consequence of the macroscopic character of dust particles compared to molecules (cf. Hypothesis 2.2). As a consequence, the dust-molecule kinetic operators cannot be classical (elastic) multispecies Boltzmann operators at least for dust particles whose radius is of the order of r max = 10 -5 m: we propose to take into account this important characteristic in our modelling through Hypothesis 3.1 (see below) that introduces a random process in the dust-molecule binary collision.

Kinetic modelling of dust-molecule collisions

Under Hypothesis 2.1-2.5 and in the context of the beginning of a LOVA, we can neglect the dust-dust collisions (see § 2.2.1). As a consequence, under Hypothesis 2.6, the dust-molecule kinetic model is given by

           ∂f 1 ∂t + v • ∇ x f 1 = R 1 (f 1 , f 2 ), (a) ∂f 2 ∂t + v • ∇ x f 2 = R 2 (f 1 , f 2 ) + Q(f 2 , f 2 ), (b) (t, x, v, r) ∈ R + × Ω × R 3 × [r min , r max ] (c) ( 35 
)
where Ω is an open subset of R 3 (which defines the interior of the ITER tokamak) and where 0 < r min < r max . The kinetic operator Q(f 2 , f 2 ) models collisions between gas molecules and is a classical Boltzmann operator. As these collisions are not the important point of our modelling, we consider a hard sphere model.

Then, Q(f 2 , f 2 ) is given by Q(f 2 , f 2 )(t, x, v) = ˆ §2 ˆR3 [f 2 (t, x, v )f 2 (t, x, v * ) -f 2 (t, x, v)f 2 (t, x, v * )] × r 2 2 |v -v * |dσdv * (36) with        v = v + v * 2 - |v -v * | 2 σ, v * = v + v * 2 + |v -v * | 2 σ ( 37 
)
and σ ∈ S 2 . The main point of our modelling is the derivation of the kinetic operators R 1 (f 1 , f 2 ) and R 2 (f 1 , f 2 ) which model collisions between dust particles and gas molecules under Hypothesis 2.1 and 2.2, and which cannot be classical (elastic) multispecies Boltzmann operators at least when the radius of a dust particle is of the order of r max = 10 -5 m (see § 2.3).

Discussion about the basic modelling hypothesis

We make the following coments to summarize the physical justification of kinetic model [START_REF] Paci | Bases for dust mobilization modelling in the light of STARDUST experiments[END_REF] in our context:

• Hypothesis 2.1-2.5 are used in § 2.2 to estimate in our context the characteristic time and length scales and the Knudsen numbers involved in the dust-molecule mixture. In particular, we show that we have to model the beginning of a LOVA with a kinetic model and that we can neglect dust-dust collisions. In other words, under Hypothesis 2.6, the beginning of a LOVA has to be modelled with a kinetic model whose general formulation is given by [START_REF] Paci | Bases for dust mobilization modelling in the light of STARDUST experiments[END_REF].

• Hypothesis 2.2 is central to justify the derivation in Section 3 of the dustmolecule operators R 1 (f 1 , f 2 ) and R 2 (f 1 , f 2 ) in a non-classical way (see also § 2.3).

• Hypothesis 2.3 is central to perform in Section 4 an asymptotic analysis to approach R 1 (f 1 , f 2 ) with a Vlasov type operator and, then, to simplify kinetic model [START_REF] Paci | Bases for dust mobilization modelling in the light of STARDUST experiments[END_REF] in Section 5.

• Hypothesis 2.6 allows us to neglect any external force field in [START_REF] Paci | Bases for dust mobilization modelling in the light of STARDUST experiments[END_REF]. Of course, it would be simple to add a posteriori any external force field in [START_REF] Paci | Bases for dust mobilization modelling in the light of STARDUST experiments[END_REF] (as soon as Hypothesis 2.5 remains valid when Hypothesis 2.6 is not satisfied).

Derivation of dust-molecule kinetic operators of Boltzmann type

We now propose to derive the dust-molecule operators

R 1 (f 1 , f 2 ) and R 2 (f 1 , f 2 )
used in the kinetic model [START_REF] Paci | Bases for dust mobilization modelling in the light of STARDUST experiments[END_REF] in the spirit of the derivation of the classical Boltzmann operator [START_REF] Pareschi | An introduction to the numerical analysis of the Boltzmann equation[END_REF]. [START_REF] Boltzmann | Leçons sur la théorie des gaz[END_REF] The new point is the way we take into account in our modelling Hypothesis 2.1 and 2.2.

Random kinematic relations for the dust-molecule collision

Dust particles and gas molecules are supposed to be hard spheres: see Hypothesis 2.1. Moreover, dust particles are also supposed to be macroscopic compared to molecules: see Hypothesis 2.2. From a physical point of view, we have to take into account this important modelling hypothesis, which means in particular that kinetic operators R 1 (f 1 , f 2 ) and R 2 (f 1 , f 2 ) cannot be the multispecies versions of classical Boltzmann operator (36) (see section 2.3). In the case of the classical multispecies Boltzmann operator, kinematic relations [START_REF] Pareschi | An introduction to Monte Carlo methods for the Boltzmann equation[END_REF] are given by Ref.

[6]        v 1 = v B - ε(r) 1 + ε(r) |v • 2 -v • 1 |σ, (a) v 2 = v B + 1 1 + ε(r) |v • 2 -v • 1 |σ (b) (38) 
with σ ∈ S 2 where ε(r) is the ratio of masses defined by ( 5) and where

v B := 1 1 + ε(r) v • 1 + ε(r) 1 + ε(r) v • 2 (39)
is the barycentric velocity of the dust-molecule binary system. In [START_REF] Perthame | Introduction to the theory of random particle methods for Boltzmann equation[END_REF], v • 1 and v • 2 are the pre-collisional velocities, v 1 and v 2 are the post-collisional velocities. In our modelling, we take into account Hypothesis 2.1 and 2.2 in the derivation of R 1 (f 1 , f 2 ) and R 2 (f 1 , f 2 ) by supposing that a molecule arriving on a dust particle thermalizes with molecules constituting the surface of the dust particle within a negligible time with respect to the other characteristic time scales, and leaves the dust particle following a half maxwellian at its surface temperature T surf . In other words, we take into account Hypothesis 2.1 and 2.2 by supposing that the dust-molecule collision mechanism is analogous to a diffuse reflexion boundary condition (see Ref. [START_REF] Cercignani | The Boltzmann Equation and its Applications[END_REF] p. 104) and, thus, by introducing a random process in the multispecies kinematic relations (38):

Hypothesis 3.1. The kinematic relations of the dust-molecule binary collision -which transform the pre-collisional velocities v •

1 and v • 2 into the post-collisional velocities v 1 and v 2 -are given by

       v 1 = v B - ε(r) 1 + ε(r) v r , (a) v 2 = v B + 1 1 + ε(r) v r (b) ( 40 
)
where v r := v 2 -v 1 ( 41 
)
is the post-relative velocity whose probability density h n is given by

h n (s) = 1 2π m 2 k B T surf 2 (n • s) exp - m 2 |s| 2 2k B T surf 1 {n•s≥0} , ( 42 
)
n being the normal vector at the tangent plan of the dust particle, oriented to the exterior of the dust particle, and T surf ∈ R + * being the surface temperature of dust particles.

We roughly represent in Figure 1 the collision between a dust particle and a molecule. In this figure ,n 

= ---→ C1C2 | ---→ C1C2|
where C 1 and C 2 are respectively the centers of the dust particule and of the molecule. In [START_REF] Xu | Benchmarking validations for dust mobilization models of gasflow code[END_REF], the surface temperature Figure 1: Diffuse reflexion of a molecule on a dust particle of dust particles T surf is not necessarily equal to the kinetic temperature T f1 defined with ( 14)(a). For the sake of simplicity, we assume in the sequel that all dust particles have the same surface temperature T surf and that T surf does not depend on the time. Let us note that we can rewrite [START_REF] Xu | Benchmarking validations for dust mobilization models of gasflow code[END_REF] with

h n (s) = 2β 4 π (n • s) exp -β 2 |s| 2 1 {n•s≥0} (43) 
where

β := m 2 2k B T surf ( 44 
)
(1/β is a thermal velocity related to the surface temperature T surf of dust particles). Of course, we can verify that ∀n ∈ S 2 :

ˆR3 h n (s)ds = 1. (45) 
Let us underline that kinematic relations [START_REF] Roblin | Documentation de référence du code DSMC[END_REF] are such that the momentum of the dust-molecule binary system is conserved. Nevertheless, since |v r | is not equal to the pre-relative velocity |v 1) because of the random process, collision mechanism [START_REF] Roblin | Documentation de référence du code DSMC[END_REF] is not planar and is not micro-reversible, and the kinetic energy is not conserved, which is not the case for the classical collision mechanism [START_REF] Perthame | Introduction to the theory of random particle methods for Boltzmann equation[END_REF]. This implies that the kinetic operators R 1 (f 1 , f 2 ) and R 2 (f 1 , f 2 ) proposed in the sequel will not verify all the properties verified by a classical (elastic) multispecies Boltzmann operator based on kinematic relations [START_REF] Perthame | Introduction to the theory of random particle methods for Boltzmann equation[END_REF].

• r | with v • r := v • 2 -v • 1 (see Figure

Derivation of dust-molecule operator

R 1 (f 1 , f 2 ) Under Hypothesis 3.1, R 1 (f 1 , f 2 )
cannot be a classical (elastic) multispecies Boltzmann operator. To derive R 1 (f 1 , f 2 ), we have to apply the heuristic Boltzmann's construction [START_REF] Boltzmann | Leçons sur la théorie des gaz[END_REF][START_REF] Cercignani | The Boltzmann Equation and its Applications[END_REF] in the particular context of Hypothesis 3.1. This leads to the following proposition: Proposition 1. Under Hypothesis 3.1, the dust-molecule operator R 1 (f 1 , f 2 ) obtained with the heuristic Boltzmann's construction is given by

R 1 (f 1 , f 2 )(t, x, v 1 , r) = (r + r 2 ) 2 ˆR3 ˆR3 f 1 (t, x, v • 1 , r)f 2 (t, x, v • 2 )B p (v • 1 , v • 2 , v 1 )dv • 1 dv • 2 -π (r + r 2 ) 2 ˆR3 f 1 (t, x, v 1 , r)f 2 (t, x, v 2 )|v 1 -v 2 |dv 2 (46) with B p (v • 1 , v • 2 , v 1 ) = 2 π β 4 1 + ε(r) ε(r) 4 exp -β 2 1 + ε(r) ε(r) 2 (v B -v 1 ) 2 × ˆS2 [n • (v B -v 1 )][n • (v • 1 -v • 2 )]1 {n•(v B -v1)≥0} 1 {n•(v • 1 -v • 2 )≥0} dn ( 47 
)
where ε(r) is the ratio of masses defined by [START_REF] Bird | Monte Carlo simulation of gas flows[END_REF], where v B is the barycentric velocity given by ( 39) and where 1/β is a thermal velocity given by [START_REF] Zhang | Simulation of gas dynamics and radiation in volcanic plumes on Io[END_REF].

