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Abstract

Two of the principle tasks of causal inference are to define and estimate the effect of a treatment on
an outcome of interest. Formally, such treatment effects are defined as a possibly functional summary
of the data generating distribution, and are referred to as target parameters. Estimation of the target
parameter can be difficult, especially when it is high-dimensional. Marginal Structural Models (MSMs)
provide a way to summarize such target parameters in terms of a lower dimensional working model. We
introduce the semi-parametric efficiency bound for estimating MSM parameters in a general setting. We
then present a frequentist estimator that achieves this bound based on Targeted Minimum Loss-Based
Estimation. Our results are derived in a general context, and can be easily adapted to specific data
structures and target parameters. We then describe a novel targeted Bayesian estimator and provide a
Bernstein von-Mises type result analyzing its asymptotic behavior. We propose a universal algorithm
that uses automatic differentiation to put the estimator into practice for arbitrary choice of working
model. The frequentist and Bayesian estimators have been implemented in the Julia software package
TargetedMSM.jl. Finally, we illustrate our proposed methods by investigating the effect of interventions
on family planning behavior using data from a randomized field experiment conducted in Malawi.

1 Introduction

Causal inference is concerned with defining and estimating the effect of a treatment on an outcome of
interest. For example, consider the Conditional Average Treatment Effect parameter. Let O1:n be n i.i.d.
draws from a distribution P0 of a generic variable O = (X,A, Y ) where X is a vector of covariates, A is
a binary treatment indicator, and Y a binary outcome. The CATE is defined as the following functional
summary of P ,

Ψ]
P (X) := EP [Y |A = 1, X]− EP [Y |A = 0, X] ,

and is interpretable as the expected difference in outcome given treatment vs. non-treatment within
strata of covariates X.

Estimating Ψ]
P (X) may be challenging, especially when X is high-dimensional. One way to proceed

would consist in assuming (recklessly) that Ψ]
P (X) belongs to a known low-dimensional parametric

model. Suppose there are V ⊂ X potential treatment effect modifiers. A parametric model for the
marginal distribution of Ψ]

P (X) that assumes a linear functional form conditional on V could be

EP [Ψ]
P (X) | V ] = MSMβ(V ) := β>(1, V )>. (1)

The target of estimation would then be the parameter β ∈ B, which is of lower dimension than Ψ]
P (X).

This approach was originally introduced by Robins (1998); in this line of research, the assumed parametric
model on the marginal distribution of the target parameter is referred to as a Marginal Structural Model
(MSM).

In practice, the correct functional form of the parameter of interest will not be known. Any parametric
model that is adopted will usually be misspecified. Non-parametric Marginal Structural Models build on
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MSMs without assuming correct specification (Neugebauer and van der Laan, 2007; van der Laan and
Rose, 2011). The idea is to summarize the parameter of interest in terms of a lower-dimensional working
model with respect to a loss function. For example, in the spirit of (1), we could define a new parameter
B(P ) as

B(P ) := arg min
β∈B

EP
[(

Ψ]
P (X)−MSMβ(V )

)2]
.

That is, MSMB(P )(V ) is the best linear approximation of Ψ]
P (X) in terms of V with respect to squared-

error loss function. Note that, in contrast to the first approach, the definition of B(P ) introduces no

statistical assumptions on the form of Ψ]
P . We adopt this non-parametric approach to MSMs in the

current work, providing a general definition and notation in Section 2.
Continuing in the same spirit, we seek to estimate B(P0) as non-parametrically as possible, without

making any parametric assumptions on the distribution P0. We only assume that P0 is within a non-
parametric model M of laws defined on the support of the observed data. The goal is to construct an
asymptotically normal and efficient estimator of B(P0). The first step is to derive the efficient influence
function (EIF) D∗(P ) of the target parameter at any P ∈ M. Knowledge of the EIF is key because its
variance defines the semi-parametric efficiency bound of estimating B(P0), and it serves as a building
block for constructing efficient non-parametric estimators. We review relevant ideas from semi-parametric
efficiency theory and present the form of the EIF for B in Section 3.

Next, we draw on the Targeted Learning framework, specifically Targeted Minimum Loss-Based
Estimation (TMLE), to build an efficient estimator of B(P0) (van der Laan and Rose, 2011, 2018).
Suppose we have an initial estimate of P0, P ◦n ∈ M. While the plug-in estimator B(P ◦n) will typically
be biased, the core insight of TMLE is that it is possible to mitigate this bias and achieve asymptotic
normality by carefully fluctuating the initial estimate P ◦n . In broad strokes, we define a parametric
fluctuation P ◦n,ε with parameter ε ∈ Rp. An estimate ε∗n of ε is found by minimizing an empirical
risk associated with a carefully chosen loss function. An updated estimate of B(P0) is then derived by
plugging in the fluctuated law, as B(P ◦n,ε∗n). The key property of the fluctuation and loss function, from
which the desirable properties of TMLE are derived, is that the fluctuated law empirically solves the
efficient influence function D∗; that is,

1

n

n∑
i=1

D∗(P ◦n,ε∗n)(Oi) = op(n
−1/2).

It is for this reason that the estimator is called targeted, because it solves the efficient influence function
of the parameter of interest. Under conditions on the estimator P ◦n , it is possible to show that the
updated estimate is asymptotically normal and efficient with asymptotic variance given by the variance
of the efficient influence function.

Estimators based on TMLE have been developed for a number of marginal structural models in various
contexts. These include estimators for vector-valued treatment assignments, time-varying treatments,
and instrumental variable designs (Stein et al., 1956; Rosenblum and van der Laan, 2010; Petersen et al.,
2014; Toth and van der Laan, 2016; Zheng et al., 2016, 2018). In practice, users may wish to test
several alternative working model specifications and loss functions. This is difficult to do using existing
approaches, as the estimators (and related software) are constructed for specific classes of working models
and loss functions. Our results build off these works by proposing a TMLE based estimation strategy in
a generalized data structure and for arbitrary MSM loss functions and working models. In Section 4 we
provide a blueprint for building targeted estimators for MSMs with arbitrary working models and loss
functions. Our quite general software implementation is made possible by an algorithm that adapts to
the choice of loss function and working model using automatic differentiation (Baydin et al., 2018).

Statistical inference can be loosely categorized into frequentist and Bayesian approaches, correspond-
ing to different interpretations of probability (Bayarri and Berger, 2004; Hájek, 2019). TMLE was
developed within the frequentist paradigm, drawing on a long line of research in semi-parametric effi-
ciency theory; see Bickel et al. (1993); van der Vaart and Wellner (1996); van der Vaart (1998) among
many others. A Bayesian version of TMLE was first discussed in van der Laan (2008), based on the
observation that, if a likelihood is adopted for the parametric fluctuation P ◦n,ε, then the parameter ε
can be estimated via Bayesian inference. Such an approach was later extended to estimation of average
treatment effects and class proportions in an unlabeled dataset (Diaz et al., 2011; Dı́az et al., 2020). We
build on this research, and describe a novel Bayesian estimator in Section 5 that is the first Bayesian
targeted estimator to be proposed for MSMs.
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As an illustrative example, we consider the problem of estimating the association between a multi-
faceted family planning intervention on contraceptive use in a cohort of women in Malawi using data
collected in a randomized field experiment (Karra et al., 2022). We define a Marginal Structural Model
to summarize how the treatment effect depends on the participant’s number of children. The results are
presented using both frequentist and Bayesian approaches in Section 8.

In summary, the rest of the article proceeds as follows. In Section 2 we provide a general definition
and notation for Marginal Structural Models. In Section 3 we use results from semi-parametric efficiency
theory to derive the efficiency bound for estimating MSMs in non-parametric models. In Section 4 we
present an estimator based on Targeted Minimum Loss-Based Estimation that achieves the efficiency
bound. In Section 5 we develop a novel targeted Bayesian estimator for MSMs. In Section 6 we discuss
details of the software implementation. In Section 7 we share the results of a simulation study. In Section
8 apply the estimators to an example. Finally, we conclude with a discussion in Section 9.

2 Marginal Structural Models

2.1 Statistical Viewpoint

Recall that we have n i.i.d. draws O1:n from a distribution P0 of a generic variable O. Let O be the
support of P0. We assume only that P0 falls in a non-parametric model M of laws on O. Further,
suppose O can be decomposed into two variables, O = (X,Z) (this is always possible, as Z can be set
to the trivial set). Let X and Z denote the spaces to which X and Z belong. For any P ∈ M, let
ΨP : X → R be a functional summary of P , with ΨP a member of the function class F . For later
convenience, we introduce T := ∪P∈MΨP (X ) (that is, the union of the images of all ΨP s). We focus
on instances where T is an open set. We also assume that ΨP depends on P through a finite tuple of

parameters Q̄P =
(
Q̄

(0)
P , . . . , Q̄

(J)
P

)
.

Example. Conditional Average Treatment Effect. Let Z = (A, Y ), where A is a binary treatment
indicator and Y is a binary outcome. Let gP (a, x) := P (A = a|X = x), and suppose that gP (a,X) >

0 holds P -almost-surely for all P ∈ M and a ∈ {0, 1}. Let Q̄
(a)
P (X) := EP [Y |A = a,X], which

is defined almost surely on X . Define Ψ]
P (x) := Q̄

(1)
P (x) − Q̄(0)

P (x), interpretable as the expected
difference in the outcome for treatment vs. non-treatment within the strata of covariates X = x.
Appendix 11.5 considers the case when Y ∈ R.

For convenience, we will write ψ0 := ΨP0
to denote the functional under the true data generating

distribution P0. Estimating the functional ψ0 across its entire domain may be challenging, especially if
X is high dimensional. The idea with MSMs is to seek an approximation of the functional ψ0 defined by
a lower-dimensional working model. In other words, instead of estimating ψ0, we estimate a parameter
for the working model that leads to the best possible approximation of ψ0 within the working model as
measured by the risk induced by a well-chosen, problem-specific loss function.

Formally, a loss function is a function L : R× R→ R such that, for all f ∈ F ,

EP [L(ΨP (X),ΨP (X))] ≤ EP [L(ΨP (X), f(X))] .

The working model is a collection {mβ : β ∈ B} of functions mβ : X → R with B a parameter of
dimension p. For convenience, we write Lm(t,β)(X) := L(t(X),mβ(X)) for all t ∈ T and β ∈ B. The
target parameter B(P ) ∈ B is defined as any solution to the following optimization problem:

B(P ) ∈ arg min
β∈B

EP [Lm(ΨP ,β)(X)] . (2)

Note that B(P ) depends on P only through the functional summary ΨP and the marginal distribution
of X, which we denote Q.

