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Abstract—This work considers a challenging radio-astronomy
inverse problem of physical parameter inference from multispec-
tral observations. The forward model underlying this problem is
a computationally expensive numerical simulation. In addition,
the observation model mixes different sources of noise yielding
a non-concave log-likelihood function. To overcome these issues,
we introduce a likelihood approximation with controlled error.
Given the absence of ground truth, parameter inference is
conducted with a Markov chain Monte Carlo (MCMC) algorithm
to provide credibility intervals along with point estimates. To this
aim, we propose a new sampler that addresses the numerical
challenges induced by the observation model, in particular the
non-log-concavity of the posterior distribution. The efficiency of
the proposed method is demonstrated on synthetic yet realistic
astrophysical data. We believe that the proposed approach is
very general and can be adapted to many similar difficult inverse
problems.

Index Terms—Inverse problem, Bayesian inference, Markov
chain Monte Carlo algorithm, multiplicative noise

I. INTRODUCTION

Molecular clouds are of particular interest for astrophysi-
cists, since the gravitational collapse of a dense core is the
first step towards star formation. Once formed, a massive
star emits UV photons that heat its parent cloud and greatly
affects its physical conditions. Such regions are called Photo-
Dissociation Regions (PDR), and can be simulated with the
Meudon PDR code [1]. The ORION-B consortium provides
large maps of molecular line emission intensities of such
regions [2], and future observations will be provided by the
James Webb Space Telescope. The problem at the roots of this
work is to infer a PDR physical parameters from those maps.

In most classic inverse problems, the likelihood function is
explicit with either additive or multiplicative noise, and the
observables span a limited number of decades in magnitude.
This radio-astronomy problem is challenging because none of
these three criteria is met. The Meudon PDR code is a highly
non-linear numerical simulation that takes into account many
complex physical phenomena: it leads to a non-explicit, non-
concave and potentially multimodal log-likelihood function.
Emission intensities can typically cover more than 10 decades

in magnitude, which leads to regularity issues with no global
Lipschitz constant. Due to the complexity of the measurement
process and the limited sensitivity of the telescope, obser-
vations are degraded by noises of different natures (additive
and multiplicative) and can be censored. Multiplicative noise
dominates at very high intensities and additive noise at low
intensities. However, since the measured intensities can be
very small or very large over several orders of magnitude,
the noise mixture must be addressed at once. In addition,
there is no ground truth in radio-astronomy. In this respect,
we use a Bayesian framework to provide uncertainty quantifi-
cations along with point estimates. A Monte Carlo Markov
Chain (MCMC) method generates samples from the posterior
distribution to form estimators along with credibility intervals.

A reduced version of the forward model tackles the expen-
sive evaluation of the likelihood. Then we design a smooth
approximate likelihood function that mixes the additive and
multiplicative noises. The prior is guided by astrophysicists
expertise (spatial smoothness, validity intervals). Due to the
extremely wide range of amplitudes at stake in astrophysics,
the Lipschitz constant of the resulting log-posterior gradient
is potentially huge. To tackle this regularity issue, we use a
preconditioned Metropolis Adjusted Langevin Algorithm (P-
MALA) [3], [4], which requires the log-posterior to be C 2,
i.e., twice continuously differentiable. The high non-linearity
of the forward model results in a non-concave log-posterior so
that we combine P-MALA with an independent Multiple-Try
Metropolis (MTM) algorithm [5]. Illustrations on a synthetic
yet realistic astrophysical case show that this approach yields
reliable estimators. We believe that the proposed approach is
sufficiently general to remain relevant for a variety of difficult
inverse problems that feature non-Lipschitz regularity, non-
log-concavity and a mixture of noises.

The paper is organized as follows. The proposed Bayesian
model is presented in Section II. The sampler used to solve
the inverse problem is introduced in Section III. The method
is then assessed on synthetic astrophysical data in Section IV.
Conclusion and research perspectives are given in Section V.
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Fig. 1. Illustration of typical observation maps. (a), (b), (c): Synthetic maps
of observation of some emission lines of 12CO. (d) Proportion of lines with
intensity below the telescope sensitivity limit ω (out of L = 10 emission
lines of 12CO). Lines intensities are given in erg cm−2 s−1 sr−1.

