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1. INTRODUCTION

In [Vit92], a metric, denoted γ, was introduced on the set L(T ∗N ) of
Lagrangians Hamiltonianly isotopic to the zero section in T ∗N , where N
is a compact manifold and on DHamc (T ∗N ) the group of Hamiltonian
maps with compact support for N = Rn or T n (and in [Vit06] it was ex-
tended to DHamc (T ∗N ) for general compact N ). The metric was gener-
alized by Schwartz and Oh to general symplectic manifolds (M ,ω) using
Floer cohomology for the Hamiltonian case (see [Sch00; Oh05]), and by
[Lec08] for the Lagrangian case1. The notion of γ-coisotropic sets in a
symplectic manifold was defined in [Vit22]. A similar definition was due
to Usher [Ush19] in the setting of Hofer distance under the name of “lo-
cally rigid”. Notice that this yields a weaker notion : γ-coisotropic implies
locally rigid in the sense of Usher.

In the context of sheaves on manifolds, there is a notion of coisotropic
sets in the sense of Kashiwara-Schapira (see [KS90], definition 6.5.1, p.
271 and Definition 8.2), that the authors call involutivity. To avoid any
confusion with other notions, we shall use the term cone-coisotropic
for their definition as it is defined using the contingent and paratingent
cones (see [Bou32] ). With this notion, Kashiwara and Schapira proved

Theorem 1.1 ([KS90], theorem 6.5.4, p. 272). Given a sheaf F ∈ Db(N ),
its singular support SS(F ) is cone-coisotropic.

The aim of this paper is to prove that

Theorem 1.2. Given a sheaf F ∈ Db(N ), its singular support SS(F ) is γ-
coisotropic.

Theorem 1.2 implies Theorem 1.1, since we shall prove the following
connection between the two notions

Proposition 1.3. Let V be a closed subset in (M ,ω). If V is γ-coisotropic
then it is cone-coisotropic.

Remark 1.4. This is related to questions asked by Vichery in section 4
of [Vic13]. Our result, toghether with Proposition 1.3, stating that a γ-
coisotropic set is cone-coisotropic, gives a more natural proof of the Kashiwara-
Schapira theorem. Moreover, as opposed to the notion of cone-coisotropic,
which is only invariant by C 1 symplectic diffeomorphisms, the notion of

1Assuming [ω]π2(M ,L) = 0, µLπ2(M ,L) = 0, where µL is the Maslov class of L.
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γ-coisotropic set is invariant by homeomorphisms preserving γ, in par-
ticular by symplectic homeomorphisms, i.e. homeomorphisms which
are C 0 limits of symplectic diffeomorphisms. Along the way we prove a
number of results relating the singular support and the spectral norm γ.

2. NOTATION, COMMENTS AND ACKNOWLEDGEMENTS

Since our results are local, we shall assume from now on that N is a
compact manifold. The following definitions will turn out useful :

• The category D(N ) is the unbounded derived category of sheaves
of k-vector spaces on N , for some given field k, but except in Ap-
pendix B the reader may assume we are dealing with its bounded
version. For the operations on sheaves associated to a continu-
ous map f : M −→ N that is f −1, f∗, f !, f ! and the two operations
⊗,H om and their derived versions, f −1,R f∗,R f !, f ! and⊗,RH om
on D(N ) we refer to [KS90].

• Choosing a real analytic structure on N we set Dc (N ) to be the
category of constructible complexes F , i.e. complexes such that,
for some subanalytic stratification, the restriction of F to each
stratum is locally constant and of finite rank.

• For F ∈ D(N ), SS(F ) is the singular support (also called micro-
support) defined by Kashiwara-Schapira in [KS90]. We set SS•(F ) =
SS(F )∩ (T ∗N \ 0N ).

• For an open set U in the symplectic manifold (M ,ω) we denote by
DHamc (U ) the set of time one flows of Hamiltonian with compact
support contained in U .

We thank Pierre Schapira for useful conversations. While writing this
paper, we realized that some of the results in Subsection 6.3 were inde-
pendently discovered by Asano and Ike in [AI22].

3. REMINDERS ON THE SINGULAR SUPPORT OF SHEAVES

Let N be a manifold, k a field and D(N ) the derived category of sheaves
of k-vector spaces on N . For F ∈ D(N ) we recall that SS(F ) ⊂ T ∗N is the
closed conic subset defined by Kashiwara-Schapira as the closure of the
set of points (x;ξ) such that (RΓ{ f ≥0} F )x 6= 0 for some function of class
C 1 such that f (x) = 0 and d fx = ξ. It is called microsupport or singular
support of F .

The functor RΓ{ f ≥0} does not commute with infinite direct sums and
(−)x does not commute with infinite direct products. Here are two vari-
ations on the definition which have these commutation properties. For
the statement of the lemmas we introduce the following definition.
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Definition 3.1. LetΩ⊂ T ∗N \0N be an open conic subset. We callΩ-lens a
locally closed subsetΣ of N with the following properties: Σ is compact and
there exists an open neighbourhood U ofΣ and a function g : U×[0,1] −→R

of class C 1 such that

(1) d g t (x) ∈Ω for all (x, t ) ∈U × [0,1], where g t = g |U×{t },
(2) {g t < 0} ⊂ {g t ′ < 0} if t ≤ t ′,
(3) the hypersurfaces {g t = 0} coincide on U \Σ,
(4) Σ= {g1 < 0} \ {g0 < 0}.

We recall that SS•(k{g t<0}) = {(x;λd g t (x)); g t (x) = 0, λ > 0}. Using the

triangle k{g0<0} −→ k{g1<0} −→ kΣ
+1−−→ and the “triangle inequality” for the

singular support (see [KS90]) we obtain SS•(kΣ) ⊂Ω. The next lemma is

g1 = 0

g0 = 0

Ω

FIGURE 1. A lens. The arrows represent ∇g1 and ∇g0.

essentially a reformulation of the definition of the singular support.

Lemma 3.2. Let F ∈ D(N ) and let Ω⊂ T ∗N \ 0N be an open conic subset.
Then SS(F )∩Ω=; if and only if RHom(kΣ,F ) ' 0 for any Ω-lens Σ.

Proof. (i) We first assume SS(F )∩Ω =;. We recall that RHom(kV ,F ) '
RΓ(V ;F ) for any open subset V of N . Using the notations in the defini-

tion of Ω-lens we have a distinguished triangle k{g0<0} −→ k{g1<0} −→ kΣ
+1−−→.

Applying RHom(−,F |U ) to this triangle we obtain the result, using the
non-characteristic deformation lemma ([KS90, Prop. 2.7.2]) and the defi-
nition of the singular support.

(ii) We assume that there exists (x0;ξ0) ∈ SS(F )∩Ω. Hence we can find
(x1;ξ1) ∈ Ω (close to (x0;ξ0)) and a function f : N −→ R of class C 1 such
that f (x1) = 0, d f (x1) = ξ1 and (RΓ{ f ≥0} F )x1 6= 0. Now we can find a basis
of open neighbourhoods of x1, say Un , n ∈N, such that Σn := { f ≥ 0}∩Un

is an Ω-lens. Then there exists n such that RΓ(Un ;RΓ{ f ≥0} F ) 6= 0 and the
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result follows from

RΓ(Un ;RΓ{ f ≥0} F ) ' RΓ(N ;RH om(kUn ,RH om(k{ f ≥0}F )))

' RΓ(N ;RH om(kΣn ,F )) ' RHom(kΣn ,F )

�

The functor RHom(kΣ,−) commutes with direct products but not with
direct sums. Here is a dual version of the previous lemma using the func-
tor RΓ(N ;kΣ⊗−) which commutes with direct sums.

Lemma 3.3. Let F ∈ D(N ) and let Ω⊂ T ∗N \ 0N be an open conic subset.
Then SS(F )∩Ω = ; if and only if RΓ(N ;kΣ⊗F ) ' 0 for any Ωa-lens Σ,
where Ωa is the antipodal set of Ω, that is, its image by (x;ξ) 7→ (x;−ξ).

The first author thanks Pierre Schapira for a suggestion simplifying the
next proof.

Proof. Let Σ be anΩa-lens. We write it as the difference of the two closed
sets Σ and Z =Σ\Σ. We can find two families of open neighbourhoods of
Σ, say {Un}n∈N, and Z , say {Vn}n∈N, such that, for all n, we have: Vn ⊂Un

and Un \ Vn is an Ω-lens. For each n we have the commutative diagram
of restriction maps

RΓ(Un ;F )
un //

��

RΓ(Vn ;F )

��
RΓ(N ;F ⊗kΣ)

u // RΓ(N ;F ⊗kZ )

The cone of u is RΓ(N ;kΣ⊗F ), so we want to prove that u is an isomor-
phism, that is, u induces an isomorphism on all cohomology groups.
The cone of un is RHom(kUn \Vn ,F ) and the previous lemma says that
un is an isomorphism. Now the result follows from H i (N ;F ⊗ kΣ) '
lim−−→n

H i (Un ;F ) and H i (N ;F ⊗kZ ) ' lim−−→n
H i (Vn ;F ), for all i (see [KS90,

Rem. 2.6.6]). �

The previous two lemmas give the following proposition (see [KS90,
Ex. 5.7]), away from the zero-section. To deal with the zero-section we
use SS(F )∩0N = supp(F ).

Proposition 3.4. Let Fn ∈ D(N ), n ∈ N, be given. Then SS(
⊕

n Fn) ⊂⋃
n SS(Fn) and SS(

∏
n Fn) ⊂⋃

n SS(Fn).
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4. QUANTIZATION OF HAMILTONIAN ISOTOPIES

Everything in the next subsection is from [GKS] or [KS90]. Given ϕ, a
homogeneous Hamiltonian map from T ∗N \0N to T ∗N \0N , Guillermou,
Kashiwara and Schapira associate a Kernel, that is an element of Db(N ×
N ), noted Kϕ having the following properties2. First Kϕ is a quantization

of the homogeneous Lagrangian Λϕ = {(z,ϕ(z)) | z ∈ T ∗N } ⊂ T ∗N ×T ∗N
in the sense that SS•(Kϕ) =Λϕ, where we set for short, for a sheaf F on a
manifold N ,

SS•(F ) = SS(F )∩ (T ∗N \ 0N )

Before we state the second property we recall the composition of sheaves:

Definition 4.1. Let F ∈ Db(M) and K ∈ Db(M ×N ). We define

K (F ) =F ◦K = RqN !(K ⊗q−1
M F ) ∈ Db(N ),

where qM , qN are the projections of M ×N on M and N respectively.

The second property is then :

Proposition 4.2 (See Proposition 7.1.2 (ii) in [KS90] and [GKS], formula
(1.12) ). We have

SS•(Kϕ(F )) =ϕ(SS•(F ))

Now if ϕ is an exact non-homogeneous symplectic map from T ∗M to
T ∗N (i.e. PdQ −pd q is exact), we replace Λϕ by the homogeneous lift of

the graph of ϕ, say Λ̂ϕ ⊂ T ∗M ×T ∗N ×T ∗R, given by

Λ̂ϕ = {
(q,−τp,Q(q, p),τP (q, p),F (q, p),τ) |ϕ(q, p) = (Q,P ),τ> 0

}
where dF = PdQ −pd q . Note that considering Λ̂ϕ as a correspondence

in T ∗M ×T ∗N ×T ∗R, if L is an exact Lagrangian in T ∗M and

L̂ = {
(q,τp, fL(q, p),τ) | (q, p) ∈ L,τ≥ 0

}
we have Λ̂ϕ ◦ L̂ = �ϕ(L).

From now on we assume M = N andϕ is a Hamiltonian map with com-
pact support (which will always be the case in this paper), the existence
of a quantization Kϕ for Λ̂ϕ follows from the homogeneous case by con-
sidering Λ̂ϕ as a deformation of Λ̂id. Since Λ̂id is quantized by k∆N×[0,+∞[

we conclude by Proposition 4.2. However we have to be careful that the
singular support is slightly bigger than desired:

SS•(k∆N×[0,+∞[) = Λ̂id ∪ {(q, p, q,−p, t ,0) | t ≥ 0}

2In fact in [GKS] the authors associate to a Hamiltonian isotopy ϕs a Kernel KΦ ∈
Db(N ×N × [0,1]) such that KΦ|N×N×{s} = Kϕs .
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but its intersection with {τ > 0} is equal to Λ̂id. We can find a homoge-
neous mapψ acting on T ∗(N 2×R)\0N 2×R such thatψ is the identity map
near {τ= 0} and ψ(Λ̂id) = Λ̂ϕ. We remark that ϕ can be lifted to a homo-
geneous map ϕ̂ acting on T ∗(N ×R) \ {τ= 0} (we homogenize the Hamil-
tonian function) but we cannot use idT ∗N × ϕ̂ for ψ, as would be natural,
since it is not defined everywhere outside the zero section.

Now we set
Kϕ = Kψ(k∆N×[0,+∞[)

and we find
SS•(Kϕ) = Λ̂ϕ∪ {(q, p, q,−p, t ,0) | t ≥ 0}

If we consider the whole isotopy ϕs and choose t0 big enough so that
Λ̂ϕs is contained in T ∗(N 2 × ]−t0, t0[) for all s ∈ [0,1], then we see that
SS•(Kϕs )∩T ∗U is independent of s, where U = N 2×(R\[−t0, t0]). By [KS90,
Prop. 5.4.5] we deduce that

Kϕ|N 2×]−∞,−t0[ ' 0, Kϕ|N 2×]t0,+∞[ ' k∆N×[0,+∞[|N 2×]t0,+∞[

In other words Kϕ =Kid = k∆N×[0,+∞[ outside of a compact set.

Remark 4.3. We could obtain the existence of Kϕ when M = N andϕ has
compact support without assuming that ϕ is Hamiltonian by adapting
the result of [Gui12; Vit19] (see Theorem 5.1). In loc. cit. the existence of a
quantization is proved for a Legendrian of J 1N which is the lift of a com-
pact exact Lagrangian of T ∗N . Here the graph of ϕ is not compact but
coincides with the diagonal T ∗

∆N
N 2 outside a compact set (if we choose

F = 0 at infinity) so it should not be too difficult to extend the result in
our situation.

Since we use Kϕ, defined over N 2 ×R, instead of sheaf defined over
(N ×R)2, we change slightly the composition functor as follows, which
becomes a mixture of ◦ and the convolution ∗ (see Section 5 for the defi-
nition)

Definition 4.4. Let F ∈ Db(M ×R) and K ∈ Db(M ×N ×R). We define

K �(F ) =F �K = Rs!Rq2!(q−1
1,2K ⊗q−1

1 F ) ∈ Db(N ×R),

where the maps q1,2 : M ×N ×R2 −→ M ×N ×R, q1 : M ×N ×R2 −→ M ×R,
s : M×N×R2 −→ N×R are defined by q1,2(x, y, t1, t2) = (x, y, t1), q1(x, y, t1, t2) =
(x, t2), s(x, y, t1, t2) = (x, y, t1 + t2).

Now we obtain a non homogeneous version of Proposition 4.2.

Proposition 4.5. For a compactly supported Hamiltonian map ϕ from
T ∗N to itself and any F ∈ Db(N × R) with SS(F ) ⊂ {τ ≥ 0}, we have
SS•(K �

ϕ (F )) = ϕ̂(SS•(F )).
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In particular, for L ∈L (T ∗N ) we have SS•(Kϕ(FL)) = SS•(Fϕ(L)) and,
by uniqueness of the quantization (see Theorem 5.1, (4)), K �

ϕ (FL) '
Fϕ(L).

5. SPECTRAL INVARIANTS FOR SHEAVES AND LAGRANGIANS

For M a symplectic manifold, (here we only need M = T ∗N ), if Λ(M)
is the bundle of Lagrangians subspaces of the tangent bundle to M , with
fibre the Lagrangian Grassmannian Λ(Tz M) ' Λ(n), we denote by Λ̃(M)
the bundle induced by the universal cover Λ̃(n) −→Λ(n).

When using coefficients others than Z/2Zwe assume we have a lifting
G̃L of the Gauss map GL : L −→ Λ(T ∗N ) given by x 7→ TxL to Λ̃(T ∗N ).
This is called a grading. Given a graded L, the canonical automorphism
of the covering induces a new grading and we denote it as L[1] (or L̃[1]),
and its k-th iteration as L[k] (or L̃[k]). The grading yields an absolute
grading for the Floer homology3 and hence for the complex of sheaves in
the Theorem stated below. We refer to [Sei00] for more details on this, but
point out that we shall never mention explicitly the grading.

