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5 Université Paris-Saclay, CNRS, Laboratoire de mathématiques d’Orsay, 91405,
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Abstract

We prove that for any element L in the completion of the space of smooth com-
pact exact Lagrangian submanifolds of a cotangent bundle equipped with the spectral
distance, the γ-support of L coincides with the reduced micro-support of its sheaf
quantization. As an application, we give a characterization of the Vichery subdiffer-
ential in terms of γ-support.

1 Introduction

Let M be a C∞ closed manifold. The space L(T ∗M) of smooth compact exact Lagrangian
submanifolds of T ∗M carries a distance function γ, called the spectral distance. This was
introduced by Viterbo [Vit92] in the class of Lagrangians that are Hamiltonian isotopic
to the zero section, and later extended1to L(T ∗M). The metric space (L(T ∗M), γ) is
not complete (nor Polish [Vit22, Appendix A]), and we are interested in this note in

∗
tasano@se.kanazawa-u.ac.jp, tomoh.asano@gmail.com

†
Stephane.Guillermou@univ-nantes.fr. Also supported by ANR COSY (ANR-21-CE40-0002)

‡vincent.humiliere@imj-prg.fr. Also supported by ANR COSY (ANR-21-CE40-0002) and ANR
CoSyDy (ANR-CE40-0014)

§ike@mist.i.u-tokyo.ac.jp, yuichi.ike.1990@gmail.com. Also supported by JSPS KAKENHI
(21K13801 and 22H05107)

¶Claude.Viterbo@universite-paris-saclay.fr. Also supported by ANR COSY (ANR-21-CE40-
0002)

1In the Floer context, the extension follows from the spectral invariants defined in [Oh97], [MVZ12],
and [HLS16] by using the main result of [FSS08]. One can also use later results in the sheaf framework,
by using the spectral invariants defined by Vichery in [Vic12] and the quantization of exact Lagrangians
from [Gui12] (see also [Vit19]).
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its completion. Its study was initiated in [Hum08], pursued further in [Vit22], and has
applications to Hamilton-Jacobi equations [Hum08], Symplectic Homogenization theory
[Vit08], and to conformally symplectic dynamics [Vit22, Appendix C].

The elements of the completion L̂(T ∗M) are by definition certain equivalence classes
of Cauchy sequences with respect to the spectral norm γ. Despite their very abstract
nature, they admit a geometric incarnation first introduced by Humilière in [Hum08] and
in a different version called γ-support much more recently by Viterbo in [Vit22]. For a
smooth Lagrangian L ∈ L(T ∗M) we have γ-supp(L) = L. We refer the reader to § 2.1 for
the precise definition of the γ-support.

To each element of L(T ∗M), it is also possible to associate an object FL in the derived
category of sheaves D(kM×R), which more precisely belongs to the so-called Tamarkin
category. This was proved by Guillermou-Kashiwara-Schapira [GKS12] in the class of La-
grangians that are Hamiltonian isotopic to the zero section and later extended to L(T ∗M)
by Guillermou [Gui12] and Viterbo [Vit19]. The object FL is called sheaf quantization
of L. Conversely, to an object F in the Tamarkin category, one can associate a closed
subset of T ∗M which we call reduced micro-support and denote RS(F ), in such a way2 that
RS(FL) = L. The sheaf quantization can often be used instead of a generating function,
and it is known to exist in more general cases (in particular for any exact embedded La-
grangian). This approach allows, on one hand, to get rid of the “Hamiltonian isotopic to
the zero section” condition required to use generating functions quadratic at infinity, and
allows to prove or reprove a number of results in symplectic topology (see, for example,
[Gui19]).

The correspondence L 7→ FL was recently extended in [GV22] to the completion of
L(T ∗M) (see also [AI22] for a similar result in different settings). We therefore obtain
two notions of support for an element L in L̂(T ∗M), namely the γ-support of L and the
reduced micro-support FL. These two notions coincide on L(T ∗M), and it was asked by
Guillermou and Viterbo ([GV22, Problem 9.10]) whether they coincide in general. Our
main result below answers positively this question.

