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Abstract

The dynamics of polymer chains in entangled semi-dilute solution have been of theoretical and

experimental interest. Among a number of characteristic lengths and times of the polymer in

solution, those of the correlation blob are the key to understand the applicability of the Rouse and

Zimm models to rheology of the semi-dilute solution. Direct rheological measurements of Rouse and

Zimm modes are limited as the corresponding time scale is out of the range of classical rheological

techniques. We investigated the single chain dynamics of entangled poly(ethylene oxide) in semi-

dilute aqueous solutions by high-frequency micro-rheology based on diffusing-wave spectroscopy,

compared by classical shear macro-rheology. Concentration dependence of the three characteristic

times of the entangled polymer chains, reptation time, entanglement time, and correlation time,

were studied with the help of the time-concentration superposition (TCS). At the low frequency

range, dynamic moduli measured by macro-rheology and micro-rheology showed a good agreement

without adjustable parameters. At the higher frequency range, we found the Rouse regime in

MSD of the probe particles and in the magnitude of the complex specific viscosity of the solution.

We propose a simple method to estimate the boundary of the Rouse regime. Finally, at the high

frequency range, we demonstrate that the contribution of the solvent to the solution viscosity needs

to be subtracted to observe the power-law behavior of the Zimm mode.

∗ Correspondence author: indei@sci.hokudai.ac.jp
† Correspondence author: tetsuharu.narita@espci.fr
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I. INTRODUCTION

Passive microrheology [1–4] is a relatively new concept and technique in the history of

rheology. It can estimate linear viscoelastic properties of soft materials by measuring mean-

square displacement (MSD) of thermally fluctuating Brownian particles embedded in the

material by using some optical techniques instead of mechanical ones. When the probe

particles are larger than the longest characteristic length of the viscoelastic medium, the

generalized Stokes-Einstein relation (GSER) can be used to derive the dynamic modulus

G∗(ω) of the medium as a function of the frequency ω from the MSD of the probe particles

that is a function of the time t. The GSER is derived by generalizing the conventional

Stokes-Einstein relation for Newtonian fluids relating MSD of the probe particles and the

solvent viscosity so that it can also treat viscoelastic medium whose rheological property is

characterized by the dynamic modulus.

One of the advantages of passive microrheology is its accessibility to high frequency. In

conventional oscillatory macro-rheology, upper limit of frequency is about 102 rad/s [5].

Though there exists an analytical method to expand the accessible frequency range [6],

passive micro-rheology based on dynamic light scattering techniques (single dynamic light

scattering, DLS, and mulitple dynamic light scattering, named diffusing-wave spectroscopy,

DWS) [1, 3, 7–13] has an advantage at high frequency because it can reach up to almost

105 rad/s. Thus high-frequency rheological responses of polymer solutions originating from

segmental chain dynamics that reflects its structure can be measured. DWS microrheology

has been used to characterize the bending mode of semi-flexible polymers and wormlike

micelles, whose high-frequency dynamic modulus exhibits a power-law behavior with an

exponent 3/4 [3, 14–17]. The persistence length was calculated from the low-frequency limit

of this bending mode. At lower frequency than this bending mode, rheological response of

flexible chain was found, which was called the “Rouse-Zimm” mode with an exponent 5/9 [18,

19]. While individual high frequency power-law behaviors having an exponent of 1/2 and/or

2/3 were reported and attributed to the Rouse and/or Zimmmode [11, 13, 20, 21], systematic

study on the transition from the Rouse mode to Zimm mode has not been reported to our
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best knowledge. The linear viscoelastic behavior of dilute polymer solutions that shows

Zimm mode at high frequencies has been measured by macro-rheology [22–24] and evaluated

computationally [25] since 1970s. In these experimental studies, zero-concentration limit was

taken to study rheological behavior of isolated polymers. Our attempt in this paper is to

study rheology of overlapping polymers that is predicted to show crossover from Rouse to

Zimm at a certain high frequency due to the correlation length of hydrodynamic interactions

that is smaller than polymer size.

In this paper, we report linear rheology of entangled semi-dilute polymer solutions mea-

sured by using passive microrheology based on DWS [1, 7]. We use the aqueous solution of

high-molecular weight poly(ethylene oxide), PEO, as a model flexible polymer. [26]. While

its rheological properties have been extensively studied by both macro-rheology [27–29] and

micro-rheology [2, 8, 9, 30], in these microrheological works high frequency properties have

not been systematically characterized. We also use conventional macro-rheology in a comple-

mental manner to treat low frequency regime where accuracy of microrheology is reduced.

In order to investigate the polymer concentration dependence of the characteristic times

and lengths, we use time-concentration superposition (TCS) [27, 31] for both macro- and

micro-rheology. By shifting a series of MSD curves plotted against time for some different

polymer concentrations vertically and horizontally on log-log scale, a single master curve

can be obtained (a part of MSD curves corresponding to concerned dynamic modes can

be superposed). Not only the MSD, but also the rheological spectra such as the dynamic

modulus and the complex viscosity of the solution plotted against the frequency satisfy the

partial TCS.

We focus on the “Rouse-Zimm” mode of flexible polymer and show that the Rouse regime

followed by the Zimm regime is distinctly identified in the master curve of the absolute value

of the micro-rheological complex specific viscosity η∗sp(ω) at high frequency region where

macro-rheology cannot attain. In the Rouse regime, dynamics of the polymer chains is de-

scribed by the Rouse model [32] for the chain comprised of correlation blobs [33, 34] because

some fractions of the chain can move without restrictions within the tube-like domain con-

fining the entire polymer formed by surrounding polymers [35]. On the other hand, in the
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Zimm regime, hydrodynamic interactions between polymer segments within the blobs are

effective [36]. These regimes are characterized by the exponents derived from the dynamic

scaling theory for the Rouse model and Zimm model [34, 35]. In Section II, we briefly re-

view conventional theory for semi-dilute entangled flexible linear polymers [34], which will be

used in Section IV to analyze experimental results for PEO aqueous solutions. Experimental

details are described and discussed in Section III.

II. THEORETICAL BACKGROUND

In the semi-dilute entangled regime, volume fraction of polymer ϕ satisfies ϕe < ϕ < 1

where ϕe is the entanglement volume fraction above which polymers feel steric hindrance

from the surrounding polymers. Static and dynamic properties of polymer solutions in

semi-dilute entangled regime have multiscale hierarchic structure in space and time. Overall

features of a wide spectrum of the time/frequency dependence of rheological quantities is

ascribed to such multiple scales (see Fig. 1).