From now on, we assume that there is a unique minimizer of (2) in the case where P = P0. We call
this minimizer β0 := B(P0). Moreover, we focus on loss functions L such that β 7→ Lm(ψ0,β)(X) is
twice differentiable with a Hessian at β0 denoted by L̈m(ψ0,β)(X). In a nutshell, it therefore holds that
β0 solves the implicit equation

0 =
∂

∂β
EP0

[Lm(ψ0,β)(X)]

∣∣∣∣
β=β0

.
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Assuming that the gradient and expected value can be interchanged, then β0 also solves the equation

0 = EP0

[
L̈m(ψ0,β0)(X)

]
.

This equality will play an important role in the semi-parametric analysis of the target functional B.

Example (cont’d). Let V ⊂ X be a set of (p− 1) treatment effect modifiers. We adopt a linear
working model with an intercept term

mβ : X 7→ β>(1, V )> for all β ∈ B := Rp, (3)

and a squared-error loss function given by L(a, b) := (a− b)2, hence

Lm(Ψ]
P ,β)(X) = (Ψ]

P (X)−mβ(X))2. (4)

The target parameter is then given by

B](P ) = arg min
β∈B

EP
[(

Ψ]
P (X)− β>(1, V )>

)2]
.

Note that when V = ∅ the parameter B](P ) reduces to the Average Treatment Effect (ATE):

B](P ) = EP
[
Ψ]
P (X)

]
= EP

[
Q̄

(1)
P (X)− Q̄(0)

P (X)
]
.

2.2 Causal Viewpoint

While the main focus of this work is statistical, we review briefly the causal interpretation of the target
parameter B(P ). The parameter B(P ) can be viewed as a projection of the parameter ΨP onto a lower-
dimensional space. As such, B(P ) is causally identifiable under the same conditions for which ΨP is
identifiable. Formally, let P the causal law from which P arises, that is, P is the law of the complete data
(including unobservable potential outcomes) and P is a joint marginal law thereof. Let ΨC

P be a causal
functional summary of P and BC(P) be the causal analog to B(P ), defined as

BC(P) = arg min
β∈B

EP
[
Lm(ΨC

P ,β)(X)
]
. (5)

Suppose that there are a set of identification assumptions sufficient to show that ΨP (X) = ΨC
P (X). It

is then straightforward to see that B(P ) = BC(P) under the same conditions by direct substitution of
ΨP (X) for ΨC

P (X) in (5).

Example (cont’d). The parameter Ψ]
P is identifiable under standard causal assumptions which

are reviewed below for completeness. Let Y (a) be the potential outcome under treatment assignment
a ∈ {0, 1}. Define the causal parameters

ΨC,]
P (X) := EP[Y (1) | X]− E[Y (0) | X],

BC,](P) := arg min
β∈B

EP

[(
ΨC,]

P (X)− β>(1, V )>
)2]

.

We seek conditions under which BC,](P) = B](P ). Assume
1. Consistency: Y = Y (A).

2. Positivity: gP (a,X) > 0 for both a ∈ {0, 1}, P -almost surely.

3. No unmeasured confounders: under P, Y (a) ⊥⊥ A | X for both a ∈ {0, 1}.
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Under these conditions,

ΨC,]
P (X) = EP[Y (1) | X]− EP[Y (0) | X]

= EP[Y (1) | A = 1, X]− EP[Y (0) | A = 0, X] (assumptions 2 and 3)

= EP [Y | A = 1, X]− EP [Y | A = 0, X] (assumption 1)

= Ψ]
P (X).

It then follows directly that BC,](P) = B](P ).

3 Semi-Parametric Efficiency Theory

Our goal is to find an asymptotically efficient estimator of β0 := B(P0) ∈ Rp, the value of the parameter
of interest under the true data generating distribution P0. We first review some semi-parametric efficiency
theory through which we can derive the non-parametric efficiency bound for estimating β0 (van der Vaart,
2002).

In this section, we derive the semi-parametric efficiency bound for estimating β0 in a non-parametric
model M (that is, M is the set of all laws P on X × Z such that B(P ) is well-defined). The semi-
parametric efficiency bound for estimating B(P ) is defined via the concept of the hardest parametric
submodel. For any P ∈M, for any integer k ≥ 1 and for all

s ∈ S :=
{
h ∈ (L2

0(P ))k : h 6= 0, ‖h‖∞ <∞,EP [h(O)h(O)>] invertible
}
,

define a parametric submodel Ps := {Ps,ε : ε ∈ Rk, ‖ε‖∞ < ∞} ⊂ M, characterized by dPε,s =
(1 + ε>s)dP . The invertibility condition in the definition of S amounts to a condition that Ps is
identifiable. Note that Ps,ε = P at ε = 0, and the score of P equals s at ε = 0. That is, Ps is a
fluctuation of P in the direction s.

Assume the derivative ∂
∂εB(Pε,s) exists at ε = 0 for any s ∈ S. The Cramér-Rao bound for estimating

B(P ) within the submodel Ps (that is, the lowest asymptotic variance possible for an unbiased estimator
of B(P ), in the sense of the Loewner order: for any A, B Hermitian matrices, A ≥ B if A−B is positive
semi-definite) is given by[

∂

∂ε
B(Pε,s)

∣∣∣∣
ε=0

]>
EP [s(O)s(O)>]−1

[
∂

∂ε
B(Pε,s)

∣∣∣∣
ε=0

]
.

Assume further that there exists a continuous, bounded, linear map Ḃ mapping closure(S) to Rk×p such
that, for all s ∈ S,

∂

∂ε
B(Pε,s)

∣∣∣∣
ε=0

= Ḃ(Pε,s).

We then say that B is pathwise differentiable at P with respect to {Ps : s ∈ S}. By the Riesz represen-
tation theorem, the derivative can be expressed as

∂

∂ε
B(Pε,s)

∣∣∣∣
ε=0

= EP [s(O)D∗(P )(O)>]

for a function D∗(P ) ∈ (L2
0(P ))p which is called the efficient influence function (EIF) of the parameter

B at P . For later convenience, let λ∗(P ) := D∗(P )D∗(P )>. We can then rewrite the Cramér-Rao bound
as

EP [s(O)D∗(P )(O)>]>EP [s(O)s(O)>]−1EP [s(O)D∗(P )(O)>].

The hardest parametric submodel, i.e. the submodel for which estimating B(P ) is the hardest, is the
submodel with the largest Cramér-Rao bound (for the Loewner order). Slightly tedious algebra and the
Cauchy-Schwarz inequality imply that the largest Cramér-Rao bound is

EP [λ∗(P )(O)].

The semi-parametric efficiency bound for estimating B(P ) within a non-parametric model M is then
defined as EP [λ∗(P )(O)]. Deriving the form of D∗(P ) is therefore crucial if we wish to construct efficient
non-parametric estimators of B(P ).
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In the rest of the section the parametric submodel Ps is a theoretical tool used to derive the form of
D∗, so for simplicity we can choose ε to be of dimension one. In the next theorem, we present detailed
conditions under which B(P ) is pathwise differentiable, and characterize the form of D∗(P ).

Result 1 (Efficient Influence Function of B). Let us make the following assumption: for all P ∈M and
for all s ∈ L2

0(P ) such that s 6= 0, ‖s‖∞ <∞, if
{
Pε : |ε| < ‖s‖−1∞

}
⊂M is characterized by dPε

dP = 1+ εs
for every ε ∈ R such that |ε| < ‖s‖−1∞ , then the mapping ε 7→ ΨPε(X) is almost surely differentiable at 0
and

d

dε
ΨPε(X)

∣∣∣∣
ε=0

= EP [∆∗(P )(O)s(O) | X]

for a function ∆∗(P ) ∈ L2
0(P ). Under further assumptions stated in Theorem 3, the target functional

P 7→ B(P ) is pathwise differentiable at every P ∈ M, with an efficient influence function D∗(P ) given
by

D∗(P )(O) = M−1 [D∗1(P )(O) +D∗2(P )(X)] ,

where D∗1(P ), D∗2(P ) ∈ L2
0(P ) are given by

D∗1(P )(O) = ∇L̇(ΨP (X), B(P ))(X)×∆∗(P )(O),

D∗2(P )(X) = L̇(ΨP (X), B(P ))(X),

and the normalizing matrix M is given by

M = −EP
[
L̈m(ΨP (X), B(P ))(X)

]
.

The full statement (Theorem 3) and its proof are given in Appendix 11.1.

Example (cont’d). We can derive the efficient influence function D∗] (P ) for B] at P by applying

Theorem 1. First, we prove a lemma giving the conditional efficient influence function ∆∗] (P ) for Ψ]
P

at P .

Lemma 1 (Conditional Efficient Influence Function of Ψ]). The functional summary Ψ] satisfies
the first assumption of Result 1 with a conditional efficient influence function ∆∗] (P ) ∈ L2

0(P ) at
any P ∈M given by

∆∗] (P )(O) =

{
I(A = 1)

gP (1, X)
− I(A = 0)

gP (0, X)

}
(Y − Q̄(A)

P (X)).

The proof is given in Appendix 11.2. Note that the form of ∆∗] is recognizable as a part of the
efficient influence function for the Average Treatment Effect (van der Laan and Rose, 2011, Chapter
5). With this result in hand, we are ready to state the efficient influence function for the parameter
B].

Theorem 1 (Efficient Influence Function of B]). Suppose that Assumptions (2)-(6) of Theorem 3
are satisfied. Then the target functional P 7→ B](P ) is pathwise differentiable at every P ∈ M,
with an efficient influence function D∗] (P ) given by

D∗] (P )(X,A, Y ) = M−1
{
D∗1,](P )(X,A, Y ) +D∗2,](P )(X)

}
,

where

D∗1,](P )(X,A, Y ) =

{
I(A = 1)

gP (1, X)
− I(A = 0)

gP (0, X)

}
(Y − Q̄(A)

P (X))(1, V )>,

D∗2,](P )(X) = (Ψ]
P (X)−B](P )>(1, V )>)(1, V )>,

and the normalizing matrix M is given by

M = −EP
[
(1, V )>(1, V )

]
.

The proof is provided in Appendix 11.3.
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Remark The form of the EIF resembles closely that of the Average Treatment Effect (ATE). In
fact, when V = ∅ then D∗] (P ) reduces to the EIF of the ATE:

D∗1,](P )(X,A, Y ) =

{
I(A = 1)

gP (1, X)
− I(A = 0)

gP (0, X)

}
(Y − Q̄(A)

P (X)),

D∗2,](P )(X) = Ψ]
P (X)− EP

[
Ψ]
P (X)

]
.

Remark The variance of the EIF is given by

EP [λ∗(P )(O)] = M−1EP
[(

Var(Y | A,X)

gP (A,X)2
+
(

Ψ]
P (X)−B](P )>(1, V )>

)2)
(1, V )(1, V )>

]
M−1.

4 Targeted Minimum Loss-Based Estimation

In this section, we describe an efficient and asymptotically normal estimator for β0 based on Targeted
Minimum Loss-Based Estimation (TMLE; van der Laan and Rose (2011, 2018)).

