
HAL Id: hal-03952756
https://hal.science/hal-03952756

Submitted on 23 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Graph Neural Network Comparison for 2D Nesting
Efficiency Estimation

Corentin Lallier, Guillaume Blin, Bruno Pinaud, Laurent Vézard

To cite this version:
Corentin Lallier, Guillaume Blin, Bruno Pinaud, Laurent Vézard. Graph Neural Network Comparison
for 2D Nesting Efficiency Estimation. Journal of Intelligent Manufacturing, 2023, 35, pp.859-873.
�10.1007/s10845-023-02084-6�. �hal-03952756�

https://hal.science/hal-03952756
https://hal.archives-ouvertes.fr


Springer Nature 2021 LATEX template

Graph Neural Network Comparison for 2D

Nesting Efficiency Estimation

Corentin Lallier1,2*, Guillaume Blin1, Bruno Pinaud1

and Laurent Vézard2

1Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, 351,
cours de la Libération, Talence cedex, 33405, France.

2Lectra, 23 Chem. de Marticot, Cestas, 33610, France.

Contributing authors: corentin.lallier@u-bordeaux.fr;

Abstract

Minimizing the level of material consumption in textile production is a
major concern. The cornerstone of this optimization task is the nest-
ing problem, whose goal is to lay a set of irregular 2D parts out onto
a rectangular surface, called the nesting zone, while respecting a set of
constraints. Knowing the efficiency –ratio of usable to used up material
enables the optimization of several textile production problems. Unfortu-
nately, knowing the efficiency requires the nesting problem to be solved,
which is computationally intensive and has been proven to be NP-hard.
This paper introduces a regression approach to estimate efficiency with-
out solving the nesting problem. Our approach models the 2D nesting
problem as a graph where the nodes are images derived from parts and
the edges hold the constraints. The method then consists of combining
convolutional neural networks for addressing the image-based aspects
and graph neural networks (GNNs) for the constraint aspects. We evalu-
ate several neural message passing approaches on our dataset and obtain
results that are sufficiently accurate for enabling several business use
cases, where our model best solves this task with a mean absolute error
of 1.65. We provide open access to our dataset, whose properties dif-
fer from those of other graph datasets found in the literature. This
dataset is constructed on 100, 000 real customers’ nesting data. Along
the way, we compare the performance and generalization capabilities of
four GNN architectures obtained from the literature on this dataset.

Keywords: Fashion Manufacturing, 2D Bin packing, Machine Learning,
Graph Neural Networks

1



Springer Nature 2021 LATEX template

2 GNN Comparison for Nesting Efficiency Estimation

1 Introduction

Textiles are everywhere! Several industries ranging from fashion (clothes,
shoes, and accessories) to the automotive (seats, interiors, and airbags) and
furniture (sofas and chairs) industries make considerable use of them. In the
context of Industry 4.0 and smart manufacturing (Oztemel and Gursev, 2020;
Wang et al, 2021), the optimization of resources and thus the minimization of
material consumption is a major concern, formerly for economic reasons and
more recently for environmental considerations (Rissanen, 2013; Henninger
et al, 2016). The cornerstone of material optimization is the nesting phase.
Nesting, illustrated in Figure 1, is a problem that is closely related to strip
packing; however, some constraints must be respected in the output layout.
The goal of nesting is to lay a set of irregular 2D parts, derived from computer-
aided design, out onto a surface called the nesting zone by minimizing the
occupied space (and material consumption). The constraints may concern a
part itself (e.g., which rotations are allowed for that part), its relation to other
parts (e.g., two parts must be close to each other), or the target fabric (e.g.,
alignment with the fabric pattern). The nesting efficiency is the percentage of
usable material (the parts placed) compared to the whole amount of used up
material.