A. Characteristic length scales

Spatial (or configurational) hierarchic structure of the solution in semi-dilute entangled

regime is characterized by four characteristic length scales; monomer size b, correlation length

ξ, tube diameter a, and polymer size Rp in increasing order. At the length scale shorter

than the monomer size b, solution property is essentially the same as that of solvent. At

the length scale larger than b but smaller than the correlation length ξ, solution property is

similar to that in the dilute polymer solution where each polymer is separated far apart. At

this length scale, hydrodynamic interaction via the solvent and excluded-volume interactions

between monomers are effective. In other words, portion of the polymer with size ξ (called

correlation blob) is the self-avoiding walk of monomers. If there are g monomers per blob,

the blob size is ξ ≈ bgν , where ν is the Flory exponent (ν ≃ 0.588 for good solvent and

ν = 1/2 for θ solvent) [34]. Note that the blobs are densely packed and the volume fraction

of the polymer within the blob is the same as that of the overall solution, ϕ ≈ g(b/ξ)3.
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Therefore, ξ decreases with increase in ϕ, as

ξ ≈ bϕ−ν/(3ν−1). (1)

In the entangled regime, the tube diameter a, or the distance between the binary interchain

contacts, appears as an important length. The tube diameter a is proportional to the

correlation length (or size of the correlation blob) ξ, thus scales with the volume fraction

as a ≈ a(1)ϕ−ν/(3ν−1) in athermal solvents, where a(1) ≈ bNe(1)
1/2 is the tube diameter

in melt (Ne(1) is the number of monomers per entanglement strand in melt). Therefore

a ≈ ξNe(1)
1/2 in athermal solvents. On the other hand, a ≈ a(1)ϕ−2/3 ≈ ξNe(1)

1/2ϕ1/3 in

θ solvents [34]. At the length scale between ξ and the tube diameter a, both interactions

are screened out, and therefore portion of the polymer at this intermediate length scale

is formed by the random walk of blobs. Thus polymer size is Rp ≈ ξ(N/g)1/2, where N

is the number of monomers per polymer. At the length scale between a and the polymer

size Rp, configuration of the polymer is constrained by the tube-like domain formed by

surrounding polymers. Configuration of such entangled polymer is random walk of blobs

or random walk of entanglement strands Rp ≈ ξ(N/g)1/2 ≈ a(N/Ne)
1/2, where Ne is the

number of monomers per entanglement strand in the solution. At the entanglement volume

fraction ϕe, tube diameter a (≈ ξNe(1)
1/2 in athermal, and ξNe(1)

1/2ϕ1/3 in θ solvents) is

approximately equal to the polymer size Rp (≈ ξ(N/g)1/2). Therefore, at ϕ ≈ ϕe, Ne(1) ≈

N/g in athermal, and ϕ
−2/3
e N/g in θ solvents. Considering that ϕ∗ ≈ N−(3ν−1) and g ≈

ϕ−1/(3ν−1), we have

Ne(1) ≈ (ϕe/ϕ
∗)1/(3ν−1) in athermal, and (ϕe/ϕ

∗)4/3N1/3 in θ solvents. (2)

B. Characteristic time scales

The dynamic hierarchic structure is characterized by four time scales corresponding to

these length scales; relaxation time of monomer τ0, relaxation time of blob τξ, relaxation

time of Rouse subchain τe between the consecutive entanglements formed by the blobs,

and the reptation time τrep. In the smallest time scale t < τ0, rheological property of the

solution is essentially the same as that of the solvent. In the second smallest time scale
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τ0 < t < τξ, rheological property is similar to that in the dilute polymer solution. Therefore

hydrodynamic interactions between monomers are effective so that dynamic behavior is

represented by the Zimm model [36] that takes account of the hydrodynamic interactions

between monomers. In the intermediate time scale τξ < t < τe, hydrodynamic interactions

are screened out and the dynamics is Rouse-like. In the time scale τe < t < τrep, polymer

dynamics is described by one-dimensional diffusion along the tube formed by surrounding

polymers (or reptation motion) [35]. Finally, in the longest time scale t > τrep, polymer

chains diffuse normally three-dimensionally.

The volume-fraction dependence of these relaxation times has been theoretically studied

[33, 34]. The monomer relaxation time is independent of ϕ:

τ0 ≈
ηsb

3

kBT
(3)

where ηs is the solvent viscosity, kB is the Boltzmann constant and T is the solution temper-

ature. The Zimm relaxation time of blob is governed by the blob size (or correlation length)

ξ:

τξ ≈
ηsξ

3

kBT
≈ τ0ϕ

−3ν/(3ν−1). (4)

The Rouse relaxation time of ideal chain formed by blobs is

τe ≈ τξ

(
Ne

g

)2

≈ τ0Ne(1)
2ϕ−3ν/(3ν−1) in athermal, and τ0Ne(1)

2ϕ−5/3 in θ solvents. (5)

The reptation model predicts that the reptation time τrep is proportional to the cube of the

molar mass. That is,

τrep ≈ τe

(
N

Ne

)3

≈ τ0
N3

Ne(1)
ϕ3(1−ν)/(3ν−1) in athermal, and τ0

N3

Ne(1)
ϕ7/3 in θ solvents. (6)

It is known that experimentally one finds the exponent about 3.4. This difference is explained

by the fluctuations of the tube length [35]. The relaxation time deviates from the model

prediction especially at low molar mass, leading to stronger molar mass dependence.

C. Relaxation modulus

The conventional theory predicts that the relaxation modulus of entangled semi-dilute

solution of linear polymer in athermal solvents (where ν = 0.588) and θ solvents (ν = 1/2)
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is approximately

G(t) ≈


kBT
b3

ϕ(t/τ0)
−1/(3ν) (for τ0 < t < τξ)

kBT
ξ3

(t/τξ)
−1/2 (for τξ < t < τe)

kBT
a2ξ

(for τe < t < τrep)

. (7)

At specific times t = τ0, τξ, τe, it becomes

G(t) ≈



kBT
b3

ϕ (≡ G0) (at t = τ0)

kBT
ξ3

≈ kBT
b3

ϕ3ν/(3ν−1) (≡ Gξ) (at t = τξ)

kBT
a2ξ

≈ kBT
b3

1
Ne(1)

ϕ3ν/(3ν−1) in athermal, and

kBT
b3

1
Ne(1)

ϕ7/3 in θ solvents (≡ Ge) (at t = τe)

. (8)

These characteristic moduli are given by kBT per corresponding characteristic volume, that

is, average volume per monomer b3/ϕ (at t = τ0), occupied volume of blob ξ3 (at t = τξ),

and occupied volume of entanglement strand a2ξ (at t = τe).

D. Complex specific viscosity

Polymer contribution of the complex viscosity is obtained by subtracting the solvent

viscosity ηs from the complex viscosity of the solution η∗(ω) = G∗(ω)/(iω). The dynamic

modulus G∗(ω) is related to the relaxation modulus G(t) through the one-sided Fourier

transformation [22]. We define the complex specific viscosity

η∗sp(ω) ≡
η∗(ω)− ηs

ηs
=

η′(ω)− ηs
ηs

− i
η′′(ω)

ηs
, (9)

and analyze its magnitude |η∗sp(ω)| =
√[η′(ω)−ηs

ηs

]2
+
[η′′(ω)

ηs

]2
where η′(ω) and η′′(ω) are the

real and imaginary parts of η∗(ω), respectively.