Proof. In the elementary volume dxdv 1 , the variation of the number of dust particles during the time dt is

df 1 dt dtdxdv 1 = ∂f 1 ∂t + v 1 • ∇ x f 1 dtdxdv 1 .
Let us introduce the number of dust particles R + 1 (f 1 , f 2 )dtdxdv 1 whose position and velocity enter respectively into the classes x, x + dx and v 1 , v 1 + dv 1 , and let us also introduce the number of particles R - 1 (f 1 , f 2 )dtdxdv 1 whose position and velocity leave those classes. Then, the collisional balance writes

df 1 dt dtdxdv 1 = R + 1 (f 1 , f 2 ) -R - 1 (f 1 , f 2 ) dtdxdv 1 . ( 48 
)
Thus, the operator R 1 (f 1 , f 2 ) can be expressed by

R 1 (f 1 , f 2 ) = R + 1 (f 1 , f 2 ) -R - 1 (f 1 , f 2 ). ( 49 
)
Due to Hypothesis 2.1, the loss part R - 1 (f 1 , f 2 ) is a classical multispiecies Boltzmann loss operator for a hard sphere cross-section. Its expression is given by (see Ref. [START_REF] Cercignani | The Boltzmann Equation and its Applications[END_REF] or Ref. [START_REF] Charles | Modélisation mathématiques et étude numérique d'un aérosol dans un gaz raréfié. Application à la simulation du transport de particules de poussière en cas d'accident de pert de vide dans ITER[END_REF] for details)

R - 1 (f 1 , f 2 )(t, x, v 1 , r) = ˆR3 f 1 (t, x, v 1 , r)f 2 (t, x, v 2 )π (r + r 2 ) 2 |v 1 -v 2 |dv 2 . ( 50 
)
We now establish the expression of

R + 1 (f 1 , f 2 ) by noting that R + 1 (f 1 , f 2 )
dt dx dv 1 is the number of collisions in the elementary volum dx during the time dt whose post-collisional velocity of dust particles is in the class v 1 , v 1 + dv 1 . This number can be expressed by

R + 1 (f 1 , f 2 )dtdxdv 1 = ˆn∈S 2 ˆv• 2 ∈R 3 ˆv• 1 ∈R 3 l 1 (v 1 )dN 0 1 dv 1 (51)
where dN 0 1 is the elementary number of collisions during the time dt in the elementary volum dx between dust particles and molecules whose pre-collisional velocities are respectively in the classes v

• 1 , v • 1 + dv • 1 and v • 2 , v • 2 + dv • 2
, and where l 1 (v 1 )dv 1 is the elementary probability that, after such a collision, the post-collisional velocity of these dust particles is in the class v 1 , v 1 + dv 1 . At time t and at position x, the dust particles flux whose velocity is in the class v

• 1 , v • 1 + dv • 1 and relative to a molecule whose velocity is equal to v • 2 is given by f 1 (t, x, v • 1 )|v • 1 -v • 2 |dv • 1 .
Thus, the number of these dust particles that collide this molecule during a time dt with an impact parameter p and an azimuthal angle ∈ [0, 2π] (angle between a reference plan and the pre-collision plan) is equal to

f 1 (t, x, v • 1 , r)|v • 1 -v • 2 | pdp d dv • 1 dt. Then, dN •
1 is given by

dN • 1 = f 1 (t, x, v • 1 , r)f 2 (t, x, v • 2 )|v • 1 -v • 2 | pdpd dv • 1 dv • 2 dt dx
since the number of molecules in the elementary volume dx whose velocity is in

the class v • 2 , v • 2 + dv • 2 is equal to f 2 (t, x, v • 2 )dv • 2 dx.
Under the assumption that dust particles and molecules are hard spheres, the impact parameter p between molecules and dust particles is given by p

= (r + r 2 ) sin(θ) with θ ∈ [0, π/2]. Moreover, denoting n the vector n = ---→ C1C2 | ---→ C1C2|
, where C 1 and C 2 are respectively the centers of the particule and of the molecule (see figure 1), we have

|v • 1 -v • 2 |pdpd = |v • 1 -v • 2 |(r + r 2 ) 2 sin θ cos θdθd (52) with n ∈ S 2 ∩ {n • (v • 1 -v • 2 ) ≥ 0}. Then, we can express dN • 1 by dN • 1 = f 1 (t, x, v • 1 , r)f 2 (t, x, v • 2 ) (r + r 2 ) 2 [n • (v • 1 -v • 2 )] 1 {n•(v • 1 -v • 2 )≥0} dndv • 1 dv • 2 dtdx.
Moreover, we can express the density of probability l 1 according to the density of probability h n of the post-collisional relative velocity v r := v 2 -v 1 , h n being defined with [START_REF] Xu | Verification of a dust transport model against theoretical solutions in multidimensional advection diffusion problems[END_REF]. Indeed, by using (40)(a) -which implies in particular that v B given by ( 39) is not changed by the collision -, we have

l 1 (s) = 1 + ε(r) ε(r) 3 h n - 1 + ε(r) ε(r) (s -v B ) .
And, by using (43), we finally get

R + 1 (f 1 , f 2 ) = ˆR3 ˆR3 f 1 (t, x, v • 1 , r)f 2 (t, x, v • 2 )(r + r 2 ) 2 B p (v • 1 , v • 2 , v 1 )dv • 1 dv • 2 (53)
where

B p (v • 1 , v • 2 , v 1
) is given by (47).

Derivation of dust-molecule operator

R 2 (f 1 , f 2 )
Following the same approach as in section 3.2, we obtain for the operator

R 2 (f 1 , f 2 ): Proposition 2. Under Hypothesis 3.1, the dust-molecule operator R 2 (f 1 , f 2 )
obtained with the heuristic Boltzmann's construction is given by

R 2 (f 1 , f 2 )(t, x, v 2 ) = ˆrmax rmin ˆR3 ˆR3 (r + r 2 ) 2 f 1 (t, x, v • 1 , r)f 2 (t, x, v • 2 )B m (v • 1 , v • 2 , v 2 )drdv • 1 dv • 2 - ˆrmax rmin ˆR3 π (r + r 2 ) 2 f 1 (t, x, v 1 , r)f 2 (t, x, v 2 )|v 2 -v 1 |drdv 1 (54) with B m (v • 1 , v • 2 , v 2 ) = 2 π β 4 (1 + ε(r)) 4 exp -β 2 (1 + ε(r)) 2 (v B -v 2 ) 2 (55) × ˆS2 [n • (v B -v 2 )] [n • (v • 2 -v • 1 )] 1 {n•(v B -v2)≥0} 1 {n•(v • 2 -v • 1 )≥0} dn
where ε(r), v B and β are respectively given by ( 5), [START_REF] Onofri | Development of an in situ ITER dust diagnostic based on extinction spectrometry: Dedicated light scattering models[END_REF] and [START_REF] Zhang | Simulation of gas dynamics and radiation in volcanic plumes on Io[END_REF].

Proof. To obtain operator (54)(55), we just have to permute the subscripts 1 and 2 in operator (46)(47) (which means in particular that we replace ε(r) by 1/ε(r)) and to take into account an integration in r.

Other formulations of dust-molecule operators

R 1 (f 1 , f 2 ) and R 2 (f 1 , f 2 )
We now propose other formulations of the operators

R 1 (f 1 , f 2 ) and R 2 (f 1 , f 2 )
respectively given by ( 46) and (54). The first ones are weak formulations of ( 46) and (54) ; the second ones are deduced from these weak formulations, and will be adapted for the derivation of the Vlasov-Boltzmann model in section 4. In this section, we omit the variables t and x for the sake of simplicity.

Weak formulation of

R 1 (f 1 , f 2 ) and R 2 (f 1 , f 2 )
The weak formulations of R 1 (f 1 , f 2 ) and R 2 (f 1 , f 2 ) are given in the following proposition:

Proposition 3. Let ϕ be a test function (ϕ ∈ C 0 c (R 3 ) for example), let R 1 (f 1 , f 2 ) and R 2 (f 1 , f 2 )
be the Boltzmann operators (46) and (54). Then, we have for-

mally ˆR3 ϕ(v)R 1 (f 1 , f 2 )(v, r)dv = ˆS2 ˆR3 ˆR3 ˆR3 (r + r 2 ) 2 [ϕ(v 1 ) -ϕ(v 1 )] f 1 (v 1 , r)f 2 (v 2 ) ×h n (w) [n • (v 1 -v 2 )] 1 {n•(v1-v2)≥0} dndwdv 1 dv 2 (56) with v 1 = 1 1 + ε(r) [v 1 + ε(r)v 2 -ε(r)w] , ( 57 
)
and ˆR3 ϕ(v)R 2 (f 1 , f 2 )(v)dv = ˆrmax rmin ˆS2 ˆR3 ˆR3 ˆR3 (r + r 2 ) 2 [ϕ(v 2 ) -ϕ(v 2 )] f 1 (v 1 , r) ×f 2 (v 2 )h n (w) [n • (v 1 -v 2 )] 1 {n•(v1-v2)≥0} drdndwdv 1 dv 2 (58) with v 2 = 1 1 + ε(r) [v 1 + ε(r)v 2 + w] ( 59 
)
where h n is given by [START_REF] Xu | Benchmarking validations for dust mobilization models of gasflow code[END_REF].

Let us underline that under Hypothesis 2.3, the velocities v 1 and v 1 of a dust particle before and after a collision with a molecule are such that

v 1 -v 1 = O(ε(r)) (60) 
(see ( 57)). In other words, since the mass of a dust particle is huge compared to the mass of a molecule (see Hypothesis 2.3), the velocity of a dust particle is few modified after a collision with a molecule. As a consequence, the collisions of dust particles on molecules are grazing collisions. This will allow us to approximate in section 4 the Boltzmann type operator R 1 (f 1 , f 2 ) with a Vlasov type operator. Of course, the collisions of gas molecules on dust particles are not grazing collisions since

v 2 -v 1 = w (61)
is not a O(ε(r)) term (see ( 57) and ( 59)). Thus, this will not be possible to approximate the Boltzmann type operator R 2 (f 1 , f 2 ) with a Vlasov type operator.

Proof. Let ϕ be a test function and let

R + 1 (f 1 , f 2 ) be the gain term (53) of the operator R 1 (f 1 , f 2 ). We have ˆR3 ϕ(v)R + 1 (f 1 , f 2 )(v, r)dv = (r + r 2 ) 2 ˆR3 ˆR3 ˆR3 ϕ(v 1 )f 1 (v • 1 , r)f 2 (v • 2 )B p (v • 1 , v • 2 , v 1 )dv • 1 dv • 2 dv 1 (62)
where B p is expressed according to h n by

B p (v • 1 , v • 2 , v 1 ) = 1 + ε(r) ε(r) 3 ˆS2 h n (v B -v 1 ) 1 + ε(r) ε(r) [n • (v • 1 -v • 2 )] 1 {n•(v • 1 -v • 2 )≥0} dn. ( 63 
)
We set

w := (v B -v 1 ) 1 + ε(r) ε(r) = ε(r) 1 + ε(r) v • 2 + 1 1 + ε(r) v • 1 -v 1 1 + ε(r) ε(r) ,
and we consider in the integral (62) the following change of variable

(v 1 , v • 1 , v • 2 ) → (w, v • 1 , v • 2 )
for which the jacobian is given by

|J| = 1 + ε(r) ε(r) 3 . Therefore, we get ˆR3 ϕ(v)R + 1 (f 1 , f 2 )(v, r)dv = (r + r 2 ) 2 ˆS2 ˆR3 ˆR3 ˆR3 ϕ(v 1 )f 1 (v 1 , r)f 2 (v 2 ) × h n (w) [n • (v 1 -v 2 )] 1 {n•(v1-v2)≥0} dndwdv 1 dv 2 (64) 
with v 1 given by (57). Moreover, thanks to [START_REF] Zhang | Numerical modeling of ionian volcanic plumes with entrained particulates[END_REF] and by noting that [START_REF] Charles | Modélisation mathématiques et étude numérique d'un aérosol dans un gaz raréfié. Application à la simulation du transport de particules de poussière en cas d'accident de pert de vide dans ITER[END_REF] ∀k ∈ R 3 :

ˆS2 (n • k) 1 {n•k≥0} dn = π|k|, ( 65 
)
we get the weak formulation

ˆR3 ϕ(v)R - 1 (f 1 , f 2 )(v, r)dv = (r + r 2 ) 2 ˆR3 ˆR3 ϕ(v 1 )f 1 (v 1 , r)f 2 (v 2 )π|v 1 -v 2 |dv 1 dv 2 = (r + r 2 ) 2 ˆS2 ˆR3 ˆR3 ˆR3 ϕ(v 1 )f 1 (v 1 , r)f 2 (v 2 ) × h n (w) [n • (v 1 -v 2 )] 1 {n•(v1-v2)≥0} dndwdv 1 dv 2 (66) 
for the loss term R - 1 (f 1 , f 2 ). Expression (56) is a direct consequence of (64) and (66). We obtain expression (58) with similar computations (see [START_REF] Charles | Modélisation mathématiques et étude numérique d'un aérosol dans un gaz raréfié. Application à la simulation du transport de particules de poussière en cas d'accident de pert de vide dans ITER[END_REF] for details).

A second formulation

of R 1 (f 1 , f 2 ) and R 2 (f 1 , f 2 )
We deduce from Proposition 3 another expression of collisional operators R 1 (f 1 , f 2 ) and R 2 (f 1 , f 2 ):

Proposition 4. The Boltzmann operators R 1 (f 1 , f 2 ) and R 2 (f 1 , f 2 )
given by (46) and (54) are respectively equivalent to the operators

R 1 (f 1 , f 2 )(v 1 , r) = ˆS2 ˆR3 ˆR3 2β 4 π (r + r 2 ) 2 f 1 (v 1 , r)f 2 (v 2 ) exp -β 2 (v 1 -v 2 ) 2 -f 1 (v 1 , r)f 2 (v 2 ) exp -β 2 (v 1 -v 2 ) 2 [n • (v 1 -v 2 )] × (n • w) 1 {n•w≥0} 1 {n•(v1-v2)≥0} dndwdv 2 (67) with v 1 = 1 1 + ε(r) [v 1 + ε(r)v 2 -ε(r)w], ( 68 
)
and

R 2 (f 1 , f 2 )(v 2 ) = ˆS2 ˆR3 ˆR3 ˆrmax rmin 2β 4 π (r + r 2 ) 2 f 1 (v 1 , r)f 2 (v 2 ) exp -β 2 (v 1 -v 2 ) 2 -f 1 (v 1 , r)f 2 (v 2 ) exp -β 2 (v 1 -v 2 ) 2 [n • (v 1 -v 2 )] × (n • w) 1 {n•w≥0} 1 {n•(v1-v2)≥0} drdndwdv 1 (69) with v 2 = 1 1 + ε(r) [v 1 + ε(r)v 2 + w] ( 70 
)
where β is given by [START_REF] Zhang | Simulation of gas dynamics and radiation in volcanic plumes on Io[END_REF].