Theorem 1.1. For any L ∈ L̂(T ∗M), one has

γ-supp(L) = RS(FL). (1.1)

This theorem is proved in Section 3. In Section 4, we provide an application of this
result to a characterization of the Vichery subdifferential defined in [Vic13].
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2 Preliminaries

Let M be a C∞ manifold and π : T ∗M → M its cotangent bundle. We write (x; ξ) for
local coordinates of T ∗M , the Liouville form λ is then defined by λ =

∑
i ξidxi. We denote

the zero section of T ∗M by 0M .

2In fact, the object FL is only defined up to shift, but RS(FL) is well-defined. See § 2.2.
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2.1 The γ-support of elements in L̂(T ∗M)

Let L(T ∗M) denote the set of compact exact Lagrangian branes, i.e. triples (L, fL, G̃),
where L is a compact exact Lagrangian submanifold of T ∗M , fL : L → R is a function
satisfying dfL = λ|L, and G̃ is a grading of L (see [Sei00; Vit22]). By abuse of notation, we

simply write L for an element (L, fL, G̃) of L(T ∗M). The action of R on L(T ∗M) given
by (L, fL, G̃) 7→ (L, fL − c, G̃) is denoted by Tc. For L1, L2 in L(T ∗M) we define as in
[Vit22] the spectral invariants c+(L1, L2) and c−(L1, L2) and finally

c(L1, L2) = |c+(L1, L2)|+ |c−(L1, L2)|.

Set L(T ∗M) to be the set of compact exact Lagrangians, where we do not record the
primitive or grading. For L1, L2 in L(T ∗M), we define

γ(L1, L2) = inf
c∈R

c(L1, TcL2) = c+(L1, L2)− c−(L1, L2).

Denote by L̂(T ∗M) (resp. L̂(T ∗M)) the completion of L(T ∗M) (resp. L(T ∗M)) with
respect to γ (resp. c). We use the same symbol Tc to mean the action on L̂(T ∗M)
extending that on L(T ∗M).

Note that the standard action of the group of compactly supported Hamiltonian diffeo-
morphisms Hamc(T

∗M) on L(T ∗M) given by (φ,L) 7→ φ(L) naturally extends to an action
of Hamc(T

∗M) on the completion L̂(T ∗M). We are now ready to define the γ-support.

Definition 2.1 (Viterbo [Vit22]). Let L ∈ L̂(T ∗M). The γ-support of L, denoted
γ-supp(L), is the complement of the set of all x ∈ T ∗M which admit an open neigh-
borhood U such that φ(L) = L for any Hamiltonian diffeomorphism φ supported in U .

When L is a genuine smooth Lagrangian submanifold, i.e., belongs to L(T ∗M), then
γ-supp(L) = L (see [Vit22, Prop. 6.17.(1)]). In general, γ-supp(L) is a closed subset
of T ∗M which can be very singular. However, not every closed subset can arise as a γ-
support since γ-supports are always coisotropic in a generalized sense (called γ-coisotropic,
see [Vit22, Thm. 7.12]). We will use the following property (see [Vit22, Prop. 6.20.(4)]):
given smooth closed manifolds M1,M2, we have

γ-supp(L1 × L2) ⊂ γ-supp(L1)× γ-supp(L2) (2.1)

for any L1 ∈ L̂(T ∗M1) and L2 ∈ L̂(T ∗M2).
We refer the interested reader to [Vit22] for many further properties of the γ-support.

2.2 Sheaf quantization of elements in L̂(T ∗M)

We fix a field k throughout the paper. Given a C∞-manifold without boundary X, we let
D(kX) denote the unbounded derived category of sheaves of k-vector spaces on X. We
denote by kX the constant sheaf on X with stalk k. For an inclusion i : Z →֒ X of a
locally closed subset, we also write kZ for the zero-extension to X of the constant sheaf on
Z with stalk k. For an object F ∈ D(kX), we denote by SS(F ) ⊂ T ∗X its micro-support,
which is defined in [KS90] (see also Robalo–Schapira [RS18] for the unbounded setting).