Corresponding to the relaxation modulus given by Eq. (7), magnitude of the complex

specific viscosity in athermal solvents is expected to behave as (see Fig. 1 top)[37]

|η∗sp(ω)| ≈


Ne(1)(τeω)

−1 (for 1/τrep < ω < 1/τe)

(τξω)
−1/2 (for 1/τe < ω < 1/τξ)

ϕ(τ0ω)
−(1−1/(3ν)) (for 1/τξ < ω < 1/τ0)

. (10)
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At specific frequencies ω = 1/τrep, 1/τe, 1/τξ, 1/τ0, it becomes

|η∗sp(ω)| ≈



Geτrep/ηs ≈ 1
Ne(1)2

(ϕ/ϕ∗)3/(3ν−1) (≈ ηsp) (at ω = 1/τrep)

Geτe/ηs ≈ Ne(1) (at ω = 1/τe)

Gξτξ/ηs ≈ 1 (at ω = 1/τξ)

G0τ0/ηs ≈ ϕ (at ω = 1/τ0)

. (11)

On the other hand, magnitude of the complex specific viscosity in θ solvents is (see Fig. 1

bottom)

|η∗sp(ω)| ≈


Ne(1)ϕ

2/3(τeω)
−1 (for 1/τrep < ω < 1/τe)

(τξω)
−1/2 (for 1/τe < ω < 1/τξ)

ϕ(τ0ω)
−1/3 (for 1/τξ < ω < 1/τ0)

. (12)

At ω = 1/τrep, 1/τe, 1/τξ, 1/τ0, it becomes

|η∗sp(ω)| ≈



Geτrep/ηs ≈ N2/3

Ne(1)2
(ϕ/ϕ∗)14/3 (≈ ηsp) (at ω = 1/τrep)

Geτe/ηs ≈ Ne(1)

N1/3 (ϕ/ϕ
∗)2/3 (at ω = 1/τe)

Gξτξ/ηs ≈ 1 (at ω = 1/τξ)

G0τ0/ηs ≈ ϕ (at ω = 1/τ0)

. (13)

Figure 1 shows schematics of |η∗sp(ω)| as a function of ω on log-log scale for both athermal and

θ solutions. Hierarchical structure of polymer solution can be explained in terms of rheology

by using Fig. 1 as follows. (Although our main interest is in entangled regime, we begin the

explanation with the dilute regime from a pedagogical point of view.) In dilute regime ϕ < ϕ∗

(three blue lines), the Zimm relaxation time of a single polymer chain (denoted by τZ) is the

longest relaxation time. That is, ω < 1/τZ is the terminal flow regime (I) and ω > 1/τZ is the

Zimm regime (II) where hydrodynamic interactions are effective. With increasing polymer

concentration ϕ, |η∗sp| increases but the Zimm relaxation time τZ is constant as indicated by

upward-pointing arrow from point A because polymers are still isolated. At the overlapping

volume fraction ϕ = ϕ∗, blobs start to be generated so that τZ is “separated” at point B into

the relaxation time of blob τξ and the longest relaxation of the chain formed by blobs τchain.

In unentangled semi-dilute regime ϕ∗ < ϕ < ϕe (three green lines), with increasing ϕ, number

9



of blobs increases while size of a blob decreases. Consequently, τchain increases (indicated

by the arrow pointing upper-left) whereas τξ decreases (indicated by right-pointing arrow).

Such a separation of the relaxation time from τZ to τchain and τξ generates a new relaxation

mode between them (III) associated with Rouse dynamics of chains formed by blobs. At

the entanglement volume fraction ϕ = ϕe, entanglements start to be generated so that τchain

is further separated at point C into the relaxation time of the entanglement strands τe and

the longest relaxation of the chain or the reptation time τrep. Finally, in entangled semi-

dilute regime ϕe < ϕ ≪ 1 (three red lines), number of entanglements strands increase with

increasing ϕ while size of tube diameter decreases. As a result, τrep increases (indicated by

the arrow pointing upper-left) while τe decreases (indicated by right-pointing arrow). Such

a separation of the relaxation time from τchain to τrep and τe gives rise to a new relaxation

mode between them (IV) related to the reptation dynamics.

Boundaries between two adjoining regimes can be derived by regarding ϕ as the interme-

diate variable between |η∗sp| and the related relaxation time (for example, for the boundary

between I and IV, τrep). By eliminating ϕ to relate |η∗sp| and the relaxation time, and then

by replacing the relaxation time with 1/ω, we can obtain the boundary. For athermal sol-

vents, the boundary between I and IV is given by |η∗sp(ω)| ≈
Ne(1)(2ν−1)/(1−ν)

N3ν/(1−ν) (τ0ω)
−1/(1−ν),

the boundary between I and III is |η∗sp(ω)| ≈ N−3ν/(2−3ν)(τ0ω)
−1/(2−3ν), and the boundary

between III and IV is |η∗sp(ω)| ≈ Ne(1), which is constant independent of ω. For θ solvents,

the boundary between I and III/IV is given by |η∗sp(ω)| ≈ 1
N3 (τ0ω)

−2, and the boundary

between III and IV is |η∗sp(ω)| ≈ Ne(1)
9/5(τ0ω)

2/5, which is an increasing function of ω.

Our objective is to estimate these three relaxation times (τξ, τe, τrep) in entangled semi-

dilute polymer solution. For this purpose, we measure |η∗sp(ω)| for a broad range of ω ranging

from dilute regime (II) to flow regime (I) by using micro-rheology and macro-rheology. Time-

concentration superposition is used to achieve such a wide spectrum of |η∗sp(ω)| to investigate

the polymer concentration dependence of these relaxation times.
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FIG. 1. (color online) Schematic representation of the magnitude of the complex specific viscosity

|η∗sp(ω)| = |η∗(ω) − ηs|/ηs for athermal solvents (top) and for θ solvents (bottom) as a function

of frequency ω on log-log scale. In each figure, three blue lines represent |η∗sp(ω)| in dilute regime

ϕ < ϕ∗, three green lines show |η∗sp(ω)| in unentangled semi-dilute regime ϕ∗ < ϕ < ϕe, and three

red lines represent |η∗sp(ω)| in entangled semi-dilute regime ϕe < ϕ ≪ 1. Gray dashed lines indicate

boundaries of the dynamic regimes. I: flow regime, II: Zimm regime, III: Rouse regime, IV: elastic

regime.
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III. EXPERIMENTAL SECTION

A. Materials

Poly(ethylene oxide), PEO, (nominal molecular weight: 8000 kg/mol by supplier) was

purchased from PolySciences. An aqueous suspension of polystyrene microspheres (stabi-

lized with COOH groups at the surface) used as probe particles for DWS microrheology

measurements were purchased from Micromod (Rostock, Germany). According to the sup-

plier, the particle size is 500 nm. PEO aqueous solutions were prepared by dissolving PEO

in Milli-Q water. Dissolution of PEO powders and homogenization of the PEO solutions

were statically performed by osmotic pressure for 1 week without stirring the solutions so

as to avoid chain scission. For DWS measurements, the polystyrene microspheres were also

dispersed in the solution. The probe concentrations were 0.1, 0.25, or 1 % depending on

PEO concentration.

B. Size characterization by light scattering

The size of the probe particles and the PEO polymer was characterized by light scattering

with a 3-CGS ALV goniometer system. The hydrodynamic diameter of the probe particles

in a dilute suspension (0.005 %) was determined by dynamic light scattering as 2R = 457

nm. The hydrodynamic radius Rh of the PEO polymer extrapolated to infinite dilution

was measured as 65 nm. The polydispersity index of the probe particles, defined as the

square of the ratio of the standard deviation to the mean value, was measured to be less

than 0.07, thus the particles can be considered as monodisperse. The polydispersity index

of the PEO molecular weight was about 0.4, indicating that the polymer size is moderately

polydisperse. The radius of gyration Rg was measured by static light scattering to be 160 nm.