An exact Lagrangian in T ∗N is a pair (L, fL) such that d fL = λ|L where
λ = pd q is the Liouville form. For an exact Lagrangian, a grading al-
ways exists since the obstruction to its existence is given by the Maslov
class, and for exact Lagrangians in T ∗N the Maslov class vanishes, as was
proved by Kragh and Abouzaid (see [Kra13] and also the sheaf-theoretic
proof by [Gui12]). When fL is implicit we only write L, for example 0N

means (0N ,0). A Lagrangian brane is a triple L̃ = (L, fL ,G̃L), where L is a
compact Lagrangian. For c a real constant, we write Tc L̃ = (L, fL + c,G̃L).
We also use the notation L̃+c or L+c if the grading is irrelevant (as it will
be most of the time).

Let L be a Lagrangian in T ∗N and

L̂ = {
(q,τp, fL(q, p),τ) | (q, p) ∈ L,τ≥ 0

}
the homogenized Lagrangian in T ∗(N ×R).

Similarly for Hamiltonian maps in an exact manifold (M ,ω = dλ) we
look for pairs (ϕ,F ) such that ϕ∗λ−λ= dF on M .

To state the next result we recall the two adjoint functors, ∗ and H om∗,
on the category D(N×R) introduced by Tamarkin in [Tam08]. First we set
s, q1, q2 : N × (R)2 −→ N ×R given by s(x, t1, t2) = (x, t1 + t2), q1(x, t1, t2) =

3Without this extra piece of information, the Floer cohomology F H k (L1,L2) is gen-
erally defined only up to a shift in grading. However, when L2 = ϕ1

H (L1), there is an
absolute grading, a priori depending on the choice of H . However in our situation we
do not assume L1 is Hamiltonianly isotopic to L2, so the grading is required to have an
absolute grading of the Floer cohomology.
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(x, t1), q2(x, t1, t2) = (x, t2) and we define

F ∗G = Rs!(q−1
1 F ⊗q−1

2 G ),

H om∗(F ,G ) = Rq1∗ RH om(q−1
2 F , s !G )

Then H om∗ is the adjoint of ∗ in the sense that

MorD(N×R)(F ,H om∗(G ,H )) = MorD(N×R)(F ∗G ,H )

We recall some properties of H om∗. We denote by Dτ≥0(N ×R) the
subcategory of D(N ×R) of objects with singular support contained4 in
{τ≥ 0}. A base change formula gives, for any c ∈R, and F ,G ∈ Db(N ×R)

(5.1) RΓN×{−c}(N ×R;H om∗(F ,G )) ' RHom(F ,Tc∗(G )),

with Tc : N ×R−→ N ×R, (x, t ) 7→ (x, t + c). Note that T̂c L = Tc L̂.
For H with singular support in {τ≥ 0}, we have a morphism

RΓN×{b}(N ×R;H ) −→ RΓN×[a,b](N ×R;H ) ∼←− RΓN×{a}(N ×R;H )

for any a ≤ b. We remark that the cone of this morphism is RΓN×[a,b[(N ×
R;H ). Using (5.1) we deduce a morphism, say u, from RHom(F ,Tc∗(G ))
to RHom(F ,Td∗(G )) for any c ≤ d . Taking F =G , c = 0 the image of idG

gives

(5.2) τ0,d : G −→ Td∗(G ) for any d ≥ 0

(we come back to this in §6). Then u is nothing but the composition with
Tc∗(τ0,d−c ).

According to [Gui12] and [Vit19] we have

Theorem 5.1. To each L ∈L (T ∗N ) we can associate FL ∈ Db(N ×R) such
that

(1) SS(FL) = L̂.
(2) FL is simple (cf. [KS90, Def. 7.5.4]), FL = 0 near N × {−∞} and

FL = kN×R near N × {+∞}.
(3) We have an isomorphism

F H•(L0,L1; a,b) = H∗
N×[a,b[

(
N ×R;H om∗(FL0 ,FL1 )

)
(4) FL is unique satisfying properties (1) and (2).
(5) There is a natural product map

H om∗(FL1 ,FL2 )⊗H om∗(FL2 ,FL3 ) −→H om∗(FL1 ,FL3 )

4This category contains the “Tamarkin category” which is the left orthogonal of
Dτ≤0(N ×R). The sheaves FL belongs to the Tamarkin category. The category Dτ≥0(N ×
R) is stable by ∗ and H om∗. The Tamarkin category is stable by ∗ but not H om∗: typi-
cally when N is a point we have H om∗(k[a,∞[,k[b,∞[) ' k]−∞,b−a[[1].
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inducing in cohomology a map

H∗
N×[λ,+∞[(N ×R;H om∗(FL1 ,FL2 ))⊗H∗

N×[µ,+∞[(N ×R;H om∗(FL2 ,FL3 ))y∪∗
H∗

N×[λ+µ,+∞[(N ×R;H om∗(FL1 ,FL3 ))

that coincides through the above identifications with the triangle
product in Floer cohomology.

Remarks 5.2.

(1) Note that we have

FTc L = Tc∗(FL)

(2) In case L has a Generating Function Quadratic at infinity, S(x,ξ)
defined on the vector bundle E

π−→ N , we can take for FL the
complex R(π× idR)∗(kUS ) where US = {(x,ξ, t ) | S(x,ξ) ≤ t }.

5.1. Definition of spectral invariants. Now we can give a sheafy defini-
tion of the spectral invariants introduced in [Vit92]. The next formulation
appears in [Vic13] (see also [Vit22]).

In fact the invariants can be defined for objects F of Dτ≥0(N ×R) sat-
isfying:

(5.3) F |N×]−∞,−t0[ ' 0, F |N×]t0,+∞[ ' kN×R|N×]t0,+∞[ for some t0.

We have seen that FL satisfies (5.3) for any L ∈ L (T ∗N ). For F1, F2 ∈
Dτ≥0(N×R) satisfying (5.3), H om∗(F1,F2)) is kN×R[1] near N×{−∞} and
0 near N × {+∞}. Using 5.1 and H 0

N×{c}(N ×R;kN×R[1]) ' k, we deduce a
natural morphism F1 −→ Tc∗(F2), for any c big enough, which restricts to
id: kN×R −→ kN×R near N ×{+∞}. More generally H∗

N×{c}(N ×R;kN×R[1]) '
H∗(N ;kN ) and any class α ∈ H d (N ;kN ) yields a morphism

u(α,F1,F2,c) : F1 −→ Tc∗(F2)[d ],

for c large enough, which restricts to α : kN×R −→ kN×R[d ] near N × {+∞}
(using Mor(kN ,kN [d ]) ' H d (N ;kN )). The cup product corresponds to the
composition, and for c (and t0) large enough this is summarized by the
following diagram

H∗(N ,k) ' RΓ(N ,kN )

'
��

' // RHom(F1,Tc∗F2)

'
��

RHom(kN×]t0,+∞[,kN×]t0,+∞[)
' // RHom

(
F1|N×]t0,+∞[,Tc∗F2|N×]t0,+∞[

)
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Definition 5.3. For F1, F2 ∈ Dτ≥0(N×R) satisfying (5.3) andα ∈ H d (N ;kN )
we set

c(α,F1,F2) =− inf{c; ∃u : F1 −→ Tc∗(F2)[d ], u|N×]t0,+∞[ =α, for t0 À 0}

(Here t0 is big enough so that both F1 and Tc∗(F2) satisfy (5.3)). We also
set c−(F1,F2) = c(1,F1,F2), if N is oriented with fundamental class µN ,
c+(F1,F2) = c(µN ,F1,F2) and γ(F1,F2) = c+(F1,F2)− c−(F1,F2).

For L1,L2 ∈L (T ∗N ) we set c(α,L1,L2) = c(α,FL1 ,FL2 ) and define c±(L1,L2),
γ(L1,L2) in the same way. Finally we set c±(L) = c±(0N ,L).

It is not difficult to see that

c−(F1,F2) = inf{c(α,F1,F2); α ∈ H∗(N ;kN )}

and

c+(F1,F2) = sup{c(α,F1,F2); α ∈ H∗(N ;kN )}

Indeed, a class α induces by multiplication v : F2 −→F2[d ], v |N×]t0,+∞[ =
α; now if we have u : F1 −→ Tc∗(F2)[0], u|N×]t0,+∞[ = 1, then v ◦u : F1 −→
Tc∗(F2)[d ] satisfies v ◦u|N×]t0,+∞[ =α so c(1,F1,F2) ≤ c(α,F1,F2).

Using the construction of the sheaf FL by using Floer cohomology it is
easy to see that the present definition of c(α,FL1 ,FL2 ) coincides with the
definition of c(α,L1,L2) using Floer cohomology. In particular, we have
that c+(FL1 ,FL2 ) =−c−(FL2 ,FL1 ) and this can be extended to the general
case of F1,F2 using [Vit19].

We have given the definition using the right hand side of (5.1). We
can also rewrite it with the left hand side as follows. Let us set H =
Rt∗H om∗(F ,G )), where t : N ×R −→ R is the projection. Then H con-
tains all the information about the spectral invariants. More precisely (5.1)
is isomorphic to RΓ{−c}(H ) and H has its singular support in {τ ≥ 0} so
we have the morphisms

(5.4) RΓ(N ;kN ) ' RΓ{−t0}(R;H ) ∼−→ RΓ[−t0,−c](R;H ) ←− RΓ{−c}(R;H )

for t0 À 0 and any c ≤ t0. To find the spectral invariants we look for the in-
fimum on the c such that a given class is in the image of the composition
of this morphisms.

Remark 5.4. We can see that the infimum in Definition 5.3 is actually a
minimum, at least when F is of the form FL . Indeed, this follows either
by identifying the spectral invariants of the Definition to those obtained
by using Floer cohomology, or by appealing to the theory of persistence
modules and barcodes (see Appendix A Proposition A.1).

We notice the following immediate consequence of the definitions
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Proposition 5.5. There exists a morphism u : FL1 −→ FL2 such that u =
Id at +∞ if and only if c−(L1,L2) ≥ 0. In particular there is a morphism
kN×[0,+∞[ −→F if and only if c−(L) ≥ 0.

5.2. The case of Hamiltonian maps. If ϕ is a Hamiltonian map of T ∗Rn

with compact support, we define the spectral invariants of ϕ as those
of its graph, say Γϕ ⊂ T ∗Rn ×T ∗Rn , compactified in the following way:

we choose a symplectomorphism ψ : T ∗Rn ×T ∗Rn ∼−→ T ∗Γid such that
ψ(Γid) = 0Γid ; then ψ(Γϕ) coincides with the zero-section outside a com-
pact set and we can compactify it as Γc

ϕ in the cotangent bundle of the
sphere. In particular Γc

id = 0S2n and the invariants of ϕ, c+(ϕ), c−(ϕ), are
defined as those of (Γc

ϕ,0S2n ). This is well-defined since another choice of
ψ would give a pair (Γ′cϕ ,0S2n ) symplectomorphic to (Γc

ϕ,0S2n ).
On the other hand we have seen in §4 that ϕ has an associated sheaf

Kϕ ∈ D(R2n+1). In the next paragraph we explain how we can turn the
above definition of c+(ϕ), c−(ϕ) into Definition 5.6 which uses Kϕ, Kid

and not the intermediate symplectomorphism ψ.

Equivalence with Definition 5.6. We first remark that we don’t really need
to compactify Γid into the sphere to obtain the invariants. Let D1 be the
subcategory of Dτ≥0(Γid ×R) of complexes isomorphic to kΓid×[c,+∞[ (for
some c) and D2 be the subcategory of Dτ≥0(S2n×R) of complexes isomor-
phic to kS2n×[c,+∞[ near {∞}× [c,+∞[. Then the compactification and the
restriction map induce functors α : D1 −→ D2 and β : D2 −→ D1 such that
β ◦α = id, α(τa,b(F )) = τa,b(α(F )). We deduce that c−(α(F1),α(F2)) =
c−(F1,F2) (we remark that c− makes sense even in the non compact
case). In particular

(5.5) c−(ϕ) = c−(FΓc
ϕ

,F0S2n ) = c−(FΓϕ ,F0
R2n )

Now the symplectomorphism ψ induces an equivalence of categories
between K �

ψ : Dτ≥0(R2n+1) ∼−→ Dτ≥0(Γid ×R) which commutes with the

translation Tc∗ in the last variables. We have K �
ψ (Kϕ)) ' FΓϕ and we

obtain from (5.5) that the spectral invariant c−(ϕ) we have defined above
coincides with the one in Definition 5.6 below. To obtain c+ we use
c+(F1,F2) =−c−(F2,F1).

The existence of Kψ doesn’t really follows from §4 because ψ is not
compactly supported. But the choice ofψ is irrelevant and we can choose
ψ : T ∗R2n −→ T ∗R2n given byψ(q1, q2, p1, p2) = (q1, p2, p1+p2, q1−q2) . In
this case we can give a direct construction of Kψ as follows. Let us define
Σ+ ⊂ R4n+1 by Σ+ = {(q1, q2,Q1,Q2, t ) | Q1 = q1, t ≥ (q1 − q2)Q2}, whose
boundary is the projection of the lift Λ̂ψ of the graph of ψ to the base.
Then we can check that Kψ = kΣ+ is the quantization of ψ.
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This justifies that both definitions coincide for a Hamiltonian map of
T ∗Sn obtained from a compactly supported map of T ∗Rn . In the next
paragraph we see that the case of a Hamiltonian map of T ∗N with sup-
port in a Darboux chart is reduced to this case.

Support in a Darboux chart. Let Sϕ(q,P,ξ) be a generating function qua-
dratic at infinity for Γϕ over ∆R2n , that is,

p −P = ∂Sϕ
∂q (q,P ;ξ)

Q −q = ∂Sϕ
∂P (q,P ;ξ)

∂Sϕ
∂ξ

(q,P ;ξ) = 0

Since ϕ is compactly supported, so is Sϕ in the q,P variables, that is,
Sϕ(q,P ;ξ) = B(ξ) where B is a non-degenerate quadratic form, for |q|+|P |
large enough. We can then extend Sϕ to a generating function quadratic
at infinity on a bundle over S2n (see [Vit92]), and c±(ϕ) are defined as

c+(ϕ) = inf{t | T ∪µS2n 6= 0 in H∗(S t ,S−∞)},

c−(ϕ) = inf{t | T ∪1 6= 0 in H∗(S t ,S−∞)},

where T is the Thom class associated to the negative bundle of B and S−∞
means S−c for c large enough. Note that these coincide with the spectral
invariants defined using Floer cohomology (see [Vit95]).

Now if ϕ is defined on T ∗N but has support in a Darboux chart, it can
be considered either as a compact supported Hamiltonian map on T ∗N
or on R2n and we can define the spectral invariants in two ways (using
Floer cohomology). By an easy pseudoconvexity argument (see Appendix
D) we can see that these two definitions of c±(ϕ) do coincide.

Sheaf definition of spectral invariants for a Hamiltonian map. Now we
can give another formulation of the definition of c±(ϕ). Let N be a com-
pact manifold and let ϕ be a Hamiltonian map of T ∗N with compact
support. We consider its homogenized graph Λ̂ϕ ⊂ T ∗N ×T ∗N ×T ∗R as
in §4. We have associated toϕ its quantization Kϕ, with singular support
Λ̂ϕ, and it coincides with Kid = k∆N×[0,+∞[ outside a compact subset of
N 2×R. Now H om∗(Kid,Kϕ) has similar properties as H om∗(FL1 ,FL2 ),
namely, it is k∆N×R[1] near N 2×{−∞} and 0 near N 2×{+∞}. As in the case
of compact Lagrangians we have H∗

N 2×{c}
(N 2 ×R;k∆N×R[1]) ' H∗(N ;kN )

and any class α ∈ H d (N ;kN ) yields a morphism

u(α,ϕ,c) : Kid −→ Tc∗(Kϕ)[d ],

for c big enough, which restricts to α : k∆N×R −→ k∆N×R[d ] near N × {+∞}
(using Hom(k∆N ,k∆N [d ]) ' H d (N ;kN ).
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Definition 5.6. For a compactly supported Hamiltonian map ϕ of T ∗N
and α ∈ H d (N ;kN ) we set

c(α,ϕ) =− inf{c; ∃u : Kid −→ Tt∗(Kϕ)[d ], u|N 2×]t0,+∞[ =α, for t0 À 0}

(Here t0 is big enough so that over N 2×]t0,+∞[ we have Tc∗(Kϕ) ' kN×R.)
We also set c−(ϕ) = c(1,ϕ), c+(ϕ) = c(µN ,ϕ) and γ(ϕ) = c+(ϕ) − c−(ϕ).
If ψ is another compactly supported Hamiltonian map, we set γ(ϕ,ψ) =
γ(ϕψ−1).

We have c−(ϕ) = inf{c(ϕ,α); α ∈ H?(N ;kN )} and c+(ϕ) = sup{c(ϕ,α); α ∈
H?(N ;kN )}.

Since Γ(ϕ) coincides with the zero section outside a compact set, we
have c−(ϕ) ≤ 0 ≤ c+(ϕ) as in [Vit92] and c+(ϕ) =−c−(ϕ−1).