We now recall the definition of the Tamarkin category [Tam18] (see also [GS14]). We
denote by (t; τ) the canonical coordinate on T ∗

Rt. The Tamarkin category D(M) is defined
as the quotient category

D(kM×Rt)/D{τ≤0}(kM×Rt),

3



where D{τ≤0}(kM×Rt) := {F ∈ D(kX) | SS(F ) ⊂ {τ ≤ 0}} is the full triangulated subcat-

egory of D(kX). The category D(M) is equivalent to the left orthogonal ⊥D{τ≤0}(kM×Rt).
For an object F ∈ D(M), we define its reduced micro-support RS(F ) ⊂ T ∗M by

RS(F ) := ρt(SS(F ) ∩ {τ > 0}),

where {τ > 0} ⊂ T ∗(M × Rt) and ρt : {τ > 0} → T ∗M, (x, t; ξ, τ) 7→ (x; ξ/τ).
We can also describe the action of Hamc(T

∗M) on D(M) as follows. LetH : T ∗M×I →
R be a compactly supported Hamiltonian function and denote by φH = (φH

s )s∈I : T
∗M ×

I → T ∗M the Hamiltonian isotopy generated by H. Then we can construct an object
KH ∈ D(k(M×R)2×I) whose micro-support coincides with the Lagrangian lift of the graph

of φH outside the zero section (see [GKS12] for the definition). For s ∈ I, we set KH
s :=

KH |(M×R)2×{s} ∈ D(k(M×R)2). We define a functor ΦH
s : D(M) → D(M) (s ∈ I) to be the

composition with KH
s . For any F ∈ D(M), we find that

RS(ΦH
s (F )) = φH

s (RS(F )).

We now explain the sheaf quantization of an element of L(T ∗M). For L ∈ L(T ∗M),
we define

L̃ := {(x, t; ξ, τ) | τ > 0, (x; ξ/τ) ∈ L, t = −fL(x; ξ/τ)}.

Guillermou [Gui12] (see also [Gui19; Vit19]) proved the existence and the uniqueness of
an object FL ∈ D(M) that satisfies SS(FL) \0M×Rt = L̃ and FL|M×(c,∞) ≃ kM×(c,∞) for a
sufficiently large c > 0. The object FL is called the sheaf quantization of L. We write this
correspondence by Q : L(T ∗M) → D(M), L 7→ FL. Note that the grading of L specifies
the grading of FL; in other words, Q sends L[k] to FL[k]. However, we shall mostly forget
about gradings here. We note that φH has a canonical lift to a homogeneous Hamiltonian
isotopy of T ∗(M × R) \ 0M×R (use the extra variable τ to make H homogeneous), or
equivalently, a contact isotopy of J1(M). In this way φH also acts on L(T ∗M). Moreover
φH commutes with Tc and it extends to L̂(T ∗M). By the uniqueness, we find that

Q(φH
1 (L)) ≃ ΦH

1 (Q(L)) (2.2)

for any compact supported Hamiltonian function H.
We can define an interleaving-like distance dD(M) on the Tamarkin category D(M) (see

Asano–Ike [AI20; AI22] and Guillermou–Viterbo [GV22]). Since there are several different
definitions and conventions for distance on D(M), we give the definition here. For c ∈ R,
we let Tc : M ×Rt → M ×Rt, (x, t) 7→ (x, t+ c) be the translation map to the Rt-direction
by c. For an object F ∈ D(M), we simply write TcF for Tc∗F . Note that Q sends TcL
to TcFL. For F ∈ D(M) and c ≥ 0, we have a canonical morphism τc(F ) : F → TcF in
D(M) (see [Tam18; GS14] for details). Using the canonical morphisms, we can define the
(pseudo-)distance on D(M) as follows.

Definition 2.2. Let F,G ∈ D(M) and a, b ≥ 0.

(i) The pair (F,G) is said to be (a, b)-isomorphic if there exist morphisms α : F → TaG
and β : G → TbF in D(M) such that





[
F

α
−→ TaG

Taβ
−−→ Ta+bF

]
= τa+b(F ),

[
G

β
−→ TbF

Tbα−−→ Ta+bG
]
= τa+b(G).
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(ii) We define

dD(M)(F,G) := inf {a+ b | (F,G) is (a, b)-isomorphic} .