By assuming that the chain is Gaussian, the root-mean-square end-to-end distance in dilute

solution, RZ, was estimated to be about 392 nm. By static light scattering, the molecular

weight Mw (17000 kg/mol) and the second virial coefficient A2 (2.7 × 10−11m3mol/g2) of

PEO were also determined. The value of the intrinsic viscosity [η] of the PEO in water

12



at 25 ◦C was estimated from the measured value of the molecular weight Mw by using the

Mark-Houwink-Sakurada equation, [η] = KMα
w . Values of [η] and Mw from two references

[38, 39] were summarized to find the parameters K, α of the Mark-Houwink-Sakurada

equation. We found K = 0.050 mL/g(mol/g)α and α = 0.67, thus [η] = 3300 mL/g for

Mw = 17000 kg/mol. The overlapping concentration C∗ is given by taking inverse of the

intrinsic viscosity, as C∗ = 1/[η] = 3.0× 10−4 g/mL, or 0.03 %.

C. Classical macrorheology

A coaxial rotational viscometer (LS 400, Lamy Rheology, Lyon, France) with a cylindrical

Couette geometry (length: 8 mm, inner diameter: 11 mm, outer diameter: 12 mm) was used

to measure macroscopic flow behavior of the PEO solutions at different concentrations (0.005

- 0.15 %). For the concentrations between 0.2 and 2 %, a stress-controlled Haake RS600

rheometer with a cone-plate geometry (diameter: 35 mm, angle 2 ° , gap 103 µm) was

used. Frequency sweep (between 0.001 and 100 rad/s) in small amplitude oscillatory shear

measurements were performed with the RS600 rheometer for the PEO concentration ranging

between 0.6 and 2 %. All the macroscopic rheological measurements were performed at 25

◦C.

D. Microrheology

a. DWS microrheology Microrheological measurements based on diffusing-wave spec-

troscopy (DWS) were conducted using a laboratory-made setup. A Spectra-Physics Cyan

CDRH laser, operating at the wave length λ = 488 nm with an output power of 50 mW,

was used as coherent light source. The laser beam was expanded to approximately 1 cm

in diameter with a beam expander. A plastic cuvette for spectroscopy (thickness L = 4

mm) was placed in a thermostated sample holder. The scattered light was collected by an

optical fiber placed in the transmission geometry connected to a photon counter. Signals

were treated by a digital correlator (ALV-7004/USB-FAST, ALV, Lanssen, Germany) to

obtain an intensity autocorrelation function.
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The obtained intensity autocorrelation function g(2)(t) was converted into the field auto-

correlation function g(1)(t) by the Siegert relation, g(2)(t) = 1+ β[g(1)(t)]2, then the MSD of

the probe particles ⟨∆r2b(t)⟩eq was calculated by solving numerically the following equations

[40, 41] for transmission geometry:

g(1)(t) =
L
l∗
+ 4

3
z0
l∗
+ 2

3

sinh
[
z0
l∗
r̃(t)

]
+ 2

3
r̃(t) cosh

[
z0
l∗
r̃(t)

](
1 + 4

9
r̃(t)2

)
sinh

[
L
l∗
r̃(t)

]
+ 2

3
r̃(t) cosh

[
L
l∗
r̃(t)

] , (14)

where r̃(t) ≡
√
(2π/λ)2⟨∆rb(t)2⟩eq is the root of the MSD nondimensionalized by the wave

length, l∗ is the sample transport mean free path of the scattered light determined from the

values of transmission intensity of the sample and a reference sample (water) whose l∗ is

known. For this system l∗ was found to be 1900, 670 and 190 µm for the probe concentrations

of 0.1, 0.25 and 1 %, respectively. z0 is the distance the light travels through the sample

before becoming randomized, here it is set z0 = l∗. The measured multiply scattered light

signal was found to be ergodic for all the sample studied. With the experimental setup used,

we can measure accurately the value of MSD up to about 400 nm2. Thus the probe particles

measure the length scale (
√
400 nm2 = 20 nm) much smaller than the size of the particles

(457 nm in diameter).

b. MSD analysis The dynamic modulus of the solution was estimated from the MSD

of the probe particles by using the generalized Stokes-Einstein relation (GSER) [1]

G∗(ω) =
kBT

πRiωF {⟨∆r2b(t)⟩eq}
(15)

where F{· · · } indicates the one-sided Fourier transform. We study the frequency regime

where inertial effects of the probe particles and solution are ineffective (ω ≲ 106 rad/s), so

that we use the inertia-less GSER given by Eq. (15) rather than the inertial one [42, 43]. In

usual passive microrheological analysis, MSD curve is fitted by a smooth function of time to

transform it to that in the frequency domain (alternative method without fitting was also

proposed [44, 45]). For this purpose, we used the fitting function that can be analytically

transformed to obtain G′(ω) and G′′(ω) by using special functions [46, 47]. In the rest of

this paper, we abbreviate ⟨∆r2b(t)⟩eq as MSD(t) for simplicity.
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IV. RESULTS AND DISCUSSION

A. Specific viscosity

1

2

14/3

C*

Ce

10-1 100 101 102
10-1
100
101
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103
104
105
106
107

Cp/C
*

η
sp

FIG. 2. Specific viscosity of PEO aqueous solution measured by macrorheology as a function

of PEO concentration Cp. The overlap concentration is C∗ = 0.030 %, and the entanglement

concentration is Ce = 0.25 %.

Figure 2 shows macro-rheologically measured specific viscosity ηsp = (η − ηs)/ηs of PEO

aqueous solutions as a function of the PEO concentration Cp normalized by the overlapping

concentration C∗. η is the viscosity of PEO solution and ηs is the viscosity of water (0.89

mPas). We observe that ηsp exhibits typical scaling behaviors with three regimes. In dilute

solution regime where ηsp < 1, the values of ηsp are approximately equal to Cp/C
∗. We

can see from Fig. 2 that ηsp ≈ 1 at Cp = C∗. At the polymer concentration higher than

C∗, there is the unentangled semi-dilute regime, where we find ηsp ≈ (Cp/C
∗)2. At further

higher concentration in the entangled semi-dilute regime, the specific viscosity increases

more sharply as ηsp ∼ (Cp/C
∗)14/3. The entanglement concentration Ce is determined as

a cross-over concentration between the unentangled regime (C∗ < Cp < Ce) and entangled

semi-dilute regime (Ce < Cp) as Ce ≈ 0.25 % (see Fig. 2).

The power-law behavior of ηsp as a function of Cp in the three concentration regimes
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corresponds well to that expected for the polymer solutions in θ condition. The same

behavior was demonstrated in the literature for PEO having Mw = 5000 kg/mol (Fig.

8.11 in [34]). However, the exponent α of the Mark-Houwink-Sakurada equation from the

literature is about 0.67 (see Figure S1) [38, 39], suggesting that water is a moderately good

solvent of PEO. On the other hand, it might be noteworthy that the value of the second

virial coefficient A2 (thus the solvent quality) decreases with increase in the molecular weight

[39]. For the PEO studied in this work, we found a positive value of A2 but its absolute

value is low (A2 = 2.7×10−11m3 mol/g2). The fact that the value of A2 is small is consistent

with our experimental result for ηsp indicating that the solution is in the θ condition.
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B. Low-frequency behavior (macro-rheology)
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FIG. 3. (color online) Left: Macro-rheologically measured dynamic moduli of PEO aqueous so-

lutions for several different polymer concentrations Cp. Inset of left panel: Intersections (ωx, Gx)

of G′(ω) and G′′(ω) as a function of polymer concentration. Right: Master curve of the dynamic

moduli made from individual curves shown in left panel. Reference polymer concentration is

Cp = 2.0 %. Inset of right panel: Horizontal shift factor (red) and vertical shift factor (blue) used

to construct the master curve of the dynamic moduli.