Note the following analogue of Proposition 5.5

Lemma 5.7. Let ϕ be a compact supported Hamiltonian map. Then there
is a morphism Kid −→Kϕ in Db(N ×N ×R) equal to Id at +∞ if and only
if c−(ϕ) = 0. Analogously there is a morphism Kϕ −→Kid in Db(N×N×R)
if and only if c+(ϕ) = 0.

5.3. Defining γ-coisotropic subsets. For an open set U in the symplec-
tic manifold (M ,ω) we denote by DHamc (U ) the set of time one flows of
Hamiltonian with compact support contained in U .

Definition 5.8 (see definition 6.1 in [Vit22]). Let V be a set in (M ,ω). We
say that V is γ-coisotropic at x ∈V if, for all pairs of balls B(x,η) ⊂ B(x,ε)
with 0 < η < ε, there is a δ > 0 such that, for all ϕ in DHamc (B(x,ε)) and
satisfying ϕ(V )∩B(x,η) =;, we have γ(ϕ) > δ.

We shall say that V is γ-coisotropic if it is non-empty and γ-coisotropic
at each x ∈V .

We refer to [Vit22], in particular section 6, for properties and examples
of γ-coisotropic subsets. In particular we remind the reader of the follow-
ing result from [Vit22]

Proposition 5.9. Let ϕ be a homeomorphism preserving γ, for example a
C 0-limit of Hamiltonian maps (usually called Hamiltonian homeomor-
phisms) and V a γ-coisotropic set. Then, the image by ϕ of V is a γ-
coisotropic set.

Note that the completion of L (T ∗N ) for γ is denoted by L̂ (T ∗N ). In
[Vit22] the γ-support of an element L in L̂ (T ∗N ) was defined, and it was
proved that it must be a γ-coisotropic subset.
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6. THE γg -METRIC ON SHEAVES

We shall define the analogue of the γ distance between sheaves. It is
also a sheaf analogue of the barcode distance (see [KS18] or [AI20]) and
relies on the morphism τ introduced by Tamarkin (see [Tam08] or [GKS,
Prop. 4.8]) that we have already encountered in (5.2).

To define τ in general we recall that the subcategory Dτ≥0(N ×R) of
D(N ×R) can be characterized as follows (see [KS90, Prop. 5.2.3, 3.5.4]).
Let P be the endofunctor of D(N ×R) defined by

P (F ) = Rs∗(F �k[0,+∞[)

with s : N ×R2 −→ N ×R, (x, t1, t2) 7→ (x, t1+ t2) (this is almost F ∗kN×[0,+∞[

up to replacing from Rs! to Rs∗). Then the natural morphism k[0,+∞[ −→
k{0} induces a morphism P (F ) −→F and Dτ≥0(N ×R) is formed by the F

such that P (F ) −→F is an isomorphism. Now we have in general Rs∗(F�
k{c}) ' Tc∗(F ), where Tc (x, t ) = (x, t + c) and we obtain in the same way,
using the morphism k[0,+∞[ −→ k{c}, a morphism P (F ) −→ Tc∗(F ) for any
c ≥ 0. In particular we have a morphism of endofunctors defined on
Dτ≥0(N ×R) for any c ≥ 0

τ0,c (F ) : F −→ Tc∗(F )

We shall call this morphism the Tamarkin morphism.
The case of Dτ≥0(N ×R) is in fact sufficient for this paper but we can

consider a slightly more general case without modifying the proofs. Let
g : T ∗N \ 0N −→ R be a 1-homogeneous autonomous Hamiltonian func-
tion and let Dg≥0(N ) be the full subcategory of D(N ) formed by the F

with SS•(F ) ⊂ {g ≥ 0}. We let ϕt = ϕt
g : T ∗N \ 0N −→ T ∗N \ 0N be the cor-

responding homogeneous flow. We set for short K a
ϕ(F ) =F ◦Kϕa .

We consider the lifting of the graph of the whole isotopy ϕt to La-
grangian in T ∗(N ×N ×R) given by{

(q, p,Qt (q, p),Pt (q, p), t , g (q, p))
}

,

whereϕt (q, p) =Qt (q, p),Pt (q, p)) and the associated kernel Kϕ ∈ D(N 2×
R). Then Kϕ(F ) ∈ D(N ×R) is such that Kϕ(F )|N×{a} = K a

ϕ(F ). Now, if
F ∈ Dg≥0(N ), then Kϕ(F ) ∈ Dτ≥0(N ×R). Indeed a point of SS•(Kϕ(F ))
is written (q, p,Q,P, t ,τ) with (q, p) ∈ SS•(F ) and τ = g (q, p). We thus
have the Tamarkin morphism τ0,c (Kϕ(F )) : Kϕ(F ) −→ Tc∗(Kϕ(F )) for c ≥
0. Restricting to N × {a} and setting b = a + c we obtain

(6.1) τa,b(F ) : K a
ϕ(F ) −→ K b

ϕ(F ), for a ≤ b.
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The morphisms τa,b are invariant by K t
ϕ, for any t , and compatible with

composition:

(6.2)
K t
ϕ(τa,b(F )) = τa+t ,b+t (K t

ϕ(F )),

τa,c (F ) = τb,c (F )◦τa,b(F ), for a ≤ b ≤ c

Examples 6.1.

(1) Let N = R and g be the norm given by the standard metric, so
g (t ,τ) = |τ|. Then ϕa(t ,τ) = (t + a τ

|τ| ,τ). As a result Kϕa (k[x,y[) =
k[x+a,y+a[ and SS(Kϕa ) =

{
(t , t +a τ

|τ| ,τ,τ)
}
⊂ T ∗(R2).

(2) In the case of N ×R and g = τ we recover the case we introduced
in the first paragraph (and originally due to Tamarkin).

(3) If g is non negative we have Dg≥0(N ) = D(N ). Typically g is the
norm given by a Riemannian metric and ϕg is the normalized ge-
odesic flow. In this case, denoting by B(x,r ) the open ball at x of
radius r , we find

K a
ϕ(kB(x,r )) '

{
kB(x,r+a) for −r < a < ri n j − r ,

kB(x,−r−a)[−dim N ] for −ri n j − r < a ≤−r ,

and

K a
ϕ(kB(x,r )) '

{
kB(x,r−a) for r − ri n j ≤ a ≤ r ,

kB(x,a−r )[dim N ] for r < a < r + ri n j ,

where ri n j is the injectivity radius.

6.1. The γg -topology. The following definition is the analogue of the
spectral metric (in the case g = τ) (and a sheaf analogue of the barcode
distance). It is introduced in [KS18] or [AI20] (up to a small modification).

Definition 6.2. Let g : T ∗N \ 0N −→ R be a 1-homogeneous autonomous
Hamiltonian function and ϕ = ϕt

g its flow. For F ,G ∈ Dg≥0(N ), we let
γg (F ,G ) ∈ [0,∞] be the infimum of the c ≥ 0 for which there exist a,b ≥ 0
such that a +b = c and such that there are morphisms

u : F −→ K a
ϕ(G ), v : G −→ K b

ϕ(F )

satisfying K a
ϕ(v)◦u = τ0,a+b(F ) and K b

ϕ(u)◦ v = τ0,a+b(G ).

The authors thank N. Vichery for the next remark.

Remark 6.3. The case Dg≥0(N ) is not really more general than the case
Dτ≥0(N ×R). Indeed the functor Kϕ(−) : D(N ) −→ D(N ×R) is fully faith-
ful and we have Ta∗(Kϕ(−)) ' Kϕ(K a

ϕ(−)). Hence, for F ,G ∈ Dg≥0(N ) we
have γg (F ,G ) = γτ(Kϕ(F ),Kϕ(G )).
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The definition in [KS18] requires a = b which leads to a bigger dis-
tance, say γ′g , with γg ≤ γ′g ≤ 2γg . The definition in [AI20] only asks

K a
ϕ(v)◦u = τ0,a+b(F ) and K b

ϕ(u′)◦ v ′ = τ0,a+b(G ), for two possibly differ-
ent morphisms u′, v ′. This leads to a smaller distance but we don’t know
if it is equivalent to γg . Lemma 6.8 below says that γg is equivalent to
inf{γg (C (u),0); u : F −→G }, where C (u) denotes the cone of u.

Lemma 6.4. For F ,G ,H ∈ Dg≥0(N ) we have

(1) γg (F ,G ) = γg (K t
ϕ(F ),K t

ϕ(G )) = γg (G ,F ).
(2) γg (F ,H ) ≤ γg (F ,G )+γg (G ,H ).
(3) γg (0,F ) = inf{t ≥ 0; τ0,t (F ) = 0}.
(4) If F satisfies γg (F ,0) = 0, then F ' 0.

(5) For any distinguished triangle F
u−→G

v−→H
+1−−→, we have

γg (0,G ) ≤ γg (0,F )+γg (0,H )

(6) For composable morphisms u, v with cones C (u), C (v), C (v ◦u),
we have γg (0,C (v ◦u)) ≤ γg (0,C (u))+γg (0,C (v)).

Proof. (1) follows from (6.2) and (3) follows from the definition of γg . The
triangular inequality (2) is proved in [AI20, Prop. 4.11].

Let us prove (4). By Remark 6.3 we can assume that N = M ×R and g =
τ. Let x0 ∈ M be given and let i : {x0}×R−→ M×Rbe the inclusion. We have
τa,b(i−1F ) = i−1(τa,b(F )) and it follows that γg (i−1F , i−1G ) ≤ γg (F ,G ).
If F 6= 0, there exists x0 such that i−1(F ) 6= 0. Hence we can assume that
N = R. We can also take g = |τ| (it is differentiable on T ∗R \ 0R) instead
of g = τ. The corresponding τ morphisms, say τg

a,b , coincide with τa,b

on Dτ≥0(R) but they are defined on D(R). Up to shifting F in degrees
and translating, we can assume that H 0F0 6= 0. Hence there exists u ∈
H 0(]−ε,ε[;F ) with u0 6= 0. Interpreting u as a morphism and chosing a
map v : F0 −→ k non-vanishing on the germ defined by u, we get that the
composition of v and u; k]−ε,ε[

u−→ F
v−→ k{0} is the canonical morphism.

Now the morphisms τg
0,δ(−), for 0 < δ< ε give the commutative diagram

(using Example 6.1 (3) ) where the vertical arrows are given by τg
0,δ

k]−ε,ε[
u //

��

F
v //

��

k{0}

w
��

k]−ε+δ,ε−δ[
// Tδ∗(F ) // k]−δ,δ[[1]

We have w ◦ v ◦u 6= 0 and we deduce that τg
0,δ(F ) 6= 0, as required.

Let us prove (5) (a similar but more detailed argument will be given
in the proof of Lemma 6.8-(i)). If τ0,a(F ) = 0, then τ0,a(G ) ◦u = K a

ϕ(u) ◦
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τ0,a(F ) = 0 and τ0,a(G ) factorizes through v . In the same way, if τ0,b(H ) =
0, then τ0,b(G ) factorizes through K b

ϕ(v). Hence τ0,a+b(G ) factorizes through

K b
ϕ(v)◦K b

ϕ(u) = 0. We conclude with (3).
We deduce (6) from (5) since, by the octaedron axiom, the three cones

appear in a distinguished triangle. �

If N is real analytic and F ,G are constructible and satisfy γg (F ,G ) = 0,
then F 'G (see [PSW] and also Proposition B.7 for limits of constructible
sheaves). However γg is only a pseudo-metric as shown by Berkouk and
Ginot (see [BG18], proposition 6.9) and the following example.

Example 6.5. We define two sheaves on the real line F =⊕
x∈Qk[x,∞[ and

G = ⊕
x∈Q× k[x,∞[, where Q× = Q \ {0}. We remark that K t

ϕ(F ) ' Tt∗(F ),
where Tt (x) = x + t . For a given ε > 0 we choose a bijection f : Q −→ Q×
such that x ≤ f (x) ≤ x +ε, for all x ∈Q, and we define u =⊕

x∈Qux : F −→
G , v =⊕

x∈Q× vx : G −→ Tε∗F where ux : k[x,∞[ −→ k[ f (x),∞[ and vx : k[x,∞[ −→
k[ f −1(x)+ε,∞[ are the natural morphisms. Using u, v we see that γg (F ,G ) ≤
ε. Hence γg (F ,G ) = 0.

Definition 6.6. We denote by γg the topology associated to the pseudo-
distance γg . In other words a sequence (F j ) j≥1 in D(N ) γg -converges to F

if and only if lim j γg (F j ,F ) = 0.

Remark 6.7. In view of the Lemma 6.8, a sequence (Fn)n∈N converges
to F if and only if there exist a sequence of positive numbers (εn)n∈N
converging to 0 and morphisms un : Fn −→ K εn

ϕ (F ) such that γ(0,C (un))
converges to 0.

Part (2) in the next lemma is analogue to [AI20, Lem. 4.14].

Lemma 6.8. Let u : F −→F ′ be a morphism in D(N ) and let C be the cone
of u.

(1) If there exists v : F ′ −→ K ε
ϕ(F ) such that v ◦u = τ0,ε and K ε

ϕ(u)◦v =
τ0,2ε, then γ(C ,0) ≤ 2ε.

(2) If γ(C ,0) < ε, then there exists v : F ′ −→ K 2ε
ϕ (F ) such that v ◦u =

τ0,2ε and K 2ε
ϕ (u)◦ v = τ0,4ε.

Proof. (1) We consider the morphism of triangles given by the functorial
morphism (6.1),

F
u //

��

F ′ α //

��

v

zz

f

$$

C
β

//

��

g

%%

F [1]

��
K ε
ϕ(F ) // K ε

ϕ(F ′) // K ε
ϕ(C ) // K ε

ϕ(F )[1]
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Here all small triangles commute (which defines f and g ). We have f =
K ε
ϕ(α)◦τ0,ε(F ′) = K ε

ϕ(α◦u)◦v = 0. In the same way g also vanishes. Since
τ0,ε(C ) ◦α = f vanishes, τ0,ε(C ) factorizes through β as τ0,ε(C ) = h ◦β.
Hence τ0,2ε(C ) = K ε

ϕ(τ0,ε(C ))◦τ0,ε(C ) = K ε
ϕ(h)◦K ε

ϕ(β)◦τ0,ε(C ) = K ε
ϕ(h)◦g

vanishes, which means γ(C ,0) ≤ 2ε.

(2) Since τ0,ε(C ) = 0, both morphisms f and g vanish. Since K ε
ϕ(α) ◦

τ0,ε(F ′) = f vanishes, τ0,ε(F ′) factorizes as τ0,ε(F ′) = K ε
ϕ(u)◦w for some

w .
In the same way, the vanishing of g gives a factorization τ0,ε(F ) = w ′◦u

but we cannot say that w = w ′.
We set v = K ε

ϕ(w ′) ◦τ0,ε(F ′) : F ′ −→ K 2ε
ϕ (F ). In the following compu-

tation we omit abusively to write K ε
ϕ and write τ for whatever τ−,−(−). A

diagram chase on the diagram below gives v ◦u = w ′ ◦τ◦u = w ′ ◦u ◦τ=
τ◦τ= τ and u◦v = u◦w ′◦τ= u◦w ′◦u◦w = u◦τ◦w = τ◦u◦w = τ◦τ= τ,
as required.

F
u //

��

F ′

��

w

	yy
K ε
ϕ(F )

u //

��

K ε
ϕ(F ′)

��w ′
�

yy
K 2ε
ϕ (F ) u

// K 2ε
ϕ (F ′)

�

6.2. Link with spectral invariants. In this paragraph we work on N ×R
and choose g = τ. So we work with the category Dτ≥0(N ×R) as in §5. We
prove Propositions 6.11 and 6.13 which explain the relations between the
γτ-distance and the spectral invariants.

We first give a useful variation on the Morse theorem for sheaves. The
following result is mentioned in [Nad16, §6.1].

Proposition 6.9. Let M be a manifold and I an open interval of R. Let
F ∈ D(M),G ∈ D(M × I ) and set Gt =G |M×{t } for t ∈ I . We assume

(1) there exists a compact set C of M such that G |(M\C )×I is of the form
G ′�kI for some G ′ ∈ D(M \C ),

(2) SS•(G )∩ (0M ×T ∗I ) =;,
(3) (SS•(F )×T ∗I )∩SS•(G ) =;.

Then RHom(F ,Gt ) does not depend on t ∈ I .