Notation The target parameter B(P ) and the efficient influence function D∗(P ) of B at P only depend
on P through several nuisance parameters. As we will be only estimating these nuisance parameters,
rather than all of P , it is helpful to introduce notation that emphasizes the parts of P necessary for
estimating the target parameter and efficient influence function.

• Nuisance parameters for B(P ): note that B(P ) depends on P only through (a) the marginal
distribution of X under P , which we call QP , and (b) the functional ΨP , which itself only depends
on Q̄P and possibly QP . For convenience, we will write B(P ) and B(Q̄P , QP ) interchangeably.

• Nuisance parameters for D∗(P ): recall that the EIF D∗(P ) is the sum of D∗1(P ) and D∗2(P ). The
first component D∗1(P ) may depend on P through ΨP , QP , and additional nuisance parameters
we call ηP . The function D∗2(P ) only depends on P through ΨP and QP . As such, we will
write D∗1(Q̄P , QP , ηP ), D∗2(Q̄P , QP ), and D∗(Q̄P , QP , ηP ) interchangeably with D∗1(P ), D∗2(P ),
and D∗(P ).

For convenience, let Q = {QP : P ∈ M} denote the parameter space of QP , denote Q0 := QP0
, and

define η0 := ηP0
.

Suppose we have initial estimates Q̄0
n ∈ Q, Q0

n, and ηn of Q̄0, Q0, and η0. From now on, we will
always choose Q0

n to be the empirical distribution of X1, . . . , Xn, but we do not yet choose a particular
estimating strategy for Q̄0

n and ηn. Given these initial estimates, we could estimate β0 via the plug-
in estimator B(Q̄0

n, Q
0
n) (which is indeed well-defined). However, although Q̄0

n and Q0
n may be good

estimators of Q̄0 and Q0, there is no guarantee that plugging them into the target parameter yields a
good estimator of β0. The idea of TMLE is to reduce the bias of the plug-in estimator by iteratively
updating the initial estimates Q̄0

n and Q0
n so as to target the parameter of interest β0. Here, the iterative

updates may incorporate the additional nuisance parameters ηn. Given mild conditions on Q̄0
n and ηn

the resulting targeted estimator is asympotically normal and efficient.
Now we describe in more detail the updating procedure at the heart of TMLE. The iterative updates

are based on fluctuations of the current estimators of Q̄0 and Q0. First, choose loss functions Lj :

R × O → R corresponding to each component Q̄
(j)
P of Q̄P =

(
Q̄

(0)
P , . . . , Q̄

(J)
P

)
such that the following

conditions are satisfied for all j = 0, . . . , J :

(L1) Q̄
(j)
0 = arg min

{
EP0

[Lj(Q̄j(X), O)] : Q̄j ∈ {Q̄(j)
P : P ∈M}

}
(L2) For each P ∈ M, it holds P -almost surely that t′ 7→ Lj(t′, O) is differentiable at every t ∈ R with

derivative L̇j(t, O) ∈ R.

Next, introduce a parametric fluctuation model satisfying the following conditions:
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(M1) For any P ∈M with corresponding Q̄P , QP , and ηP , we can define a fluctuation model{
(Q̄

(0)
P,ε, . . . , Q̄

(J)
P,ε, QP,ε) : ε ∈ Rp

}
such that:

(a) If ε = 0, then Q̄
(j)
P,ε = Q̄

(j)
P for all j = 0, . . . , J and QP,ε = QP .

(b) It holds P -almost surely that the mappings ε 7→ Lj(Q̄(j)
P,ε(X), O) (j = 0, . . . , J) and ε 7→

− logQP,ε(X) are differentiable at ε = 0, and D∗(P )(O) belongs to

Span

(
∂

∂ε
L0(Q̄

(0)
P,ε(X), O)

∣∣∣∣
ε=0

, . . . ,
∂

∂ε
LJ(Q̄

(J)
P,ε(X), O)

∣∣∣∣
ε=0

,
∂

∂ε
(− logQP,ε) (X)

∣∣∣∣
ε=0

)
.

Given loss functions and a fluctuation model satisfying the above conditions, conduct the following
iterative procedure:

1. Start with the initial estimates Q̄
(j),0
n (j = 0, . . . , J), Q0

n, ηn.

2. For k ≥ 1, recursively let Q̄
(j),k
n = Q̄

(j),k−1
n,εkn

(j = 0, . . . , J) and Qkn = Qk−1
n,εkn

, where

εkn = arg min
ε∈Rp

1

n

n∑
i=1

 J∑
j=0

[
Lj(Q̄(j),k−1

n,ε (Xi), Oi)
]
− logQk−1n,ε (Xi)

 ,
and stop when ‖εkn‖ ≈ 0 (rigorously, when εkn = oP (n−1/2)).

3. Set Q̄∗n =
(
Q̄

(0),k
n , . . . , Q̄

(J),k
n

)
and Q∗n = Qkn, where k is the final iteration of the above step.

The targeted estimator is the plug-in estimator given by β̂∗n = B(Q̄∗n, Q
∗
n). The desirable statistical

properties enjoyed by this estimator derive from the fact that the final update approximately solves the
estimating equation Pn

[
D∗(Q̄∗n, Q

∗
n, ηn)

]
= oP (n−1/2).1 The following theorem states conditions under

which β∗n is asymptotically normal and efficient, which serves as the basis for conducting valid statistical
inference.

Theorem 2 (Asymptotic normality and efficiency of β∗n). Let us assume that

1. Rate of convergence of second-order remainder: β̂∗n − β0 + P0D
∗(P ∗n) = oP (n−1/2).

2. Donsker conditions: D∗(P ∗n) is in a P0-Donsker class with probability tending to one, and the
random squared norm P0[(D∗(P ∗n)−D∗(P0))2] = oP (n−1/2).

Then the estimator β̂∗n is asymptotically linear with the form

√
n
(
β̂∗n − β0

)
=

1√
n

n∑
i=1

D∗(P0)(Oi) + oP (1),

which implies that β̂∗n is asymptotically normal and efficient:

√
n
(
β̂∗n − β0

)
 N (0, P0[λ∗(P0)]) .

The proof is given in Appendix 11.4. Note that the Donsker conditions can be relaxed through the
use of cross-validation (Zheng and van der Laan, 2010).

So far we have not given an explicit form for the loss functions L0, . . . ,LJ nor the fluctuation model.
The explicit forms of the L0, . . . ,LJ will depend on the structure of O and the form of the functional
summary ΨP . Likewise, we cannot give a complete specification of the fluctuation model as it too depends
on the choices for L0, . . . ,LJ and the form of ΨP . In addition, there may be multiple fluctuation models
that satisfy the required conditions. We give a blueprint for one particular fluctuation model satisfying

1From now on we will write P [f ] for the integral
∫
fdP .
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the required conditions that can be easily adapted to specific problems. This blueprint also yields a
useful constraint on the form of the L0, . . . ,LJ .

For any P ∈ M with corresponding ΨP , Q̄P , QP , and ηP , characterize the fluctuation model by
setting

Q̄
(j)
P,ε(O) = φ−1

(
φ(Q̄

(j)
P (O)) +Hj(O)ε>∇L̇m(ΨP , B(P ))(X)

)
for each j = 0, . . . , J,

and QP,ε(X) = C(ε) exp
(
ε>L̇m(ΨP , B(P ))(X)

)
QP (X),

where the so-called “clever-covariates”, which need to be chosen, are functions Hj : O → R (j = 0, . . . , J)
and the constant C(ε) is chosen such that QP,ε is well-defined. We also assume that the transformation

link has an inverse φ−1, and that this inverse has derivative φ̇−1. It is easy (sic) to see that Q̄
(j)
P,0 = Q̄

(j)
P

(j = 0, . . . , J) and QP,0 = QP , so (M1a) is satisfied. Next we derive a constraint under which condition
(M1b) is satisfied. First, see that

∂

∂ε
logQP,ε(X)

∣∣∣∣
ε=0

= L̇m(ΨP , B(P ))(X)

= D∗2(ΨP , QP )(X).

In addition, by condition (L1) we can compute

∂

∂ε
Lj(Q̄(j)

P,ε(O), O)

∣∣∣∣
ε=0

= L̇j(Q̄(j)
P,ε(O), O)

∣∣∣∣
ε=0

∂

∂ε
Q̄

(j)
P,ε(O)

∣∣∣∣
ε=0

= L̇j(Q̄(j)
P (O), O)× ġ−1(g(Q̄

(j)
P (O))×Hj(O)×∇L̇m(ΨP , B(P ))(X).

Recall that condition (M1b) requires that D∗(P )(O) be included in the linear span of the two gradients
from the two above displays. Therefore, the only way for (M2b) to be satisfied is if

J∑
j=0

L̇j(Q̄(j)
P (O), O)φ̇−1(φ(Q̄

(j)
P (O)))Hj(O) ∝ ∆∗(P )(O).

In practice, ∆∗ often includes a term resembling a residual. The loss functions Lj (j = 0, . . . , J) are
then chosen such that their summed derivatives equals the residual term, and the remaining part of ∆∗

is integrated into the Hj (j = 0, . . . , J).

Example (cont’d). Now that we are working in the context of a particular example we can

fill in the details of the targeted estimator. First, note that Ψ]
P depends on P only through

the parameters Q̄P = (Q̄
(0)
P , Q̄

(1)
P ), and D∗1,](P ) depends on P through the additional nuisance

parameters ηP (X) = (gP (0, X), gP (1, X)). For any P ∈ M with corresponding ΨP , Q̄P , QP and
ηP , characterize the fluctuation model as follows, using the transformation φ = logit:

logit
(
Q̄

(0)
P,ε(X)

)
= logit

(
Q̄

(0)
P (X)

)
+H0(O)ε>(1, V )>,

logit
(
Q̄

(1)
P,ε(X)

)
= logit

(
Q̄

(1)
P (X)

)
+H1(O)ε>(1, V )>,

QP,ε(X) = C(ε) exp
(
ε>(ψ]P (X)−B(P )>(1, V )>)(1, V )>

)
QX(X).

The clever covariates are given by

H0(O) = −I(A = 0)

gP (0, X)
,

H1(O) =
I(A = 1)

gP (1, X)
.