In Fig. 3 left, the dynamic moduli of the PEO solutions in the entangled semi-dilute

regime are shown as a function of the frequency, measured by macroscopic rheometry. In

this frequency range, the viscoelastic response represented by the crossover between the

storage modulus G′(ω) and loss modulus G′′(ω) is observed. With increase in the PEO

concentration, the crossover frequency decreases and the modulus increases, corresponding

to the increase in the zero shear viscosity shown in Fig. 2. The concentration dependence

of the dynamic moduli near terminal zone can be accurately studied by characterizing the

crossing of G′ and G′′ at low frequency domain. In the inset of Fig. 3 left, the values of

moduli, Gx, and of frequency, ωx, are plotted as a function of PEO concentration Cp. We

found power-law behavior as ∼ Cy
p with y = −2.7 for ωx, and ∼ Cz

p with z = 1.9 for Gx.

In order to check these results, we also performed time-concentration superposition (TCS)
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to these curves of G′′(ω) at terminal zone. In Fig. 3 right, master curve with the solution

of Cp = 2.0 % as reference is shown. The superposition is successfully performed, the whole

frequency range measured here can be well superposed. At the higher frequency than the

crossover point, G′(ω) is higher than G′′(ω), corresponding to the transient elasticity by

entanglements. At the lower frequency, G′′(ω) is higher than G′(ω), corresponding to the

terminal flow. In the inset of Fig. 3 right, the horizontal and vertical shift factors are plotted

as a function of the PEO concentration. The horizontal shift factor (red) for ω scales with

the PEO concentration as ∼ Cy
p with y = 2.7, while the vertical shift factor (blue) for the

modulus scales as ∼ Cz
p with z = −1.9. These results are consistent with those obtained

from ωx and Gx.

According to Eq. (6) and Eq. (8), concentration dependence of the reptation time and the

elastic plateau are τrep ∼ Cy
p with y = 3(1− ν)/(3ν − 1) and Ge ∼ Cz

p with z = 3ν/(3ν − 1),

respectively. Theoretically, we have y = 1.6 and z = 2.3 for a good solvent, y = 2.3 and

z = 2.3 for a θ solvent. Experimentally, we found y = 2.7 and z = 1.9 from the terminal

intersection (ωx, Gx) between G′(ω) and G′′(ω), which are consistent with the TCS’s result.

It should be noted that the experimental values of the power-law exponents (y = 2.7, z =

1.9) slightly different from the theoretical values for a θ solvent (y = 2.3, z = 2.3). For

macro-rheology, similar discrepancy has been reported. Daga andWagner found y = 4.2±0.2

and z = 0.72 ± 0.08 for PEO in water [27]. Baumgartel et al. found similar values with

ours, y = 3.5 ± 0.2 and z = 2.2 ± 0.2 for polystyrene in ethylbenzene [31]. Experimental

results and literature values are summarized in Table I. In this system, a well defined elastic

plateau due to the entanglements is not observed, presumably due to the polydispersity of

the PEO used. We do not further discuss this point as it is not the main purpose of this

work.
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this work Ref.[27] Ref.[31] theory

polymer poly(ethylene oxide) poly(ethylene oxide) polystyrene –

solvent water water ethylbenzene apolar (ν = 0.588)

molecular weight

(kg/mol)

8000 (nominal)

17000 (measured) 900 247 and 374 – –

concentration 0.05–2 % 2.24–6.5 % 40.6–100 % –

method micro-rheology macro-rheology macro-rheology macro-rheology –

|y| (τξ, τe) 2.6 – – – 3ν
3ν−1 = 2.3

z (Gξ, Ge) 2.5 – – – 3ν
3ν−1 = 2.3

y (τrep) – 2.7 4.2± 0.2 3.5± 0.2 3(1−ν)
3ν−1 = 1.6

z (Ge) – 1.9 0.72± 0.08 2.2± 0.2 3ν
3ν−1 = 2.3

TABLE I. Absolute values of the exponents y, z for the relaxation time and the modulus (or MSD),

respectively.

C. Comparison between macro- and micro-rheology

In order to figure out the accessible ranges in time (or frequency) and MSD (or dynamic

modulus/complex viscosity), and also in order to validate the accuracy of the microrheo-

logical measurements, DWS microrheology were performed by using three different probe

concentrations, and the results are compared with those from macro-rheology. In Fig. 4 left,

the values of MSD for Cp = 0.7 % measured with three different probe concentrations are

shown. The corresponding data for Cp = 0 % (thus solvent, water) are also plotted as a

reference. The results for the three probe concentrations overlap well on each other, covering

a wide range in time (10−6 ≲ t ≲ 102 s) and in MSD (10 ≲ MSD ≲ 105 nm2). For the

solvent, we find MSD(t) ∝ t1 at the whole time scale, as expected for a Newtonian fluid. For

the PEO solution at Cp = 0.7 %, MSD shows an anomalous but typical time dependence for

a viscoelastic polymer solution. Starting from the high frequency range, where the values of

MSD are close to but lower than those in water, the power-law exponent β in MSD(t) ∝ tβ

gradually decreases with increase in time. After an inflection point at about t ≈ 0.01 s, β

restarts to increase, approaching to 1. With increase in the probe concentration, the value
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FIG. 4. (color online) Left: Mean-square displacement (MSD) of probe particles dispersed in

water (Cp = 0 %) and in PEO aqueous solution (Cp = 0.7 % [Cp/C
∗ = 23]) for three probe

concentrations as a function of time. Right: Absolute value of the complex specific viscosity of

PEO aqueous solution (Cp = 0.7 %). Red, green and blue lines: micro-rheology using 0.1 % (red),

0.25 % (green) and 1.0 % (blue) probe concentrations. Black line: macro-rheology by flow test.

Gray line: macro-rheology by dynamic test.

of sample transport mean free path l∗ decreases, and accessible MSD range shifts to lower

values. At the given experimental conditions, with the probe concentration of 1 %, the

smaller limit of MSD can be as low as several nm2, giving an advantage of the method. It

is possible to expand the accessible time range to longer time scale by decreasing the probe

concentration.

A simple way to validate the accuracy of micro-rheology is to compare it with macro-

rheology. Since we can reasonably consider that the probe size (2R = 457 nm) is sufficiently

larger than the characteristic length scales of the polymer solutions, the GSER can be applied

to estimate rheological properties of the solution from MSD of the probes dispersed in the

solution. From MSD, complex modulus then complex viscosity are calculated with the help

of the GSER. In Fig. 4 right, absolute value of the micro-rheologically determined complex

specific viscosity is plotted as a function of frequency for the three probe concentrations,

compared with that from macro-rheology in both flow and dynamic measurements. We can
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FIG. 5. (color online) Left: Dynamic moduli of PEO aqueous solutions. Solid (or dashed) lines:

storage (or loss) modulus by micro-rheology. Closed (or open) circles: storage (or loss) modulus

by macro-rheology. Polymer concentrations are 0.7 % (red), 1.0 % (green), 1.5 % (blue), and

2.0 % (brown). Right: Absolute value of the complex specific viscosity of PEO aqueous solution.

Solid lines: micro-rheology. Closed circles: macro-rheology. Probe concentration is 0.25 % for all

polymer concentrations.

see that the three curves for micro-rheology and those for macro-rheology superpose with

each other, covering a wide time range. This result indicates that the GSER can be applied

to estimate the viscoelastic properties of this system.