Proof. We let it : M × {t } −→ M × I , t ∈ I , be the inclusion. We set H =
RH om(F �kI ,G ). By [KS90, Prop. 5.4.14], condition (3) gives SS(H ) ⊂
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Λ := (SS(F ) × 0I )a + SS(G ). We can see moreover that Λ is also non-
characteristic for all it (that is, Λ∩ (0M ×T ∗I ) ⊂ 0M×I ). Using condition
(2) i−1

t G ' i !
tG [1] and i−1

t H ' i !
tH [1] by [KS90, Prop. 5.4.13] and we de-

duce RH om(F ,Gt ) ' i−1
t H by the adjunction formula i !

t RH om(−,−) '
RH om(i−1

t (−), i !
t (−)). Hence RHom(F ,Gt ) ' RΓ(M ; i−1

t H ). By the con-
dition (1) H |(M\C )×I is of the form H ′ � kI , for some H ′ ∈ D(M \ C ),
and we can use the base change formula and the bound for the singu-
lar support of a direct image. Hence RΓ(M ; i−1

t H ) ' (Rq∗(H ))t , where
q : M × I −→ I is the projection and it is enough to check that Rq∗(H ) is
constant. SinceΛ∩(0M ×T ∗I ) ⊂ 0M×I , we have SS(Rq∗(H )) ⊂ 0I and the
result follows. �

Corollary 6.10. Let F ∈ Dτ≥0(N ×R) and t0 satisfy (5.3). We assume that
SS(F )∩SS(Tc∗(F )) ⊂ 0N×R for any c 6= 0. Then the restriction map

RHom(F ,Tc∗(F )) −→ RHom(F |U ,Tc∗(F )|U ) ' RHom(kU ,kU ) ' RΓ(N ;kN )

is an isomorphism for any c > 0, where U = N×]c + t0,+∞[. In particular,
if u : F −→ Tc∗(F ) is id near +∞, then u = τ0,c (F ).

When SS•(F ) is the cone over a Legendrian, the hypothesis means that
there is no Reeb chord. In particular the hypothesis is satisfied for the
sheaves FL , L ∈L (T ∗N ).

Proof. We are going to apply Proposition 6.9 with M = N ×R, I =]0,d ] for
d > 0 and G = δ−1(F ), where δ : N ×R2 −→ N ×R is the map

(x, t1, t2) 7→ (x, t1 − t2)

so that G |N×R×{c} ' Tc∗(F ).
For a < b, G is constant on N×]−∞, a−t0[×[a,b] and N×]b+t0,+∞[×[a,b].

Hence G satisfies (1) in Proposition 6.9. It is not difficult to check (2)
since its singular support is contained in the conormal of t1 = t2 that is
τ1 +τ2 = 0. For (3) it follows from the hypothesis on SS(F ). The proposi-
tion gives RHom(F ,Tc∗(F )) ' RHom(F ,Td∗(F )), for any 0 < c ≤ d . �

Proposition 6.11. Let L1,L2 ∈L (T ∗N ). Then

γτ(FL1 ,FL2 ) =


c+(L1,L2) if c−(L1,L2) > 0,

−c−(L1,L2) if c+(L1,L2) < 0,

c+(L1,L2)− c−(L1,L2) else.

Proof. We recall that FLi ' kN×R near +∞ and that −c−(L1,L2) is the
infimum on the a such that there exists u : FL1 −→ Ta∗(FL2 ) restricting
to idkN×R near +∞. Similarly c+(L1,L2) is the infimum on the b such
that there exists v : FL2 −→ Tb∗(FL1 ) restricting to idkN×R near +∞. We
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then have Ta∗(v)◦u = τ0,a+b(FL1 ) and Tb∗(u)◦ v = τ0,a+b(FL2 ) by Corol-
lary 6.10. Hence u, v satisfy Definition 6.2, except that here a,b may be
negative. Assuming moreover a,b ≥ 0 we find that γτ(FL1 ,FL2 ) is less
than the right hand side of the equality in the statement.

Conversely, if γτ(FL1 ,FL2 ) < c, there exists a,b,u, v as above with a +
b = c, a,b ≥ 0 but u, v only satisfy the condition on the composition.
Near +∞ we only know that they are u = λuidkN×R , v = λv idkN×R (in-
deed Hom(kN×R,kN×R) ' k). Since Ta∗(v) ◦ u = τ0,a+b(FL1 ), we have
λuλv = 1. Hence λu , λv are not zero and, replacing u, v by a non zero
multiple, we can assume that u = v = idkN×R near +∞. We deduce a ≥
max{−c−(L1,L2),0}, b ≥ max{c+(L1,L2),0}. �

Remark 6.12. Note that in [Vit22] the metric on L (T ∗N ) is defined by
c(L1,L2) = |c+(L1,L2)| + |c−(L1,L2)| as . The map L 7→ FL is then a bi-
Lipschitz embedding. Indeed if c−(L1,L2) > 0 thenγτ(FL1 ,FL2 ) = c+(L1,L2)
and since c−(L1,L2) ≤ c+(L1,L2), we have

γτ(FL1 ,FL2 ) ≤ c(L1,L2) = c+(L1,L2)+ c−(L1,L2) ≤ 2γτ(FL1 ,FL2 )

If c+(L1,L2) < 0 the same inequality holds by exchanging L1,L2. Finally
if c−(L1,L2) < 0 < c+(L1,L2) we have γτ(FL1 ,FL2 ) = c+(L1,L2)− c−(L1,L2)
hence

γτ(FL1 ,FL2 ) = c(L1,L2)

So, in all three cases we have

γτ(FL1 ,FL2 ) ≤ c(L1,L2) ≤ 2γτ(FL1 ,FL2 )

The proof of Proposition 6.11 works exactly the same way for Hamil-
tonian maps, replacing the condition “FLi ' kN×R near +∞” by “Kϕ '
k∆N×[0,+∞[ near +∞”. Since we know that c−(ϕ) ≤ 0 ≤ c+(ϕ) by [Vit92] we
obtain the following statement:

Proposition 6.13. Let ϕ1, ϕ2 be compactly supported Hamiltonian maps
of T ∗N . Then γτ(Kϕ1 ,Kϕ2 ) = γ(ϕ1,ϕ2).

We end this section by the useful result that � is Lipschitz for the γτ-
distance.

Lemma 6.14. Let M, N , P be manifolds and K1 ∈ Dτ≥0(M ×N ×R), K2 ∈
Dτ≥0(N × P ×R). Then, for any a ∈ R, we have natural isomorphisms
Ta∗(K1 �K2) ' Ta∗(K1) �K2 ' K1 � Ta∗(K2) and, through these iso-
morphisms, we have the equalities, for any a ≤ b,

τa,b(K1 �K2) = τa,b(K1)�K2 =K1 �τa,b(K2)
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Remark 6.15. The notation τa,b(K1)�K2 means that we apply the func-
tor �K2 to the morphism τa,b(K1). This means that (τa,b(K1)�K2) is a
morphism

τa,b(K1)�K2 : Ta∗(K1)�K2 −→ Tb∗(K1)�K2

Proof. In the proof the manifolds M , N ,P play an auxiliary role and we
can consider that our sheaves live on R to simplify the notations. Hence
K1 �K2 = Rs!(K1 �K2) where s : R2 −→R is the sum. The isomorphisms
then follow from the equalities Ta◦s = s◦(Ta×idR) = s◦(idR×Ta). However
to prove the equalities of morphisms we need to be more precise.

Let (t1, t2,τ1,τ2) be the coordinates on T ∗R2. Then the singular sup-
port of K1 �K2 is contained in {τ1 ≥ 0} × {τ2 ≥ 0} and, setting gu =
uτ1+(1−u)τ2, K1�K2 belongs to Dgu≥0(R2) for any u ∈ [0,1]. Let us write
τu

a,b for the morphism τa,b induced by gu . Then τ1
a,b gives τa,b(K1)�K2

by appyling Rs! and τ0
a,b gives K1 �τa,b(K2). It remains to see that τu

a,b
gives the same morphism for all u. We define K = K1 �K2 � k[0,1] ∈
D(R2 × [0,1]) and g = uτ1 + (1−u)τ2. Then K ∈ Dg≥0(R2 × [0,1]) (here we
are cheating a little bit because the singular support is not defined on
a manifold with boundary – however we can replace [0,1] by ]−ε,1+ ε[
and u by a smooth function with values in [0,1] which is 0 on ]−ε,0]
and 1 on [1,1+ε[). We thus obtain a morphism τ

g
a,b : T ′

a∗(K ) −→ T ′
b∗(K )

where T ′
c (t1, t2,u) = (t1 +uc, t2 + (1−u)c,u). Let s′ : R2 × [0,1] −→ R× [0,1]

be the sum of the first two variables. Then s′ ◦T ′
c = Tc × id[0,1] and τ

g
a,b

induces τ′a,b : (Ta∗(K1 �K2))�k[0,1] −→ (Tb∗(K1 �K2))�k[0,1] which re-
stricts to τs

a,b along R× {s}. Now restricting along R× {s} always induces
the same isomorphism Hom(F �k[0,1],G �k[0,1]) ∼−→ Hom(F ,G ), for all
F , G , namely, the inverse of the isomorphism induced by the pull-back
along the projection to [0,1]. This concludes the proof. �

We deduce an analogue of [PS21], theorem 2.4.1, in our situation.

Lemma 6.16. Let K1,K2 ∈ Dτ≥0(M ×N ×R) and F ∈ Dτ≥0(M ×R). Then
K j �F ∈ Dτ≥0(N ×R) and we have

γτ(K �
1 (F ),K �

2 (F )) ≤ γτ(K1,K2)

Proof. We have γτ(K1,K2) < c, for a given c, if and only if there ex-
ist a,b ≥ 0 with a + b = c and morphisms u : K1 −→ Ta∗(K2), v : K2 −→
Tb∗(K1) satisfying the conditions in Definition 6.2. The morphisms in-
duce u ◦ idF , v ◦ idF which also satisfies the conditions of the definition
by Lemma 6.14. �
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6.3. γg -limits and colimits. In this paragraph we shall prove that any se-
quence (Fn)n∈N which γg -converges to F can be turned into an induc-
tive system whose homotopy colimit is F . We recall the notion of homo-
topy colimit in D(N ) (see [BN93, Def. 2.1])

Definition 6.17. Let (Fn , fn)n∈N, with fn : Fn −→ Fn+1, be an inductive
system in D(N ); then hocolimn Fn is the cone of the morphism

(id− f ) :
⊕
n≥0

Fn −→ ⊕
n≥0

Fn

where f =⊕
n≥0 fn .

We thus have a distinguished triangle

(6.3)
⊕
n≥0

Fn
id− f−−−→ ⊕

n≥0
Fn

p−→ hocolimn Fn
+1−−→

However, like any cone, hocolimn Fn is only defined up to (non unique)
isomorphism and the morphism p itself is not uniquely defined. For a
given triangle (6.3) and for any n0 ∈ N, we have a morphism in0 : Fn0 −→
hocolimn Fn defined as in0 = p ◦ jn0 where jn0 is the obvious morphism
to the sum. For another choice of triangle, with p ′ instead of p, there
exists an automorphism ψ of hocolimn Fn such that p ′ = ψ ◦ p. Then
i ′n0

= p ′ ◦ jn0 is “conjugate” to in0 in the sense i ′n0
=ψ◦ in0 .

We recall the “nine diagram” from [BBD82, Prop. 1.1.11] (see [KS06,
Ex. 10.6] where it is stated precisely which arrows are given and which
ones are obtained), a variant of the octaedron axiom. We assume to be
given a commutative square as on the top left corner of the diagram be-
low and four distinguished triangles (two vertical and two horizontal)
given by the unmarked solid arrows. The arrows marked [1] are just trans-
lations of already defined solid arrows.
The proposition claims that the dotted arrows can be chosen to make all
squares commutative, except for the one with Z 2 at its top left corner,
which is anticommutative, and the new line and the new column are dis-
tinguished triangles.

X 0 //

��

X 1 //

��

X 2 //

��

X 0[1]

[1]
��

Y 0 //

��

Y 1 //

��

Y 2 //

��

Y 0[1]

[1]
��

Z 0 //

��

Z 1

��

// Z 2 //

��
ª

Z 0[1]

−[1]
��

X 0[1]
[1] // X 1[1]

[1] // X 2[1]
−[1] // X 0[2]
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Remark 6.18. Using the nine diagram built on the square

⊕
n≥n0

Fn
id− f

//

��

⊕
n≥n0

Fn

��⊕
n≥0 Fn

id− f
// ⊕

n≥0 Fn

we can check that hocolimn≥0 Fn
∼−→ hocolimn≥n0 Fn . With the above

notations, we take X 0 = X 1 = ⊕
n≥n0

Fn ,Y 0 = Y 1 = ⊕
n≥0 Fn , Z 0 = Z 1 =⊕

0≤n≤n0−1 Fn . The map from Z 0 to Z 1 is also equal to id− f , but as is an
upper triangular finite-dimensional matrix with Id on the diagonal, so it
is invertible. This implies Z 2 = 0. As a result the vertical arrow from X 2 to
Y 2 is an isomorphism (in D(N )).

A more general statement of the following Lemma can be found in
Lemma 13.33.4 of [Stacks, Section 0A5K]. It tells us, as we might expect,
that the limit of a subsequence coincides with the limit of the original
sequence.

Lemma 6.19. Let (Fn , fn)n∈N be an inductive system in D(N ) and σ : N−→
N an increasing map. Then the compositions of the fn ’s define an inductive
system (Fσ(n), f ′

n) and there exists an isomorphism j : hocolimn Fσ(n)
∼−→

hocolimn Fn such that j ◦ i ′σ(n) = iσ(n), where i ′σ(n) is the morphism i• for
(Fσ(n)).

A family of morphisms un : Fn −→G such that un+1 ◦ fn = un induces a
morphism u : hocolimn Fn −→G such that u ◦ in = un for all n. Indeed we
have

⊕
n un ◦ (id− f ) = 0, hence

⊕
n un factorizes as

⊕
n un = u ◦p. Again

this morphism u is not uniquely defined.

Lemma 6.20. Let (Fn , fn)n∈N, with fn : Fn −→ Fn+1, be an inductive sys-
tem in D(N ). We let C ( fn) be the cone of fn and we assume that

∑
n γg (C ( fn),0)

is finite. Then the sequence (Fn)n∈N γg -converges to hocolimk Fk . More
precisely, if we let in : Fn −→ hocolimk Fk be the morphism defined af-
ter (6.3), we have γg (C (in),0) ≤ 2

∑∞
k=n γg (C ( fk ),0).

Proof. Let n0 be given. We set for short S =⊕
n≥n0

Fn , C = hocolimn Fn .
We checked that C is the cone of u = id−⊕

n≥n0
fn : S −→S . We also con-

sider the similar sum but associated to the constant sequence Gn = Fn0

for all n ≥ n0 and T =⊕
n≥n0

Gn . We define w : T −→T as id− s where sn :
Gn −→Gn+1 is induced by IdFn0

. The cone of w is Fn0 . We let f m
n : Fn −→

Fm be the composition of the fk ’s and we define F =⊕
n≥n0

f n
n0

: T −→S .
Then F ◦w = u◦F and the nine diagram recalled above gives the commu-
tative (except for one anticommuting square) diagram of distinguished

https://stacks.math.columbia.edu/tag/0A5K
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triangles

T
w //

F
��

T
q
//

F
��

Fn0

jn0
��

+1 //

S
u //

��

S
p

//

��

C

��

+1 //

S ′ //

+1

��

S ′ //

+1

��

C ( jn0 )
+1 //

+1

��

where S ′ = ⊕
n≥n0

C ( f n
n0

), jn0 is conjugate to in0 (unfortunately we can-
not say they are equal because of the ambiguity in the definition of the
cone) and C ( jn0 ) is the cone of jn0 .

We set r : Fn0 −→T be the inclusion of the first factor. The morphisms
r and w give a splitting T ' Fn0 ⊕T and it follows that q ◦ r is an iso-
morphism. Since in0 is “conjugate” to p ◦F ◦ r (see after (6.3)), it is also
conjugate to jn0 and C ( jn0 ) 'C (in0 ).

Now we claim that γg (C ( f m
n ),0) ≤∑m−1

k=n γg (C ( fk ),0). We prove this by
induction on m−n. When m = n+1 this is clear. Since f m+1

n = fm◦ f m
n , we

have, using Lemma 6.4 ( 6), γg (C ( f m+1
n ),0) ≤ γg (C ( f m

n ),0)+γg (C ( fm),0).
In particular γg (C ( f n

n0
),0) ≤ εn0 := ∑∞

k=n0
γg (C ( fk ),0), for all n ≥ n0,

and then γg (S ′,0) ≤ εn0 . By the triangle in the last row of the above dia-
gram and Lemma 6.4 ( 5) we deduce γg (C ( jn0 ),0) ≤ 2εn0 , as required. �

Proposition 6.21. Any Cauchy sequence in D(N ) with respect to γg is con-
vergent.

Remark 6.22. The reader should be careful : the distanceγg is degenerate,
so the limit is by no means unique. However we shall see that the restric-
tion of γg to the set of limits of constructible sheaves (i.e. in Dlc (N )) the
distance is non-degenerate (see Appendix B).