Fig. 1 Nesting algorithm: the rectangular nesting area (i.e., the material sheet) is in light
gray. The diagonal gray lines on the area figure the material pattern. Parts are depicted in
green with a solid border, and examples of constraints are in red (arrows and squares). A
nesting algorithm takes as inputs a set of parts, a set of constraints applied on the parts,
and a nesting area where the parts have to be placed. Formally speaking, the output of such
an algorithm is a position and a rotation angle for each part, with respect to the constraints
and the nesting area. A 2D geometric view can be reconstructed using position and rotation
of the parts, then the global efficiency can be computed.

Beyond the nesting phase itself, knowing the efficiency for a set of parts and
constraints may be used to optimize the material consumption level in various



Springer Nature 2021 LATEX template

GNN Comparison for Nesting Efficiency Estimation 3

phases: from design (shape optimization) to planning and even to postproduc-
tion analysis. The planning phase allows us to decide how to group several
items (e.g., 3, 000 shirts in small and medium sizes) into batches to be cut on
several layers of fabrics. This activity, called section planning, is a combina-
torial optimization problem where we have items, e.g., the shirts’ parts, to be
placed on a resource, i.e., the fabric sheets. The problem involves minimizing
the number of sheets used to produce the shirts while simultaneously maximiz-
ing the number of material layers to be cut. It requires knowing the efficiency
levels of the part combinations to find the batch of parts with the best possible
global efficiency. Unfortunately, the class of 2D packing problems is computa-
tionally intensive. Li and Milenkovic (1995) proved it to be NP-hard, even with
rectangles. Hence, nesting times, even with small sets of parts, are between a
few minutes and a few hours depending on the utilized nesting algorithm and
the efficiency expectation. Under these conditions, it is not viable to compute
thousands of nesting operations for such optimization tasks.

A common practice is to rely on efficiency tables empirically built with
representative nesting cases to estimate efficiency. For instance, such tables
might state that performing section planning for basic shirts with a mix of
small and medium sizes leads on average to an efficiency of 75%. In addition
to being time-consuming to build, efficiency tables, while helpful, prevent us
from reaching the most efficient combinations. For all these reasons, a new
estimation method is needed. In this context, we propose a novel approach for
efficiency estimation based on machine learning (ML).

The use of ML in the context of combinatorial optimization problems has
gained some attraction in recent years (Bengio et al, 2021; Popescu et al, 2021),
especially with deep learning. For example, graph neural networks (GNNs) and
reinforcement learning have been used to optimize chip placement (Mirhoseini
et al, 2021), which is close to our use case. Our work follows this path and
proposes an original way to solve the efficiency prediction problem by modeling
nesting data as a graph, where the nodes are image-based representations of the
different parts and the edges are the constraints between parts. The efficiency
is the result of regression on a vector-based embedding of the whole graph.

Contributions

To the best of our knowledge, this is the first work to propose a deep learning
approach for estimating the efficiency of a 2D nesting problem through the
modeling of graphs with complex relations. Our general aim is to improve the
performance achieved in efficiency-dependent optimization tasks (previously
introduced), such as design and section planning tasks. By combining convo-
lutional neural networks for image-based aspects and a GNN for relationship
aspects, our approach aims to estimate nesting efficiency without actually per-
forming nesting. We solve this task with a mean absolute error (MAE) of 1.65,
which permits us to unlock business usages. We also provide our original nest-
ing dataset for the community as a benchmark for this efficiency prediction
task or other regression tasks.



Springer Nature 2021 LATEX template

4 GNN Comparison for Nesting Efficiency Estimation

Fig. 2 Flowchart of the main steps of our work

Figure 2 presents the main steps of our work. The first step concerns dataset
creation, specifically collecting, processing and exploring the raw data for the
given problem, to form a first data model. This is followed by the creation of
several deep learning models, which can be separated into three steps: first,
parts representations, nongraph approaches, and graph approaches. The last
step involves analyzing the results in relation to the planned future work.