In Fig. 5, macro- and micro-rheology are compared for four representative polymer con-

centrations in entangled concentration regime. Left panel shows the dynamic modulus

G∗(ω). In macro-rheology which covers a frequency range of about 0.001 < ω < 100 rad/s,

Maxwell-like behavior of entangled polymer solutions is observed. A crossover between G′(ω)

and G′′(ω) exists for all the polymer concentrations shown here. In the same figure, results

of microrheology with a probe concentration of 0.25% are also shown. We can access a

frequency range of about 0.1 < ω < 105 rad/s by micro-rheology, partly overlapping the

frequency range of macro-rheology. Right panel shows the absolute value of the complex
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specific viscosity η∗sp(ω) = (η∗(ω)− ηs)/ηs, where the complex viscosity η∗(ω) = G∗(ω)/(iω)

is derived from G∗(ω) shown in the left panel. We see that macro-rheological G∗(ω) and

|η∗sp(ω)| agree well with those estimated by DWS micro-rheology without adjustable param-

eters at intermediate overlapping frequencies.
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D. High-frequency behavior (micro-rheology)
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FIG. 6. (color online) Left: Mean-square-displacement (MSD) of probe particles dispersed in PEO

aqueous solution for each polymer concentration before shifting the curves. Right: Master curve

constructed at short time regime made from individual MSD curves shown in left panel. Reference

polymer concentration is 0.05 %. Overlapping concentration is C∗ = 0.030 %. Inset of right panel:

Concentration dependence of the horizontal shift factor (red) and vertical shift factor (blue) used

to construct the MSD master curve. Probe concentration is 0.1 % for all polymer concentrations.

As shown in Fig. 1, there should be the Rouse mode at the time scale shorter than the

elastic plateau, and the boundary between these two modes should give the Rouse time τe of

the ideal chain (of blobs) between two neighboring entanglements. To study the Rouse mode

in more detail, it is rational to extend the polymer concentration range to the unentangled

semi-dilute regime. Here we examine TCS for MSD for a polymer concentration range

between 0.05 and 0.8 %, to superpose the data of MSD at short time scale. The probe

concentration is 0.1 %. Corresponding macroscopic measurements cannot be performed as

the short time range is not accessible with conventional mechanical rheometers. In Fig. 6

left, curves of the original MSD before performing TCS are shown. These data cover the

short time range down to about 10−5 s, where polymer concentration dependence is weak.

At long time range, more pronounced polymer concentration dependence appears, and the
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values of MSD are lower for higher polymer concentrations, corresponding to the transient

elasticity due to entanglements. Using the lowest polymer concentration studied here (0.05

%) as reference, we found that a TCS is satisfied for the short time range as shown in Fig. 6

right. As expected, the data at long time range are not superposed with this TCS. In the

inset of Fig. 6 right, the vertical and horizontal shift factors are plotted as a function of

the polymer concentration. The values of the vertical and horizontal shift factors exhibit

power-law behavior, and they are almost identical to each other. That is, the horizontal

shift factor (red) for t scales with the PEO concentration as ∼ Cy
p with y = 2.6, and the

vertical shift factor (blue) for MSD scales as ∼ Cz
p with z = 2.5.

According to the theoretical predictions, for athermal solvents, relaxation time of entan-

glement strands and entanglement plateau modulus depend on the polymer volume fraction

ϕ as τe ∼ ϕy with y = −3ν/(3ν − 1) and Ge ∼ ϕz with z = 3ν/(3ν − 1) respectively (see

Eqs. (5) and (8)). Thus, we have |y| = z ≃ 2.3. These values are similar to those which we

experimentally found, 2.5 and 2.6. It should be noted that for θ solvents, |y| = 5/3 ≃ 1.7

and z = 7/3 ≃ 2.3. Thus we conclude that the entanglement time, the longest limit of the

relaxation time of the Rouse mode, in a good solvent is successfully detected (see Table I).
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E. Analysis of Rouse and Zimm modes
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FIG. 7. (color online) Left: Time dependence of the product of the particle radius (R) and

mean-square-displacement (MSD) of probe particles dispersed in PEO aqueous solutions. For

Cp = 1.25%, we obtain τe ≈ 0.00010 s, τξ ≈ 1.7 × 10−6 s, a ≈ 31 nm and ξ ≈ 11 nm when

Ne(1) = 13 (see text). Right: Master curve constructed by shifting the original curves shown in

left panel so that they overlap at short time regime. Reference polymer concentration is 0.3 %.

We obtain τe ≈ 0.0039 s, τξ ≈ 0.000025 s, a ≈ 124 nm and ξ ≈ 26 nm. Probe concentration is 1 %.

As shown in the previous section (IVD), TCS at short time range allowed us to detect the

Rouse mode. Here we further characterize the Rouse mode as quantitatively as possible by

inspecting the upper and lower limits of it in the MSD curve. To improve further accuracy of

the measurements for small values of MSD, we used the MSD data measured with the probe

concentration of 1 %. Now it is beneficial to consider the product of MSD and the probe

size R, as it has the unit of volume thus allows us to compare it with characteristic volumes

of the system [48]. In Fig. 7 left, R×MSD is plotted as a function of time for various PEO

concentrations. Here we propose a new method to evaluate the upper and lower limit of the

Rouse mode.

The upper limits of R×MSD and t of the Rouse regime correspond to the occupied volume
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a2ξ and relaxation time τe of the entanglement strand, respectively, and as shown in Eq. (11),

the corresponding specific viscosity is ηsp ≈ Ne(1) (or solution viscosity η ≈ [1 +Ne(1)]ηs).

According to the Stokes-Einstein law, the value of R×MSD for the purely viscous solution

with the viscosity [1 + Ne(1)]ηs is given by kBT
[1+Ne(1)]ηsπ

t. By using the reference value of

Ne(1) = 13, we can plot it as a function of time in Fig. 7 left as a gray straight tilted line

labeled as “[1 + Ne(1)]ηs”. We assume that the vertical and horizontal coordinates of this

cross-point give R ×MSD ≈ a2ξ and t ≈ τe, respectively. As an example, in the figure, the

crossover point for Cp = 1.25 % is shown.

We apply the same argument to the lower limit of the Rouse regime. The lower limits of

R×MSD and t of the Rouse regime correspond to the occupied volume ξ3 and relaxation time

τξ of the blob, respectively, and as shown in Eq. (11), the corresponding specific viscosity is

ηsp ≈ 1 (or solution viscosity η ≈ 2ηs). The value of R ×MSD (= kBT
2ηsπ

t) corresponding to

the viscosity 2ηs is drawn in Fig. 7 left as a gray straight tilted line labeled as “2ηs”. We

suppose that this cross-point indicates the lower limit of the Rouse regime thus its vertical

and horizontal coordinates give R × MSD ≈ ξ3 and t ≈ τξ, respectively. Consequently,

we have τe ≈ 0.00010 s, τξ ≈ 1.7 × 10−6 s, a ≈ 31 nm and ξ ≈ 11 nm for the polymer

concentration Cp = 1.25 % (see Fig. 7 left). It should be noted, however, that the two cross-

points exist only at the limited concentrations due to the narrow data range of R ×MSD.

For example, for the polymer concentration Cp = 1.25 %, both upper and lower cross-points

can be found, while for Cp = 0.3 %, no upper cross-point can be detected.