Proof. Let (Fn)n∈N be a Cauchy sequence. Up to taking a subsequence
we can assume that γg (Fn ,Fm) ≤ 2−n for any n ≤ m. In particular, by
Lemma 6.8, there exist fn : Fn −→ K 2−n

ϕ (Fn+1) such that γg (C ( fn),0) ≤
2−n+1. We then set εn = ∑

k≥n 2−k and F ′
n = K −εn

ϕ (Fn) so fn induces a
map f ′

n : F ′
n −→F ′

n+1 and according to Lemma 6.20, F ′
n γg converges to

hocolimF ′
n . Since γg (Fn ,F ′

n) ≤ εn we have that (Fn)n≥1 has the same
limit. �

We just proved that to a Cauchy sequence we can associate a limit
that is a homotopy colimit. In the next Proposition we prove that con-
versely any γg -limit of a sequence (Fn)n∈N is a homotopy colimit of some
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(slightly modified) subsequence. We first notice an easy consequence of
Lemma 6.20.

Lemma 6.23. Let F ∈ D(N ) and let εn > 0 be a sequence decreasing to
0. We have an inductive system (K −εn

ϕ (Fn),τ−εn ,−εn+1 (F )). Then the maps
τ−εn ,0(F ) induce an isomorphism hocolimK −εn

ϕ (Fn) ∼−→F .

Proof. Let τ : hocolimK −εn
ϕ (Fn) −→ F be the morphism induced by the

maps τ−εn ,0(F ). With the notation in of Lemma 6.20 we have τ ◦ in =
τ−εn ,0(F ). By the octaedron axiom there exists a distinguished triangle
relating the cones of these maps and Lemma 6.4 implies thatγg (0,C (τ)) ≤
γg (0,C (in))+γg (0,C (τ−εn ,0(F ))). By Lemma 6.8γg (0,C (τ−εn ,−εn+1 (F ))) ≤
2(εn −εn+1) and we can apply Lemma 6.20. Hence γg (0,C (in)) goes to 0
and γg (0,C (τ)) is as small as desired. So C (τ) ' 0 and τ is an isomor-
phism. �

Proposition 6.24. Let (Fn)n∈N be a sequence in D(N ) which γg -converges
to F . Then, up to taking a subsequence, there exist a sequence of pos-
itive numbers (εn)n∈N converging to 0 and morphisms fn : K −εn

ϕ (Fn) −→
K −εn+1
ϕ (Fn+1), un : K −εn

ϕ (Fn) −→ F such that un+1 ◦ fn = un , for all n, and
the morphism hocolimK −εn

ϕ (Fn) −→F induced by the un ’s (see after (6.3))
is an isomorphism.

Proof. We set αn = 2−n . Up to taking a subsequence we can assume that
γg (Fn ,F ) ≤αn+1 for each n. This implies the existence of 0 ≤ βn ≤αn+1

and morphisms vn : F −→ K βn
ϕ (Fn), wn : K βn

ϕ (Fσ(n)) −→ K αn+1
ϕ (F ) such

that wn ◦ vn = τ0,αn+1 (F ). Translating these morphisms by K •
ϕ(−) and al-

ternating the Fn and the K −αn
ϕ (F ) we obtain an inductive system

· · · −→ K −αn
ϕ (F )

K −αn
ϕ (vn )−−−−−−→ K −εn

ϕ (Fn)
K −αn
ϕ (wn )−−−−−−−→ K −αn+1

ϕ (F )

K
−αn+1
ϕ (vn+1)−−−−−−−−−→ K −εn+1

ϕ (Fn+1)
K

−αn+1
ϕ (wn+1)−−−−−−−−−−→ K −αn+2

ϕ (F ) −→ ·· ·
where εn = αn −βn . We define fn = K −αn+1

ϕ (vn+1) ◦K −αn
ϕ (wn) and un =

τ−αn+1,0(F ) ◦K −αn
ϕ (wn). The result follows from Lemmas 6.19 and 6.23.

�

7. PROOF OF THEOREM 1.2

Let F ∈ D(N ). We want to prove that around a point z0 ∈ SS(F ) there
is no sequence (ϕ j ) j≥1 in DHamc (B(z0,ε)) such that γ− lim j ϕ j = Id and
ϕ j (SS(F )) ∩ B(z0,η) = ;. We argue by contradiction and assume the
existence of such a sequence. Let Kϕ j be the sheaf in Db(N × N ×R)
inducing ϕ j as recalled in §4. We denote by T ∗

τ>0(N ×R) the subset of
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T ∗(N ×R) given by τ > 0 and we set ρ : T ∗
τ>0(N ×R) −→ T ∗N , (x, t ,ξ,τ) 7→

(x,ξ/τ). Then ρ(SS(K �
ϕ j

(F ))∩T ∗
τ>0(N ×R)) = ϕ j (SS(F )) does not inter-

sect B(z0,η). We want to prove that this implies that SS(F )∩B(z0,η) =;.
We will use the following propositions.

Proposition 7.1. Let (ϕ j ) j≥1 be a sequence in DHamc (T ∗N ) such that γ−
limϕ j = Id and K �

ϕ j
its quantization in Db(N ×N ×R). Then for all F ∈

Db(N ) we have

γg − limK �
ϕ j

(F ) =K �
Id (F ) =F �k[0,+∞[ ∈ Db(N ×R)

Proof. This follows from Lemma 6.16 and Proposition 6.13. �

Remark 7.2. Note that ϕ j (SS(F )) is not a homogeneous manifold, and
SS(K �

ϕ j
(F )) ⊂ T ∗(N ×R) represents the homogenization of ϕ j (SS(F )).

Now for a sequence (X j ) j≥0 of subsets of a topological space Z , its
topological upper and lower limits are defined as

limsup
j

X j =
⋂
n

⋃
j≥n

X j

=
{

x ∈ Z | ∃(x j ) j≥1, x j ∈ X j for infinitely many j , lim
j

x j = x

}
liminf

j
X j =

{
x ∈ Z | ∃(x j ) j≥1, x j ∈ X j , lim

j
x j = x

}
Obviously liminf j X j ⊂ limsup j X j . We have

Proposition 7.3. Let M be a manifold and let g : T ∗M \ 0M −→ R be a 1-
homogeneous autonomous Hamiltonian function. If (F j ) j≥1 is a sequence
such that γg − limF j =F then we have

SS(F ) ⊂ liminf
j

SS(F j )

Proof. By Proposition 6.24, up to taking a subsequence and replacing
F j by K

ε j
ϕg

(F j ), for some sequence (ε j ) converging to 0, we can assume
that there exist morphisms f j : F j −→ F j+1 such that hocolimF j

∼−→ F .
The homotopy colimit is defined by a distinguished triangle where the
other two terms are

⊕
n≥n0

Fn (we can indeed restrict to
⊕

n≥n0
by Re-

mark 6.18). By the triangle inequality for singular supports and Propo-
sition 3.4, this implies that SS(F ) ⊂ limsup j SS(F j ). Now let p = (x,ξ) 6∈
liminf j SS(F j ), we can find a subsequenceσ( j ), such that p ∉ limsup j SS(Fσ( j ));
but Fσ( j ) has limit F , so p ∉ SS(F ). As a result we have SS(F ) ⊂ liminf j SS(F j ).

�
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We may now conclude the proof of the Theorem.
As indicated above, we argue by contradiction and assume SS(F ) is

not γ-coisotropic at z0 = (x0, p0) ∈ SS(F ). Then there is a sequence
(ϕ j ) j≥1 of Hamiltonian maps and an open ball B(z0,η) such that

(1) (ϕ j ) j≥1 γ-converges to id,
(2) ϕ j (SS(F ))∩B(z0,η) =;.

The first statement together with Proposition 7.1 implies that

K �
ϕ j

(F )
γg−→K �

id (F ) =F �k[0,+∞[

and Proposition 7.3, applied with M = N ×R and g = τ, then gives

SS(F )× ({0}×R) = SS(K �
id (F )) ⊂ liminf

j
SS(K �

ϕ j
(F ))

Using ρ(SS(K �
ϕ j

(F )) ∩ T ∗
τ>0(N × R)) = ϕ j (SS(F )) we deduce SS(F ) ⊂

liminf j ϕ j (SS(F )). In particular SS(F ) ∩ B(z0,η) = ; by the hypothe-
sis (2), which gives a contradiction.

8. γ-COISOTROPIC VS CONE-COISOTROPIC

8.1. A γ-coisotropic set is cone-coisotropic. Our goal in this section is
to prove Proposition 1.3.

Following Bouligand (see [Bou32]), one may define for a point x in a
subset V in a smooth manifold, two cones :

Definition 8.1. The paratingent cone of a set V at x is

C+(x,V ) =
{

lim
n

cn(xn − yn) | xn , yn ∈V ,cn ∈R lim
n

xn = lim
n

yn = x, lim
n

cn =+∞
}

The contingent cone of a set V at x is

C−(x,V ) =
{

lim
n

cn(xn −x) | xn ∈V ,cn ∈R, lim
n

xn = x, lim
n

cn =+∞
}

Clearly C−(x,V ) ⊂C+(x,V ). Note that C+(x,V ) is invariant by v 7→ −v ,
while it is not necessarily the case for C−(x,V ). We then have the follow-
ing definition, which appears under the name “involutivity” in the book
of Kashiwara and Schapira

Definition 8.2 (Cone-coisotropic, see [KS90], definition 6.5.1 p. 271). We
shall say that V is cone-coisotropic if whenever a hyperplane H is such
that C+(x,V ) ⊂ H then the symplectic orthogonal of H, Hω is contained in
C−(x,V ).

Proof of Proposition 1.3. We want to prove that if V is not cone-coisotropic
at z ∈ V then it is not γ-coisotropic at z. For H a hyperplane we set nH

the normal to H (for the usual scalar product). Let us assume that z ∈V is
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C

C

Hω CC

Hω

FIGURE 2. Coisotropic cone on the left, non-coisotropic
on the right

such that C+(z,V ) ⊂ H and Hω ∉C−(z,V ). This will follow from the next
two lemmata. �

Lemma 8.3. Let V be a closed set, z ∈ V and H a hyperplane such that
C+(z,V ) ⊂ H. Then there exists a continuous function fH ,V defined in
a neighbourhood of z in H such that fH ,V (z) = 0 and dG fH ,V (z) = 0,
where dG is the Gâteaux derivative, and such that for any neighbourhood
C+
ε (z,V ) of C+(z,V ) we have for δ small enough

V ∩B(z,δ) ⊂ {
z +x + fV (x)nH | x ∈C+

ε (z,V )
}

Proof. We can assume for simplicity that z = 0. For x ∈ H let Vx = V ∩
(x +RnH ). We claim that for x close enough to 0, Vx contains at most
one point. Indeed, if this was not the case, we would have sequences
(yn)n≥1, (wn)n≥1 converging to 0 such that yn − wn = tnnH with tn 6= 0.
But then by definition of C+(0,V ), we would have nH ∈C+(0,V ) a contra-
diction.

As a result, on the closed set Γ⊂ H defined as the set of x such that Vx

is non empty, we have a function f such that

x ∈ Γ⇐⇒ (x, f (x)) ∈V

Let us prove f is continuous on Γ, at least in a neighbourhood of 0. If this
was not the case, there would be a sequence (zn)n≥1 converging to 0 and
for each n two sequences (xn

k )k≥1, (yn
k )k≥1 such that limk xn

k = lim yn
k = zn

and limk f (xn
k ) 6= limk f (yn

k ). Setting un
k = (xn

k , f (xn
k )), vn

k = (yn
k , f (yn

k )) we
have

un
k − vn

k = (xn
k − yn

k , f (xn
k )− f (yn

k ))

which can be normalized so that, for any n, it has a limit (0,1) when k −→
+∞. As a result for k = k(n) large enough, setting un = un

k(n), vn = vn
k(n),

there is a τn so that

‖τn(un − vn)− (0,1)‖ < 1/3
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so we can find a converging subsequence to a vector w which does not
belong to H . Since w ∈ C+(0,V ) we have a contradiction. From now on
we replace Γ by Γ∩B(0,r ) with r small enough so that f is now continu-
ous on Γ.

Let us now prove that lim
|x|−→0

x∈Γ

f (x)

|x| = 0. Indeed, if we had a sequence xk

in Γ converging to 0 and such that lim
k

f (xk )

|xk |
6= 0, the sequence of vec-

tors 1
|xk | (xk , f (xk )) would have a limit which does not belong to H , so

C+(0,V ) 6⊂ H , a contradiction.
We now will extend f to fH ,V such that

(1) fH ,V (x) = f (x) for x ∈ Γ
(2) fH ,V is continuous
(3) dG ( fH ,V (0)) = 0

For this we can assume for simplicity that r = 1 and write x = ρ ·θ with
0 ≤ ρ ≤ 1,θ ∈ Sn−1. We write g (s,θ) = f (e s ·θ) with s ∈ ]−∞,0] and identify
Γ with its image in ]−∞,0]×Sn−1. Now let gn(s,θ) be a continuous func-
tion defined on Cn = ]−n −1,−n +1[×Sn−1 for n ∈ N, coinciding with g
on Γ∩Cn and having the same bound, i.e.

sup
{

gn(s,θ) | (s,θ) ∈Cn
}= sup

{
g (s,θ) | (s,θ) ∈ Γ∩Cn

}

inf
{

gn(s,θ) | (s,θ) ∈Cn
}= inf

{
g (s,θ) | (s,θ) ∈ Γ∩Cn

}
Such a function exists by Tietze’s extension theorem.

Now let χn be a partition of unity subordinated to the covering of
]−∞,0]×Sn−1 by the Cn . We set

G(s,θ) = ∑
n≥0

χn(s)gn(s,θ)

Note that this is well defined since whenever gn(s,θ) is not defined, we
have χn(s,θ) = 0, so we set χn(s)gn(s,θ) = 0 outside of Cn . And since
whenever gn(s,θ) is defined and (s,θ) ∈ Γ we have gn(s,θ) = g (s,θ), we
see that F is an extension of G . We now set

fH ,V (e s ·θ) =G(s,θ)
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Properties (1) and (2) are then obvious. As for the third one, we notice
that

sup
{

fH ,V (x) | |x| ≤ e−n}= sup{G(s,θ) | (s,θ) | s ≤−n} ≤
sup
k≥n

sup
{

gk (s,θ) | (s,θ) ∈Ck
}≤ sup

{
g (s,θ) | (s,θ) ∈ Γ, s ≤−n

}=
sup

{
f (x) | x ∈ Γ, |x| ≤ e−n}

We see that since lim
|x|−→0

x∈Γ

f (x)

|x| = 0 we have lim
x−→0

fH ,V (x)

|x| = 0.

As a result

lim
t−→0

1

t
( fH ,V (th)− fH ,V (0)) = 0

and we may conclude that dG fH ,V (z) = 0. �

Lemma 8.4. Let f be a continuous function on the hyperplane H such that
dG f (0) = 0 and C a cone in H not containing Hω. Set

C̃ = {
x + f (x)nH | x ∈C

}
Then for any positive ε, there is a Hamiltonian map ϕ such that γ(ϕ) ≤ ε

and
ϕ(C̃ ∩B(0,1))∩B(0,1) =;

Proof. We shall assume w.l.o.g. that H = {pn = 0} and z = 0, so that Hω is
given by the direction qn . First let us mention that the case f = 0 is trivial.
Just take a Hamiltonian H(pn) such that H(0) = 0, H ′(0) = A and H is C 0

small, A being chosen so that in B(0,1) we have

C ∩B(0,1)∩ (A
∂

∂qn
+C ) =;

This extends to the case where f is smooth. Indeed, let us set K (qn , f (qn , q̄ , p̄), q̄ , p̄) =
0 and ∂K

∂pn
(qn , f (qn , q̄ , p̄), q̄ , p̄) = A. We have, for any (qn , pn , q̄ , p̄) ∈ C̃ ,

ϕt
H (qn , pn , q̄ , p̄) = (qn + At , pn(t ), q̄(t ), p̄(t )) hence

ϕt
K (C̃ )∩B(0,1) =;

Of course we have to truncate the flow, so that it is unchanged on the
trajectory of points in ϕt

K (C̃ )∩B(0,1), but this is not difficult.
Note that the same holds if we replace C̃ by the region

C̃g ,g ′ = {
(qn , pn , q̄ , p̄) | (qn , q̄ , p̄) ∈C , g (qn q̄ , p̄) ≤ pn ≤ g ′(qn q̄ , p̄)

}
where g ≤ g ′ are smooth functions with d g (0) = d g ′(0) = 0, except that
now we cannot have γ(ϕK ) arbitrarily small because K has oscillation
bounded from below by A‖g − g ′‖C 0 . Indeed we must have ∂K

∂pn
= A on
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FIGURE 3. The cone C and its translation by A ∂
∂qn

a segment in the pn direction of length g ′(qn q̄ , p̄)− g ′(qn q̄ , p̄). However
we can assume γ(ϕK ) ≤ A‖g − g ′‖C 0 +ε whith ε> 0 arbitrarily small.