II. BAYESIAN MODEL

A. Problem Statement

We consider the observation of feature maps Y ∈ RN×L,
where N is the number of components and L the number of
features per component. The map of parameters to be inferred
is denoted by Θ = (θn)n∈[[1,N ]] ∈ RN×D. Let f : RD → RL
be a black-box forward model. Each individual observation
yn,` is assumed to be corrupted by an additive noise ε(a)n,` ∼
N (0, σ2

a) and a multiplicative noise ε(m)
n,` ∼ logN (0, σ2

m). On
top on that, the sensors have a sensitivity limit ω below which
observations are censored, that is, for all n ∈ [[1, N ]], ` ∈
[[1, L]]:

yn,` = max
{
ω, ε

(m)
n,` f`(θn) + ε

(a)
n,`

}
. (1)

The noise terms ε(a)n,` and ε(m)
n,` are supposed independent, with

known variances σ2
a and σ2

m, respectively. Note that we do not
assume E[ε(m)

n,` ] = 1, in contrast with a usual assumption from
the literature [6], [7]. This will allow the surrogate likelihood
model introduced in II-C to be derived by matching the first
two moments of the likelihood in (1).

Back to our motivating example in astrophysics, Y will be
a multispectral image where each pixel features L molecular
spectral lines of 12CO, see Fig. 1. The forward model f will
be encoded by the Meudon PDR code [1]. In particular, for
L = 10 emission lines of 12CO, Fig. 1d shows the proportion
of censored lines below the sensitivity level ω = 3σa. Further
details are given in Section IV.

B. Model Reduction

When the evaluation of the likelihood is expensive, one
usually uses a reduced model that is computationally cheaper.

In the example, given a set of parameters θ ∈ RD that define
the physical conditions of a PDR, the Meudon PDR code [1]
iteratively solves large systems of equations of thermal bal-
ance, radiative transfer and chemistry evolution to compute
molecular emission line intensities. It is therefore a positive
function, i.e. for all ` ∈ [[1, L]] and θ ∈ RD, f`(θ) > 0.
However, it is very expensive to evaluate (from 2 to 6 hours
per simulation). To avoid the use of costly likelihood-free
methods such as Approximate Bayesian Computation (ABC)
algorithms [8], which would require several evaluations of
the Meudon PDR code, we approximate it with a closed-
form function. To reflect physical considerations, all f` are
assumed to be smooth: any approximation f̃` of f` such that
the gradients are easy to compute would thus be suitable. For
the sake of simplicity in this paper, we propose a polynomial
approximation of the log-intensities:

∀`, f̃`(θ) = exp
[
P̃`(θ)

]
. (2)

The coefficients of the polynomials P̃` are estimated using
ridge regression based on a grid of 1362 simulations. Using a
leave-one-out cross-validation, we estimate an average error of
a factor 1.09 (in linear scale) for a polynomial P̃` of degree 8.
Guided by the application, we define a validity set for θ: C =
[l0, u0] × . . . × [lD−1, uD−1] ⊂ RD, where ld, ud ∈ R are
lower and upper bounds of θd, respectively.

C. Likelihood with Mixture of Noises

For the sake of simplicity, we introduce here the uncensored
case only, i.e., the right side of (1). To the best of the authors’
knowledge, no model from the literature can exactly handle
this mixture of noises with MCMC methods. Exact marginal-
ization is intractable, and the separable model [9] is dedicated
to linear inverse problems (e.g., deblurring). In general, a
single global approximation using either purely additive or
multiplicative model is considered in the likelihood [6]. The
additive noise (resp. the multiplicative noise) involved in (1)
can be neglected when f`(θ)→ +∞ (resp. when f`(θ)→ 0).
We thus consider a mixture of a Gaussian and a lognormal
approximation of the overall distribution of yn,`, controlled
by f̃`(θn). The former gives a better description of low
intensity observations, whereas the latter better approximates
high intensity observations. In the spirit of [6], the Gaussian
approximation is given by

yn,` ' f̃`(θn) + e
(a)
n,`, e

(a)
n,` ∼ N (ma,n,`, s

2
a,n,`), (3)

where ma,n,` and s2a,n,` are obtained by matching the first
two moments with (1). Proceeding similarly for the lognormal
approximation

yn,` ' e(m)
n,` f̃`(θn), e

(m)
n,` ∼ logN (mm,n,`, s

2
m,n,`). (4)