Compared to (46) and (54), formulations (67) and ( 69) are closer to the classical (elastic) multispecies Boltzmann operator obtained by supposing that the kinematic relations of the binary collision are given by (38) instead of (40)(41) [START_REF] Xu | Benchmarking validations for dust mobilization models of gasflow code[END_REF]. The function exp(-β 2 |s| 2 ) in ( 67) and ( 69) is a direct consequence of Hypothese 3.1.

Proof. Let us start from the expression (64) in which we make the change of variables

(v 1 , v 2 , w) → (v 1 , v 2 , v r ) (71) 
with v 1 and v 2 given by (68)(70) and with v r := v 2 -v 1 (see also [START_REF] Takase | Three-dimensional numerical simulations of dust mobilization and air ingress characteristics in a fusion reactor during a LOVA event[END_REF]). This transformation is involutive, and the inverse transformation is expressed by

           v 1 = 1 1 + ε(r) [v 1 + ε(r)v 2 -ε(r)v r ], v 2 = 1 1 + ε(r) [v 1 + ε(r)v 2 + v r ], w = v 2 -v 1 . ( 72 
)
Then, according to (64), we get

ˆR3 ϕ(v)R + 1 (f 1 , f 2 )(v, r)dv (73) = ˆS2 ˆR3 ˆR3 ˆR3 (r + r 2 ) 2 ϕ(v 1 )f 1 v 1 + εv 2 -εv r 1 + ε(r) , r f 2 v 1 + εv 2 + v r 1 + ε(r) ×h n (v 2 -v 1 ) [-n • v r ] 1 {-n•vr≥0} dndudv 1 dv 2 .
And, by using the involutive character of the transformation (71) and by re-

naming (v 1 , v 2 , v r ) with (v 1 , v 2 , w), we deduce from (73) that ˆR3 ϕ(v)R + 1 (f 1 , f 2 )(v, r)dv = ˆS2 ˆR3 ˆR3 ˆR3 (r + r 2 ) 2 ϕ(v 1 )f 1 (v 1 , r) f 2 (v 2 ) × h n (v 2 -v 1 ) (-n • w) 1 {-n•w≥0} dndwdv 1 dv 2 .
Using the change of variable n → -n and the fact that

h -n (s) = h n (-s), we finally obtain that ˆR3 ϕ(v)R + 1 (f 1 , f 2 )(v, r)dv = ˆS2 ˆR3 ˆR3 ˆR3 (r + r 2 ) 2 ϕ(v 1 )f 1 (v 1 , r) f 2 (v 2 ) ×h n (v 1 -v 2 ) (n • w) 1 {n•w≥0} dndwdv 1 dv 2 .
(74) Thus, by using (66) and (74), we obtain

R 1 (f 1 , f 2 )(v, r) = ˆS2 ˆR3 ˆR3 (r + r 2 ) 2 f 1 (v 1 , r) f 2 (v 2 ) h n (v 1 -v 2 ) (n • w) 1 {n•w≥0} -f 1 (v 1 , r) f 2 (v 2 ) h n (w) [n • (v 1 -v 2 )] 1 {n•(v1-v2)≥0} × dndwdv 2 . ( 75 
)
We finally deduce (67) by using [START_REF] Xu | Verification of a dust transport model against theoretical solutions in multidimensional advection diffusion problems[END_REF]. By permuting the subscripts 1 and 2 in (75) and by taking into account an integration in r, we obtain

R 2 (f 1 , f 2 )(v) = ˆS2 ˆR3 ˆR3 ˆrmax rmin f 1 (v 1 , r) f 2 (v 2 ) h n (v 2 -v 1 ) (-n • w) 1 {-n•w≥0} -f 1 (v 1 , r) f 2 (v 2 ) h n (-w) [n • (v 2 -v 1 )] 1 {n•(v2-v1)≥0} × (r + r 2 ) 2 drdndwdv 1 . ( 76 
)
Using again the change of variable n → -n and the fact that h -n (s) = h n (-s), we deduce from (76) that

R 2 (f 1 , f 2 )(v) = ˆS2 ˆR3 ˆR3 ˆrmax rmin f 1 (v 1 , r) f 2 (v 2 ) h n (v 1 -v 2 ) (n • w) 1 {n•w≥0} -f 1 (v 1 , r) f 2 (v 2 ) h n (w) [n • (v 1 -v 2 )] 1 {n•(v1-v2)≥0} × (r + r 2 ) 2 drdndwdv 1 . ( 77 
)
Expression ( 69) is deduced from (77) by using [START_REF] Xu | Verification of a dust transport model against theoretical solutions in multidimensional advection diffusion problems[END_REF].

Derivation of a Vlasov-Boltzmann model

We now introduce another kinetic model which is devoted to approach Boltzmann type model ( 35) under Hypothesis 2.3 that is to say when the ratio of mass between a molecule and a dust particle is close to zero. The idea is to use the fact that the velocity of a dust particle after a collision with a molecule is very close to its precollisional velocity (see (60)), like in grazing collisions [START_REF] Desvillettes | On asymptotics of the Boltzmann equation when the collisions become grazing[END_REF].

In the context of grazing collisions, a Fokker-Plank operator is derived from the classical Boltzmann operator, thanks to an asymptotic expansion with respect to a small parameter [START_REF] Desvillettes | On asymptotics of the Boltzmann equation when the collisions become grazing[END_REF][START_REF] Alexandre | On the Landau Approximation in Plasma Physics[END_REF][START_REF] Degond | The Fokker-Planck asymptotics of the Boltzmann collision operator in the Coulomb case[END_REF] (related to the angle of collisions). Similarly, we propose to perform an asymptotic expansion of the operator R 1 (f 1 , f 2 ) with respect to the mass ratio ε defined by [START_REF] Bird | Monte Carlo simulation of gas flows[END_REF]. This asymptotic analysis will allow us to simplify (in a sense which will be precised) the Boltzmann type operator R 1 (f 1 , f 2 ) with a Vlasov type operator. In order to do so, we perform a dimensional analysis of Boltzmann type model [START_REF] Paci | Bases for dust mobilization modelling in the light of STARDUST experiments[END_REF] which leads to a dimensionless formulation of [START_REF] Paci | Bases for dust mobilization modelling in the light of STARDUST experiments[END_REF]. Let us underline that Hypothesis 2.4 and 2.5 allow us to easily introduce this dimensionless formulation of (35).

Dimensionless formulation of the dust-molecule kinetic model

We now define the dimensionless variables which will be used to derive the dimensionless formulation of the dust-molecule kinetic model [START_REF] Paci | Bases for dust mobilization modelling in the light of STARDUST experiments[END_REF].

Dimensionless variables

Let us introduce the dimensionless variables t and x

t = t t • , x = x L • ( 78 
)
where t • and L • are characteristic time and length scales which will be chosen in section 5. In order to introduce a unique order of magnitude for the radius r of dust particles, we make this hypothesis:

Hypothesis 4.1. We assume that the size of dust particles are of the same order of magnitude. In other words, we have r min r max .

In the sequel, we denote r • the order of magnitude for the radius of dust particles. We define the dimensionless dust particle radius r with

r = r r • . ( 79 
)
Hypothesis 4.1 allows us to also introduce a unique order of magnitude of the mass of a dust particle -chosen equal to m 1 (r • ) -and a unique order of magnitude of the dust-molecule collision frequencies ν 12 and ν 21 defined by ( 16)(c,d).

Moreover, we introduce the dimensionless velocities v1 and v2 with

v1 = v 1 V • 1 , v2 = v 2 V • 2 (80) 
where V • 1 and V • 2 are velocity scales. For the sake of simplicity, we use the notation

δ := V • 1 V • 2 .
We propose two different velocity scalings:

• In the first scaling, we choose

V • 1 = V 1 := 8kT • πm 1 (r • ) and V • 2 = V 2 := 8kT • πm 2 (81) 
where T • has been introduced in Hypothesis 2.5. Thus, we have

V • 1 = √ ε V • 2 V • 2 , ( 82 
)
where

ε := ε(r • ), (83) 
that is to say

δ = √ ε 1
because of Hypothesis 2.3 for this first scaling. Thanks to Hypothesis 2.5 and 4.1, V 1 and V 2 given by (81) are respectively characteristic thermal velocities of dust particles and of gas molecules. Such velocity scales have been already used for a disparate mass binary gas in Ref. [START_REF] Degond | The asymptotics of collision operators for two species of particule of disparate masses[END_REF][START_REF] Degond | Transport coefficients of plasmas and disparate mass binary gases[END_REF][START_REF] Degond | Comportement hydrodynamique d'un mélange gazeux formé de deux espèces de particules de masses très différentes[END_REF] to study the epochal relaxation phenomenon. [START_REF] Grad | Asymptotic theory of the Boltzmann equation[END_REF] However, on the contrary to Ref. [START_REF] Degond | The asymptotics of collision operators for two species of particule of disparate masses[END_REF][START_REF] Degond | Transport coefficients of plasmas and disparate mass binary gases[END_REF][START_REF] Degond | Comportement hydrodynamique d'un mélange gazeux formé de deux espèces de particules de masses très différentes[END_REF], neither cross sections (because of Hypothesis 2.2) nor densities (because of Hypothesis 2.4) are in our context of the same order of magnitude.

• In the second scaling, we introduce a unique order of magnitude V • for the velocity scales V • 1 and V • 2 that is to say

V • 1 := V • and V • 2 := V • . ( 84 
)
Thus, we have

δ = 1.
We can choose for example V • = V 2 . In fact, the exact choice of V • is not really important to formally derive the Vlasov operator. Nevertheless, the fact that δ = 1 instead of δ = √ ε is important to estimate the error introduced by the Vlasov operator.

At last, we introduce the dimensionless densities f1 and f2 in the phase space

f1 ( t, x, v1 , r) = (V • 1 ) 3 r • n • 1 f 1 (t, x, v, r) and f2 ( t, x, v2 ) = (V • 2 ) 3 n • 2 f 2 (t, x, v 2 ).
(85) By using ( 79) and (80), we deduce from (85) that

n • 1 f1 dv 1 dr = f 1 dv 1 dr and n • 2 f2 dv 2 = f 2 dv 2 .
As a consequence, we have sup

Ω ˆR3 ˆrmax rmin f1 dv 1 dr = O(1)
and inf

Ω ˆR3 f2 dv 2 = O(1)
at the beginning of a LOVA by using Hypothesis 2.4 (see [START_REF] Cercignani | The Boltzmann Equation and its Applications[END_REF]), where rmin = r min /r • , rmax = r max /r • and Ω being deduced from Ω through scaling (78).