The general case is obtained as follows. We take a sequence gk ≤ f ≤ g ′
k

such that ‖gk − g ′
k‖C 0(B(0,r )) goes to zero with k. We can then displace

C̃gk ,g ′
k

hence C̃ by a map with γ(ϕk ) ≤ A‖gk − g ′
k‖C 0(B(0,r )) +εk . As k goes

to infinity, we may let εk go to zero. This concludes our proof. �

Remark 8.5. The proof actually shows that V is locally rigid in the sense
of Usher (see [Ush19]). So we have that γ-coisotropic implies locally rigid
which implies cone-coisotropic.

8.2. A cone-coisotropic set that is not γ-coisotropic. Let Ka be the cen-
tral Cantor set of ratio a. In other words we set

F1 = [0, a]∪ [1−a,1]

F2 = [0, a2]∪ [a(1−a), a]∪ [1−a,1−a +a2]∪ [1−a2,1]

and Ka =⋂
n Fn .

Proposition 8.6. For a < 2−2n , the set X = K 2n
a is cone-coisotropic but not

γ-coisotropic.

Proof. We claim that C+(z, X ) is not contained in any hyperplane. In-
deed for x ∈ K = Ka the cone C+(x,K ) is never empty since any point in
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K is a cluster point of K . In fact C−(x,K ) is either R−,R+ or R depend-
ing whether x is the limit of points of K less than x, the limit of points of
K greater than x or both, and C+(x,K ) = R. Even though the paratingent
cone of a product does not necessarily contain the product of the paratin-
gent cones of the factors, in the present case C+(z, X ) contains the rays
{0 j−1}×C+(x j ,K )× {0n− j } where z = (x1, .., x2n), and 0k = (0, ...,0) ∈ Rk .
Therefore C+(z, X ) is not contained in any hyperplane and X is trivially
cone-coisotropic.

We now claim X is not γ-coisotropic. Pick z ∈ X and balls B(z,ε),
B(z,η), 0 < η < ε. Let k big enough (to be made precise later). Since K
is contained in Fk which consists of 2k intervals of length ak , our X is
contained in a family I of cubes of edge length ak with |I | = 22nk . The
projection (q, p) 7→ (q2, . . . , qn , p1, . . . , pn) maps I to a family I ′ of cubes
of R2n−1 (again these cubes have edge length ak and |I ′| = 2(2n−1)k ). We
choose disjoints neighbourhoods Ui , i ∈ I ′, of the cubes in I ′. For a
given i0 ∈I ′, let C j , j = 1, . . . , N , be the cubes of I contained in B(z,ε)∩
(R×Ui0 ), ordered according to the q1 variable. Let N1 be the maximal in-
dex j such that C j meets B(z,η). We push all cubes C2, . . . ,CN1 to the left,
close to C1, in the space between B(z,ε) and B(z,η) (if k is big enough),
as follows. We move C2 by a translation T2 with direction −∂q1 , so that
T2(C2) is close to C1. Then we move C3 by a similar translation T3, so that
T3(C3) is close to T2(C2). We go on until CN1 . We have thus accumulated
at most 2k cubes of edge length ak near C1. Since a < 1/2, we have room
to put all these cubes in B(z,ε) \ B(z,η) for k big enough.

Now the translation T j can be realized by a Hamiltonian function of the
form h j = h(p1)ρ j (q, p), where h′ = 1 and ρ j is a bump function vanish-
ing outside B(z,ε)∩(R×Ui0 ) and over C1∪·· ·∪T j−1(C j−1)∪C j+1∪·· ·∪CN1

and equals to 1 over the path swept by C j . We have ||h|| ∼ ak and we ap-
ply the isotopy for a length of time less than ε < 1. We have to do this
less than |I | times. Since we chose a < 2−2n , the composition of all these
isotopies has norm as small as required.

�

Remark 8.7. We can weaken the assumption a < 2−2n to a < 1/4 at the
expense of a more complicated proof.

Question 8.8. Find an example where the image of a smooth non-coisotropic
submanifold C by a symplectic homeomorphism, ϕ, is such that ϕ(C ) is
cone-coisotropic (but will not be γ-coisotropic by [Vit22]).
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FIGURE 4. Moving the cubes..

9. QUESTIONS AND COMMENTS

We gather in this section a number of questions that sprang up natu-
rally while writing this paper.

Question 9.1. What is the γg -distance of kX and kY for two closed sets
X ,Y . If X ,Y do not have the same cohomology, the distance is infinite. So
we can focus on the case when Y = Xε is an ε-neighbourhood of X . When
is it true that γg (kX ,kXε) ≤Cε ? Or when do we have γ− limkXε = kX ?

For the next four questions we choose on N a real analytic structure.
We let Dl c (N ) be the category of limits of constructible sheaves consid-
ered in Appendix B.

Question 9.2. In Appendix B we describe the objects of Dlc (R) with micro-
support contained in {τ≥ 0}. Is there a similar description in the general
case ?

Question 9.3. Using Lemma B.3 and the proof of Lemma B.1 it is prob-
ably not hard to see that Dlc (N ) is a triangulated category. If we have a
map f : N −→ M , can we find conditions so that R f∗(Dlc (N )) ⊂ Dl c (M),
f −1(Dlc (M)) ⊂ Dlc (N )?

For example this is true for a map of the type f × idR : N ×R −→ M ×R,
if we consider the γτ-distance, because R f∗ and f −1 are Lipschitz for this
distance. In general f −1 is not Lipschitz: take f : R −→ R2, x 7→ (x,0), and
Dε the closed disc with center (0,1) and radius 1−ε; then γg (kD0 ,kDε) =
ε but γg ( f −1(kD0 ), f −1(kDε)) = +∞ (here g (q, p) = ||p||). Hence it is not
clear that f −1(Dlc (M)) ⊂ Dlc (N ).
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Question 9.4. Let Ddom(N ) be the subcategory of D(N ) generated in the
triangulated sense by the kU , where U runs over the domains with smooth
boundary. It should not be difficult to prove that Ddom(N ) ⊂ Dlc (N ) by
approximating domains with smooth boundary by domains with analytic
boundary. Is it true that, for any subanalytic open subset V of X and any
ε > 0, there exists a domain U with smooth boundary such that U ⊂ V
and K ε

ϕg
(kU ) ' kUε with Uε open and V ⊂Uε ? In this case we can see that

Dl c (N ) coincides with the γ-closure of Ddom(N ), which would imply that
Dl c (N ) only depends on the smooth structure of N .

Question 9.5. Let D tr i (N ) be the set of sheaves which are constructible
with respect to some (non-fixed !) triangulation of N . Do the γ-closures
of Ddom(N ) and D tr i (N ) coincide ? Are they equal to Dlc (N )?

We remind the reader of the following (see [KS18], theorem 2.11, and
[PS21], corollary 2.4.2 )

Proposition 9.6. We have for all 1-Lipschitz maps f : M −→ N the in-
equality

γg ((R f )∗F , (R f )∗G ) ≤ γg (F ,G )

Question 9.7. Can we give conditions on F ,G (for exampleγg (F ,G ) <∞)
such that the opposite inequality

γg (F ,G ) ≤C sup
f ∈Li p1(X ,R)

γ|τ|(R f∗(F ),R f∗(G ))

holds for some constant C ?

Question 9.8. Let f be a continuous function on N . Then F f = k{(x,t )| f (x)≤t }

is a sheaf on N ×R, and Vichery defined a subdifferential as

∂ f = SS(F f )∩ {τ= 1}/(t ) ⊂ T ∗N

Its intersection with T ∗
x N is ∂ f (x). On the other hand d f ∈ L̂(T ∗N ), so

we may ask whether

SS(F f )∩ {τ= 1}/(t ) = ∂ f = γ− supp(d f )

This leads to more general questions. First notice the following

Proposition 9.9. There is a functor Q : L̂ (T ∗N ) −→ Dlc (N ×R) extending
the usual quantization from [Gui12; Vit19]. Moreover Q is bi-Lipschitz of
ratio 2 from (L̂ (T ∗N ),γ) to (Dlc (N ×R),γτ).

Proof. Let Ln be a Cauchy sequence in L (T ∗N ). Then FLn is a Cauchy
sequence in Dlc (N ×R). The map L −→ FL is a bi-Lipschitz map from
the metric c to the (pseudo-) metric γτ. As we saw in Remark 6.12, the
metricγτ is bounded between 1/2c and c where c is the metric defined on
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L (T ∗N ) in [Vit22] by c(L̃1, L̃2) = |c+(L1,L2)|+|c−(L1,L2)|. Since according
to Proposition B.7 the metric γτ is a bona fide metric in Dlc (N ×R), limits
are unique and the limit of FLn is well-defined. �

Question 9.10. Set ρ(x, t ;ξ,τ) = (x;ξ/τ). Given Λ ∈ L̂ (T ∗N ), do we have
γ− supp(Λ) = ρ(SS•(Q(Λ))) ?

A positive answer would also imply a positive answer to Question 9.8,
i.e. ∂ f = γ− supp(d f ) by taking Λn = d fn for some sequence of differen-
tiable functions converging to f .

Question 9.11. Can one characterize the sheaves F such that there exists
an element ŜS(F ) in L̂ (T ∗N ) so that SS(F ) = γ− supp(ŜS(F )) ? In the
previous question we considered the F which are γ-limits of sheaves F j

quantizing some exact Lagrangian.
Let us give an example of such a situation : let M , N be closed mani-

folds. For a map f ∈ C∞(M , N ) set Λ f be the correspondence in T ∗M ×
T ∗N defined by

Λ f =
{
(x, px , y, py ) | y = f (x), py ◦d f (x) =−px

}
Now let fn be a sequence of smooth maps C 0-converging to f ∈C 0(M , N ).
For F ∈ Db(M) the sequence (R( fn)∗F )n≥1 γ-converges to R f∗(F ) and
SS(R( fn)∗F ) ⊂Λ fn ◦SS(F ). Thus SS(R( fn)∗F ) ) should γ-converge to a
subset of Λ f ◦SS(F ). Of course since f is only C 0, Λ f is not defined as a

set, but it is well defined in L̂ (T ∗N×T ∗M), henceΛ f ◦SS(F ) ∈ L̂ (T ∗N ).
Thus we expect ŜS(R f∗(F )) =Λ f ◦SS(F ) and SS(R f∗F ) ⊂ γ−supp(Λ f ◦
SS(F )).

Question 9.12. Let Fn be a sequence in D(N ) γg -converging to F∞. We
set Λn = SS(Fn) and we assume that Λn Hausdorff converges to Λ∞.
We know that SS(F∞) ⊂ Λ∞ but when is it true that Λ∞ = SS(F∞)?
We can prove it if Λ∞ is a smooth Lagrangian or more generally min-
imally γ-coisotropic. Indeed Proposition 7.3 shows that SS(F∞) ⊂ Λ∞
and the involutivity of the singular support gives the equality (by an ar-
gument similar to the one in the proof of Proposition 9.13). Assuming
N = M ×R and the Fn are quantizations of exact Lagrangian, Proposition
9.13 shows that this still hold when Λ∞ is the conification of some ϕ(L0)
for L0 smooth Lagrangian, ϕ a symplectic homeomorphism.

Note however that the answer cannot be positive in general: Let f (x)
be a smooth bounded function on R, such that max f ′ = 1, min f ′ = −1.
Let fn(x) = f (nx)/n and Fn = k{t≥ fn (x)}. Then Fn converges to F∞ =
kR×[0,∞[ but SS(Fn) converges to a set Λ∞ bigger than SS(F∞). In fact Λ
is the cone over a “cross” C in T ∗Rwith C = 0R∪ ({0}× [−1,1]).
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Proposition 9.13. Let L = ϕ(L0) where L0 is smooth Lagrangian and ϕ ∈
Hγ(M ,ω) = àDHam(M ,ω)∩Homeo(M). Then any closed proper subset of
L is not γ-coisotropic.

Proof. Let L′ ⊂ L. Since being γ-coisotropic is invariant by àDHam(M ,ω)∩
Homeo(M) it is enough to prove the Proposition for L0 i.e. in the smooth
case. Now there is a ball B(z,r ) in L such that B(z,r )∩L′ = {z ′}. Moreover
we may choose r to be arbitrarily small. Let us consider a flow on L such
that ρt (B(z,r ) ⊂ B(z ′,r ). In a chart containing B(z,2r ) we may assume
that ρt is a translation. Then ρ1(L′)∩B(z ′,r ) =;. Since if X t is the vector
field generating ρt , the Hamiltonian written in action-angle coordinates
(i.e. L is given locally by p = 0) can be chosen of the form χ(|p|)〈p, X t (x)〉
for some bump function χ, and this can be made arbitrarily small. As a
result, L′ is not γ-coisotropic.

z ′ϕ(L)

zL

FIGURE 5. Proof of Proposition 9.13

�

Question 9.14. Let V be γ-coisotropic of dimension n. Then for z ∈V and
ε small enough we have V \ B(z,ε) is not coisotropic.

APPENDIX A. PERSISTENCE MODULES AND BARCODES

For this section we refer also to [Zha20]
We have already noticed after Definition 5.3 that the spectral invari-

ants of L1,L2 ∈ L (T ∗N ) are encoded in the sheaf over R given by H =
Rt∗H om∗(F ,G )), where t : N ×R −→ R is the projection, because of the
isomorphism

RΓN×{t }(N ×R;H om∗(FL1 ,FL2 ))) ' RΓ{t }(R;H )

We recall that H belongs to the category Dτ≥0(R) of sheaves with singular
support in {τ≥ 0}.



38 STÉPHANE GUILLERMOU AND CLAUDE VITERBO

We remark that Dτ≥0(R) contains the derived category of persistence
modules, where by a persistence module, we mean a constructible sheaf
on (R,≤). We refer to [Bar94; Cha+09; ELZ02; KS18; ZC05] for the theory
and applications. Such a persistence module is uniquely defined by the
finite-dimensional vector spaces Vt = F (]−∞, t [) and the linear maps
rs,t : Vt −→Vs defined for s ≤ t , such that

(1) for s < t < u we have ru,t ◦ rs,t = rs,u ,
(2) limt>s Vt = Vs where the limit is that of the directed system given

by the rs,t ,
(3) rt ,t = Id.

It is a well-known result that persistence modules have a decomposition
as sum of barcodes : this is Gabriel’s theorem ([Gab72] on quivers in the
finite case and Crawley-Boevey’s theorem ([Cra15]) in the locally finite
case. More precisely, using Gabriel’s theorem and the fact that any com-
plex of objects in an Abelian category of homological dimension 1 is the
sum of its cohomology, we find: any F ∈ Dτ≥0(R) which is constructible
for a finite stratification can be written F ' ⊕

j∈I k[a j ,b j [[−n j ], where I

is a finite family, and this decomposition is unique up to isomorphism.
(The hypothesis that the singular support is in {τ≥ 0} is useless here.) We
remark that the stratification consists only of a finite set of points inR and
the connected components of its complement, where F is constant. This
finite set is thus the projection to R of SS•(F ). If L ∈ L (T ∗N ) is generic
in the sense that L meets 0N transversally, then Rt∗(FL) is of the above
type, where the stratification is given by the set of actions of the points in
L∩0N .

In [KS18] it is explained how to go from the case of a finite stratification
to the case of a locally finite one (then I is at most countable). By [Cra15]
the same result holds in fact (at least in Dτ≥0(R)) under the more gen-
eral hypothesis that Fx is finite dimensional for all x ∈ R. However the
sheaves we encounter in this paper are not necessarily of this type: if f is
the function f (x) = x2 sin(1/x) and F = Rt∗(k{t≥ f (x)}), then F0 is infinite
dimensional. But, by a small perturbation of L, we see that all sheaves
of the form Rt∗(FL) are in the closure of the set of constructible sheaves.
Using Corollary B.11 we deduce:

Proposition A.1. Let L1,L2 ∈L (T ∗N ). Then there exists an at most count-
able family I (which is finite in the case of transverse intersection) such
that

(Rt )∗(H om∗(FL1 ,FL2 )) = ⊕
j∈I

k[a j ,b j [[−n j ],

where for each j ∈ I we have a j ∈ R∪ {−∞}, b j ∈ R, n j ∈ Z. Moreover
there is a unique j− such that a j− = −∞ and n j− = −1 and then b j− =
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c−(L1,L2) and a unique j+ such that a j+ = +∞ and n j+ = n −1 and then
b j+ = c+(L1,L2).

More generally, with the notations of the proposition we let I∞ be
the set of j such that a j = −∞. Then H∗

t0
((Rt )∗(H om∗(FL1 ,FL2 ))) '⊕

j∈I∞ k[−n j ], for t0 ¿ 0, and we deduce that the spectral invariants
c(α,L1,L2) are the b j ’s with j ∈I∞.