The resulting additive and multiplicative approximations de-
fine two likelihood functions denoted by π(a)(yn,`|·) and
π(m)(yn,`|·), respectively. Then, we approximate the true
likelihood function π(yn,`|·) by combining (3) and (4)

π̃(yn,`|θn) ∝ π(a)(yn,`|θn)λ(θn)π(m)(yn,`|θn)1−λ(θn), (5)



Fig. 2. Evolution of − log10 g defined in (7) for the target astro-
physical example. We consider L = 10 emission lines with σa =
1.4× 10−10 erg cm−2 s−1 sr−1 and σm = log(1.3). Note that a→ +∞
corresponds to a purely additive approximation, a→ 0 to a purely multiplica-
tive approximation; the red cross indicates the minimum of g.

where λ ∈ C 2(RD, [0, 1]) is an S-shaped function that controls
the model mixing and verifies λ(θ) → 1 when f̃`(θ) → 0,
and λ(θ) → 0 when f̃`(θ) → +∞. For flexibility, λ is
parametrized by two scalars a > 0 and αf > 1 that respec-
tively control the location and speed of the transition between
additive and multiplicative approximations. When a → 0
(resp. when a → +∞), one only considers a multiplicative
model (resp. an additive model). Similarly, the higher αf , the
steeper the transition.

D. Minimization of the likelihood misspecification

To evaluate the relevance of the proposed likelihood ap-
proximation for (σa, σm) and (a, αf ) fixed and compare it
to purely additive or multiplicative approximations, we define
the following model-dependent quantitative criterion. First,
we consider for each line the Kolmogorov-Smirnov distance
D

(`)
K-S between the true marginal likelihood and the proposed

approximation:

D
(`)
K-S

(
π, π̃(a,αf )

)
: θ 7→ sup

y∈R

∣∣∣F (`)(y|θ)− F̃ (`)
(a,αf )

(y|θ)
∣∣∣ ,

(6)
where F (`) (resp. F̃(a,αf )) is the cumulative density function
(cdf) of the marginal of feature ` for the true likelihood (resp.
the proposed approximation). Assuming θ follows a uniform
distribution on C, we consider:

g(a, αf ) =
1

L

L∑
`=1

E
[
D

(`)
K-S

(
π, π̃(a,αf )

)
(θ)
]
. (7)

The values of (a, αf ) are adjusted by minimizing g. Fig. 2
illustrates the evolution of this criterion with a and αf for
the target astrophysical application. In particular, one can see
that the approximation error of the best (a, αf ) is more than
10 times lower than those of pure additive (a → +∞) or
multiplicative (a→ 0) models, which demonstrates the value
of our approach.

E. Regularization and posterior distribution

To perform Bayesian inference, the following prior infor-
mation is combined with the approximate likelihood function.

First, a spatial smoothness prior on the parameters is con-
sidered to reflect physical considerations. Second, since f̃ is
defined from a grid on C, the true parameters associated with
each pixel are assumed to belong to this set, i.e., Θ ∈ CN .
The considered prior is thus of the form

π(Θ, β) ∝ exp (−h(Θ, β)− ιCN (Θ)) , (8)

where h(Θ, β) is a squared `2 regularization on the gradients
of the maps of each physical parameter; β ∈ RD contains
the corresponding weights; ιCN is the indicator function of
the full parameter validity set CN , i.e., ιCN (Θ) = 0 when
Θ ∈ CN and +∞ otherwise. To ensure the log of the prior is
C 2, we approximate ιCN with a smooth penalty function ι̃CN ,
defined with a polynomial of degree 4 and a scale parameter
that controls the approximation error. We denote π̃(Θ, β)
the corresponding approximation of π(Θ, β). The posterior
distribution combining (5) and (8) is of the form

π(Θ|Y ) ∝

[
N∏
n=1

L∏
`=1

π̃(yn,`|θn)

]∫
π̃(Θ, β)dβ. (9)