In Asano–Ike [AI22] and Guillermou–Viterbo [GV22], it is shown that dD(M) is com-
plete3. In Guillermou–Viterbo [GV22], Remark 6.12, it is also proved that for L1, L2 ∈
L(T ∗M)

dD(M)(FL1 , FL2) ≤ c(L1, L2) ≤ 2dD(M)(FL1 , FL2). (2.3)

Hence, using the completeness and the non-degeneracy of the distance for limits of con-
structible sheaves ([GV22, Prop. B.7], we can extend Q : L(T ∗M) → D(M) as

Q̂ : L̂(T ∗M) → D(M). (2.4)

We still write FL = Q̂(L) for L ∈ L̂(T ∗M). Note that Q̂ also satisfies Q̂(TcL) ≃ TcQ̂(L)
for L ∈ L̂(T ∗M). By a result of Viterbo [Vit22, Prop. 5.5], the canonical map L̂(T ∗M) →
L̂(T ∗M) is surjective, and two elements L1, L2 ∈ L̂(T ∗M) have the same image if and only
if they coincide up to shift. Hence, for L ∈ L̂(T ∗M), the object FL ∈ D(M) is well-defined
up to shift. In particular, RS(FL) is well-defined for L ∈ L̂(T ∗M).

Since the action of ΦH on L(T ∗M) (or also D(M)) commutes with Tc, it is an isometry.
It follows that the extension of this action to L̂(T ∗M) still satisfies (2.2):

Q̂(φH
1 (L)) ≃ ΦH

1 (Q̂(L)). (2.5)

3 Proof of the main result

Our proof of Theorem 1.1 will use the following lemma.

Lemma 3.1. Let F ∈ D(M). We assume that a Hamiltonian function H : T ∗M × I → R

satisfies supp(Hs) ∩ RS(F ) = ∅ for all s ∈ I. Then F ≃ ΦH
1 (F ).

Proof. We recall how to construct KH . We first lift H to a homogeneous Hamiltonian
function H̃ : (T ∗(M×R)\0M×R)×I → R by setting H̃s(x, t; ξ, τ) := τHs(x; ξ/τ) for τ 6= 0
and H̃s = 0 when τ = 0. Then we apply the results for homogeneous Hamiltonian isotopies
in [GKS12]. Composing KH with F yields a sheaf G on M ×R× I whose micro-support,
outside the zero section, is given by

SS(G) =




(x, t, s; ξ, τ, σ)

∣∣∣∣∣∣∣∣

∃(x′, t′; ξ′, τ ′) ∈ SS(F ), τ ′ 6= 0,

(x, t; ξ, τ) = φH̃
s (x′, t′; ξ′, τ ′),

σ = −H̃s(x, t; ξ, τ) = −τHs(x; ξ/τ)





.

Since supp(Hs) ∩RS(F ) = ∅ for all s, we see that the fiber variable σ vanishes on SS(G).
By [KS90, Prop. 5.4.5] this implies that G is the pull-back of a sheaf on M × R. In
particular G|M×R×{0} ≃ G|M×R×{1}, which is the claimed result.

We now turn to the proof of Theorem 1.1.

3Since dD(M) is a pseudo-distance, the limit is not necessarily unique.
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Proof of Theorem 1.1. We first prove the inclusion γ-supp(L) ⊂ RS(FL). Let U be an
open subset such that U ∩RS(FL) = ∅. For any H such that supp(Hs) ⊂ U for any s ∈ I,
by Lemma 3.1 we get dD(M)(FL,Φ

H
1 (FL)) = 0. By (2.3), we deduce

γ(L, φH
1 (L)) ≤ 2dD(M)(FL,Φ

H
1 (FL)) = 0,

hence φH
1 (L) = L. This proves that U ∩ γ-supp(L) = ∅ for any such open subset U . As a

consequence γ-supp(L) ⊂ RS(FL).
We next prove RS(FL) ⊂ γ-supp(L). As a first step, we establish the following.

Lemma 3.2. For L ∈ L̂(T ∗M), one has

∂ RS(FL) ⊂ γ-supp(L), (3.1)

where ∂ means topological boundary, that is, ∂RS(FL) = RS(FL) ∩ Int(RS(FL))
c.

Proof. Let U be an open subset such that U ∩ γ-supp(L) = ∅. Then for any H such
that supp(Hs) ⊂ U for any s ∈ I, we have L = φH

1 (L). As recalled after (2.4) we can

lift L to L′ ∈ L̂(T ∗M) and we have φH
1 (L′) = Tc(L

′) for some c. By (2.5) we deduce
Tc(FL) ≃ ΦH

1 (FL), hence RS(FL) = φH
1 (RS(FL)). Thus, either U ∩ RS(FL) = ∅ or

U ⊂ Int(RS(F )), which shows (3.1).