In order to expand the data range, we used the TCS method. The master curve of

R×MSD was successfully obtained from the data shown in Fig. 7 left similarly to the result

of MSD with the probe concentration of 0.1 % (Fig. 6). Reference polymer concentration to

make the master curve is set to 0.3 % which is above Ce. It is demonstrated that the master

curve has both upper and lower cross-points with the lines corresponding to the solution

viscosity of 2ηs and [1+Ne(1)]ηs. The slope of the master curve β = d lnMSD(t)/d ln t varies

smoothly with time, while we can idenfity a regime with β about 0.23 at long-time range

over several decades, corresponding to the elastic “plateau” by the entanglements. With

decrease in time, β gradually increases, and at about t = 0.01 s, we see a regime where β
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FIG. 8. (color online) Characteristic lengths ξ, a (left) and characteristic times τξ, τe (right) as a

function of polymer concentration on log-log scale. Filled circles show these quentities estimated

from the original MSD curves before performing the TCS (Fig. 7 left), whereas open squares

represent those obtained from the MSD master curve after the TCS (Fig. 7 right).

is about 0.5, corresponding to the Rouse mode. The upper cross-point seems close to the

upper limit of this power-law regime, while the lower cross-point is slightly lower than the

lower limit of this power-law regime. At further short time range, β increases to about 1,

and the value of R×MSD is very close to that of the probe in the solvent (water) with the

viscosity of ηs shown as gray line labeled as “ηs”. Note that inertial effects that should exist

at this short time regime (≈ 10−7 s) cannot be detected in the TCS master curve because

the master curve at this regime is just an extrapolation of the curves at longer time regime

where inertial effects do not exist.

The reference polymer concentration to make the TCS master curve can be arbitrarily

chosen. For each reference concentration, a set of the four parameters (ξ, a, τξ, τe) can

be determined by the same method as explained in the previous paragraph for the original

curves without the TCS. Figure 8 shows log-log plots of the thus-obtained ξ and a versus

Cp (left panel) as well as τξ and τe versus Cp (right panel) by open symbols. The same set

of data, determined from the original R×MSD curves without the TCS (Fig. 7 left), is also

plotted in Fig. 8. The two data sets are sufficiently close and TCS can provide more data

points at lower concentrations.

As seen in Fig. 8 left, both ξ and a decrease with increasing Cp, exhibiting a power-
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law behavior. Since the theory predicts ξ ≈ bϕ−ν/(3ν−1) (Eq. (1)), we fitted the data of ξ,

obtained from the TCS master curve, by Eq. (1) with b as a fitting parameter. With the

reference value ν = 0.588, the power-law fit (blue dashed line) is well performed, and we

found b = 0.81 nm [49]. The order of this value is sound, compared to the reference values

(1.1 nm for a melt [34], 0.7 nm measured by single molecule force spectroscopy by atomic

force microscopy for aqueous solution [50]). The tube diameter a is proportional to ξ, i.e.,

a ≈ ξ
√

Ne(1) ≈ b
√

Ne(1)ϕ
−ν/(3ν−1) for athermal solvents, thus both lengths exhibit the

same power-law exponent. With the result of the fit for ξ and with the reference value of

Ne(1) = 13, we can also draw a prediction line for a for athermal solvents (red dashed line

in Fig. 8 left). We see that the predicted power-law exponent is found reasonably close to

experimental one.

It is worth comparing these characteristic lengths ξ and a with the polymer size RZ ≈

392 nm in dilute solution, which is indicated by a dashed horizontal line in Fig. 8 left. By

extrapolating the experimental values of ξ to lower concentration domain (dashed blue line

in Fig. 8 left), we find that the extrapolated ξ at C∗ is roughly close to RZ, as expected from

theory. Also, theory predicts that RZ is close to a at Cp = Ce [34], which is also roughly

confirmed in the same figure. These results suggest validity of the estimated ξ and a by the

method proposed here.

In the right panel of Fig. 8, the values of τξ and τe are plotted as a function of Cp. These

two characteristic time decrease with increasing the polymer concentration, exhibiting a

power-law behavior. We fitted the data of τξ with Eq. (4), τξ ≈ τ0ϕ
−3ν/(3ν−1), by using

ν = 0.588 to find the value of τ0. The blue dashed line with τ0 = 0.73 ns fits well with the

experimental result obtained from the TCS master curve [51]. Equation (5) indicates τe ≈

Ne(1)
2τξ ≈ τ0Ne(1)

2ϕ−3ν/(3ν−1) for athermal solvents, allowing us to draw the corresponding

theoretical value of τe (red dashed line in Fig. 8 right). This line well superposes on the

experimental values of τe. We can also estimate τ0 from b by using τ0 ≈ ηsb3

kBT
(Eq. (3)).

With b = 0.81 nm determined from the fitting of ξ, we found τ0 = 0.12 ns. This value is

smaller than but comparable to that determined from the fitting of τξ. By using the value of

the polymer size in dilute solution RZ (≈ 392 nm), the characteristic relaxation time of the
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polymer, τZ, can be estimated as τZ ≈ ηsRZ
3

kBT
≈ 0.013 s. This value is close to τξ extrapolated

to Cp = C∗ (blue dashed line) as theoretically predicted. These results confirm that the

high-frequency TCS can observe the scaling behavior of the characteristic times related to

the Rouse mode reasonably well.

At further shorter time scale, there is a transition of the dynamic modes, from Rouse mode

to Zimm mode. This crossover point is determined by the blob size ξ, with its characteristic

relaxation time τξ and modulus Gξ. Thus Zimm mode is expected to be found in the narrow

zone between the tilted line of R ×MSD for ηs and that for 2ηs. However, it is difficult to

investigate the power-law behavior of the Zimm mode in this narrow range, since the effect

of the solvent cannot be easily removed from MSD.

In order to observe the Zimm mode, we switch to the complex viscosity, since the contri-

bution of the solvent can be removed from it in a straightforward way when it is expressed

as the specific viscosity, and on log-log scale the regime corresponding to the Zimm mode is

expanded (regime II in Fig. 1). Figure 9 left shows the magnitude of the microrheological

complex specific viscosity |η∗sp(ω)| before performing the TCS derived from the MSD shown

in Fig. 7 left by using GSER for each polymer concentration. As we explained in Fig. 1, the

upper and lower limits of the Rouse regime are given by |η∗sp(ω)| ≈ Ne(1) and |η∗sp(ω)| ≈ 1.

They are indicated as horizontal black solid lines in Fig. 9 left. The cross-point between the

horizontal line for |η∗sp(ω)| ≈ Ne(1) and the curves for |η∗sp(ω)| should correspond to 1/τe.

In the figure, as an example, the cross-point for the polymer concentration Cp = 0.8 % is

shown. We found τe = 0.00038 s. In the same manner, the cross-point with the horizontal

line |η∗sp(ω)| ≈ 1 can be used to determine τξ, and the cross-point for Cp = 0.3 % is shown

in the figure (we found τξ = 0.000015 s).