Dimensionless kinetic model

By using the dimensionless variables ( t, x, r, v1 , v2 ) defined with (78), ( 79) and (80), and the dimensionless densities f1 and f2 defined with (85), the dimensionless formulation of system ( 35) is given by

       ∂ f1 ∂ t + V • 1 t • L • v1 • ∇ x f1 = t • n • 2 (r • ) 2 V • 2 R1 ( f1 , f2 )( t, x, v1 , r), ∂ f2 ∂ t + V • 2 t • L • v2 • ∇ x f2 = t • n • 1 (r • ) 2 V • 2 R2 ( f1 , f2 ) + t • n • 2 V • 2 r 2 2 Q( f2 , f2 ). (86) Here, Q( f2 , f2 ) is defined by Q( f2 , f2 )( t, x, v) = ˆS2 ˆR3 f2 ( t, x, v * ) f2 ( t, x, v * ) -f2 ( t, x, v) f2 ( t, x, v * ) × |v -v * |dσdv * (87) 
where

       v = v + v * 2 + |v -v * | 2 σ, v * = v + v * 2 - |v -v * | 2 σ.
The dimensionless operator R1 ( f1 , f2 ) deduced from (67) is defined by

R1 ( f1 , f2 )( t, x, v1 , r) (88) = ˆS2 ˆR3 ˆR3 2 β4 π r + ε η 1/3 2 (n • w) [n • (δv 1 -v2 )] 1 {n• w≥0} 1 {n•(δv1-v2)≥0} × f1 ( t, x, v 1 , r) f2 ( t, x, v 2 ) exp -β2 (δv 1 -v2 ) 2 -f1 ( t, x, v1 , r) f2 ( t, x, v2 ) exp -β2 w dnd wdv 2 where v 1 = 1 1 + εr -3 v1 + ε δ r-3 v2 - ε δ r-3 w (89)
is the dimensionless formulation of (68), w being the dimensionless velocity

w = w V • 2
and β being the dimensionless constant

β := V • 2 β = 4T • πT surf • V • 2 V 2
where the thermal velocity 1/β is given by [START_REF] Zhang | Simulation of gas dynamics and radiation in volcanic plumes on Io[END_REF]. In the same way, the dimensionless operator R2 ( f1 , f2 ) deduced from ( 69) and ( 70) is defined by

R2 ( f1 , f2 )( t, x, v2 ) (90) = ˆS2 ˆR3 ˆR3 ˆrmax rmin r + ε η 1/3 2 (n • w) [n • (δv 1 -v2 )] 1 {n• w≥0} 1 {n•(δv1-v2)≥0} × f1 ( t, x, v 1 , r) f2 ( t, x, v 2 ) exp -β2 (δv 1 -v2 ) 2 -f1 ( t, x, v1 , r) f2 ( t, x, v2 ) exp -β2 w2 2 β4 π drdnd wdv 1 with v 2 = 1 1 + εr -3 δ v1 + εr -3 v2 + w . ( 91 
)
Let us note that we have replaced 

Asymptotic expansion of dust-molecule kinetic operator

R 1 (f 1 , f 2 )
To approximate R 1 (f 1 , f 2 ) with a Vlasov type operator, we perform an asymptotic expansion to the dimensionless weak operator R1 ( f1 , f2 ) defined by (86) with respect to the ratio of mass between a gas molecule and a dust particle: Proposition 5. Let ϕ be a test function (ϕ ∈ C 0 c (R 3 ) for example). Then, we have formally

ˆR3 ϕ(v 1 ) R1 ( f1 , f2 )( t, x, v1 , r)dv 1 = ε δ ˆR3 Ῡ( f2 )( t, x, v1 , r) • ∇ϕ(v 1 ) f1 ( t, x, v1 , r)dv 1 + o ε δ ( 92 
)
where Ῡ( f2 )( t, x, r) is given by

Ῡa ( f2 )( t, x, r) = π r ˆR3 f2 ( t, x, v2 ) |v 2 | + √ π 3 β v2 dv 2 (93)
in the case of first scaling (81) (i.e. δ = √ ε), and by

Ῡb ( f2 )( t, x, v1 , r) = π r ˆR3 f2 ( t, x, v2 ) |v 2 -v1 | + √ π 3 β (v 2 -v1 )dv 2 (94)
in the case of second scaling (84) (i.e. δ = 1).

We deduce from Proposition 5: Proposition 6. We have formally

R1 ( f1 , f2 )( t, x, v1 , r) = - √ ε Ῡa ( f2 )( t, x, r) • ∇ v1 [ f1 ( t, x, v1 , r)] + o √ ε (95)
in the case of first scaling (81), and

R1 ( f1 , f2 )( t, x, v1 , r) = -ε ∇ v1 • [ Ῡb ( f2 )( t, x, v1 , r) f1 ( t, x, v1 , r)] + o (ε) (96)
in the case of second scaling (84), Ῡa ( f2 ) and Ῡb ( f2 ) being respectively given by (93) and by (94).

Proof. We easily deduce from the weak formulation (56) of R 1 (f 1 , f 2 ) and from the dimensionless formulation (88) of R 1 (f 1 , f 2 ) that the dimensionless weak formulation of R1 ( f1 , f2 ) is given by

ˆR3 R1 ( f1 , f2 )( t, x, v1 , r)ϕ(v 1 )dv 1 = 2 β4 π r + ε η 1/3 2 ˆS2 ˆR3 ˆR3 ˆR3 [ϕ(v 1 ) -ϕ(v 1 )] f1 ( t, x, v1 , r) f2 ( t, x, v2 ) × exp -β2 w2 (n • w) [n • (δv 1 -v2 )] 1 {n• w≥0} 1 {n•(δv1-v2)≥0} dnd wdv 1 dv 2
where v 1 given by ( 89) is the dimensionless formulation of (68). Since

v 1 -v1 = 1 1 + εr -3 -εr -3 v1 + ε δ r-3 v2 - ε δ r-3 w = O( √ ε) if δ = √ ε, = O(ε) if δ = 1,
we can make an asymptotic expansion of ϕ(v 1 ) -ϕ(v 1 ) at the first order of ε δ , that is to say

ϕ(v 1 ) -ϕ(v 1 ) = (v 1 -v1 ) • ∇ϕ (v 1 ) + O |v 1 -v1 | 2 = ε δ r-3 (v 2 -w -δv 1 ) • ∇ϕ (v 1 ) + O ε 2 δ 2 . ( 97 
)
Thus, we obtain at least formally

ˆR3 R1 ( f1 , f2 )( t, x, v1 , r)ϕ(v 1 )dv 1 = ε δ • 2 β4 πr ˆR3 ˆR3 f1 ( t, x, v1 , r) f2 ( t, x, v2 )∇ϕ (v 1 ) • [I(v 1 , v2 ) -J(v 1 , v2 )] dv 1 dv 2 + o ε δ
where

I(v 1 , v2 ) = (v 2 -δv 1 ) ˆS2 [n • (δv 1 -v2 )] 1 {n•(δv1-v2)≥0} × ˆR3 exp -β2 w2 (n • w) 1 {n• w≥0} d w dn,
and

J(v 1 , v2 ) = ˆS2 [n • (δv 1 -v2 )] 1 {n•(δv1-v2)≥0} × ˆR3 exp -β2 w2 (n • w) w1 {n• w≥0} d w dn.
Moreover, by using (45), we obtain ∀n ∈ S 2 :

ˆR3 exp -β2 w2 (n • w) 1 {n• w≥0} d w = π 2 β4 . ( 98 
)
We have also [START_REF] Charles | Modélisation mathématiques et étude numérique d'un aérosol dans un gaz raréfié. Application à la simulation du transport de particules de poussière en cas d'accident de pert de vide dans ITER[END_REF]:

∀n ∈ S 2 : ˆR3 exp -β2 w2 (n • w) w1 {n• w≥0} d w = π 3/2 4 β5 n (99) and ∀k ∈ R 3 : ˆS2 n(n • k)1 {n•k≥0} dn = 2π 3 k. ( 100 
)
Then, thanks to (65), ( 98), ( 99) and (100), we obtain

I(v 1 , v2 ) = π 2 2 β4 |v 2 -δv 1 | (v 2 -δv 1 )
and

J(v 1 , v2 ) = π 5/2 6 β5 (δv 1 -v2 ) . Finally, we obtain for δ = √ ε ˆR3 R1 ( f1 , f2 )( t, x, v1 , r)ϕ(v 1 )dv 1 = π r √ ε ¨R3 ×R 3 f1 ( t, x, v1 , r) f2 ( t, x, v2 )∇ϕ (v 1 ) • v2 |v 2 | + √ π 3 β dv 2 dv 1 + o( √ ε),
and for δ = 1 ˆR3 R1 ( f1 , f2 )( t, x, v1 , r)ϕ(v 1 )dv 1 = π r ε ¨R3 ×R 3 f1 ( t, x, v1 , r) f2 ( t, x, v2 )∇ϕ (v 1 ) • (v 2 -v1 ) |v 2 -v1 | + √ π 3 β dv 2 dv 1 + o(ε),
which gives (92), ( 93) and (94).

The Vlasov-Boltzmann model

By using Proposition 6, we are able to approximate Boltzmann type system [START_REF] Paci | Bases for dust mobilization modelling in the light of STARDUST experiments[END_REF] with a Vlasov-Boltzmann type system.

The dimensionless Vlasov-Boltzmann model

We deduce from Proposition 6 that dimensionless Boltzmann type model ( 86) is such that

         ∂ f1 ∂ t + V • 1 t • L • v1 • ∇ x f1 + ε δ t • n • 2 (r • ) 2 V • 2 ∇ v1 • [ Ῡ( f2 ) f1 ] = o ε δ , ∂ f2 ∂ t + V • 2 t • L • v2 • ∇ x f2 = t • n • 1 (r • ) 2 V • 2 R2 ( f1 , f2 ) + t • n • 2 V • 2 r 2 2 Q( f2 , f2 ) (101) 
where R2 ( f1 , f2 ) and Q( f2 , f2 ) are respectively given by (87) and (90), where δ ∈ {1, √ ε}, and where Ῡ( f2 ) is given by (93) for the first scaling (81) (i.e. δ = √ ε) and by (94) for the second scaling (84) (i.e. δ = 1).

The Vlasov-Boltzmann model

We deduce from Proposition 6 that:

Corollary 1. Let R 1 (f 1 , f 2 )
be the Boltzmann type operator (67). Then, we have formally

R 1 (f 1 , f 2 )(t, x, v 1 , r) = -Υ a (f 2 )(t, x, r) • ∇ v1 [f 1 (t, x, v 1 , r)] + o √ ε (102)
in the case of first scaling (81), and

R 1 (f 1 , f 2 )(t, x, v 1 , r) = -∇ v1 • [Υ b (f 2 )(t, x, v 1 , r)f 1 (t, x, v 1 , r)] + o (ε) (103)
in the case of second scaling (84), Υ a (f 2 ) and Υ b (f 2 ) being given by

         Υ a (f 2 )(t, x, r) = πε (r • ) 3 r ˆR3 f 2 (t, x, v 2 ) |v 2 | + √ π 3β v 2 dv 2 , (a) Υ b (f 2 )(t, x, v 1 , r) = πε (r • ) 3 r ˆR3 f 2 (t, x, v 2 ) |v 2 -v 1 | + √ π 3β (v 2 -v 1 )dv 2 . (b) (104) 
Operators ( 102) and ( 103) are Vlasov type operators. As a consequence, the Vlasov-Boltzmann model

           ∂f 1 ∂t + v • ∇ x f 1 + Υ a (f 2 )(t, x, r) • ∇ v f 1 (t, x, v, r) = 0, (a) ∂f 2 ∂t + v • ∇ x f 2 = R 2 (f 1 , f 2 ) + Q(f 2 , f 2 ), (b) (t, x, v, r) ∈ R + × Ω × R 3 × [r min , r max ] (105) 
where Υ a (f 2 ) is given by (104)(a) equals Boltzmann type model [START_REF] Paci | Bases for dust mobilization modelling in the light of STARDUST experiments[END_REF] to error o ( √ ε). And, the Vlasov-Boltzmann model

           ∂f 1 ∂t + v • ∇ x f 1 + ∇ v • [Υ b (f 2 )(t, x, v, r)f 1 (t, x, v, r)] = 0, (a) ∂f 2 ∂t + v • ∇ x f 2 = R 2 (f 1 , f 2 ) + Q(f 2 , f 2 ), (b) (t, x, v, r) ∈ R + × Ω × R 3 × [r min , r max ] (106) 
where Υ b (f 2 ) is given by (104)(b) equals Boltzmann type model [START_REF] Paci | Bases for dust mobilization modelling in the light of STARDUST experiments[END_REF] to error o (ε). System (106) is certainly a best approximation of (35) than system (105). Nevertheless, it is more expensive to solve system (106) than system (105) because Υ b (f 2 ) is a function of v 1 which is not the case of Υ a (f 2 ). We will justify these assertions in Section 6. At last, let us underline that m 1 Υ a (f 2 ) and m 1 Υ b (f 2 ) define two drag force models for the dust particles which are also valid when the gas molecules are not at thermodynamical equilibrium in the sense that they depend on f 2 through (104)(a) and (104)(b). Moreover, these drag forces do not depend on empirical coefficients thanks to (104), which is not the case for other drag forces especially adapted in a rarefied atmosphere as in Ref. [START_REF] Benson | Kinetic model for simulation of aerosol droplets in high-temperature environments[END_REF].