Note that the fluctuations are quite similar to those commonly adopted to define a TMLE for the
ATE (van der Laan and Rose, 2011, Chapter 5). The loss functions are chosen to be characterized
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by

L0(t, O) = −I(A = 0) [Y log (t) + (1− Y ) log (1− t)] ,
L1(t, O) = −I(A = 1) [Y log (t) + (1− Y ) log(1− t)]

(both t ∈ (0, 1)). To ensure this is a valid setup, we need to check conditions (L1), (L2), and (M1).
(L1) is satisfied for this choice of log-likelihood loss function (van der Laan and Rose, 2011). The
derivatives of the loss functions are

L̇0(t, O) = −I(A = 0)

[
Y − t

(1− t)t

]
,

L̇1(t, O) = −I(A = 1)

[
Y − t

(1− t)t

]
(both t ∈ (0, 1)). Therefore, (L2) is satisfied. To check (M1), see that, for φ = logit, φ̇−1(φ(t)) =
(1− t)t. Therefore

L̇0(Q̄
(0)
P (X), O)φ̇−1(φ(Q̄

(0)
P (X)))H0(O) + L̇1(Q̄

(1)
P (X), O)φ̇−1(φ(Q̄

(1)
P (X)))H1(O)

= −
{
I(A = 1)

gP (1, X)
− I(A = 0)

gP (0, X)

}
(Y − Q̄(A)

P (X)) = −∆∗P (X),

which shows that (M1) is satisfied.

5 Bayesian Inference

The key observation behind Bayesian Targeted Maximum Likelihood Estimation is that when the TMLE
loss functions can be interpreted as log-likelihoods, then the optimization step in the iterative procedure
of TMLE simply corresponds to maximum likelihood estimation of ε. Furthermore, due to the likelihood
interpretation, we can also use Bayesian inference to estimate ε via a straightforward application of
Bayes’ theorem. In this section, we formalize this application of Bayesian inference, and present an
oracle Bernstein von-Mises type result that suggests the resulting Bayesian targeted estimator converges
asymptotically to the truth with optimal variance given by the variance of the efficient influence function.
By oracle result, we mean that the Berstein von-Mises theorem concerns an idealized version of the
Bayesian targeted estimator that we define below.

Suppose a set of loss functions Lj , j = 0, . . . , J has been chosen such that conditions (L1) and (L2)
are satisfied. In addition, suppose we have already chosen for any P ∈ M with corresponding Q̄P , QP ,
and ηP a well-defined fluctuation submodel{

(Q̄
(0)
P,ε, . . . , Q̄

(J)
P,ε, QP,ε) : ε ∈ Rp

}
satisfying condition (M1). In this section, in order to reframe Targeted Maximum Likelihood Estimation
in a Bayesian framework, we focus on the case where it is possible, for any P ∈M, to define an additional
nuisance parameter σP and a submodel F = {Fε : ε ∈ Rp} ⊂ M such that the log-likelihood of O under
each Fε writes as

log f(O | ε) = h1(σP (O))− h2(σP (O))

J∑
j=1

Lj(Q̄(j)
P,ε(O), O) + logQP,ε(X) + constant, (6)

where h1 and h2 are transformations of the nuisance parameter σP . It is often possible to construct such
Fε satisfying the above condition by choosing a conditional probability distribution for Y given X with
a conditional log-likelihood resembling the TMLE loss functions.

Example (cont’d). The TMLE loss functions L0 and L1 in this example can be interpreted as the
negative conditional log-likelihoods of Y under Bernoulli distributions. This suggests constructing
Fε such that Y given A and X follows a Bernoulli distribution. Fix arbitrarily P ∈ M and let Fε
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be characterized by

X ∼ QP,ε,
A | X ∼ Bernoulli(1/2),

Y | X,A ∼ Bernoulli
(
Q̄

(A)
P,ε (X)

)
,

where

QP,ε(X) = C(ε) exp
(
M−1ε>(Ψ]

P (X)−B(P )>(1, V )>)(1, V )>
)
QX(X),

logit(Q̄
(0)
P,ε(X)) = logit(Q̄

(0)
P (X)) +H0(O)ε>M−1(1, V )>,

logit(Q̄
(1)
P,ε(X)) = logit(Q̄

(1)
P (X)) +H1(O)ε>M−1(1, V )>,

with M = −EP [(1, V )>(1, V )]. The only difference between these fluctuations and those used
for the frequentist TMLE are in the inclusion of the normalizing matrix M , which is included so
that the conditions of the forthcoming Bernstein von-Mises theorem are satisfied. The conditional
distribution of A is included so that the model is fully specified, although as in the frequentist
TMLE this conditional distribution is not fluctuated. No additional nuisance parameters σP are
needed in this example; as such, we set h1(·) = 0 and h2(·) = 1 (see Appendix 11.5 for an example
where σP is non-empty). The conditional log-likelihood of O under Fε is then given by

log f (O|ε) = Y log
(
Q̄

(A)
P,ε (X)

)
+ (1− Y ) log

(
1− Q̄(A)

P,ε (X)
)

+ logQP,ε(X) + constant

=
(
L0

(
Q̄

(0)
P,ε(X), O

)
+ L0

(
Q̄

(0)
P,ε(X), O

))
+ logQP,ε(X) + constant,

which satisfies (6).

Next, we discuss Bayesian estimation of the parameter ε within the model F = {Fε : ε ∈ Rp}.
Let πε be a prior distribution for ε. Fix arbitrarily P ∈ M, with corresponding Q̄P , QP , ηP , and σP .
Application of Bayes’ theorem yields a posterior distribution of ε given by

Πε(ε|O1:n, Q̄P , QP , ηP , σP ) ∝ πε(ε)
n∏
i=1

f(Oi | ε, Q̄P , QP , ηP , σP ).

We can then find a posterior distribution for β, the object of interest, by mapping the posterior of ε
onto a posterior for β. For convenience, we write ϑ : ε 7→ B(Fε). The posterior distribution Πβ of β is
then the image of Πε under ϑ.

We are unlikely to have any prior information for ε directly. On the contrary, we might have prior
information for β. As such, we set a prior on β, which we then map back to a prior on ε. If ϑ has an
inverse and if ϑ is differentiable with derivative ϑ̇ ∈ Rp×p, then a prior distribution πβ for β is mapped
to a prior distribution πε on ε by the formula

πε(ε) = πβ (ϑ(ε))
∣∣∣det

(
ϑ̇(ε)

)∣∣∣ . (7)

Next, we present a Bernstein von-Mises type theorem for an oracular fluctuation model that is built
using the true nuisance parameters under P0. The proof shows that in this setting, the Bayesian TMLE
converges to the truth with variance given by the variance of the efficient influence function. Denote by
F0 = {F 0

ε : ε ∈ Rp} the submodel through P0 satisfying (6). The following theorem only holds if the
form of F 0

ε satisfies certain conditions, one of which being that F0 be locally asymptotically normal. We
provide a definition for this property in Appendix 11.6, where we also state and prove Theorem 4, the
full version of the result below.

Let N(µ,Σ) denote the multivariate normal distribution with mean vector µ and covariance matrix Σ.
Let

Π0√
n(β−β0)

(·|O1:n) := Π√n(β−β0)

(
·
∣∣O1:n, Q̄0, Q0, η0, σ0

)
be the posterior for

√
n(β − β0) corresponding to the submodel F0.
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Result 2 (Oracular Bernstein von-Mises). Under assumptions stated in Theorem 4,

‖Π0√
n(β−β0)

(· | O1:n)−N(∆0
n, P0[λ∗(P0)])‖1 = oP (1)

where

∆0
n =

1√
n

n∑
i=1

P0[λ∗(P0)]−1D∗(P0)(Oi).

The full statement (Theorem 4) and its proof are given in Appendix 11.6.

Example (cont’d). We also show in Appendix 11.6 that the above result applies to the running
example.

So far we have defined a family of posterior distributions of β indexed by Q̄P , QP , ηP , and σP .
The oracular Bernstein von-Mises proof shows that, for a fluctuation F0 built using the true nuisance
parameters Q̄0, Q0, η0, and σ0, the posterior distribution of ε converges to the truth with variance given
by the variance of the efficient influence function. Since in practice we have to estimate the values
of these nuisance parameters, we turn to a closely related posterior from the full family of posterior
distributions, the one indexed by, and conditional on, the estimates Q̄∗n, Q

∗
n, ηn, and σn — recall that

Q̄∗n, Q
∗
n are the final fluctuated estimates of Q̄0 and Q0 from the frequentist TMLE, ηn is an estimate of

the nuisance parameter η, and the newly introduced σn is an estimate of σP0 . We call this posterior a
targeted posterior, and we hope that it inherits favorable properties from the frequentist TMLE.

Formally, define

Π∗√n(β−β0)
(·|O1:n) := Π√n(β−β0)(·|O1:n, Q̄

∗
n, Q

∗
n, ηn, σn)

to be the targeted targeted posterior of
√
n(β−β0). Under an assumption that the estimates Q̄∗n, Q

∗
n, ηn,

and σn are consistent, it is reasonable to think that this posterior will converge to Π0√
n(β−β0)

(· | O1:n).

By appealing to Result 2 (that is, Theorem 4), it would therefore follow that the posterior converges to
a distribution centered on the MLE and with optimal asymptotic variance given by the variance of the
efficient influence function. While we leave a formal proof of this convergence to future work, we conduct
a simulation study in a later section to investigate the properties of Π∗β in a finite-sample context.

6 Computation

Putting the proposed estimators into practice requires a software implementation. The frequentist and
Bayesian estimators have been implemented in the software package TargetedMSM.jl in the Julia pro-
gramming language (Bezanson et al., 2017).

6.1 Universal Algorithm

The efficient influence function D∗(P ) depends on four components: the function ∆∗(P ) and the deriva-
tives L̇, L̈, and ∇L̇. Each of the derivatives depends on the form of the working model and loss function
chosen by the analyst. Writing these derivatives in software by hand is tedious, and makes it more
difficult for users to implement new working models and loss functions.

In a unified approach, we propose a universal algorithm that encompasses all loss functions and
working models that are well-chosen by the analyst. The algorithm uses automatic differentiation to
compute the required derivatives, alleviating the need for the analyst to supply them (Baydin et al.,
2018; Margossian, 2019). When using our universal algorithm, the analyst only needs to provide soft-
ware implementations of the MSM working model and loss function. Our Julia package is available
at https://github.com/herbps10/TargetedMSM.jl. Its implementation uses forward mode automatic
differentiation through the Julia package ForwardMode.jl (Revels et al., 2016).

6.2 Markov-Chain Monte Carlo

In practice, the targeted posterior distribution will not have a closed form. However, sampling techniques
such as Markov-Chain Monte Carlo (MCMC) can be used to draw a set of samples ε(1), . . . , ε(`) from
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Figure 1: In finite samples, the targeted posterior can fail to accurately characterize the uncertainty in
estimating β because the map ε 7→ B(Fε) cannot reach the tails of the posterior distribution. In (A),
a diagnostic plot shows joint posterior samples ε(t) and β(t), in which it can be seen that β is bounded
above. The marginal posterior distribution of β, shown in (B), is therefore skewed. Plots (C) and (D)
show an example where this pathological behavior is not observed.

the posterior distribution of ε, which can then be used to generate a set of samples from the posterior
distribution of β0 through the mapping B. In this work, we implement a Metropolis-Hastings algorithm
(Metropolis et al., 1953; Hastings, 1970; Robert, 2015) with a Gaussian proposal distribution to gener-
ate samples of ε which are then mapped to samples of β from the posterior distribution. A detailed
description of the algorithm is given in Appendix 11.7.