It should be noted that these cross-points can be observed only for a limited range

of concentration because frequency range of the measurable |η∗sp(ω)| is restricted due to

measurement limit of the MSD. It is thus useful to apply the TCS to expand the accessible

frequency range of |η∗sp(ω)|. Figure 9 right shows the master curve of |η∗sp(ω)| with Cp = 0.3 %

as a reference concentration. The shift factors to make the master curve are shown in Fig. 10

left. Both vertical (for |η∗sp|) and horizontal (for ω) shift factors exhibit power-law behaviors.
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FIG. 9. (color online) Left: Micro-rheological absolute specific viscosity |η∗sp(ω)| for PEO aqueous

solutions. Polymer concentration Cp is different for each curve. We obtain τξ = 0.000015 s for

Cp = 0.3% and τe = 0.00038 s for Cp = 0.8%. Right: Master curve of |η∗sp(ω)| constructed by

shifting the original curves shown in the left panel. Reference polymer concentration is 0.3 %. We

obtain τe = 0.0028 s and τξ = 0.000015 s for this reference polymer concentration (0.3%). Probe

concentration is 1%.

We found that the exponent of the vertical shift factor is −0.033, and that of the horizontal

shift factor is −2.2. These values well agree with the theoretical values for the Rouse mode

(and the Zimm mode) in a good solvent, i.e., 0 for |η∗sp| and −2.3 for τe (and τξ) (see

Eqs. (4), (5) and (11)).

We can see from Fig. 9 right that the superposition of |η∗sp(ω)| is satisfactory, covering a

wide range of the specific viscosity and frequency. The cross-points of the master curve with

the horizontal lines |η∗sp(ω)| ≈ Ne(1) and |η∗sp(ω)| ≈ 1 exist, and between them, a power-law

behavior with a slope of −0.5 is observed. Thus this mode well corresponds to the Rouse

mode (see regime III in Fig. 1 top). ¿From the cross-points, we found τe = 0.0028 s and

τξ = 0.000015 s when the reference concentration is 0.3 %. These values are close to those

determined from the MSD master curve (0.0039 s and 0.000025 s) shown in Fig. 7 right.

Furthermore, the ratio between τe and τξ is τe/τξ ≈ 187, which is close toNe(1)
2 = 132 = 169.

These results confirm the presence of the Rouse mode at 1/τe < ω < 1/τξ.

In Fig. 10 right, we compared the values of τe and τξ determined from MSD and |η∗sp|,

before and after performing the TCS for these quantities. Similarly to the results for MSD

30



-2.2

-0.033

for ω

for |ηsp
* |

10-1 100
10-2

10-1

100

101

Cp, %

Sh
if
t
fa
ct
o
rs

□
□

□
□□
□
□

□

□□
□
□

●

●●
●
●

●●
●
●

τZ

CeC*

From MSD
Before After
TCS TCS
● □ τe
● □ τξ

From |ηsp
* |

Before After
TCS TCS
× ◇ τe
× ◇ τξ

×

×

××
×
×

◇
◇

◇
◇◇
◇
◇

◇

◇◇
◇
◇

10-2 10-1 100
10-7

10-6

10-5

10-4

10-3

10-2

10-1

Cp, %

τ ξ
an
d
τ e
,
s

FIG. 10. (color online) Left: Horizontal shift factor (cyan) and vertical shift factor (magenta)

that were used to construct the master curve of |η∗sp(ω)| shown in Fig. 9 right. Right: Diagonal

crosses (×) represent τξ and τe estimated from the original |η∗sp(ω)| curves before performing the

TCS (Fig. 9 left), whereas the open diamonds (⋄) show τξ and τe derived from the master curve of

|η∗sp(ω)| after the TCS (Fig. 9 right). The remaining data (filled circles and open squares) are the

same as those presented in Fig. 8 right.

shown in Fig. 8 right, the TCS for |η∗sp(ω)| allows us to have more data points (especially

those of τξ) than before performing the TCS. The results from MSD and those from |η∗sp(ω)|

are very close, suggesting that the method applying the cross-points with the auxiliary lines

is valid.

In a wide range at low frequency covering about 10−1 rad/s < ω < 102 rad/s, a power-

law behavior with a slope of −0.77 is found (Fig. 9 right), which should correspond to

the elastic “plateau” (regime IV in Fig. 1 top), though the value of the slope is different

from that expected from theory (−1). At the high frequency range, another dynamic mode

is recognized because the power-law exponent changes from −0.5 to about −0.29. The

crossover between this new mode and the Rouse mode is observed where |η∗sp(ω)| ≈ 1 (see

the horizontal line connecting points B and B’ in Fig. 1). Therefore we believe that the

Zimm mode is observed in |η∗sp(ω)| at frequencies higher than 1/τξ corresponding to |η∗sp(ω)|

smaller than 1, though the value of the slope in this range, −0.29, is slightly different from the

theoretical value of the slope for the Zimm mode, −0.43 (with ν = 0.588). This discrepancy

is not due to the TCS. As shown in Fig. 9 right, though the data range is limited, still

one can see that the curves for Cp = 0.10 and 0.15 % before the TCS exhibit already the
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slope of −0.29. There are several possible reasons for this discrepancy. Firstly, at the high

frequency domain satisfying |η∗sp(ω)| ≲ 1, where |η∗(ω)| of the solution is comparable to the

solvent viscosity ηs, subtraction of ηs from |η∗(ω)| enlarges errors in |η∗sp(ω)|. Secondly, error

in the measurement of the particle size (a few %) propagates to the microrheological |η∗sp(ω)|

through GSER, which is enlarged at high frequency because the value of the real part of the

complex viscosity η′(ω) becomes close to the solvent viscosity ηs.

V. CONCLUSION

We studied linear viscoelasticity of high molecular-weight linear flexible polymer in semi-

dilute entangled concentration regime by using passive microrheology based on diffusing-

wave spectroscopy (DWS). We successfully detected the Rouse regime for a chain of blobs

where the frequency-dependence of |η∗sp(ω)| is ≈ ω−1/2 at 1/τe < ω < 1/τξ and the time-

dependence of the mean-square displacement (MSD) is ≈ t1/2 at τξ < t < τe. We confirmed

that both lower bound (t = τξ) and upper bound (t = τe) of the Rouse regime show the

power-law behavior predicted by the theory. The values of the crossover times τe and τξ

estimated from |η∗sp| well agreed with those estimated from R×MSD with and without the

time-concentration superposition. Considering that the upper bound of the Zimm regime

corresponds to the lower bound of the Rouse regime, we can conclude that the upper bound

of the Zimm mode at t = τξ was successfully detected by the DWS microrheology too. To

the best of the authors’ knowledge, this is the first systematic microrheological observation

of the crossover of these two modes characterized by the blob.

At t < τξ, Brownian motion of the probe particles in polymer solution is dictated by

the viscosity of solvent. But there seems to be no reasonable way (so far) to subtract the

contribution from the solvent viscosity kBT
πRηs

t from the MSD of the particles in the solution.

Thus it would be hard to detect the characteristic power-law behavior of the Zimm mode in

the MSD that should exist at t < τξ. On the other hand, in the microrheological |η∗sp(ω)|,

solvent viscosity ηs is already subtracted from the complex viscosity η∗(ω). Thus it would be

natural to expect that the microrheological |η∗sp(ω)| could detect the Zimm mode at ω > 1/τξ
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where the effect of the solution viscosity is nonnegligible. We observed |η∗sp(ω)| ≈ ω−0.29 at

ω > 1/τξ, which is slightly different from the one expected from the theory (≈ ω−0.43).

The discrepancy may be attributed to dispersity of the particle size that fluctuates a few

% around its average because error in the microrheological |η∗sp(ω)| is more influenced by

the particle size at higher frequency. A systematic study for the effect of particle size on

viscoelastic functions in high-frequency regime and MSD of probe particles in short time

regime is a future work.
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