Study of the Vlasov-Boltzmann model at different time and length scales

To estimate the appropriate characteristic time scale t • and the appropriate characteristic length scale L • in the case of the beginning of a LOVA, we propose in this section a brief qualitative analysis of system (105) obtained, under Hypothesis 4.1, with first velocity scaling (81). The dimensionless formulation of this Vlasov-Boltzmann system is given by (see (101

) with δ = √ ε)        ∂ f1 ∂ t + V 1 t • L • v1 • ∇ x f1 + √ ε t • n • 2 (r • ) 2 V 2 Ῡa ( f2 )( t, x, r) • ∇ v1 f1 = 0, ∂ f2 ∂ t + V 2 t • L • v2 • ∇ x f2 = t • V 2 n • 1 (r • ) 2 R2 ( f1 , f2 ) + n • 2 r 2 2 Q( f2 , f2 ) (107 
) where Ῡa ( f2 )( t, x, r) is given by (93). Let us underline that we could also lead this qualitative analysis with the second velocity scaling (84) which gives in particular, instead of Ῡa ( f2 )( t, x, r), the more precise Vlasov operator Ῡb ( f2 )( t, x, v1 , r) defined by (94). Nevertheless, this would not give more qualitative informations about t • and L • . To simplify the qualitative analysis, we suppose: Hypothesis 5.1. We assume that the parameters α • , r • and r 2 are such that

1 4 √ 2 α • r • r 2 2 1. ( 108 
)
Hypothesis 5.2. We assume that the parameters ε, r • and r 2 are such that

√ ε 4 √ 2 r • r 2 2 1, ( 109 
)
that is to say

1 4 √ 2 η r • r 2 1/2 1, ( 110 
)
where η is given by [START_REF] Boltzmann | Leçons sur la théorie des gaz[END_REF].

Relations ( 108) and ( 109) are verified for the orders of magnitude introduced in Table 2.1.4.

Definition of the characteristic time scale t •

Under Hypothesis 2.1-4.1 (see also section 2.2.1), we can introduce the following three characteristic time scales

           t 22 = 4 √ 2π r 2 2 n • 2 V 2 -1 , (a) t 12 = π (r • ) 2 n • 2 V 2 -1 , (b) t 21 = π (r • ) 2 n • 1 V 2 -1 (c) (111) 
relative to the dust-molecule mixture. By using [START_REF] Degond | The Fokker-Planck asymptotics of the Boltzmann collision operator in the Coulomb case[END_REF] and by noting that

V 2 = V rel 22 / √ 2 and that V 2 V rel 12 = V rel 21
, we obtain that these three characteristic time scales are approximately equal to the mean collision times introduced in ( 16)(b,c,d) for the radius r = r • . We can notice that we have

t 12 = α • t 21 t 21 (112) 
(see also [START_REF] Dellacherie | Coupling of the Wang Chang-Uhlenbeck equations with the multispecies Euler system[END_REF] by also using (112). This allows us to considere only two characteristic time scales in our qualitative analysis: the characteristic time scale t 22 relative to collisions between molecules, and the characteristic time scale t 12 relative to collisions between dust particles and gas molecules (from the point of view of dust particles) which is the smaller of these two time scales.

Definition of the characteristic length scale L •

We define the characteristic length scale L • from the time scale t • ∈ {t 12 , t 22 } as the mean distance covered by one of the two species during the time t • . Then, for each time scale t • , we can considere two different length scales L 1 and L 2 , which correspond to the mean distance covered by dust particles and molecules respectively :

when we choose t • = t 12 :      L 1 := t 12 V 1 =⇒ L 1 = λ 12 , (a) L 2 := t 12 V 2 =⇒ L 2 = λ 12 √ ε (b) (114) 
and when we choose t • = t 22 :

L 1 := t 22 V 1 =⇒ L 1 = √ ε λ 22 , (a) L 2 := t 22 V 2 =⇒ L 2 = λ 22 (b) (115) where λ ij = V i t ij
is the mean free path of the collision of a particle of type i with a particle of type j from the point of view of the particle of type i (see also section 2.2.2). We recall that under Hypothesis 4.1 and 5.1, we have (see [START_REF] Gidaspow | Hydrodynamics of fluidization and heat transfer: supercomputer modelling[END_REF])

λ 22 λ 21 ( 116 
)
which allows us to only consider the two characteristic length scales λ 12 and λ 22 .

Nevertheless, for the sake of completness, we also study the two characteristic length scales λ 12 / √ ε and √ ε λ 22 since these length scales are deduced from the choice of the velocity scale 

V • ∈ { V 1 , V 2 } in (
λ 12 λ 22 √ ε α • and λ 12 / √ ε λ 22 √ ε 4 √ 2 √ ε r 2 r • 2 1.
As a consequence, the four characteristic length scales defined in ( 114) and ( 115) are such that

λ 12 λ 12 √ ε √ ε λ 22 λ 22 (117) 
under Hypothesis 4.1-5.2.

The Vlasov-Boltzmann model when t

• = t 12 and L • = λ 12
We considere the time and space scales defined by (111)(b) and (114)(a). These scales are the smallest ones that we can define in the dust-molecule mixture (see ( 113) and ( 117)). In that case, system (107) is given by

         ∂ f1 ∂ t + v1 • ∇ x f1 + √ ε π Ῡa ( f2 ) • ∇ v1 f1 = 0, (a) ∂ f2 ∂ t + 1 √ ε v2 • ∇ x f2 = α • π R2 ( f1 , f2 ) + 1 π r 2 r • 2 Q( f2 , f2 ). (b) ( 118 
)
Thanks to Hypothesis 2.2-2.4, we notice that system (118) is close to

         ∂ f1 ∂ t + v1 • ∇ x f1 = 0, (a) ∂ f2 ∂ t + 1 √ ε v2 • ∇ x f2 = 0. (b) (119) 
As a consequence, the choice (t 

The Vlasov-Boltzmann model when t

• = t 12 and L • = λ 12 / √ ε
We considere the time and space scales defined by (111)(b) and (114)(b). In that case, system (107) is given by

       ∂ f1 ∂ t + √ ε v1 • ∇ x f1 + √ ε π Ῡa ( f2 ) • ∇ v1 f1 = 0, (a) ∂ f2 ∂ t + v2 • ∇ x f2 = α • π R2 ( f1 , f2 ) + 1 π r 2 r • 2 Q( f2 , f2 ). (b) (120) 
Thanks to Hypothesis 2.2-2.4, we notice that system (120) is close to

       ∂ f1 ∂ t = 0, (a) ∂ f2 ∂ t + v2 • ∇ x f2 = 0. (b) (121)
Thus, the choice (t

• , L • ) = (t 12 , λ 12 / √ ε)
is also unsuitable for the study of the mixture.

The Vlasov-Boltzmann model when t

• = t 22 and L • = √ ε λ 22
We considere the time and space scales defined by (111)(a) and (115)(a). In that case, system (107) is given by

           ∂ f1 ∂ t + v1 • ∇ x f1 + √ ε 4π √ 2 r • r 2 2 Ῡa ( f2 ) • ∇ v1 f1 = 0, (a) √ ε ∂ f2 ∂ t + v2 • ∇ x f2 = √ ε 4π √ 2 α • r • r 2 2 R2 ( f1 , f2 ) + √ ε 4π √ 2 Q( f2 , f2 ). (b) (122) Moreover, we have √ ε 4 √ 2 r • r 2 2 1
under Hypothesis 5.2 (cf. ( 109)). Thus, we obtain that system (122) is close to

       ∂ f1 ∂ t + v1 • ∇ x f1 + c 1 π Ῡa ( f2 ) • ∇ v1 f1 = 0, (a) √ ε ∂ f2 ∂ t + v2 • ∇ x f2 = 0 (b) (123)
where c 1 is a constant of order one. Thus, the choice (t

• , L • ) = (t 22 , √ ε λ 22
) is also unsuitable for the study of the dust-molecule mixture.

The Vlasov-Boltzmann model when t

• = t 22 and L • = λ 22
We considere the time and space scales defined by (111)(a) and (115)(b). In that case, system (107) is given by

         ∂ f1 ∂ t + √ ε v1 • ∇ x f1 + √ ε 4π √ 2 r • r 2 2 Ῡa ( f2 ) • ∇ v1 f1 = 0, (a) ∂ f2 ∂ t + v2 • ∇ x f2 = 1 4π √ 2 α • • r 2 2 R2 ( f1 , f2 ) + 1 4π √ 2 Q( f2 , f2 ). (b)
(124) Thus, by taking into account ( 108) and ( 109), we can rewrite (124) with

         ∂ f1 ∂ t + √ ε v1 • ∇ x f1 + c 1 π Ῡa ( f2 ) • ∇ v1 f1 = 0, (a) ∂ f2 ∂ t + v2 • ∇ x f2 = c 2 π R2 ( f1 , f2 ) + 1 4π √ 2 Q( f2 , f2 ) (b) (125)
where, under Hypothesis 5.1 and 5.2, c 1 and c 2 are two constants of order one (cf. ( 108) and ( 109)). Thus, the choice (t • , L • ) = (t 22 , λ 22 ) seems to be appropriate for the theoritical and numerical study of the dust-molecule mixture. Moreover, the factor √ ε in front of the term v • ∇ x f1 , related to the spatial variation of the transport of dust particles, suggests that the displacement of dust particles is weak compared to the displacement of gas molecules. At last, we refer to Ref. [START_REF] Charles | Small mass ratio limit of Boltzmann equations in the context of the study of evolution of dust particles in a rarefied atmosphere[END_REF] for a theorical study of the derivation of the spatially homogeneous Vlasov-Boltzmann model with operators R 1 (f 1 , f 2 ) and R 2 (f 1 , f 2 ) for which collisions between dust particles and gas molecules are described by [START_REF] Perthame | Introduction to the theory of random particle methods for Boltzmann equation[END_REF] (and, thus, are elastic) rather than by Hypothesis 3.1. More precisely, it is proved that the solution of the spatially homogeneous system (86) with t • = t 22 converges weakly to the solution of a spatially homogeneous system close to system (125) when ε → 0 for a fixed ratio

√ ε 4π √ 2 r • r2 2 .
Remark 1. The constant c 2 can be linked to λ 22 and λ 21 defined by (24)(b) and (24)(d) respectively and under Hypothesis 4.1 :

c 2 = λ 22 λ 21 . ( 126 
)
Thus, we recover the fact that C 2 = O(1) under hypothesis 4.1-5.1 by using (116).

Numerical results

We now present homogeneous and 3D inhomogeneous numerical simulations of Boltzmann-Boltzmann system (35), of Vlasov-Boltzmann system (105) and of the more accurate Vlasov-Boltzmann system (106). These numerical results validate and justify (from a computational cost point of view) the derivation of asymptotic models (105) and (106). For the sake of simplicity, we considere in this section the situation of dust particles with an unique radius: Hypothesis 6.1. All particules have the same radius r 1 .

We still denote ε the ratio of mass ε(r 1 ) given by [START_REF] Bird | Monte Carlo simulation of gas flows[END_REF].

Let us note that in order to assess the efficiency of the numerical models from a computational cost point of view, or in order to simplify the visualization of the numerical results, we do not always use exactly the orders of magnitude of n • 1 , n • 2 and r min given by Table (2.1.4) (more precisely, there is sometimes a factor 10 between the order of magnitudes used in section 2 and those used in this section). Nevertheless, Hypothesis 2.2-2.4 are always satisfied.

The Boltzmann-Boltzmann model

We now describe the numerical method used to discretize Boltzmann-Boltzmann system [START_REF] Paci | Bases for dust mobilization modelling in the light of STARDUST experiments[END_REF], and we propose a 3D numerical simulation of a LOVA scenario in a cubic box. Then, we underline the limitation of Boltzmann-Bolzmann system (35) because of the computational cost of simulations. Under Hypothesis 6.1, we can remove the dependency in r of f 1 . Then, weak formulations (56) and (58

) of respective operators R 1 (f 1 , f 2 ) and R 2 (f 1 , f 2 ) are now given by ˆR3 ϕ(v)R 1 (f 1 , f 2 )(t, x, v)dv = ˆS2 ˆR3 ˆR3 ˆR3 [ϕ(v 1 ) -ϕ(v 1 )] f 1 (t, x, v 1 )f 2 (t, x, v 2 ) ×ς(v 1 -v 2 , n)h n (w)dndwdv 1 dv 2 (127) and ˆR3 ϕ(v)R 2 (f 1 , f 2 )(t, x, v)dv = ˆS2 ˆR3 ˆR3 ˆR3 [ϕ(v 2 ) -ϕ(v 2 )] f 1 (t, x, v 1 )f 2 (t, x, v 2 ) ×ς(v 1 -v 2 , n)h n (w)dndwdv 1 dv 2 (128) where ς(v, n) = (r 1 + r 2 ) 2 [n • v] 1 {n•v≥0} . ( 129 
)
Several numerical methods are used for the simulation of the Boltzmann equation (we refer to Ref. [START_REF] Pareschi | An introduction to the numerical analysis of the Boltzmann equation[END_REF] for a review of these methods). One of these methods is the probabilistic Monte-Carlo method [START_REF] Pareschi | An introduction to Monte Carlo methods for the Boltzmann equation[END_REF] whose advantage is the lower cost of computation compared to the cost of computation of a deterministic method.