6.3 Diagnostics

In finite samples, it is possible that {Fε : ε ∈ Rp} will exhibit pathological behavior in which B(Fε)
is bounded in such a way that there is no value of ε such that B(Fε) reaches the tails of the posterior
distribution. However, a simple visual diagnostic can be used to identify this behavior in practice.
First, we assume that we have at hand a sample of ` draws ε(1), . . . ε(`) and β(1), . . . ,β(`) from the
posterior distributions of ε and β, perhaps generated by the Metropolis-Hastings algorithm discussed in
Section 6.2. The diagnostic simply consists in plotting each sample with β(t) on the y-axis and ε(t) on
the x-axis. We expect to see one-to-one relationship between ε(t) and β(t). In a pathological setting,
the β(t) reach a threshold. If this is observed, then the draws β(1), . . . ,β(`) should not be trusted as an
accurate characterization of the uncertainty of estimating β0, as they collectively fail to capture the tails
of the posterior distribution. An example of the proposed diagnostic is shown in Figure 1.

7 Simulation Study

We present a simulation study that compares the finite sample performance of the frequentist and
Bayesian targeted estimators for estimating Conditional Treatment Effects, as in the running example.
All the code necessary to reproduce the simulation study is available at https://github.com/herbps10/
targeted_msms_paper. The data generating distribution for the simulations is defined by the following
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conditional distributions:

(X1, X2, X3, X4) ∼ N(0, I4),

A|X1, X2, X3, X4 ∼ Bernoulli(logit−1(0.5X1 − 0.5X2 + 0.2X3 − 0.1X4)),

Y |A,X1, X2, X3, X4 ∼ Bernoulli(logit−1(X2 +X3 + 3A+ 1.5AX4)).

A total of 500 datasets were drawn from the data generating distribution for each sample size n ∈
{50, 100, 250, 500, 750, 1000}. We define a marginal structural model with linear working model (3) and
squared-error loss function (4) which yield the target parameter

B(P ) = arg min
β∈R2

EP
[(

Ψ]
P (X)− (1, X4)β

)2]
,

where Ψ]
P is defined as in the example and β = (β1, β2)> ∈ R2.

In order to investigate the behavior of the estimators under inconsistent estimation of the nuisance
parameters, the parameters gP and Q̄P were estimated in each sample using generalized linear models
in four configurations: gP and Q̄P estimated using parametric models with

(a) both models for gP and Q̄P specified correctly,

(b) the model for gP specified correctly, that for Q̄P misspecified,

(c) the model for gP misspecified, that for Q̄P specified correctly,

(d) both models for gP and Q̄P misspecified.

The correctly specified regressions included all covariates, while the misspecified regressions included
only X1 and X4 as covariates. For the Bayesian estimator, the following priors were used for β1 and β2:

(β1, β2) ∼ N(0, I2).

The estimators of β0 are evaluated by the empirical coverage of the 95% credible (or confidence) intervals
and in terms of absolute bias of the point estimators. For the Bayesian estimator, the posterior median
is taken as a point estimator.

Results Figure 2 shows the empirical coverage of the 95% credible (confidence) intervals, and Fig-
ure 3 shows the absolute bias. The results are also summarized as Table 1 in the appendix. Both the
estimators achieve optimal empirical coverage of the 95% credible (confidence) interval and achieve low
absolute bias when both nuisance parameters are correctly specified. Of note, for the smallest sample size
the Bayesian estimator achieves slightly better coverage than the frequentist estimator, suggesting the
Bayesian approach may be more conservative in some finite sample settings. When either of the estima-
tors are estimated with misspecified regressions the absolute bias still approaches zero as the sample size
increases, demonstrating the double-robust properties of the estimators. Interestingly, the 95% empirical
coverage is not greatly affected by the misspecification, a result that is not guaranteed theoretically. The
good performance in this case may be caused by the specific setup of the simulation study. Finally,
when both nuisance parameters are estimated inconsistently the absolute bias is larger than in the other
scenarios and the empirical coverage is highly degraded for β1. The fact that the empirical coverage of
β2 remains near-optimal is likely a result of the simulation setup.

8 Application

As an example, we define and estimate the causal effect of a broad-based family planning intervention
on postpartum contraceptive use using data from a randomized field experiment conducted in Lilongwe,
Malawi (Karra et al., 2022). All the code necessary to reproduce the data analysis is available at
https://github.com/herbps10/targeted_msms_paper.

Postpartum women were randomized into intervention and control groups in which intervention con-
sisted of receiving a family planning information package and counseling sessions, free transportation to
a family planning clinic, free family planning services at the clinic, and phone consultations with a doctor
and reimbursement for any treatment necessary due to side effects. Contraceptive use was measured as
an outcome after a 2-year interval.
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Figure 2: Frequentist empirical coverage of 95% credible and confidence intervals in the simulation study
for scenarios (a), (b), (c), and (d).
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Figure 3: Absolute bias of estimator in the simulation study for scenarios (a), (b), (c), and (d).
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Figure 4: Distribution of the number of children at baseline among the cohort of women in the example.

We use the publicly available replication dataset from the original paper to conduct our analysis
(Karra and Canning, 2022). We refer to the paper and published study protocol for detailed information
regarding the study design and data processing (Karra et al., 2020, 2022). The variables for each
participant used in our analysis are:

• X: number of children who are alive, educational attainment (primary or less vs. secondary or
higher), age (three bins), age of sexual debut, ever used family planning, religion, work status,
tribal group, neighborhood, and current contraceptive use, all measured at baseline;

• A: binary indicator of inclusion in intervention group;

• Y : binary indicator of contraceptive use at endline.

Following the original analysis, 5 observations were excluded due to missing data, leaving an analysis
dataset of 1667 observations. The intervention group included 781 participants (46.9%). At endline, 1240
participants were recorded as using contraceptives (74.3%). The number of children alive at baseline
(from now on referred to as “number of children at baseline”), which we consider as a potential treatment
effect modifier, ranged from 0 to 9 (mean: 2.3, standard deviation: 1.3). Figure 4 shows the full
distribution of children at baseline.

Target Parameter Let Ψ]
P be the Conditional Average Treatment Effect as defined in the running

example, interpretable as the expected difference in contraceptive use at endline conditional on inclusion
vs. non-inclusion in the intervention group. We consider the total number of children who are alive at
baseline, denoted Xchildren, to be a potential treatment effect modifier, and set V = Xchildren. A linear
working model and squared-error loss function are adopted, as in the example. The target parameter is
therefore

B](P ) = arg min
β∈R2

EP
[(

Ψ]
P (X)− β>(1, Xchildren)>

)2]
.

The MSM parameters β1 and β2 can be interpreted as the intercept and slope of a line that best
summarizes (in terms of a squared-error loss) the relationship between the CATE and number of children
at baseline.

Causal Identification The statistical parameter β0 can be given a causal interpretation if the identi-
fication assumptions for Ψ] hold. Positivity (gP (1, X) > 0 for all X) in this setting can be interpreted as
the assumption that the probability of randomization into the intervention group is positive for all strata
of covariates. The no unmeasured confounders assumption requires that the potential outcomes Y (0) and
Y (1) are independent of intervention status conditional on the covariates. Both assumptions reasonably
hold given the randomized study design. It is possible that the consistency assumption, however, may
not hold due to spillover effects between the intervention and control groups.
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Figure 5: Posterior distribution of the parameter β of the working model {mβ : β ∈ B}, which can be
interpreted as a linear approximation under a squared error loss of the conditional average treatment
effect of the intervention on contraceptive use at endline. The black line is the posterior median and the
shaded regions are the 50%, 80%, and 95% credible intervals. The results suggest the treatment effect
grows as the number of children increases.

Estimation The nuisance parameters gP and Q̄P were estimated using an ensemble of learners using
the SuperLearner algorithm (van der Laan et al., 2007; Polley et al., 2021). The base learners included
generalized linear models, `1-penalized regression (Friedman et al., 2010; Simon et al., 2011), random
forests (Wright and Ziegler, 2017), gradient boosting trees (Chen et al., 2022), and the Highly Adaptive
Lasso (Benkeser and van der Laan, 2016; Coyle et al., 2022; Hejazi et al., 2020). For the Bayesian
estimator, the following weakly informative priors were applied, reflecting a lack of strong prior knowledge
of the true values of the parameters:

(β1, β2) ∼ N(0, I2).

The Metropolis-Hastings algorithm was run for 50, 000 iterations to yield a set of joint draws from the
posterior distribution.

Results The frequentist estimates for β1 and β2 were −0.016 (95% CI: [−0.1, 0.07]) and 0.033 (95%
CI: [0.0019, 0.063]), respectively. The two-sided hypothesis test of H0 : “β2 = 0” vs. H1 : “β2 6= 0”
yields a p-value of p = 0.038. Thus there is sufficient evidence at the α = 0.05 significance level to reject
the null hypothesis that β2 = 0. The Bayesian posterior medians for β1 and β2 were −0.015 (95% CI:
[−0.1, 0.074]) and 0.032 (95% CI: [−0.001, 0.066]), respectively. The credible intervals can be interpreted
as the regions in which the true values of β1 and β2 reside with 95% probability. The posterior probability
that β1 > 0 is 97.1%. The posterior distribution of the working model {mβ : β ∈ B} is shown in Figure 5.
Both the frequentist and Bayesian methods reach substantially the same conclusion, although care should
be taken to interpret the results following the correct interpretation of probability for each approach.

Kernel density plots of the posterior distribution of the MSM parameters are shown in Figure 6.
The figure also includes normal densities centered on the targeted point estimate β∗n and with variance
given by the variance of D∗(P ∗n), the estimate of the efficient influence function. As expected under the
Bernstein von-Mises theorem (Theorem 4), the posterior distribution and normal densities are similar.
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Figure 6: Kernel density plot of posterior distribution (red line) of β1 and β2 from the example applica-

tion. A normal density is also pictured (blue line) centered on the frequentist point estimates β̂∗n with
variance given by the targeted estimate of the variance of the efficient influence function D∗(P0).

9 Discussion

In this work, we proposed a novel targeted Bayesian estimator for the parameter of a Marginal Structural
Model. The general notation for MSMs defines a parameter B(P ) which is the parameter of a user-
specified working model {mβ : β ∈ B} that best approximates a functional summary ΨP with respect to
a loss function L. A semi-parametric analysis of P 7→ B(P ) derived its (already known) efficient influence
function D∗(P ) at any P in the model. The variance VarP (D∗(P )(O)) is the asymptotic efficiency bound
for estimating B(P ) within a non-parametric model. We then presented a general framework for efficient
estimation using Targeted Maximum Loss-Based Estimation, and introduced a novel targeted Bayesian
estimator.