III. MCMC SAMPLER

The forward model spans several decades and the log-
posterior is non-concave: the resulting posterior distribution
is thus challenging to sample, especially for large numbers
of pixels. To address this issue, we introduce a new sam-
pler relying on a random mixture of two transition kernels,
with mixing parameter p ∈]0, 1[: the MTM kernel is active
with probability p while the P-MALA kernel is active with
probability 1 − p. The former detects modes of the posterior
distribution on-the-fly and allows jumps between them, and the
latter efficiently explores the local geometry. Note that, since
both kernels satisfy the detailed balance criterion, so does their
mixture. This property ensures that the posterior distribution
is the stationary distribution of any Markov chain drawn using
the proposed sampler.

A. P-MALA Sampling Kernel

In the considered problem, the forward model f̃ and its
derivatives cover many decades, which causes the gradient
of the likelihood function to have potentially huge Lipschitz
constant. This is problematic for classic sampling algorithms
like MALA [10], in that it requires a step size valid globally,
which is inversely proportional to this Lipschitz constant.
To address this issue, a solution consists in using a step-
size which better reflects the local geometry of the log-
posterior distribution around the current iterate. To do so,
we consider the P-MALA kernel [3], [4], which hinges on
a position-dependent preconditioning. We used the RMSProp
preconditioner, which has already been applied in the MCMC
literature [11]. It relies on three hyperparameters that directly
or indirectly define the considered neighborhood: α0 ∈]0, 1[
(the exponential decay of the pre-conditioner memory), ε0 > 0
(a raw step size) and λ0 > 0 (a damping parameter that avoids
zero-divisions).



B. MTM Sampling Kernel
A second major difficulty coming from the non-linearity

of f is the non-convexity of the negative log pdf of the
posterior, which can even be multimodal. Sampling algorithms
such as the Metropolis-Hastings (MH) [12], MALA and P-
MALA algorithms fail to efficiently explore such distributions,
as they get stuck in one local minimum. Alternative sam-
plers dedicated to multimodal distributions exist (Equi-Energy
Sampler [13], evolutionary MC [14], [15], darting MC [16],
wormhole MC [17], etc.), but most of them are either based on
interacting Markov chains or modes fitting (prior to sampling
or on the fly), which is computationally intensive.

In the considered case, an independent MH kernel with
a uniform proposal distribution on CN would be a simple
yet inefficient sampler. We improve this basic sampler in
three ways. First, instead of considering CN ⊂ RN×D, at
each step we sample one n ∈ [[1, N ]] with uniform weights
and then sample in C ⊂ RD in a component-wise MH
fashion [18]. Second, instead of drawing only one candidate
that would have a very low acceptance probability, we use a
MTM approach [5] that generates K candidates in C, selects
one based on the posterior pdf and then performs an accept-
reject step. Though using K > 1 candidates increases the
computational time needed for one step, it also dramatically
improves the acceptance probabilities. Third, instead of using
independent samples of the uniform distribution in our MTM
kernel, we use a stratified Monte Carlo (SMC) algorithm [19]
that better covers C.

IV. EXPERIMENTS

A. Experimental setup
The potential of the proposed approach is illustrated on

a synthetic astrophysical problem. The purpose is to infer
physical parameters of a molecular cloud from its observa-
tion simulated from the above-mentioned reduced polynomial
model f̃ of the Meudon PDR code. For each pixel, the forward
model f̃ generates L = 10 molecular emission lines of 12CO
(from J = 4 − 3 to J = 13 − 12), see Fig. 1. Note that
excited 12CO lines were at the core of the observations of the
Herschel satellite in the Milky Way and other galaxies; astro-
physicists understand well 12CO dominant physical processes
and inference capabilities. The parameters map Θ consists of
N = 10 × 10 parameter vectors θn = (κ, Pth, G0, AV ). The
geometrical scaling factor κ is related to the conditions of
observation (beam dilution, angle of view); here κ = 1 over
the whole map. The main physical parameters of interest for
each pixel are the thermal pressure Pth, the intensity of the UV
radiative field G0, the visual extinction along the line of sight
AV (related to the cloud depth). From Fig. 3, 1st column, one
can see that Θ contains a wide range of physical environments.