In the sequel, we adapt a classical Monte-Carlo method -namely, the Direct Simulation Monte-Carlo method i.e. DSMC method which is also known as the Bird's method -for the simulation of Boltzmann-Boltzmann system (35).

Monte-Carlo method

The Monte-Carlo method that we will present is a particle method. Thus, this numerical method is based on the principle which consists in approximating the distribution f i (t, x, v) with

f i (t, x, v) Ni k=1 ω k i δ(x -x k i (t))δ(v -v k i (t)) (130) 
for i ∈ {1, 2}. From an heuristic point of view, (130) means that distribution f 1 (respectively f 2 ) in dust particles (respectively gas molecules) is approximated by a number N 1 (respectively N 2 ) of macro-dust (respectively macromolecule) characterized by positions (x k 1 ) k∈{1,...,N1} , velocities (v k 1 ) k∈{1,...,N1} and weight factors (ω k 1 ) k∈{1,...,N1} (respectively (x k 2 ) k∈{1,...,N2} , (v k 2 ) k∈{1,...,N2} and (ω k 2 ) k∈{1,...,N2} ). We take the same weight factor ω i (i ∈ {1, 2}) for every macro-dust (i = 1) and for every macro-molecule (i = 2), that is to say ω k i = ω i for every (i, k) ∈ {1, 2} × {1 . . . N i }. We solve [START_REF] Paci | Bases for dust mobilization modelling in the light of STARDUST experiments[END_REF] with a splitting technique adapted to a type equation. [START_REF] Desvillettes | On the convergence of splitting algorithms for some kinetic equations[END_REF][START_REF] Desvillettes | About the splitting algorithm for Boltzmann and B.G.K. equations[END_REF] This technique consists, firstly, in solving the transport equation

     ∂f 1 ∂t + v • ∇ x f 1 = 0, (a) ∂f 2 ∂t + v • ∇ x f 2 = 0, (b) (131) 
secondly, in solving the spacially homogeneous equation

∂f 2 ∂t = Q(f 2 , f 2 ) (132)
and, thirdly, in solving the spacially homogeneous equations

     ∂f 1 ∂t = R 1 (f 1 , f 2 ), (a) ∂f 2 ∂t = R 2 (f 1 , f 2 ). (b) (133) 
Equations ( 131) are solved like in deterministic particle methods, that is to say particles are transported along characteristic lines and positions x k i are modified. Equations ( 132) and (133) are solved locally in each spacial mesh since collision operators have an effect only on velocities of particles and not on their positions. In each mesh c of volume V c , f 1 and f 2 are approched by

f i (t, v) ω i V c Nic k=1 δ(v -v k i (t)) (134) 
where N 1c (respectively N 2c ) is the number of macro-dust (respectively macromolecule) in the mesh c. Moreover, we can define the local density of each specie in the mesh c of volum V c by

n ic = N ic ω i V c ( 135 
)
for i ∈ {1, 2}. The resolution of equations ( 132) and (133) during a time step ∆t consists in determining the new velocities (v k

1 (t + ∆t)) k∈{1,••• ,N1} and (v k 2 (t + ∆t)) k∈{1,••• ,N2}
. The numerical resolution of equation ( 132) is made with the Bird's method with no time-counter [START_REF] Bird | Monte Carlo simulation of gas flows[END_REF][START_REF] Bird | Direct simulation and the Boltzmann equation[END_REF] ((132) is a classical homogeneous Boltzmann equation). Nevertheless, we cannot use the Bird's method to solve equations (133) because α

• := n • 1 /n • 2 
1 (see Hypothesis 2.4). Indeed, if we considere a macro-dust of velocity v 1 and a macro-molecule of velocity v 2 , the probability that the first one collides the second one during the time ∆t is given by

p 12 (v 1 , v 2 ) = ω 2 V c ∆t π(r 1 + r 2 ) 2 |v 1 -v 2 |
whereas the probability that the second one collides the first one during the time ∆t is given by

p 21 (v 1 , v 2 ) = ω 1 V c ∆t π(r 1 + r 2 ) 2 |v 1 -v 2 |.
Then, the use of the Bird's method -which is characterized by the fact that

p 12 (v 1 , v 2 ) = p 21 (v 1 , v 2
) (the Bird's method is a symetrical method [START_REF] Lapeyre | Méthodes de Monte-Carlo pour les équations de transport et de diffusion[END_REF]) -imposes to take the same weight factor ω 1 and ω 2 which implies that

N 1c N 2c = n 1c n 2c
by using (135). As a consequence, the estimate α • 1 implies that N 1c N 2c and then we can either choose a reasonable number N 2c of macro-molecules with respect to the CPU time which implies a low number of macro-dust N 1c and then a poor accuracy, or choose a reasonable number of macro-dust N 1c with respect to accuracy and end up to a large number of macro-molecules N 2c which implies a huge CPU time.

Thus, if we want to have O(N 1c ) = O(N 2c ), we have to use a non-symetrical method. Here, we adapt the Nanbu's method for which equations (133)(a) and (133)(b) are solved separatly. The Nanbu's algorithm for the simulation of R 1 (f 1 , f 2 ) consists in two steps:

First step: Selection of pairs of collision. Instead of computing the probability of collision p 12 (v 1 , v 2 ) for every N 1c N 2c possible pairs composed of a macro-dust of velocity v 1 and of a macro-molecule of velocity v 2 , we use the fictive particle method. It consists in selecting

N 1c N 2c ω 2 V c ∆t π(r 1 + r 2 ) 2 |v rel | max (136)
pairs composed of a macro-dust and of a macro-molecule with a uniform law on {1, . . . , N 1c } × {1, . . . , N 2c }. In (136), |v rel | max is an upper bound of the modulus of the relative velocity between macro-dusts and macro-molecules. For each selected pair, we determine if the collision occurs with the probability

p f (v 1 , v 2 ) = |v 1 -v 2 | |v rel | max
where v 1 and v 2 are respectively the velocity of the macro-dust and of the macromolecule. We select for that a real p ∈ [0, 1] with a uniform law ; if p ≤ p f then the velocity v 1 of the macro-dust is modified but the velocity v 2 of the macromolecule remains the same ; if p > p f the velocities v 1 and v 2 remain the same.

Second step: Determination of the post-collisional velocity. The post-collisional velocity v 1 of macro-dust is determined following the diffuse reflexion mechanism described in section 3.1: see Hypothesis 3.1. More precisely, for each collision between a macro-dust of velocity v 1 and a macro-molecule of velocity v 2 , firstly, we have to compute n randomly in the half sphere delimited by n • (v 1 -v 2 ) ≥ 0. Secondly, a vector w is selected with the law h n given by [START_REF] Xu | Verification of a dust transport model against theoretical solutions in multidimensional advection diffusion problems[END_REF]. Finally, the post-collisional velocity v 1 is given by

v 1 = 1 1 + ε (v 1 + εv 2 -εw). ( 137 
)
We refere to Ref. [START_REF] Charles | Modélisation mathématiques et étude numérique d'un aérosol dans un gaz raréfié. Application à la simulation du transport de particules de poussière en cas d'accident de pert de vide dans ITER[END_REF] for further details.

The algorithm for the simulation of the operator R 2 (f 1 , f 2 ) is identical (we just have to permut the subscripts 1 and 2, and to replace ε with 1/ε in (137)). The rigorous justification of this Nanbu's method for the resolution of system (133) with operators ( 127) and ( 128) should be possible like in Ref. [START_REF] Perthame | Introduction to the theory of random particle methods for Boltzmann equation[END_REF]; this could be the subject of a forthcoming work. Moreover, the validity of this method has been studied in Ref. [START_REF] Charles | Kinetic modelling and numerical simulations using particle methods for the transport of dust in a rarefied gas[END_REF] for function ς(v, n) in operators ( 127) and (128) given by ς(v, n) = C (where C is a positive constant) instead of (129), knowing that in this particular case, it is possible to establish explicit formulae for the evolution of macroscopic velocities.

A 3D simulation in a cubic box

We present in this subsection an example of simulation of system [START_REF] Paci | Bases for dust mobilization modelling in the light of STARDUST experiments[END_REF] in a cubic geometry in a situation of a LOVA during a time T . Initially, dust particles are lying on a thin layer of width a in the bottom of the box with the uniform density n 1 and there are no gas molecules inside the box. Then, a flow of molecules enters into the box through a square hole following a maxwellian distribution with a density n 2 , a temperature T • and a macroscopic velocity V m in the normal direction of the hole. The boundary conditions are diffuse reflexion except on the hole (for which the boundary condition is an emissive condition) and on the upper side of the box (where the boundary condition is an absorption condition).

Remark 2. This last boundary condition enables to model a larger vacuum vessel than the box itself : the simulation focus on the specific part of the vessel where occurs a breach in the wall.

We refere to Ref. [START_REF] Roblin | Documentation de référence du code DSMC[END_REF] for the management of the boundary conditions. Dust particles are tungsten and the gas is composed of nitrogen molecules. Geometrical parameters are given in Table 6 The final time T of the simulation has been obtained after a CPU time of simulation of 24 × 3600 s. One can observe on Figure 2 that macro-dusts (represented by green spheres) are moved by the air ingress (some of the macromolecules are represented by red spheres).

T • T surf V m (m) (m) (m -3 ) (m -3 ) (K) (K) (m•s -1 )

Limitation of the Boltzmann-Boltzmann model

The time of computation of Boltzmann-Boltzmann system (35) depends mainly on the number of collisions computed for the simulation of collision operators

R 1 (f 1 , f 2 ), R 2 (f 1 , f 2 ) and Q(f 2 , f 2 ) at each time step. The average number of collisions computed for the simulation of R 1 (f 1 , f 2 ), R 2 (f 1 , f 2 ) and Q(f 2 , f 2 ) during a time τ in a mesh c is given by                  N R1 (τ ) = N 1c N 2c ω 2 V c πr 2 1 V rel 12 τ, (a) N R2 (τ ) = N 1c N 2c ω 1 V c πr 2 1 V rel 21 τ, (b) N Q (τ ) = 1 2 N 2 2c ω 2 V c 4πr 2 2 V rel 22 τ. (c) (138) 
Since we have

ω i = n ic V c N ic (see (135)), V 2 = V rel 22 √ 2 and V 2 V rel 12 = V rel

21

(see section 5.1), we get

N R1 (τ ) N R2 (τ ) = N 1c N 2c • n 2c n 1c and N R1 (τ ) N Q (τ ) 1 2 √ 2 • N 1c N 2c • r 1 r 2 2 .
If we choose N 1c and N 2c such that N 1c N 2c , thanks to Hypothesis 2.2 and 2.4, we obtain

N R1 (τ ) N R2 (τ )
and

N R1 (τ ) N Q (τ ).
This brings into light that the simulation of the operator R 1 (f 1 , f 2 ) is much costly than the other ones. Let us consider for example the simulation of equations (132) and ( 133) in an unique cell c with the physical parameters of 

T • T surf (m) (m) (m -3 ) (m -3 ) (K) (K)
10 -6 2 • 10 -10 10 14 10 21 300 300 6.1.3. Under these conditions and if we choose N 1c N 2c 10 3 , the average numbers of collision during, for example, the time τ = 10 -3 s are

N R1 (τ ) 3 • 10 12 , N R2 (τ ) 3 • 10 5 , N Q (τ ) 4 • 10 5 .
We estimate that the time of computation of this example on a single-chip computer is of about 4, 5 • 10 6 s that is to say 52 days. We conclude that the CPU time of the simulation of operator R 1 (f 1 , f 2 ) could be extremely costly when the radius r 1 of dust particles becomes too large, even with massively parallel computation.

The limitation of Boltzmann-Boltzmann system (35) can also be seen from the point of view of the time step ∆t. Indeed, it is possible to establish (see Ref. [START_REF] Charles | Modélisation mathématiques et étude numérique d'un aérosol dans un gaz raréfié. Application à la simulation du transport de particules de poussière en cas d'accident de pert de vide dans ITER[END_REF] for further details) that the Nanbu's method requires the condition on the time step ∆t ≤ min (t And, with the choice ∆x = 10 -3 m which is, for physical parameters of Table 6.1.3, the order of magnitude of the mean free path λ 22 given by ( 24)(b) (since Hypothesis 5.1 is satisfied with the choice of parameters of Table 6 which is clearly too restrictive.