Bayesian TMLE blends frequentist and Bayesian approaches to statistical inference in a way that
enjoys benefits of both approaches. From the frequentist TMLE it inherits a non-parametric estima-
tion strategy that avoids unrealistic assumptions on the data generating process. Flexible estimation
methods, including algorithms from machine learning, can be used (or combined, via ensemble methods)
to estimate the required nuisance parameters, and are then naturally incorporated into the targeted
Bayesian analysis. From the Bayesian paradigm, the targeted method inherits the ability to incorporate
prior information into the analysis and the subjective interpretation of probability. An additional ben-
efit is that contrary to traditional Bayesian non-parametric inference, which generally requires placing
priors on complex probability spaces or abstract hyperparameters, in the targeted approach priors can
be placed directly on the parameter of interest. For MSMs, priors are placed directly on B(P ).

We stress that the Bayesian TMLE should not be interpreted as “100% Bayesian” because Bayesian
inference is not used to model the entire data-generating process (that is, the full joint distribution of X
and Z is not modeled). Indeed, estimates of the required nuisance parameters are estimated separately
and not necessarily within a Bayesian paradigm. In other words, the method is not “generative”, as is
typically the case for Bayesian models (Gelman et al., 2020). Bayesian TMLE is thus better understood
as a hybrid approach that combines aspects of frequentist and Bayesian paradigms.

Our work leaves open multiple directions for future research. More investigation is warranted to
understand the finite sample performance of both the frequentist and Bayesian estimators for more
complex data generating distributions and working models of high dimension. In addition, further
theoretical work is necessary to establish that the targeted posterior converges to a distribution centered
on the frequentist MLE with optimal variance given by the variance of the EIF. Part of the challenge
with this result is to show it holds under reasonable assumptions on the convergence of the nuisance
parameters, such as that ‖Q̄∗n − Q̄0‖2 = op(n

−1/4).
Bayesian inference allows for the introduction of prior information in a principled manner. While in
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the analyses presented here we used independent and weakly informative priors, an interesting direction
for future work would be to investigate more complex priors. Hierarchical priors are commonly used
in applied Bayesian analyses to share information between units, such that parameters are partially
pooled towards a common mean (Gelman et al., 2011). This has the benefit of stabilizing estimates,
particularly in small samples. Hierarchical priors could be applied to MSM parameters that exhibit
hierarchical structure, which we hypothesize may lead to improved finite sample performance. As long
as such hierarchical priors satisfy the (weak) assumptions necessary for the Bernstein von-Mises theorem,
most importantly that the true parameter is included in the support of the prior, then such a prior choice
will not affect the desirable asymptotic properties of the targeted posterior distribution.
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11 Appendix

11.1 Full Statement and Proof of Theorem 3

Here is the full version of Result 1. Recall that, for any P ∈ M and s ∈ L2
0(P ) such that s 6= 0,

‖s‖∞ <∞,
{
Pε : |ε| < ‖s‖−1∞

}
⊂M fluctuates P in the direction of s. For clarity, we now introduce the

mapping B◦P : ε 7→ B(Pε).

Theorem 3 (Efficient Influence Function of B). Let us assume that:

1. For every P ∈M, for every t ∈ T , the following two conditions are met P -almost surely:

(a) β′ 7→ Lm(t,β′)(X) is differentiable at every β ∈ B with derivative L̇m(t,β)(X) ∈ Rp,

(b) β′ 7→ L̇m(t,β′)(X) is differentiable at every β ∈ B with derivative L̈m(t,β)(X) ∈ Rp×p.

Moreover, for every P ∈M, for every β ∈ B, it holds P -almost surely that

(c) t′ 7→ L̇m(t′,β)(X) is differentiable at every t ∈ T with derivative ∇L̇m(t,β)(X) ∈ Rp.

2. The function (ε,β) 7→ U(ε,β) := EPε
[
L̇m(ΨPε(X),β)(X)

]
is differentiable in the neighborhood of

(0, B◦P (0)).

3. For every P ∈M, EP
[
L̈m(ΨP (X), B(P ))(X)

]
is invertible.

4. For every P ∈ M, for all s ∈ L2
0(P ) such that s 6= 0, ‖s‖∞ <∞, it holds that U(ε, B◦P (ε)) = 0 in

an ε-neighborhood of 0.

5. (Dominated Convergence) For all P ∈M, there exists a random variable G1 ∈ Rp×p+ with EP [G1] <

∞, such that |L̈m(ΨP (X),β)(X)| ≤ G1 P -almost surely in a β-neighborhood of B◦P (ε). Here and
below the absolute value and inequalities are to be understood entrywise.
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6. (Dominated Convergence) For all P ∈M, there exists a random variable G2 ∈ Rp+ with EP [G2] <

∞ such that | ddε L̇m(ΨPε(X), B◦P (ε))(X)| ≤ G2 P -almost surely in an ε-neighborhood of 0.

7. For all P ∈ M, for all s ∈ L2
0(P ) such that s 6= 0, ‖s‖∞ < ∞, if

{
Pε : |ε| < ‖s‖−1∞

}
⊂ M is

characterized by dPε
dP = 1 + εs for all ε ∈ R such that |ε| < ‖s‖−1∞ , then the mapping ε 7→ ΨPε(X) is

almost surely differentiable at 0 and

d

dε
ΨPε(X)

∣∣∣∣
ε=0

= EP [∆∗(P )(O)s(O) | X]

for a function ∆∗(P ) ∈ L2
0(P ).

Then the target functional P 7→ B(P ) is pathwise differentiable at every P ∈ M, with an efficient
influence function D∗(P ) at P given by

D∗(P )(O) = M−1 [D∗1(P )(O) +D∗2(P )(X)] ,

where D∗1(P ), D∗2(P ) ∈ L2
0(P ) are given by

D∗1(P )(O) = ∇L̇m(ΨP (X), B(P ))(X)×∆∗(P )(O),

D∗2(P )(X) = L̇m(ΨP (X), B(P ))(X),

and the normalizing matrix M is given by

M = −EP
[
L̈m(ΨP (X), B(P ))(X)

]
.

Proof. Set arbitrarily P ∈ M and s ∈ L2
0(P ) such that s 6= 0 and ‖s‖∞ < ∞. Consider the submodel{

Pε : |ε| < ‖s‖−1∞
}

given by dPε
dP = 1 + εs. By assumption 4, U(ε, B◦P (ε)) = 0 in an ε-neighborhood of 0.

By assumption 2, U is differentiable in a neighborhood of (0, B◦P (0)). Denote by dU
dε and ∂U

∂β the derivative

and gradient of U with respect to its ε and β arguments, respectively. Differentiating ε 7→ U(ε, B◦P (ε))
at ε = 0 yields

dU

dε
(0, B◦P (0)) +

∂U

∂β
(0, B◦P (0))

dB◦P
dε

(0) = 0.

Solving for
dB◦P
dε (0), and using assumption 3, yields

dB◦P
dε

(0) = −
{
∂U

∂β
(0, B◦P (0))

}−1
dU

dε
(0, B◦P (0)). (8)

Now we compute each of these derivatives. The first derivative becomes (the second equality is justified
below)

−∂U
∂β

(0, B◦P (0)) = − ∂

∂β
EPε

[
L̇m(ΨPε(X),β)(X)

] ∣∣∣∣
ε=0,β=B◦P (0)

= −EPε

[
∂

∂β
L̇m(ΨPε(X),β)(X)

∣∣∣∣
ε=0,β=B◦P (0)

]
= −EP

[
L̈m(ΨP (X), B◦P (0))(X)

]
=: M,

where in the second line the gradient and expectation can be exchanged under the Dominated Conver-
gence theorem (DCT) and assumptions 1 and 5. Note that M is invertible under assumption 3. The
second derivative splits into two parts, first by definition of U , second by definition of Pε:

dU

dε
(0, B◦P (0)) =

d

dε
EPε

[
L̇m(ΨPε(X),β)(X)

] ∣∣∣∣
ε=0,β=B◦P (0)

=
d

dε
EP
[
L̇m(ΨPε(X),β)(X)

] ∣∣∣∣
ε=0,β=B◦P (0)

+
d

dε
εEP

[
L̇m(ΨPε(X),β)(X)s(O)

] ∣∣∣∣
ε=0,β=B◦P (0)

. (9)
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The first term becomes (the first equality is justified below)

d

dε
EP
[
L̇m(ΨPε(X),β)(X)

] ∣∣∣∣
ε=0,β=B◦P (0)

= EP

[
d

dε
L̇m(ΨPε(X),β)(X)

∣∣∣∣
ε=0,β=B◦P (0)

]

= EP

{
∇L̇m(ΨPε(X),β)(X)

∣∣∣∣
ε=0,β=B◦P (0)

d

dε
ΨPε(X)

∣∣∣∣
ε=0

}
= EP

{
∇L̇m(ΨP (X), B◦P (0))(X)×∆∗(P )(O)s(O)

}
, (10)

where the interchange of the derivative and expectation in the first line is by the DCT and assumptions 1
and 6. For the second term, apply the product rule to yield

d

dε
εEP

[
L̇m(ΨPε(X),β)(X)s(O)

] ∣∣∣∣
ε=0,β=B◦P (0)

=

[
ε
d

dε
EP
[
L̇m(ΨPε(X),β)(X)s(O)

]] ∣∣∣∣
ε=0,β=B◦P (0)

+ EP

[
L̇m(ΨPε(X),β)(X)

∣∣∣∣
ε=0,β=B◦P (0)

s(O)

]
=EP

[
L̇m(ΨP (X), B◦P (0))(X)s(O)

]
. (11)

Collecting (8), (9), (10), and (11) yields

dB◦P
dε

(0) =M−1
[
EP
[
∇L̇m(ΨP (X), B◦P (0))(X)×∆∗(P )(O)s(O)

]
+ EP

[
L̇m(ΨP (X), B◦P (0))(X)s(O)

] ]
,

hence

D∗(P )(O) = M−1
[
∇L̇m(ΨP (X), B(P ))(X)×∆∗(P )(O) + L̇m(ΨP (X), B(P ))(X)

]
.

This completes the proof.

11.2 Proof of Lemma 1

Proof. The derivative of ΨPε evaluated at ε = 0 decomposes into two parts:

d

dε
ΨPε(X)

∣∣∣∣
ε=0

=
d

dε
Q̄

(1)
Pε

(X)− Q̄(0)
Pε

(X)

∣∣∣∣
ε=0

.