Both additive and multiplicative noises, which correspond
respectively to thermal noise and calibration errors, affect the
simulated observations. The intensity of the additive noise is
fixed to the median of the J = 13 − 12 line, i.e., σa =
1.4× 10−10 erg cm−2 s−1 sr−1, and the level of the mul-
tiplicative noise is σm = log(1.3). These values are consistent

Fig. 3. Inference Results. The first column represents the true N = 10× 10
maps of Θ, the second column our MMSE estimation and the third shows the
size of the 95% credibility intervals on estimations log10 q97.5− log10 q2.5,
with qu the percentile u in linear scale.

with real datasets [2]. Considering the convex envelope of the
grid used to define f̃ , we define C such that κ ∈ [10−1, 101],
Pth ∈ [105, 109]K.cm−3, G0 ∈ [100, 105], AV ∈ [1, 40]mag.
Due to the wide range of the considered astrophysical param-
eters, the sampling is performed on the logarithmic quantities.
Estimators are defined in the log space as well. The selection
probability of the MTM kernel is set to p = 0.2, see section III,
and it uses K = 6D = 1296 candidates. The parameters of
the P-MALA kernel are ε0 = 2 × 10−3, λ0 = 10−5 and
α0 = 0.995. A set of Nsim = 5 Markov chains is run with
105 iterations including 2×104 burn-in samples. To make our
approach auto-tuned, the regularization weights β in (8) are
also sampled together with Θ following [20].

B. Results

Since the proposed approach produces samples from the
posterior distributions, it simultaneously yields an estimate
of the physical parameters and the corresponding credibility
intervals (C.I.). The 2nd and 3rd columns of Fig. 3 show
the point estimates of each θn,d as well as the sizes of their
95% C.I.. Qualitatively, they are both remarkably consistent
with the underlying physics. First, it is a well known fact



Fig. 4. Marginal 2D histogram of (κ, Pth) for the pixel n = 20. The sampler
successfully explored two distinct modes thanks to the proposed MTM/P-
MALA mixture.

for astrophysicists that this inverse problem, with 12CO lines
observations, is very ill-posed for AV above some threshold.
In Fig. 3, the size of the AV C.I. almost covers the whole
valid interval for high true values. For κ, Pth and G0, the
estimation problem is very ill-posed in the low SNR limit
only. Our synthetic maps were designed to include a region at
the bottom right with most spectral lines censored, see Fig. 1d.
Even there, the MMSE estimations are quite close to the true
values, though the credibility intervals are larger than on the
rest of the map, as expected.

Let us now focus on the pixel corresponding to n = 20 that
has a C.I. for the pressure Pth that is 10 times larger than for
the rest of the map (see Fig. 3, 3rd column, 2nd row). Indeed it
appears that the marginal distribution on this pixel is bimodal,
see Fig. 4: it admits two relatively distant modes so that the
C.I. includes very low probability regions. Such situations
lead to an artificially overestimated uncertainty. This is not
really a problem since the physical expertise (not used here)
would permit to eliminate the physically inconsistent mode
in a simple manner. In principle, one could expect the prior
distribution to eliminate this non-physical mode by smoothing
it out. However, the true pressure map is not as smooth as for
the other parameters. Therefore the estimated regularization
weight is lower for the pressure, and the prior is not strong
enough to exclude the higher pressure mode.

V. CONCLUSION

Motivated by a real inverse problem from astrophysics,
a new likelihood approximation has been derived to handle
mixtures of additive and multiplicative noises. It enables
physical parameters to be better inferred from observation
maps covering a wide range of intensities as well as cen-
sored regions. To solve this inverse problem that involves a
non-concave log-posterior with non-Lipschitz regularity, an
original MCMC sampler has been introduced. The proposed
approach deals with both issues by mixing a preconditioned
MALA and an MTM algorithm that even handles multimodal
local landscapes. The method provides good estimates as well
as relevant credibility intervals. An application to synthetic
yet realistic radio-astronomy data shows the efficiency of the
proposed approach. We believe that it is sufficiently general
to be adapted to many similar difficult inverse problems.

Perspectives include the application of this approach to real
star forming region observations, including real data such as
the IRAM Orion B Large Program maps [2].
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