The Vlasov-Boltzmann model

We are now interested in the numerical method used to discretize the Vlasov-Boltzmann model (105) and the more accurate Vlasov-Boltzmann model (106) which, under Hypothesis 6.1, are respectively given by

     ∂f 1 ∂t + v • ∇ x f 1 + Υ a (f 2 ) • ∇ v (f 1 ) = 0, (a) ∂f 2 ∂t + v • ∇ x f 2 = R 2 (f 1 , f 2 ) + Q(f 2 , f 2 ) (b) (143) with Υ a (f 2 )(t, x) = π ε r 2 1 ˆR3 f 2 (t, x, v 2 ) |v 2 | + √ π 3β v 2 dv 2 (144) 
and by

     ∂f 1 ∂t + v • ∇ x f 1 + ∇ v • [Υ b (f 2 )f 1 ] = 0, (a) ∂f 2 ∂t + v • ∇ x f 2 = R 2 (f 1 , f 2 ) + Q(f 2 , f 2 ) (b) (145) with Υ b (f 2 )(t, x, v 1 ) = π ε r 2 1 ˆR3 f 2 (t, x, v 2 ) |v 2 -v 1 | + √ π 3β (v 2 -v 1 )dv 2 (146) (we recall that β := m 2 2k B T surf
, see [START_REF] Zhang | Simulation of gas dynamics and radiation in volcanic plumes on Io[END_REF], T surf being the surface temperature of dust particles supposed to be constant for the sake of simplicity). We propose in section 6.2.2 spatially homogeneous simulations to validate Vlasov-Boltzmann models (143) and (145). And, we describe in section 6.2.3 a 3D numerical simulation obtained with Vlasov-Boltzmann system (145). This 3D simulation describes a LOVA type accident in a torus domain whose atmosphere is initially rarefied. We underline that this 3D test-case would be very expensive from a computational cost point of view if it was studied with the Boltzmann-Boltzmann system (35) instead of Vlasov-Boltzmann system (143) or (145).

PIC method coupled to Monte-Carlo method

Vlasov-Boltzmann system (143) (or (145)) is solved thanks to the coupling of a Particle-In-Cell (PIC) method for (143)(a) (or (145)(a)) and the Monte-Carlo method presented in section 6.1.1 for (143)(b) (or (145)(b)). Thus, the distribution in dust particles f 1 is still approximeted with

f 1 (t, x, v) ω 1 N1 k=1 δ(x -x k 1 (t))δ(v -v k 1 (t)).
Here, position x k 1 and velocity v k 1 of the macro-dusts are solutions of

       dx k 1 dt = v k 1 , (a) dv k 1 dt = Υ(f 2 )(t, x k 1 , v k 1 ) (b) (147) 
where Υ(f 2 ) is given by ( 144) or (146). The term m 1 Υ(f 2 ) models a drag force applied to a dust particle induced by collisions with gas molecules. This drag force -which is not deduced from experimental laws but from the asymptotic expansion proposed in section 4 -is also valid when the gas molecules are not at thermodynamical equilibrium. The term Υ(f 2 )(t, x k 1 , v k 1 ) is approched at each time t n thanks to the local approximation of the density f 2 in each mesh c

f 2 (t, x, v) ω 2 V c N2c j=1 δ(v -v j 2 (t))1 {x∈c}. (148) 
Then, system (147) is solved at each time step thanks to the following numerical scheme: For all k ∈ {1, . . . , N 1c }:

       X k,n+1 1 -X k,n 1 ∆t = V k,n 1 , V k,n+1 1 -V k,n 1 ∆t = Υ c,n (V k,n 1 ) (149) 
where

Υ c,n (V k,n 1 ) is a local approximation of Υ(f 2 )(t n , x k 1 , v k 1 ) given by Υ c,n a = π ε r 2 1 ω 2 V c N2c j=1 V j,n 2 + √ π 3β V j,n 2 (150) 
when Υ(f 2 ) is defined with (144), and by

Υ c,n b (V k,n 1 ) = π ε r 2 1 ω 2 V c N2c j=1 V j,n 2 -V k,n 1 + √ π 3β V j,n 2 -V k,n 1 (151) 
when Υ(f 2 ) is defined with (146). Let us remark that in the case of Υ = Υ b , the numerical resolution of (145)(a) requires the computation of the acceleration term Υ c,n b (V k,n 1 ) given by (151) for each macro-dust at each time step, whereas in the case of Υ = Υ a , the acceleration term Υ c,n a given by (150) is the same for all macro-dust in a given mesh c. Then, in each mesh c, the computational cost is in O(N 2c ) in the case of (150) and in O(N 1c N 2c ) in the case of (151).

The validity of this PIC method has been studied in Ref. [START_REF] Charles | Kinetic modelling and numerical simulations using particle methods for the transport of dust in a rarefied gas[END_REF] for the Vlasov-Boltzmann model obtained with the function ς(v, n) = C instead of (129) in operators (127) and (128). Since we do not have to simulate the operator R 1 (f 1 , f 2 ) any more, the condition on the time step is here given by (153)

∆t min t 22 , t 21 , ∆x V 1 , ∆x V 2 ( 

Comparison with the Boltzmann-Boltzmann model in an homogeneous context

We compare numerical simulations of Boltzmann-Boltzmann system (35) and of Vlasov-Boltzmann system (143) or (145) through the time evolution of macroscopic velocities and kinetic temperatures. We also compare Vlasov-Boltzmann systems obtained with Υ = Υ a (see (144)) and with Υ = Υ b (see ( 146)). At last, CPU times are compared. Let us note that these numerical simulations are obtained in an homogeneous context in order to get rid of the influence of boundary conditions.

Macroscopic velocities. Figure 3 presents the evolution of macroscopic velocities defined by ( 15) obtained, firstly, with the numerical resolution of the spatially homogeneous system

     ∂f 1 ∂t = R 1 (f 1 , f 2 ), (a) ∂f 2 ∂t = R 2 (f 1 , f 2 ) + Q(f 2 , f 2 ) (b) (154) 
and, secondly, with the numerical resolution of the spatially homogeneous system

     ∂f 1 ∂t + ∇ v • [Υ(f 2 )f 1 ] = 0, (a) ∂f 2 ∂t = R 2 (f 1 , f 2 ) + Q(f 2 , f 2 ) (b) (155) 
where Υ(f 2 ) = Υ b (f 2 ) is given by (146), the initial distributions being given by

             f 1,in (v) = n 1 2πk B T 1,in m 1 (r 1 ) -3 2 exp - m 1 (r 1 ) |v -u 1,in | 2 2k B T 1,in , f 2,in (v) = n 2 2πk B T 2,in m 2 -3 2 exp - m 2 |v -u 2,in | 2 2k B T 2,in (156) 
where u 1,in , u 2,in , T 1,in , T 2,in , r 1 , n 1 and n 2 are given in Table 6.2.2. Moreover, Physical parameters associated to (156

). u 1,in u 2,in T 1,in T 2,in r 1 n 1 n 2 (m•s -1 ) (m•s -1 ) (K) (K) (m) (m -3 ) (m -3 )
(0, 0, 0) (300, 300, 300) 100 400 5 • 10 -9 10 15 10 20

we take T surf = 300 K for the surface temperature of dust particles. Physical parameters in Table 6.2.2 are chosen in order to allow to take a reasonable time step ∆t for the resolution of system (154) with the numerical method presented in section 6.1.1: indeed, condition (139) gives ∆t 2 • 10 -7 s. Moreover, condition (153) gives ∆t 2 • 10 -5 s for the resolution of system (155) with the numerical method presented in section 6.2.1. Then, we chose respectively ∆t = 10 -7 s for the resolution of system (154) and ∆t = 10 -5 s for the resolution of system (155). Moreover, we chose (N 1 , N 2 ) = (5 • 10 2 , 5 • 10 3 ) for the resolution of both systems (N k is the number of macro-particles which approximates f k through (134)). One can observe on Figure 3 a similar evolution of components on Ox of macroscopic velocities -noted u x 1 and u x 2 -for the two systems. Moreover, it is quite obvious that these velocities converge to the value 94, 5 m•s -1 which corresponds to

u x ∞ = n 1 u x 1,in + εn 2 u x 2,in n 1 + εn 2 .
This behaviour of macroscopic velocities corresponds to what could be expected for Boltzmann-Boltzmann system [START_REF] Paci | Bases for dust mobilization modelling in the light of STARDUST experiments[END_REF]. Indeed, the following conservation of global momentum

n 1 u 1 (t) + n 2 εu 2 (t) = n 1 u 1,in + n 2 εu 2,in
can be obtained formally from equations (40) by using weak formulations (127) and (128). [START_REF] Charles | Modélisation mathématiques et étude numérique d'un aérosol dans un gaz raréfié. Application à la simulation du transport de particules de poussière en cas d'accident de pert de vide dans ITER[END_REF] We now compare the evolution between macroscopic velocities obtained from the numerical resolution of system (155) with Υ = Υ a on one side and with Υ = Υ b on the other side, with initial conditions given by (156) but with the physical parameters given by Table 6 

u 2,in T 1,in T 2,in r 1 n 1 n 2 (m•s -1 ) (m•s -1 ) (K) (K) (m) (m -3 ) (m -3 )
(0, 0, 0) (300, 300, 300) 100 400 5 • 10 -8 10 14 10 21

again T surf = 300 K. Moreover, the numerical parameters are given in Table 6.2.2. One can observe on Figure 4 that the evolutions of these macroscopic Numerical parameters used for the simulation on given by (146), it is not the case for system (155) with Υ = Υ a given by (144). Since the expression of Υ a (f 2 ) is obtained according to the hypothesis that the velocities of dust particles are of the order of magnitude of V • 1 and that the velocities of gas molecules are of the order of magnitude of V 81) and ( 82)), we can consequently deduce that this velocity scaling hypothesis is only true during a short time (more precisely during a time of some ms in the present case). Kinetic temperatures. We present the comparison between the kinetic temperatures defined by (14) obtained from the numerical resolution of systems (154) and (155) (with Υ = Υ b ) with inital conditions (156), and Table 6.2.2. We choose again T surf = 300 K. One can observe on Figure 5 that the kinetic temperatures T f1 and T f2 obtained from the numerical resolution of Boltzmann-Boltzmann system (154) converge to the surface temperature T surf of dust particles. Moreover, the kinetic temperature T f2 obtained from the numerical resolution of Vlasov-Boltzmann system (155) with Υ = Υ b has the same behaviour as the one of the kinetic temperature T f2 obtained from the numerical resolution of Boltzmann-Boltzmann system (154). However, one can observe that T f1 obtained from the numerical resolution of Vlasov-Boltzmann system (155) with Υ = Υ b converges to 0 and, thus, is wrong (we can make the same observation with Υ = Υ a ). We discuss this important point in section 6.2.5.

• 2 with V • 1 /V • 2 = √ ε (see (

CPU times.

We now consider the initial distributions f 1,in and f 2,in given by (156) and but with the physical parameters given in Table 6.2.2. instead of Table 6.2.2. We choose again T surf = 300 K and we take (N 1 , N 2 ) = (10 2 , 10 4 ).

Physical parameters associated to (156)

. u 1,in u 2,in T 1,in T 2,in r 1 n 1 n 2 (m•s -1 ) (m•s -1 ) (K) (K) (m) (m -3 ) (m -3 )
(0, 0, 0) (300, 300, 300) 100 400 2 • 10 -8 5 • 10 13 10 20

Because of conditions ( 139) and (153), the time step ∆t is taken equal to ∆t = 10 -8 s in the case of Boltzmann-Boltzmann system (154) and equal to ∆t = 2 • 10 -5 s in the case of Vlasov-Boltzmann system (155). During the time τ = 10 -1 s (which corresponds to the characteristic time of relaxation of velocities), the average numbers (138) of collisions simulated for the resolution of the kinetic operators are of the order of

N R1 (τ ) = 1, 4 • 10 9 , N R2 (τ ) = 7 • 10 4 , N Q (τ ) = 4, 2 • 10 7 .
We see on Table 6.2.2 that the CPU time on a single-chip computer of the simulation of Boltzmann-Boltzmann system (154) during the time τ is of about 10 4 s, the one of system (155) with Υ = Υ b during the time τ is of about 500 s and the one of Vlasov-Boltzmann system (155) with Υ = Υ a during the time τ is of about 50 s. 

CPU

A 3D simulation in a cubic box

We present on Figure 6 the LOVA type scenario already studied in section 6.1.2 with Boltzmann-Boltzmann system (35) (see Figure 2) but, now, obtained with Vlasov-Boltzmann system (145) (Υ = Υ b is given by ( 146)). The final time of the simulation is equal to 247 ms. On Figure 6, the macro-molecules are not represented and the number of macro-dusts represented is more important than on Figure 2. Let us underline that we are able to simulate this LOVA type scenario with a final time greater than the one of 45 ms simulated in section 6.1.2 with Boltzmann-Boltzmann system (35) because Vlasov-Boltzmann system (145) needs far less CPU time.