For any a ∈ {0, 1}, write Q̄
(a)
Pε

(X) and apply the definition of Pε to arrive at

Q̄
(a)
Pε

(X) = EPε [Y |A = a,X]

=
EP [Y |A = a,X] + εEP [Y s(O)|A = a,X]

1 + εEP [s(O)|A = a,X]
(Chambaz et al., 2012, Lemma 1)

=
EP [Y |A = a,X] + εEP [s(O)(Y − EP [Y |A = a,X])|A = a,X]

1 + εEP [s(O)|A = a,X]

+
εEP [Y |A = a,X]EP [s(O)|A = a,X]

1 + εEP [s(O)|A = a,X]

=
EP [Y |A = a,X](1 + εEP [s(O)|A = a,X]) + εEP [s(O)(Y − EP [Y |A = a,X]]|A = a,X]

1 + εEP [s(O)|A = a,X]

= EP [Y |A = a,X] +
εEP [s(O)(Y − EP [Y |A = a,X]]|A = a,X]

1 + εEP [s(O)|A = a,X]
.
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Taking the derivative of Q̄
(a)
Pε

at ε = 0 yields

d

dε
Q̄

(a)
Pε

(X)

∣∣∣∣
ε=0

= EP [s(O)(Y − EP [Y |A = a,X])|A = a,X]

= EP
[
s(O)

I(A = a)

P [A = a | X]
(Y − EP [Y |A = a,X])

∣∣∣∣X]
= EP

[
s(O)

I(A = a)

P [A = a | X]
(Y − Q̄(A)

P (X))

∣∣∣∣X] .
Therefore

d

dε
ΨPε(X)

∣∣∣∣
ε=0

= EP
[
s(O)

{
I(A = 1)

P [A = 1|X]
− I(A = 0)

P [A = 0|X]

}
(Y − Q̄(A)

P (X))

∣∣∣∣X] ,
which completes the proof.

11.3 Proof of Theorem 1

Proof. The result follows directly from Theorem 3. We start by checking each of the assumptions
required therein. For every P ∈ M, t ∈ T , the derivatives L̇m(t,β)(X) = −2(t − β>(1, V )>)(1, V )>

and L̈m(t,β)(X) = 2(1, V )>(1, V ) exist at every β ∈ B P -almost surely. For every P ∈ M, β ∈ B, the
derivative ∇L̇m(t,β)(X) = −2(1, V )> exists at every t ∈ T P -almost surely. Therefore Assumption (1)
is satisfied. Assumptions (2)-(6) are satisfied by assumption. Lemma (1) shows that Assumption (7)
holds, and gives the form of ∆∗(P ). Plugging in the calculated derivatives L̈m, L̈m,∇L̇m into the form
of D∗(P ) of Theorem 3 and simplifying gives the stated result.

11.4 Proof of Theorem 2

Proof. To begin, write

β̂∗n − β0 =− Pn[D∗(P ∗n)] (bias term)

+ (Pn − P0)[D∗(P0)] (CLT term)

+ (Pn − P0)[D∗(P ∗n)−D∗(P0)] (empirical process term)

+ β̂∗n − β0 + P0[D∗(P ∗n)] (second-order remainder).

We take each of these terms in turn:

bias term: Pn[D∗(P ∗n)] = oP (n−1/2) by construction of the TMLE fluctuation;

CLT term:
√
n(Pn − P0)[D∗(P0)] N(0, P0[D∗(P0)D∗(P0)>)] by the Central Limit theorem;

empirical process term: (Pn−P0)[D∗(P ∗n)−D∗(P0)] = oP (n−1/2) by the assumed Donsker conditions
(van der Vaart, 1998, Lemma 19.24) and assumed convergence of the nuisance parameters;

second-order remainder: β̂∗n − β0 + P0[D∗(P ∗n)] = oP (n−1/2) by assumption.

This completes the proof.

11.5 Supplementary Example

Here we present an adaptation of the running example introduced in Section 2.1 where the outcome Y is
continuous. The form of the EIF for B is the same as in the main example. The form of the fluctuation
models for TMLE, however, requires more work.

Let Z = (A, Y ), where A is a binary treatment indicator and Y ∈ R is a continuous outcome.
Set arbitrarily P ∈ M. Let gP (a, x) := P (A = a|X = x) for any (a, x) ∈ {0, 1} × X , and suppose that

gP (1, X) > 0 holds P -almost-surely. For both a ∈ {0, 1} let Q̄
(a)
P (X) = EP [Y |A = a,X], which is defined

almost surely on X . Define Ψ[
P (X) = Q̄

(1)
P (X)− Q̄(0)

P (X). Following the main example, let B[ be given
by

B[(P ) = arg min
β∈B

EP
[(

ΨP (X)− β>(1, V )>
)2]

.
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11.5.1 Frequentist TMLE

For any P ∈ M with corresponding Ψ[
P , Q̄P , QP and ηP , characterize the fluctuation model with

transformation x 7→ φ(x) = x as follows: for all ε ∈ Rp,

Q̄
(0)
P,ε(O) = Q̄

(0)
P (X) +H0(O)ε>(1, V )>,

Q̄
(1)
P,ε(O) = Q̄

(1)
P (X) +H1(O)ε>(1, V )>,

QP,ε(X) = C(ε) exp
(
ε>(Ψ[

P (X)−B[(P )>(1, V )>)(1, V )>
)
QX(X).

The clever covariates are given by

H0(O) = −I(A = 0)

gP (0, X)
,

H1(O) =
I(A = 1)

gP (1, X)
,

and the loss functions by

L0(t, O) =
1

2
I(A = 0)(Y − t)2,

L1(t, O) =
1

2
I(A = 1)(Y − t)2.

To ensure this is a valid setup, we need to check conditions (L1), (L2), and (M1). Condition (L1) is
satisfied for this choice of loss function (van der Laan and Rose, 2011). The derivatives of the loss
functions are

L̇0(t, O) = −I(A = 0)(Y − t),
L̇1(t, O) = −I(A = 1)(Y − t).

Therefore, (L2) is satisfied. To check (M1), see that (φ−1)′(x) = 1, so

L̇0(Q̄
(0)
P (X), O)(φ−1)′(φ(Q̄

(0)
P (X)))H0(O) + L̇1(Q̄

(1)
P (X), O)(φ−1)′(φ(Q̄

(1)
P (X)))H1(O)

= L̇0(Q̄
(0)
P (X), O)H0(O) + L̇1(Q̄

(1)
P (X), O)H1(O)

= −
{
I(A = 1)

gP (1, X)
− I(A = 0)

gP (0, X)

}
(Y − Q̄(A)

P (X))

= −∆∗P (X).

11.5.2 Bayesian TMLE

The TMLE loss functions L0 and L1 in this example can be interpreted as the conditional log-likelihoods
of Y given either A = 0 or A = 1 and X under Gaussian distributions with fixed unit variance. This
suggests constructing each Fε such that Y given A and X follows a Gaussian distribution. Fix arbitrarily
P ∈M, ε ∈ Rp, introduce σ2

P (A,X) = VarP [Y |A,X], and let Fε be characterized by

X ∼ QP,ε,
A | X ∼ Bernoulli(1/2),

Y | X,A ∼ N
(
Q̄

(A)
P,ε (X), σ2

P (A,X)
)

where

QP,ε(X) = C(ε) exp
(
M−1ε>(Ψ[

P (X)−B[(P )>(1, V )>)(1, V )>
)
QX(X),

Q̄
(0)
P,ε(X) = Q̄

(0)
P (X) + σ2

P (0, X)H0(O)ε>M−1(1, V )>,

Q̄
(1)
P,ε(X) = Q̄

(1)
P (X) + σ2

P (1, X)H1(O)ε>M−1(1, V )>.
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Then the conditional log-likelihood of O under Fε is given by

log f(O | ε) = − log(σ2
P (A,X))− 1

2σ2
P (A,X)

(
Y − Q̄(A)

P,ε (X)
)2

+ logQP,ε(X) + constant

= − log(σ2
P (A,X))− 1

σ2
P (A,X)

(
L0(Q̄

(0)
P,ε(X), O) + L1(Q̄

(1)
P,ε(X), O)

)
+ logQP,ε(X) + constant.

The gradient of the log-likelihood evaluated at ε = 0 is then

∂

∂ε
log f(O|ε)

∣∣∣∣
ε=0

=

{
I(A = 1)

gP (1, X)
− I(A = 0)

gP (0, X)

}
(Y − Q̄(A)

P (X))M−1(1, V )>

+ (Ψ[
P (X)−B[(P )>(1, V )>)M−1(1, V )>,

which is equal to D∗(P )(O). The Hessian of the log-likelihood evaluated at ε = 0 is given by

∂2

∂ε2
log f(O|ε)

∣∣∣∣
ε=0

=

(
σ2
P (A,X)

gP (A,X)2

)
M−1(1, V )>(1, V )M−1

+ (ΨP (X)[ − (B(P )[)>(1, V )>)2M−1(1, V )>(1, V )M−1.

Note that

P0

[
∂2

∂ε2
log f(O|ε)

∣∣∣∣
ε=0

]
= P0[λ∗(P0)].

Therefore conditions 5 and 6 of Theorem 4 are satisfied for this fluctuation model.

11.6 Statement and Proof of Theorem 4

Definition 1 (Local Asymptotic Normality (van der Vaart, 1998, Definition 7.14)). The sequence of
statistical models {Pn,θ : θ ∈ Θ} is locally asymptotically normal (LAN) at θ if there exist matrices rn
and Iθ and random vectors ∆n,θ such that ∆n,θ  N(0, Iθ) and for every converging sequence hn → h

log
dPn,θ+r−1

n hn

dPn,θ
= h>∆n,θ −

1

2
h>Iθh+ oPn,θ (1).

It is sometimes more practical to show that {Pn,θ : θ ∈ Θ} is differentiable in quadratic mean, which
implies local asympotic normality (van der Vaart, 1998, Chapter 7).

Let

f0n (O1:n|ε) :=

n∏
i=1

f
(
Oi
∣∣ε, Q̄0, Q0, η0, σ0

)
,

Π0
ε (ε|O1:n) := Πε

(
ε
∣∣O1:n, Q̄0, Q0, η0, σ0

)
,

Π0
β (β|O1:n) := Πβ

(
β
∣∣O1:n, Q̄0, Q0, η0, σ0

)
,

be the likelihood, posterior for ε, and posterior for β corresponding to the submodel F0 = {F 0
ε : ε ∈ Rp}

– that is, the submodel through P0 satisfying (6). Introduce ϑ0 : ε 7→ B(F 0
ε ).

Theorem 4 (Oracular Bernstein von-Mises). Let us assume that:

1. F0 is locally asymptotically normal.

2. The mapping ϑ0 is invertible and its inverse ϑ−10 is twice differentiable at β0 = B(P0).

3. For every δ > 0, there exists a sequence of tests (φn)n≥1 such that

P0[φn]→ 0 and sup
‖β−β0‖≥δ

F 0
ε [(1− φn)]→ 0.

4. The following holds P0-almost surely: the map ε 7→ log f0n(O|ε) is twice differentiable at every

ε ∈ Rp with gradient ∂
∂ε log f0n(O | ε) ∈ Rp and Hessian ∂2

∂ε2 log f0n(O|ε) ∈ Rp×p.
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5. The gradient satisfies

∂

∂ε
log f0n(O|ε)

∣∣∣∣
ε=0

= D∗(P0)(O).