Note that the filtered Floer cohomology, F H∗(L1,L2;−∞, t ) defines a
persistence module equal to the one obtained from H om∗(FL1 ,FL2 ) as
follows from Theorem 5.1.

It will be useful to remind the reader that

Lemma A.2 (see [KS18], (1.10)).

RHom(k[a,b[,k[c,d [) '


k for a ≤ c < b ≤ d ,

k[−1] for c < a ≤ d < b,

0 otherwise.

Proof. The formula k[c,d [ ' RH om(k]d ,c],kR) together with the adjunc-
tion between⊗ and RH om give RHom(k[a,b[,k[c,d [) ' RHom(kI ,kR), where
I = [a,b[∩ ]c,d ]. If I is half closed or empty, the result is 0. The two other
cases correspond to I open or I closed. �

APPENDIX B. DECOMPOSITION IN THE COMPLETION OF Dl c (R)

B.1. Limits of constructible sheaves. We assume in this section that N
is endowed with a real analytic structure and a real analytic metric g . We
recall that we work with coefficients in a field k. We denote by Dc (N ) the
subcategory of D(N ) of constructible sheaves. We let Dlc (N ) be the set
of objects which are limits of constructible sheaves with respect to the
γg -topology.

Lemma B.1. Let F ,G ∈ Dlc (N ) with compact supports and a < b. Then
the morphism Hom(F ,K a

ϕ(G )) −→ Hom(F ,K b
ϕ(G )) induced by τa,b(G ) has

finite dimensional image.

Proof. We set c = (b−a)/2. Applying K −c
ϕ we identify Hom(F ,K b

ϕ(G )) with

Hom(K −c
ϕ (F ),K b−c

ϕ (G )) and the morphism of the lemma gets identified
with

f : Hom(F ,K a
ϕ(G )) −→ Hom(K −c

ϕ (F ),K b−c
ϕ (G ))

u 7→ τa,b−c (G )◦u ◦τ−c,0(F )

Since F ,G ∈ Dlc (N ), there exist constructible sheaves F ′, G ′ and mor-
phisms K −c

ϕ F
u1−→ F ′ u2−→ F , K a

ϕ(G )
v1−→ G ′ v2−→ K b−c

ϕ (G ) such that u2 ◦
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u1 = τ−c,0(F ), v2 ◦ v1 = τa,b−c (G ). We choose a compact set Z contain-
ing the supports of F and K −c

ϕ F . Applying the functor (−)Z we obtain

K −c
ϕ F

(u1)Z−−−→ F ′
Z

(u2)Z−−−→ F and we still have (u2)Z ◦ (u1)Z = (u2 ◦ u1)Z =
τ−c,0(F ). So we may assume from the beginning that F ′ has a compact
support. Now f factorizes through Hom(F ′,G ′) which is finite dimen-
sional. �

As a consequence, for a given ε > 0, the images of Hom(F ,K δ
ϕ(G )) in

Hom(F ,K ε
ϕ(G )), for 0 < δ ≤ ε, stabilize when δ −→ 0. In other words the

projective system (Hom(F ,K 1/n
ϕ (G )))n∈N, with morphisms induced by

τ1/(n+1),1/n(G ), satisfies the Mittag-Leffler criterion. Let us introduce the
notations, for ε > 0, Homε(F ,G ) = Im(Hom(F ,K −ε

ϕ (G )) −→ Hom(F ,G ))
and Hom(ε)(F ,G ) =⋂

δ<εHomδ(F ,G ). A consequence of Lemma B.3 be-
low is that Homε(F ,G ) = Hom(ε)(F ,G ). We will mainly consider

Hom(ε)(F ,K ε
ϕ(G )) = ⋂

0<δ≤ε
Im

(
Hom(F ,K δ

ϕ(G )) −→ Hom(F ,K ε
ϕ(G ))

)
By Lemma B.1 this space has finite dimension and, by construction, the
morphisms Hom(ε)(F ,K ε

ϕ(G )) −→ Hom(ε′)(F ,K ε′
ϕ (G )), for 0 < ε ≤ ε′, are

surjective.
In the next lemma Ab denotes the category of Abelian groups and

D(Ab) its derived category. The statement is a well known consequence
of the Mittag-Leffler condition; it is for example a variation on [KS90,
Prop. 1.12.4].

Lemma B.2. Let (An , an), an : An −→ An−1, be a projective system in D(Ab)
and define holimn An by the distinguished triangle holimn An −→∏

n An
α−→∏

n An
+1−−→ whereα= id−∏

n an . We assume that H i An satisfies the Mittag-
Leffler criterion, for some i . Then H i+1(holimn An) ' lim←−−n

H i+1 An .

Proof. In Ab the product
∏

is exact, hence H i and
∏

commute and we

have a long exact sequence
∏

n H i An
H iα−−−→∏

n H i An −→ H i+1(holimn An) −→∏
n H i+1 An −→ ∏

n H i+1 An . Hence the statement is equivalent to the sur-
jectivity of H iα. We write for short Bn = H i An , bn = H i an and B∞

n =
im(Bm −→ Bn) for m À n. We let b∞

n , b̄n be the maps induced by bn on
B∞

n , Bn/B∞
n . We have H iα= id−∏

bn and the commutative diagram

0 // ∏B∞
n

//

id−∏
b∞

n
��

∏
Bn

//

id−∏
bn

��

∏
Bn/B∞

n
//

id−∏
b̄n

��

0

0 // ∏B∞
n

// ∏Bn
// ∏Bn/B∞

n
// 0
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We see that id−∏
b∞

n is surjective because the b∞
n ’s are surjective. Let

us write t = ∏
b̄n . By the Mittag-Leffler criterion, for each n, there exists

m ≥ n such that b̄n+1 ◦ b̄n+2 ◦ · · · ◦ b̄m is the zero map. It follows that t ′ =∑∞
i=0 t i is well-defined. Hence id− t is an isomorphism, with inverse t ′.

We deduce that id−∏
bn is also surjective, as required. �

Lemma B.3. Let F ,G ∈ Dlc (N ) with compact supports. We have natural
isomorphisms

Hom(F ,G ) ∼−→ lim←−−
n

Hom(1/n)(F ,K 1/n
ϕ (G )) ∼−→ lim←−−

n
Hom(F ,K 1/n

ϕ (G ))

and, for any n, the map Hom(F ,G ) −→ Hom(1/n)(F ,K 1/n
ϕ (G )), u 7→ [u]n :=

τ0,1/n(G )◦u, is surjective.

Proof. By Lemma 6.23 we have hocolimK −1/n
ϕ (F ) ∼−→ F and we deduce

RHom(F ,G ) ∼−→ holimRHom(F ,K 1/n
ϕ (G )). Since the projective system

of vector spaces H−1 RHom(F ,K 1/n
ϕ (G )) ' Hom(F ,K 1/n

ϕ (G )[−1]) satis-

fies Mittag-Leffler, Lemma B.2 gives Hom(F ,G ) ∼−→ lim←−−n
Hom(F ,K 1/n

ϕ (G )).
The second isomorphism of the lemma and the last assertion are clear by
the definition of Hom(1/n). �

Lemma B.4. For F ,G ,H ∈ Dlc (N ) with compact supports, the composi-
tion induces a well-defined map, for any n,

◦n : Hom(1/n)(F ,K 1/n
ϕ (G ))×Hom(1/n)(G ,K 1/n

ϕ (H )) −→ Hom(1/n)(F ,K 1/n
ϕ (H ))

(ū, v̄) 7→ v̄ ◦n ū := [v ◦u]n ,

where u, v in Hom(F ,G ), Hom(G ,H ) satisfy [u]n = ū, [v]n = v̄ , and we
use the notation [−]n of Lemma B.3. This turns Hom(1/n)(F ,K 1/n

ϕ (F ))
into an algebra which is a finite dimensional quotient of Hom(F ,F ) and
whose unit is τ0,1/n(F ) (assuming F 6= 0 and n is big enough so that
τ0,1/n(F ) 6= 0 – see Lemma 6.4).

Proof. It is enough to see that if [u]n = 0 or [v]n = 0, then [v ◦u]n = 0. For
u this follows from the commutative diagram

F
u //

[u]n ''

G
v //

τ0,1/n (G )
��

H

τ0,1/n (H )
��

K 1/n
ϕ (G )

K 1/n
ϕ (v)

// K 1/n
ϕ (H ))

which shows that [v ◦u]n = K 1/n
ϕ (v)◦[u]n . The case [v]n = 0 is similar. �
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Lemma B.5. Let F ,G ∈ Dlc (N ) with compact supports such thatγg (F ,G ) =
0. We set An = Hom(1/n)(F ,K 1/n

ϕ (F )) and let A×
n be its subset of invertible

elements. We also define, using the notation ◦n of Lemma B.4,

Bn = {
(u, v) ∈ Hom(1/n)(F ,K 1/n

ϕ (G ))×Hom(1/n)(G ,K 1/n
ϕ (F ));

v ◦n u = τ0,1/n(F ), u ◦n v = τ0,1/n(G )
}

Then

(1) for any n the set Bn is non empty,
(2) for any n and any (u, v) ∈ Bn , the maps αu,v : A×

n −→ Bn , a 7→ (u ◦n

a, a−1 ◦n v) and βu,v : Bn −→ A×
n , (u′, v ′) 7→ v ◦n u′, are mutually in-

verse bijections,
(3) for m ≥ n the natural map Bm −→ Bn is surjective.

Proof. (1) By Lemma B.1 there exists m ≥ n such that Hom(1/n)(F ,K 1/n
ϕ (G ))

is the image of Hom(F ,K 1/m
ϕ (G )) in Hom(F ,K 1/n

ϕ (G )) (and the same

with F , G switched). Since γg (F ,G ) = 0, we can find u1 : F −→ K 1/2m
ϕ (G )

and v1 : G −→ K 1/2m
ϕ (F ) such that u1◦K 1/2m

ϕ (v1) and v1◦K 1/2m
ϕ (u1) are the

morphisms τ. Letting u be the image of u1 in Hom(1/n)(F ,K 1/n
ϕ (G )) and

defining v in the same way, we then have (u, v) ∈ Bn .

(2) We first remark that βu,v (u′, v ′) belongs to A′
n : indeed the inverse of

v◦n u′ is v ′◦n u. Nowβu,v (αu,v (a)) = v◦n u◦n a = a andαu,v (βu,v (u′, v ′)) =
(u ◦n v ◦n u′, v ′ ◦n u ◦n v) = (u′, v ′).

(3) We pick (u, v) ∈ Bm and let (ū, v̄) be its image by the natural map Bm −→
Bn . We obtain a commutative diagram

A′
m

αu,v //

q
��

Bm

��
A′

n

αū,v̄ // Bn

where the horizontal maps are bijections and the vertical map q is sur-
jective by Lemma B.6. The result follows. �

Lemma B.6. Let A, B be finite dimensional algebras over k and let f : A −→
B be a surjective algebra morphism. Then the map induced on the sets of
invertible elements f × : A× −→ B× is also surjective.

Proof. We pick x ∈ A and assume that f (x) is invertible. We have to prove
that there exists z ∈ ker( f ) such that x + z is invertible. We let A′ = 〈x〉 be
the subalgebra of A generated by x and define similarly B ′ = 〈 f (x)〉. The
maps u : k[X ] −→ A, X 7→ x, and f ◦u identify A′ and B ′ with quotients
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of k[X ]. Since k[X ] is principal, we can write A′ = k[X ]/〈PQ〉, with x =
[X ]A′ , and B ′ = k[X ]/〈Q〉, with f (x) = [X ]B ′ .

Since f (x) is invertible in B , it is not a zero divisor and we have X -Q.
Let us write P = X nP ′ with X - P ′. We set R = X +P ′Q. Then f ([R]A′) =
f (x). We claim that [R]A′ is invertible, which concludes the proof. We
have to check that 〈R,PQ〉 = k[X ]. Let D be a generator of 〈R,PQ〉. Then
D | X nR −PQ = X n+1. Either X | D , but then X | R and finally X | P ′Q
which is false, or D ∈ k× and we are done. �

Proposition B.7. Let F ,G be elements in Dl c (N ) with coefficients in a
field k and having compact supports. Assume that that γg (F ,G ) = 0.
Then F 'G .

Question B.8. Is the Proposition true if we replace the field k byZ or more
generally a ring ?

Proof. If F = 0, then γg (0,G ) = 0 and we obtain G = 0 by Lemma 6.4. We
assume F 6= 0, hence τ0,1/n(F ) 6= 0 for n big enough. We use the nota-
tion Bn of Lemma B.5. By this lemma the inductive system · · · −→ Bn −→
Bn−1 −→ ·· · is made of surjective maps between non empty sets for n À 0.
Hence its limit is non empty and we deduce a pair (u, v) ∈ Hom(F ,G )×
Hom(F ,G ) such that ([u]n , [v]n) ∈ Bn for all n, that is, [v ◦u]n = τ0,1/n(F )
and [u ◦ v]n = τ0,1/n(G ). Let C be the cone of u. For any n we have the
following morphism of triangles given by the morphisms τ0,1/n(−):

F
u //

��

G //

��

[v]n

yy

C //

��

F [1]

��

K 1/n
ϕ (F ) // K 1/n

ϕ (G ) // K 1/n
ϕ (C ) // K 1/n

ϕ (F )[1],

where both maps τ0,1/n(F ) and τ0,1/n(G ) factorize through [v]n . By the
same argument as in the proof of Lemma 6.8-(1) we deduce that τ0,2/n(C ) =
0. Hence γg (0,C ) ≤ 2/n, for any n. Thus the cone of u vanishes and u is
an isomorphism. �

B.2. Decomposition in Dl c (R). Let Mod(R) be the category of sheaves of
k-vector spaces on R. We consider it as usual as the full subcategory of
D(R) of complexes concentrated in degree 0. A sheaf F ∈ Mod(R) which
is constructible with respect to a finite stratification of R is described by
a quiver representation of type An . Hence Gabriel theorem implies that
F is decomposed as F ' ⊕

I∈I kI where I is a finite family of intervals.
In this section we extend this result to γg -limits of constructible sheaves
under the assumption that the microsupport is contained in {τ≥ 0}.
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Let Int+ be the set of intervals of the form [a,b[, a ∈ R, b ∈ R∪ {+∞}.
We endow Int+ with the order

(B.1) [a,b[ ≤ [a′,b′[ if and only if a ≤ a′ and b ≤ b′

By Lemma A.2, for I , I ′ ∈ Int+ we have Hom(kI ,kI ′) ' k canonically if and
only if I ∩ I ′ 6= ; and I ≤ I ′ and in this case we denote by e I ′

I its generator.

Otherwise Hom(kI ,kI ′) ' 0 and we set e I ′
I = 0. For I ≤ I ′ ≤ I ′′ we have

e I ′′
I ′ ◦ e I ′

I = e I ′′
I . For two finite families I , I ′ ⊂ Int+ and G = ⊕

I∈I kI ,
G ′ =⊕

J∈I ′ k J , we obtain a natural morphism

E = EI ′
I : Matl t (I ′×I ) −→ Hom(G ,G ′), (aI ′,I )I ′∈I ′,I∈I 7→∑

aI ′,I e I ′
I ,

where Matl t denotes the space of lower triangular matrices (aI ′,I 6= 0 im-
plies I ≤ I ′). The map E is surjective and, for three families I , I ′, I ′′, we
have EI ′′

I ′ (B)◦EI ′
I

(A) = EI ′′
I

(B A).

Lemma B.9. Let I , I ′ ⊂ Int+ be two finite families and G = ⊕
I∈I kI ,

G ′ = ⊕
J∈I ′ k J . Let ε > 0 be given and let u : G −→ G ′, v : G ′ −→ Tε∗(G ) be

such that v ◦u = τ0,ε(G ). We assume that each I ∈I is of length > ε. Then
there exist an isomorphism φ : G ′ ∼−→ G ′ and an injective map σ : I −→
I ′ such that I ≤ σ(I ) for all I ∈ I (for the order ≤ defined in (B.1)) and
φ◦u : G −→G ′ is the sum of the natural morphisms kI −→ kσ(I ).

Proof. We set I ′′ = {Tε(I ); I ∈ I }. In view of the discussion after (B.1)
we can find lower triangular matrices A ∈ Matl t (I ′×I ), B ∈ Matl t (I ′′×
I ′) representing u, v . Then B A ∈ Matl t (I ′′×I ) is lower triangular. We
identify I and I ′′ through Tε and we claim that B A ∈ Matl t (I ×I ) is
still lower triangular. We take I1, I2 ∈ I and assume that 0 6= (B A)I1,I2 =∑

J∈I ′ BTε(I1),J A J ,I2 . There exists J such that BTε(I1),J , A J ,I2 6= 0, hence I2 ≤
J ≤ Tε(I1). If we assume moreover that I2 6≤ I1 we must have Tε(I1)∩I2 6= ;
because I1 and I2 are of length > ε. Hence eTε(I1)

I2
6= 0 and we deduce that

the decomposition of v ◦u on the basis of the non zero e I ′′
I ’s has a non

zero coefficient on eTε(I1)
I2

. Since v ◦u = τ0,ε(G ) this means that I1 = I2,
contradiciting I2 6≤ I1. Hence I2 ≤ I1, as claimed.