A 3D simulation in a torus domain

We present on Figure 7 a LOVA type scenario for which the domain is a cylindrical torus whose geometry is similar to the one used in Ref. [START_REF] Takase | Three-dimensional numerical simulations of dust mobilization and air ingress characteristics in a fusion reactor during a LOVA event[END_REF]. The boundary conditions are diffuse reflexion and there is no absorption condition on any side, which means that dust particles and gas molecules (which are not represented in this visualization) cannot leave the domain. As a consequence, the density of gas molecules inside the torus increases very quickly. Geometrical parameters of the cylindrical torus are given in Table 6.2.4, physical parameters are given in Table 6.1.2 and computation parameters are given in Table 6. the cost of computation is higher in this example, and the length of simulation is lower than in the example of paragraph 6.2.3 for the same CPU time (24 × 3600 s).

Justification of the Vlasov-Boltzmann model

The previous studies lead to the following conclusions:

• The CPU cost of the numerical resolution of Vlasov-Boltzmann system (143) or ( 145) is, in the context we consider, lower than the one of Boltzmann-Boltzmann system [START_REF] Paci | Bases for dust mobilization modelling in the light of STARDUST experiments[END_REF]. For example, on a spatially homogeneous context, the examples presented on Table 6.2.2 show that the numerical resolution of Vlasov-Boltzmann system with Υ = Υ a and Υ = Υ b are respectively about 200 and 20 time less costly (with the numerical methods presented in sections 6.1.1 and 6.2.1). This comes from the fact that the resolution of the Vlasov equations (105)(a) or (106)(a) is in this situation lower than the resolution of the equation (35)(a). Moreover, the cost of the resolution of systems ( 105) and (106) does not depend very much of the radius of particles, whereas the cost the resolution of equation ( 35)(a) increases quadratically with the radius of particles.

• The numerical resolution of Vlasov-Boltzmann system (143) is about 10 time less costly than the one of Vlasov-Boltzmann system (145) (at least for the homogeneous test-case studied in section 6.2.2: see Table 6.2.2.).

• The macroscopic velocities u 1 and u 2 obtained with spatially homogeneous Vlasov-Boltzmann system (155) with Υ = Υ b given by ( 146) are close to those obtained with spatially homogeneous Boltzmann-Boltzmann system (154) and, thus, are correct. Nevertheless, these macroscopic velocities obtained with spatially homogeneous Vlasov-Boltzmann system (155) with Υ = Υ a given by (144) instead of Υ = Υ b are correct only for short times. Moreover, the kinetic temperature T f1 obtained with spatially homogeneous Vlasov-Boltzmann system (155) with Υ = Υ a or Υ = Υ b is not equal to the one obtained with spatially homogeneous Boltzmann-Boltzmann system (154) and, thus, is not correct. This may be explained by the fact that the asymptotic expansion made in the section 4 is only at the first order in ε. Thus, we may think that Vlasov-Boltzmann system (143) (Υ = Υ a ) or (145) (Υ = Υ b ) is not a good approximation of Boltzmann-Boltzmann system [START_REF] Paci | Bases for dust mobilization modelling in the light of STARDUST experiments[END_REF], and that a asymptotic expansion of R 1 (f 1 , f 2 ) at the second order in ε could be necessary. Nevertheless, since we are only interested in the mobilization of dust particles at the beginning of a LOVA type scenario and since this mobilization is a direct function of the macroscopic velocity u 1 of dust particles, it is legitimate to think that Vlasov-Boltzmann system (145) (Υ = Υ b ) and even Vlasov-Boltzmann system (145) (Υ = Υ a ) are enough accurate (at least for a first study) to evaluate if dust particles are or are not mobilized for a given LOVA type scenario.

All these remarks justify the derivation of the Vlasov-Boltzmann system to model the beginning of a LOVA type scenario.

Conclusion

A discussion about characteristic time and length scales shows that the interaction between dust particles and gas molecules at the beginning of a Loss Of Vacuum Accident (LOVA) in the thermonuclear reactor ITER has to be modeled with a kinetic model. Thus, we have proposed a new Boltzmann type model to describe the evolution of macroscopic particles, as dust particles, in a rarefied atmosphere. This Boltzmann type model consists in a coupling of a Boltzmann type operator R 1 (f 1 , f 2 ) -which describes the dust-molecule collisions from the point of view of dust particles -with another Boltzmann type operator R 2 (f 1 , f 2 ) -which describes the dust-molecule collisions from the point of view of gas molecules -. This Boltzmann-Boltzmann model takes into account the macroscopic character of dust particles compared to gas molecules through a diffuse reflexion mechanism on the surface of dust particles in the kinematic relations of dust-molecule collisions. As a consequence, the Boltzmann type operators R 1 (f 1 , f 2 ) and R 2 (f 1 , f 2 ) are not classical Boltzmann operators.

However, the numerical simulation with a Monte-Carlo method of the operator R 1 (f 1 , f 2 ) is too expensive from a computational cost point of view in the context of a LOVA when the typical size of dust particles is too large. Thus, we have proposed to replace R 1 (f 1 , f 2 ) with a Vlasov operator obtained from R 1 (f 1 , f 2 ) through a formal asymptotic expansion according to the ratio of mass between a gas molecule and a dust particle. As a consequence, the Boltzmann-Boltzmann model is replaced by a Vlasov-Boltzmann model. Let us underline that the Vlasov operator allows to define a drag force model applied to dust particles and induced by collisions with gas molecules. This drag force model -which is not deduced from experimental laws -is also valid when the gas molecules are not at thermodynamical equilibrium.

Numerical methods are proposed for the resolution of the Boltzmann-Boltzmann and Vlasov-Boltzmann models, and are applied for 3D numerical simulations of LOVA type scenarii for which the domain is a cubic box or a cylindrical torus: these 3D numerical simulations show the mobilization of dust particles induced by the gas molecules ingress. Moreover, spatially homogeneous numerical results are compared from the point of view of macroscopic velocities, kinetic temperatures and CPU time. These numerical studies validate and justify (from a computational cost point of view) the use of the Vlasov-Boltzmann model instead of the Boltzmann-Boltzmann model.

A validation of the Boltzmann-Boltzmann and Vlasov-Boltzmann models for a LOVA type scenario could be obtained from an experimental point of view thanks to experimental visualizations which should be lead. However, even if a fluid-fluid or a fluid-kinetic modelling like in Ref. [START_REF] Takase | Three-dimensional numerical simulations of dust mobilization and air ingress characteristics in a fusion reactor during a LOVA event[END_REF] seems to be inadapted at the beginning of a LOVA, it should be necessary to use this type of modelling after some times (depending on the size of the vessel). Indeed, the density of the gas increases rapidly in a closed geometry. Then, the computational cost of the simulation of the Vlasov-Boltzmann model becomes too important because of the large amount of collisions between gas molecules. Thus, an interesting prospect could be to couple the Vlasov-Boltzmann model with its fluid limit by using an approach similar to those proposed, for example, in Ref. [START_REF] Dellacherie | Coupling of the Wang Chang-Uhlenbeck equations with the multispecies Euler system[END_REF] or Ref. [START_REF] Degond | A multiscale kinetic-fluid solver with dynamic localization of kinetic effects[END_REF]. Moreover, another interesting prospect is to model the interaction between the dust particles and the wall of the vessel. We propose in Ref. [START_REF] Charles | Modélisation mathématiques et étude numérique d'un aérosol dans un gaz raréfié. Application à la simulation du transport de particules de poussière en cas d'accident de pert de vide dans ITER[END_REF] a model of mobilization of dust particles which takes into account a dust-wall interaction. This model could be investigated from a numerical point of view in
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  114)(b) and (115)(a). Moreover, under Hypothesis 4.1-5.2, we deduce from (25)(b) that
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 3 Figure 3: Evolution of the component on Ox of macroscopic velocities obtained from the numerical resolution of systems (154) and (155) with Υ = Υ b .
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 3 velocities remain similar during a short time of about 5 ms but are different for long times. This can be interpreted in the following way: Whereas the global momentum n 1 u 1 + n 2 εu 2 is conserved for Boltzmann-Boltzmann system[START_REF] Paci | Bases for dust mobilization modelling in the light of STARDUST experiments[END_REF] and approximately conserved for Vlasov-Boltzmann system (155) with Υ = Υ b
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 4 Figure 4: Evolution of the component on Ox of macroscopic velocities obtained from the numerical resolution of system (155) with Υ = Υ b and with Υ = Υ a .
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 5 Figure 5: Evolution of the kinetic temperatures obtained from numerical resolution of systems (154) and (155) with Υ = Υ b .
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 6 Figure 6: LOVA type scenario in an open cubic box modeled with Vlasov-Boltzmann system (145) (Υ = Υ b )

Figure 7 :

 7 Figure 7: LOVA type scenario in a torus modeled with Vlasov-Boltzmann system (145) (Υ = Υ b )

2.2.3 Knudsen numbers

  At the opposite, λ 21 and λ 11 -which is of the same order as λ 21 because of (25)(a) -and λ 22 seem to be appropriate length scales from a physical point of view in our context. In Section 5, we justify the fact that λ 12 is not an appropriate length scale for the proposed dust-particle kinetic model. As a consequence, we only use the characteristic length scales λ 11 , λ 21 and λ 22 in the sequel of this Section 2.

					(a,b) we have
			(t, r) = (0, r min ) : λ 21 λ 22 ,
			(t, r) = (0, r max ) : λ 21	λ 22 .
	Moreover, at t = 0 and by using Table 2.1.4 and (25), we have λ 22 1, 4•10 -2 m
	and	    	(a) 7, 6 • 10 -19 m ≤ λ 12 ≤ 2, 4 • 10 -15 m, (b) 5, 6 • 10 -6 m ≤ λ 11 ≤ 5, 6 • 10 -4 m,	(28)
		   	3, 2 • 10 -5 m ≤ λ 21 ≤ 3, 2 • 10 -3 m.	(c)
	Estimate (28)-(b) shows that λ 12 is not an appropriate characteristic length
	scale from a physical point of view. By defining the dust-molecule and molecule-molecule Knudsen numbers with
			Kn 21 := λ 21 • n	1/3 1	and Kn 22 := λ 22 /d
	where n	-1/3 1		

Let us note that Kn 11 Kn 21 /(4 √ 2) where Kn 11 := λ 11 •n

  

	1/3 1	since λ 11 λ 21 /(4 √	2)
	(see (25)(a)). Estimates (		

  .1.2, physical parameters are given in Table6.1.2 and computation parameters are given in Table6.1.2.

	Physical parameters of the 3D simulation in a cubic box.
	r 1	r 2	n 1	n 2
	Geometrical parameters of the 3D simulation in a cubic box.
		width of the box	width of the hole
		(m)		(m)
		10 -2		5 • 10 -4
	Remark 3. These rather small dimensions compared to the real ITER dimen-
	sions or to some representative work-up have been willfully chosen as so in order
	to test the initial Boltzmann-Boltzmann model which is much more expensive
	than the approximate Vlasov-Boltzmann model.

Table t=1

 t=1 

	Physical	parameters	of	numerical	example	of	§6.1.3.
	r 1	r 2	n 1	n 2			
		ms			t=24 ms		
		t=27 ms			t=36 ms		
				t=45 ms			
	Figure 2: LOVA type scenario in an open cubic box modeled with Boltzmann-
	Boltzmann system (35)					

  22 , t 12 , t 21 ) (139) where t 22 , t 12 and t 21 are defined by (111). Morever, the resolution of transport equations (131) requires the accuracy condition on the time step • 10 -6 s, t 12 6 • 10 -13 s, t 21 6 • 10 -6 s.

	∆t min	∆x V 1	,	∆x V 2			(140)
	where ∆x is the length of meshes and where V 1 and V 2 are defined by (81).
	Finally, the condition on the time step is given by	
	∆t ≤ min t 22 , t 12 , t 21 ,	∆x V 1	,	∆x V 2	.	(141)
	Under physical conditions of Table 6.1.3, we get		
	t 22 2					

  .2.2 instead of Table6.2.2. We choose

	Physical parameters associated to (156).
	u 1,in
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a forthcoming work.

At last, we underline that the Boltzmann-Boltzmann and Vlasov-Boltzmann models proposed in this work could also be used to model, as in Ref. [START_REF] Zhang | Numerical modeling of ionian volcanic plumes with entrained particulates[END_REF], the interaction between dust particles coming from an intensive volcanic plume and a rarefied atmosphere as in the case of volcanoes on Jupiter's moon Io. The Boltzmann-Boltzmann and Vlasov-Boltzmann models could be more accurate since, in Ref. [START_REF] Zhang | Numerical modeling of ionian volcanic plumes with entrained particulates[END_REF], the macroscopic character of dust particles is not taken into account in the kinematic relations of the kinetic model and since the feedback of dust particles on the gas molecules is not taken into account.