6. Define

Λ0
n(O) :=

∂2

∂ε2
log f0n(O|ε)

∣∣∣∣
ε=0

.

Then

P0[Λ0
n] = P0[λ∗(P0)],

where P0[λ∗(P0)] is assumed to be non-singular.

7. The joint prior density πβ is absolutely continuous in a neighborhood of β0 and πβ(β0) > 0.

Then

‖Π0√
n(β−β0)

(· | O1:n)−N
(
∆0
n, P0[λ∗(P0)]

)
‖1 = oP (1)

where

∆0
n =

1√
n

n∑
i=1

P0[λ∗(P0)]−1D∗(P0)(Oi).

Note that condition 3 can be difficult to verify. However, if ε belongs to a compact set E, if F0 =
{F 0

ε : ε ∈ E} is identifiable (meaning F 0
ε = F 0

ε′ implies ε = ε′) and if ε 7→ F 0
ε is continuous, then

condition 3 is not necessary (van der Vaart, 1998, Chapter 10).

Proof. First, we derive the Fisher information matrix of β. The log-density of β is given by

log f0n(O1:n | β) = log f0n(O1:n | ε = ϑ−10 (β)).

Next, calculate

∂2

∂β2
log f0n

(
O
∣∣ε = ϑ−10 (β)

) ∣∣∣∣
β=β0

=

[
∂2

∂β2
ϑ−10 (β)

∣∣∣∣
β=β0

]
∂

∂ε
log f0n (O|ε)

∣∣∣∣
ε=0

∂

∂ε
log f0n (O|ε)

∣∣∣∣>
ε=0

+

[
∂

∂β
ϑ−10 (β)

∣∣∣∣
β=β0

]
∂2

∂ε2
log f0n (Oi|ε)

∣∣∣∣
ε=0

[
∂

∂β
ϑ−10 (β)

∣∣∣∣
β=β0

]
.

The first term (the product of a 3D tensor and a matrix) equals zero because ε = 0 maximizes ε 7→
log f0n(O|ε), so

∂

∂ε
log f0n (O|ε)

∣∣∣∣
ε=0

= 0.

The inner Hessian matrix of the second term equals Λ0
n(O). The surrounding matrices of the second

term satisfy

∂

∂β
ϑ−10 (β)

∣∣∣∣
β=β0

=

[
∂

∂ε
ϑ0(ε)

∣∣∣∣
ε=0

]−1
.

Recall that ϑ0(ε) = B(F 0
ε ). Therefore, since B is pathwise differentiable,

∂

∂ε
ϑ0(ε)

∣∣∣∣
ε=0

= P0

[
D∗(P0)s>

]
,
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where s ∈ (L2
0(P0))p is the score of F 0

n at ε = 0 that is, by assumption on the submodel F0, s = D∗(P0).
Therefore

∂

∂β
ϑ−10 (β)

∣∣∣∣
β=β0

=
{
P0

[
D∗(P0)D∗(P0)>

]}−1
= P0[λ∗(P0)]−1,

and

∂2

∂β2
log f0n

(
O
∣∣ε = ϑ−10 (β)

) ∣∣∣∣
β=β0

= P0[λ∗(P0)]−1Λ0
n(O)P0[λ∗(P0)]−1.

The Fisher Information is then

Iβ0
:= EP0

[
∂2

∂β2
log f0n

(
O
∣∣ε = ϑ−10 (β)

) ∣∣∣∣
β=β0

]
= EP0

[
P0[λ∗(P0)]−1Λ0

n(O)P0[λ∗(P0)]−1
]

= P0[λ∗(P0)]−1P0[Λ0
n(O)]P0[λ∗(P0)]−1

= P0[λ∗(P0)]−1P0[λ∗(P0)]P0[λ∗(P0)]−1

= P0[λ∗(P0)]−1.

The result follows from van der Vaart (1998, Theorem 10.1).

Example (cont’d). Applying Theorem 4 requires checking each of the assumptions in the context
of the example.
• Assumption 1: the likelihood f0n is that of an exponential family satisfying the conditions

of (van der Vaart, 1998, Example 7.7), therefore {f0n(·|ε) : ε ∈ Rp} is locally asymptotically
normal.

• Assumption 2: it is impossible to directly check this condition; we propose a diagnostic in
Section 6.3 that an oracle knowing P0, and hence F0, could rely on to check the invertibility
of ϑ0.

• Assumption 3: we restrict F 0
ε to be defined for ε ∈ E := [−C,C] for an arbitrary (large)

constant C. Because E is compact, assumption 3 is no longer necessary.

• Assumption 4: ε 7→ log f0n(O | ε) is infinitely differentiable.

• Assumption 5: it is easily checked that

∂

∂ε
log f0n(O | ε)

∣∣∣∣
ε=0

= D∗] (P0)(O).

• Assumption 6: the Hessian of ε 7→ log f0n(O | ε) evaluated at ε = 0 is

Λ∗n(O) =
1

g0(A,X)2

(
Q̄

(A)
0 (X)− 1

)
Q̄

(A)
0 (X)M−1(1, V )(1, V )>M−1

+ (ψ]0(X)−B](P0)(1, V )>)2M−1(1, V )(1, V )>M−1,

and its expectation is given by

P0 [Λ∗n(O)] = M−1P0

[(
VarP (Y | A,X)

g0(A,X)2
+
(
ψ]0 −B](P0)(1, V )>

)2)
(1, V )(1, V )>

]
M−1,

which is the variance of the EIF D∗(P0).

• Assumption 7: this condition can be easily satisfied by proper choice of the prior density πβ .
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11.7 Metropolis-Hastings Algorithm

Let

f∗n(O1:n | ε) =

n∏
i=1

f(Oi|ε, Q̄∗n, Q∗n, ηn, σn)

be the targeted likelihood akin to f0n(O1:n | ε) that we defined and used in Section 11.6 (we simply
substitute the estimated features for the true features). Let πε be a prior distribution for ε as in (7).
Let ε(0) be a starting value for the Markov Chain specified by the user, τ a tuning parameter, and T the
number of iterations. The algorithm is implemented on the log-scale to avoid numerical precision issues.
For t = 1, . . . , T :

1. Draw ε′ ∼ N(ε(t−1), τI).

2. Draw u ∼ Uniform(0, 1).

3. Let

`t−1 = log f∗n(O1:n | ε(t−1)) + log πε(ε
(t−1)),

`′ = log f∗n(O1:n | ε′) + log πε(ε
′).

4. Let A(t) = I(`′ − `t−1 > log(u)). Then

ε(t) =

{
ε′ if A(t) = 1,

ε(t−1) otherwise.

5. Set β(t) = B(ε(t)).

The mean Ā = 1
T

∑T
t=1A

(t) is called the acceptance ratio.
The value of τ , the standard deviation of the proposal distribution, is found by a binary search

procedure. Let τmin and τmax define the upper and lower search bounds for τ . Let K be the maximum
number of iterations in the search. Let Ā(τ) be the acceptance ratio from the Metropolis-Hastings
algorithm given above with proposal distribution τ run for 1000 iterations. Then iterate:

1. Let τl = τmin and τu = τmax.

2. For k = 1, . . . ,K:

(a) Let τk = (τl + τu)/2.

(b) Let Āk = Ā(τk).

(c) If Āk ∈ (0.3, 0.4), then break and return τk.

(d) If Āk ≤ 0.3, set τu = τk.

(e) If Āk ≥ 0.4, set τl = τk.

3. Return τK .

This procedure targets an acceptance ratio in between 30% and 40%.

11.8 Simulation Study Results
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β1 β2
N Estimator 95% Coverage Absolute Bias 95% Coverage Absolute Bias

(a): gP correctly specified, Q̄P correctly specified
50 Frequentist 0.87 0.099 0.78 0.110

Bayesian 0.90 0.100 0.85 0.110
100 Frequentist 0.92 0.069 0.91 0.066

Bayesian 0.94 0.069 0.95 0.067
250 Frequentist 0.93 0.043 0.94 0.041

Bayesian 0.94 0.043 0.95 0.042
500 Frequentist 0.96 0.030 0.95 0.030

Bayesian 0.97 0.030 0.97 0.030
750 Frequentist 0.95 0.025 0.96 0.022

Bayesian 0.96 0.024 0.97 0.023
1000 Frequentist 0.92 0.022 0.95 0.020

Bayesian 0.92 0.022 0.95 0.020
(b): gP correctly specified, Q̄P incorrectly specified

50 Frequentist 0.93 0.100 0.88 0.110
Bayesian 0.95 0.100 0.95 0.110

100 Frequentist 0.96 0.068 0.90 0.080
Bayesian 0.98 0.068 0.96 0.081

250 Frequentist 0.96 0.042 0.92 0.048
Bayesian 0.98 0.042 0.95 0.049

500 Frequentist 0.95 0.032 0.94 0.035
Bayesian 0.97 0.032 0.95 0.035

750 Frequentist 0.96 0.025 0.94 0.028
Bayesian 0.97 0.025 0.95 0.028

1000 Frequentist 0.96 0.021 0.94 0.024
Bayesian 0.97 0.021 0.95 0.025

(c): gP incorrectly specified, Q̄P correctly specified
50 Frequentist 0.88 0.100 0.86 0.099

Bayesian 0.89 0.100 0.88 0.100
100 Frequentist 0.92 0.068 0.92 0.067

Bayesian 0.91 0.068 0.93 0.068
250 Frequentist 0.94 0.040 0.92 0.042

Bayesian 0.95 0.040 0.94 0.042
500 Frequentist 0.95 0.029 0.96 0.029

Bayesian 0.95 0.029 0.96 0.029
750 Frequentist 0.96 0.024 0.95 0.024

Bayesian 0.96 0.024 0.94 0.024
1000 Frequentist 0.95 0.020 0.96 0.019

Bayesian 0.95 0.020 0.96 0.019
(c): gP incorrectly specified, Q̄P incorrectly specified

50 Frequentist 0.89 0.120 0.85 0.120
Bayesian 0.90 0.120 0.89 0.120

100 Frequentist 0.88 0.087 0.92 0.076
Bayesian 0.88 0.087 0.94 0.077

250 Frequentist 0.90 0.057 0.94 0.047
Bayesian 0.89 0.057 0.96 0.047

500 Frequentist 0.82 0.049 0.95 0.032
Bayesian 0.81 0.049 0.96 0.032

750 Frequentist 0.77 0.046 0.96 0.028
Bayesian 0.76 0.046 0.97 0.028

1000 Frequentist 0.74 0.042 0.95 0.023
Bayesian 0.71 0.042 0.95 0.023

Table 1: Empirical coverage of 95% credible (confidence) intervals and absolute bias of estimators in the
simulation study.
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