Finally B A is lower triangular (in Matl t (I ×I )) and has entries 1 along
the diagonal since it represents τ0,ε(G ). Hence B A is invertible. In partic-
ular |I | ≤ |I ′|, A has rank |I |, we can decompose I ′ as I ′ =I tI ′

1 and
find an invertible matrix A′ ∈ Matl t (I ′×I ′) such that the block I ×I in
A′A is the identity matrix. Now we letσ be the map given by the partition
I ′ =I tI ′

1 and φ be the morphism induced by A′. �

Proposition B.10. Let F ∈ Mod(R) such that SS(F ) ⊂ {(t ;τ) ∈ T ∗R; τ≥ 0}.
We assume that F is a γg -limit of constructible sheaves Fn ∈ Mod(R) such
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that SS(Fn) ⊂ {(t ;τ) ∈ T ∗R; τ≥ 0}. Then there exists an at most countable
set of intervals I such that F '⊕

I∈I kI .

We notice that the singular support hypothesis in the proposition im-
plies that our intervals are of the type [a,b[, [a,∞[ or ]−∞,b[.

Proof. (i) Up to taking a subsequence we can assume γg (F ,Fn) ≤ εn =
2−n . For each n there exists a finite family In ⊂ Int+ such that Fn :=⊕

I∈In
kI . By Proposition 6.24 we can assume, up to translating Fn by less

than εn , that there exist compatible morphisms fn : Fn −→Fn+1 and that
hocolimFn

∼−→ F . Since Fn ∈ Mod(R), we have hocolimFn ' lim−−→Fn .
We can also assume (maybe changing εn by 4εn) that there exist mor-
phisms gn : Fn+1 −→ Tεn∗(Fn) such that gn ◦ fn = τ0,εn (Fn).

(ii) It remains to check that lim−−→Fn is decomposed. For this we modify
the fn ’s using Lemma B.9. We let Jn ⊂In be the set of intervals of length
> 2εn and we set F̃n = ⊕

I∈Jn
kI . We first put the fn ’s in “diagonal form”,

f̂n (see the diagram (B.2)). Lemma B.9 applied with f0|F̃0
: F̃0 −→F1 gives

an injective map σ0 : J0 −→ I1 and an isomorphism φ1 : F1
∼−→ F1 such

that φ1 ◦ f0|F̃0
has a “diagonal form” (that is, it is the sum of the natural

morphisms kI −→ kσ0(I )). We set f̂0 =φ1◦ f0 and f ′
1 = f1◦φ−1

1 . Now we apply
the lemma with f ′

1|F̃1
: F1 −→F2 and obtain φ2 : F2

∼−→F2 and σ1 : I1 −→
I2. We set f̂1 = φ2 ◦ f ′

1 and f ′
2 = f2 ◦φ−1

2 . We go on inductively and end
up with a sequence of injective maps σn : Jn −→ In+1 and morphisms
f̂n : Fn −→Fn+1 such that f̂n restricted to F̃n has a “diagonal form”.

F̃0

f̃0
��

⊕
I0∈J0

kI0
//

&&

⊕
I0∈I0

kI0

f̂0

��

F0

f0

��
F̃1

f̃1
��

⊕
I1∈J1

kI1
//

&&

⊕
I1∈I1

kI1 ∼
φ1

f̂1

��

F1

f1

��
F̃2

f̃2
��

⊕
I2∈J2

kI2
//

&&

⊕
I2∈I2

kI2 ∼
φ2

f̂2

��

F2

f2

��
F̃3

⊕
I3∈J3

kI3
// ⊕

I3∈I3
kI3 ∼

φ3
F3

(B.2)

(iii) With our definition of Jn we have moreover σn(Jn) ⊂Jn+1. Indeed,
modifying gn as ĝn = Tεn∗(φn)◦ gn ◦φ−1

n+1, we see that ĝn ◦ f̂n = τ0,εn (Fn).
It follows that, for any [a,b[ ∈ Jn and [a′,b′[ = σn([a,b[), we must have
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a ≤ a′ ≤ a +εn and b ≤ b′ ≤ b +εn . Hence b′−a′ ≥ b −a −εn ≥ 2εn −εn =
2εn+1, which shows that [a′,b′[ ∈Jn+1.

We can then define f̃n = f̂n |F̃n
: F̃n −→ F̃n+1 and f̃n has a “diagonal

form” with respect to the inclusion σn |Jn : Jn ,→ Jn+1. For a given I ∈
Jn we write σk ◦σk−1 ◦ · · · ◦σn(I ) = [ak ,bk [; the sequences (ak ), (bk ) are
non decreasing and have limits, say a∞, b∞. Then lim−−→k[ak ,bk [ ' k[a∞,b∞[.
We set I∞ = [a∞,b∞[. We let J be the increasing union of the Jn ’s.
Then each element of J corresponds to an interval I∞ as above and we
have proved lim−−→F̃n '⊕

I∞∈J kI∞ . By Lemma 6.20 the maps F̃k −→ lim−−→F̃n

and Fk −→ lim−−→Fn have cones which go to 0 when k −→ ∞. It follows by

Lemma 6.4 that the natural map lim−−→F̃n −→ lim−−→Fn has a cone which is
arbitrarily close to 0, hence it is an isomorphism. �

Corollary B.11. We recall that k is a field. Let F ∈ Dlc (R)∩Dτ≥0(R) be
a limit of constructible objects of Dτ≥0(R). We assume that F is constant
outside [−A, A] for some A. Then there exists an at most countable set of
intervals I and integers dI , I ∈I , such that F '⊕

I∈I kI [dI ].

Proof. If we prove the result for F ⊗k[−A−1,A+1[ we deduce the result for
F by gluing the decomposition with the constant sheaves F ⊗k]−∞,−A[

and F ⊗k]A,∞[. Hence we can assume F has compact support.
As in the case of constructible sheaves the result follows from Propo-

sition B.10 and a decomposition of a complex as sum of its cohomology.
However we didn’t prove that limits of constructible sheaves have no Ext2

so we have to be careful to decompose the cohomology before we take
the limit, as follows.

There exists a sequence of constructible objects Fn ∈ Dτ≥0(R) which
γg -converges to F . Since Ext2(G ,G ′) = 0 for any two constructible G ,G ′ ∈
Mod(R), we have Fn '⊕

i∈ZH i Fn[−i ] (see for example [KS06, Cor. 13.1.20]).
In Dτ≥0(R) we have K a

ϕ(−) = Ta∗(−), where Ta is as usual the trans-
lation by a, and this functor commutes with the cohomology, that is,
H i (Ta∗(G )) ' Ta∗(H i (G )). It follows that γg (H i G , H i G ′) ≤ γg (G ,G ′), for
any G ,G ′ ∈ Dτ≥0(R). Hence H i Fn γg -converges to H i F .

It follows that Fn ' ⊕
i H i Fn[−i ] γg -converges to

⊕
i H i F [−i ]. By

unicity of the limit (Proposition B.7) we have F ' ⊕
i H i F [−i ]. Now the

result follows from Proposition B.10. �

APPENDIX C. COMPARING DIFFERENT INTERLEAVING METRICS ON

D(N ×R).

To prove Theorem 1.2 we have used the distance γτ on sheaves over
N ×R and the fact that its restriction to sheaves associated with Hamil-
tonian maps coincides with the spectral distance (see Proposition 6.13).
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We can also consider the distance γg on sheaves, where g is some Rie-
mannian metric on N . For the sake of completeness we describe the dis-
tance γg from the point of view of spectral distance and we prove that
the distances γτ and γg induce equivalent topologies (when restricted to
sheaves associated with Hamiltonian maps).

In the following we let H : T ∗N −→R be a function which coincides with
(q, p) 7→ ||p||g outside a compact neighbourhood of 0N and ϕ = ϕH de-
notes its Hamiltonian flow. We will use spectral invariants and sheaves
for ϕs but in §4 and §5 we only defined them for compactly supported
isotopies. However we can extend them to a positive Hamiltonian H as
follows. Let Hr be a truncation of H to the disc bundle of T ∗N of radius
r , so that Hr is an increasing sequence of Hamiltonians converging to
H . Then the homogeneous lift of s 7→ ϕ−s

Hr
◦ϕs

Hr+1
to T ∗(N ×R) \ 0N×R

is a non negative Hamiltonian isotopy. Hence we have a natural map
Kid −→ Kϕ−s

Hr
◦Kϕs

Hr+1
, or equivalently, Kϕs

Hr
−→ Kϕs

Hr+1
. We define Kϕs

as the homotopy colimit of this inductive system (say r runs over the in-
tegers). In the same way c+(ϕ−s

r ψ) is a decreasing sequence, and we say
that c+(ϕ−sψ) = 0 if limr c+(ϕ−s

r ψ) = 0. We shall prove that the sequence
is in fact stationary, so this means c+(ϕ−s

r ψ) = 0 for r large enough.
Now Lemma 5.7 extends as follows: there are morphisms Kψ −→Kϕs −→

Kϕ2s◦ψ if and only if c−(ϕsψ) = 0 and c−(ϕsψ−1) = 0. Using Corollary 6.10
we obtain

Lemma C.1. If c−(ϕsψ) = 0 and c−(ϕsψ−1) = 0, the composition of the
map of the map Kψ −→ Kϕs and Kϕs −→ Kϕ2s◦ψ coincides with the
canonical map Kψ −→Kϕ2sψ.

Now we may define the distance γg on Ham(T ∗N ) as follows

Definition C.2. We set

cg
−(ψ) =− inf

{
s ≥ 0 | c−(ϕsψ) = 0

}
and

cg
+(ψ) =−cg

−(ψ−1) = inf
{

s ≥ 0 | c+(ϕ−sψ) = 0
}

Finally we set

γg (ψ) = cg
+(ψ)− cg

−(ψ)

Proposition C.3. We have

(1) The function γg defines a metric by γg (ψ1,ψ2) = γg (ψ1ψ
−1
2 ).

(2) The topologies defined by γg and γ coincide.

Proof. (1) Apply section 3 of [PS21] to the Kernels Kϕs (or the symplectic
flow ϕs).
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(2) We shall first prove that c+(ψ) ≤CW cg
+(ψ) and γ(ψ) ≤CW γg (ψ) for all

ψ such that supp(ψ) ⊂ K . We consider c+(ϕ−sψ) and remember that ϕs

is generated by a positive homogeneous Hamiltonian H . By a classical
argument (see e.g. [Vit92], lemma 4.7 p. 699) the map s 7→ c+(ϕ−sψ) is
piecewise C 1 and where it is C 1 we have

d

d s
c+(ϕ−sψ)|s=s0 =−Ks(z)

where Ks is the Hamiltonian associated to the map ϕ−sψ and z is some
fixed point of ϕ−sψ having non-negative action. Indeed, if Ss is a Gener-
ating function Quadratic at infinity for ϕ−sψ we know that c+(ϕ−sψ) is a
critical value of Ss and is non-negative. It thus corresponds to fixed points
of ϕ−sψ with non-negative action and its derivative is d

d s Ss(ξz) where ξz

corresponds to z, one of the fixed points such that Ss(ξz) = c+(ϕ−sψ).
In our case, if z is outside the support of ψ, the fixed point is a fixed

point ofϕ−s and these have action 0 since H is 1-homogeneous (as on an
orbit pq̇ − H(q, p) = p ∂H

∂p − H(q, p) = 0). So we only need to estimate H
in the support of ψ and we set W to be a neighbourhood of this support.
Then if CW = sup{H(x, p) | (x, p) ∈W } we have

d

d s
c+(ϕ−sψ)|s=s0 ≥−CW

so that

c+(ϕ−sψ)− c+(ψ) ≥−CW s

and if c+(ϕ−sψ) = 0 we have

CW s ≥ c+(ψ)

hence

c+(ψ) ≤CW cg (ψ)

Applying the same to ψ−1, we get

γ(ψ) ≤CW γg (ψ)

Note that we also proved that γ(ϕ−s
r ψ) is stationary for r such that B(0,r )

contains the support of ψ.
Conversely, let us write ϕs = ξs

r ◦ηs
r where ξs

r (resp. ηs
r ) is the flow of

fr (H) (resp. (1− fr )(H)) where fr is a function given by

(1) fr (t ) = t for t ≥ 2r
(2) fr = 3r

2 for t ≤ r
(3) fr is non-decreasing

Note that the flows ξs
r ,ηs

r are autonomous, commute, and fr (H) is bounded
from below by 3r

2 and ηs
r is supported in a ball of radius K · r .
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Then

c+(ϕ−sψ) = c+(ξ−sη−s
r ψ) ≤ c+(η−s

r ψ)− 3r

2
s

as long as c+(ϕ−sψ) > 0 so we have

3r

2
cg
+(ψ) ≤ c+(η−s

r ψ) ≤πK 2 · r 2 + c+(ψ)

As a result if c+(ψ j ) converges to zero, let r j =
√

c+(ψ j ) . Then

cg
+(ψ j ) ≤ 2

3

(
πK · r j +

c+(ψ j )

r j

)
≤ 2

3
(πK +1)

√
c+(ψ j )

and we deduce that lim j cg
+(ψ j ) = 0. �

fr

3r
2

t
|
r

FIGURE 6. The function fr

Remark C.4. (1) We do not know if the metrics γ and γg are equiva-
lent, only that they define the same topology.

(2) Here is an analogy for the difference between γ and γg . Consider
the following norm on C 0

b(X ,R) : we first define

max
f

(g ) = inf
{

s ≥ 0 | max(g − s f ) ≤ 0
}

and

min
f

(g )−max
f

(−g ) = inf
{

s ≥ 0 | min(g + s f ) ≥ 0
}
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Then we set ‖g‖ f = max f (g )−min f (g ). Provided

0 < inf
x∈X

f (x) ≤ sup
x∈X

f (x) <+∞

it is obvious that ‖•‖ f and ‖•‖ are equivalent.

APPENDIX D. LOCAL FLOER COHOMOLOGY

Our goal is to prove the following statement, which was used in Sub-
section 5.2.

Let ϕ be a Hamiltonian map supported in a Darboux chart, V . Since
Γ(ϕ) coincides with the diagonal, Γ(Id) outside W = V ×V , we can con-
sider two types of Floer cohomology :

(1) F H∗(ϕ,W ) obtained by using an almost complex structure mak-
ing ∂W pseudoconvex and building the boundary operator by
considering only the Floer trajectories contained in W

(2) The full Floer cohomology F H∗(ϕ) = F H∗(Γ(ϕ,∆))

Note that we may also restrict the action to some interval [a,b].

Proposition D.1. The above two Floer cohomologies coincide. The same
holds when restricting the action to [a,b].

This is a special case of the following. Let Lt be an exact Lagrangian
isotopy supported in a pseudoconvex domain W (i.e. Lt is constant out-
side W ). We can consider F H∗

[a,b](L1,L0;W ) and F H∗
[a,b](L1,L0).

Proposition D.2. We have F H∗
[a,b](L1,L0;W ) = F H∗

[a,b](L1,L0).

Proof. We may assume that W is contained in a Weinstein neighbour-
hood of L0. We shall then use the structure of the cotangent bundle to
write in these coordinates s · (q, p) = (q, sp) and s ·L1 is the image of L1

by the action of s. We have that F H∗
[sa,sb](s ·L1,L0;W ) does not depend

on s, since the intersection points s · L1 ∩ L0 are constant, their action
is multiplied by s. We choose an almost complex structure making ∂W
pseudoconvex and such that L0 ∩∂W is a Legendrian, say Λ0, and for all
x ∈Λ0 we have JTxΛ0 ⊂ Tx∂W .

Then the holomorphic strips cannot exit from W by pseudoconvex-
ity, since an interior point of such a curve cannot be tangent to ∂W
and if the boundary of the strip in L j was tangent to ∂W then the holo-
morphic curve would be tangent to ∂W from inside, which is again im-
possible by pseudoconvexity. As a result the coboundary map defin-
ing F H∗

[sa,sb](s ·L1,L0;W ) is also constant. Of course the same holds for
F H∗

[a,b](L1,L0), as in that case we do not even have to worry about the
location of the holomorphic strips. Now for s small enough all holomor-
phic strips must have area less than any given ε; but there is a positive
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ε0 such that no holomorphic strip of area less than ε0 can exit from ∂W
(by a monotonicity argument). As a result for s small enough we have
F H∗

[sa,sb](s ·L1,L0;W ) = F H∗
[sa,sb](s ·L1,L0) and this implies the Proposi-

tion. �
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