We can now conclude the proof of Theorem 1.1. To prove RS(FL) ⊂ γ-supp(L), it
is enough to show that RS(FL) × 0S1 ⊂ γ-supp(L) × 0S1 . Now we consider L × 0S1 ∈
L̂(T ∗(M × S

1)). Then we get FL×0
S1

≃ FL ⊠ kS1 , and hence RS(FL×0
S1
) = RS(FL)× 0S1 ,

whose interior is empty. By Lemma 3.2, we get

RS(FL)× 0S1 = RS(FL×0
S1
) ⊂ γ-supp(L× 0S1) ⊂ γ-supp(L)× 0S1 ,

where the last inclusion follows from (2.1).

4 An application to subdifferentials

Let f be a continuous function on M . In [Vic13], Vichery defined a subdifferential of f at
x as follows.

Definition 4.1. ([Vic13, Def. 3.4]) The epigraph of f is the set Zf = {(x, t) ∈ M × R |
f(x) ≤ t}. Then ∂f is defined as −RS(kZf

) and ∂f(x) = −RS(kZf
) ∩ T ∗

xM where
−A = {(x,−p) | (x, p) ∈ A}.

A more elementary definition from the same paper by Vichery is the following ([Vic13,
Def. 4.6]).

Proposition 4.2. The vector ξ ∈ T ∗
xM belongs to ∂f(x) if and only (x, ξ) belongs to the

closure of the set of pairs (y; η) such that setting a = f(y) and fη(z) = f(z) − 〈η, z〉 the
map

lim
U∋x
ε→0

H∗(U ∩ f<a+ε
η ) −→ lim

U∋x
ε→0

H∗(U ∩ f<a
η )

is not an isomorphism.
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We refer to [Vic13, Section 3.4] for the proof and the connection between this “ho-
mological subdifferential” and other subdifferentials, but notice that if f is Lipschitz and
∂Cf(x) is the Clarke differential at x we have ∂f(x) ⊂ ∂Cf(x) and the inclusion can be
strict.

Note that if f is smooth, the graph of df is an exact Lagrangian submanifold denoted
by graph(df). Since γ(graph(df), graph(dg)) = max(f − g) −min(f − g) = osc(f − g), a
C0 Cauchy sequence of functions yields a Cauchy sequence in L(T ∗M), so that graph(df)
is well defined in L̂(T ∗M) for any f ∈ C0(M,R).

Proposition 4.3. For any continuous function f : M → R, we have

γ-supp(graph(df)) = ∂f.

Proof. By applying Theorem 1.1 to F = kZf
, we get RS(kZf

) = γ-supp(graph(df)) pro-

vided we prove that Q̂(graph(df)) = kZf
. This of course holds if f is smooth but needs

to be established in the continuous case.
We first claim that for any continuous functions f, g we have:

dD(M)(kZg ,kZf
) ≤ 2‖f − g‖C0 .

For two open sets Z and Z ′, there is a non-trivial morphism from kZ to kZ′ if and only
if Z ′ ⊂ Z. We set ε := ‖f − g‖C0 , then we have Zf ⊂ Zg+ε and Zg ⊂ Zf+ε. Since
TckZf

≃ kZf+c
for c ∈ R, these inclusions imply that there exist canonical non-trivial

morphisms kZf
→ TεkZg and kZg → TεkZf

, which give an (ε, ε)-isomorphism for the pair
(kZf

,kZg ). This proves the inequality.
Now let fn be a sequence of smooth functions C0 converging to a continuous function

f . Then, by the above inequality kZfn
converges to kZf

with respect to the distance dD(M)

as n goes to +∞. This implies Q̂(graph(df)) = kZf
and concludes our proof.

Remark 4.4. If L ∈ L̂c(T
∗M), then γ-supp(L) ∩ T ∗

xM is non empty for all x ∈ M (see
[Vit22, Def. 6.4 and Prop. 6.10]). For L = graph(df), this means that ∂f(x) is non-empty
for all x. The condition graph(df) ∈ L̂c(T

∗M) should correspond to f being Lipschitz, in
which case it is easy to see that ∂f(x) 6= ∅.
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