In the remainder of this paper, we first provide some background knowl-
edge on ML and GNNs in Section 2. Our dataset is described in Section 3.
Our approach is described in Section 4, and it is experimentally evaluated in
Section 5.

2 Related work

Below, we present the related approaches concerning the use of ML in opti-
mization, an overview of the main GNN models, the use of attention in GNNs,
and finally the recent field of edge information integration involving GNNs.

2.1 ML in combinatorial problems

Nesting is a notorious combinatorial optimization problem (Bennell and
Oliveira, 2009), which is usually solved by applying heuristics or metaheuris-
tic functions such as simulated annealing (Oliveira and Ferreira, 1993; Gomes
and Oliveira, 1999), construction via bottom-left placement (Dowsland et al,
2002) or genetic algorithms (Goodman et al, 1994; Liu and He, 2006) to obtain
a pseudo-optimal solution. The use of ML in combinatorial optimization prob-
lems has attracted attention in recent years (Bengio et al, 2021; Popescu et al,
2021), especially with the development of deep learning. ML fulfills differ-
ent purposes depending on the utilized approach. Notably, it can be used to
directly find the solution of a problem (Soong, 2015). Nonetheless, it can also
be used, for example, to select an appropriate algorithm for finding a solution
or to help a given algorithm converge faster toward a solution by providing a
useful piece of information about the problem or a state.

In the context of placement, reinforcement learning has been used to
improve chip layouts (Mirhoseini et al, 2021) or to solve the regular 2D packing
problem (Soong, 2015). However, we did not find any approaches that specif-
ically solve the nesting problem with ML. The closest work to that in this
paper is the research of Xu et al (2020) who proposed an approach estimating
the length of a marker produced by nesting with ML. This can be consid-
ered equivalent to efficiency prediction; however, their approach takes only the



Springer Nature 2021 LATEX template

GNN Comparison for Nesting Efficiency Estimation 5

lengths of the pieces into account and does not generalize to any garment. In
contrast, our approach is applicable to any garment.

2.2 Graph Neural Networks

A GNN (Scarselli et al, 2009) is a general neural network (NN) architecture
defined according to a graph structure that permits representational learn-
ing on graphs by taking the underlying relationships among data and graph
structural information into account. Since then, GNNs have attracted inter-
est because many problems can be naturally modeled with graphs. The use
of more traditional yet well-known ML approaches on this kind of graph data
implies that destructive transformations are required.

Kipf and Welling (2017) introduced a graph convolutional network (GCN)
as a generalization of a convolutional network architecture on graphs using
node features. Alongside this approach, Gilmer et al (2017) reformulated exist-
ing models using a common message passing framework into the so-called
message passing NN. In this architecture, messages are exchanged along edges
by following a neighborhood aggregation function, thus producing node repre-
sentations. Then, the node representations are passed throughout a graph-level
readout function to produce a vectorized graph representation. These differ-
ent levels of representations permit node-, edge- or graph-level operations,
for instance, node property prediction, missing edge creation, or graph prop-
erty prediction. In our case, we use graph-level representations to predict a
graph-level property: efficiency.

Schlichtkrull et al (2018) designed an extension of a GCN for dealing with
multiple types of relationships in data by using the message passing framework
referred to as relational GCN (R-GCN). More recently, graph isomorphism
network (Xu et al, 2019) was designed as a generalization of the aggregation
function using a multilayer perceptron instead of a single-layer perceptron, and
this approach showed that a sum aggregator over all layers is more expressive
as a readout function, than the other standard (mean, max) operators.

The graph isomorphism network model focuses on standard aggregators
and leaves others, such as the attentional weighted sum, unexplored. In this
paper, we focus on such attentional operators in GNNs (presented next) as
we believe that they preserve the variability of data distributions better than
standard operators.

2.3 Attention-based GNNs

Attention is a mechanism that extends the range of possible ML method
input data by allowing the use of input data with variable sizes to produce
vector-based embeddings. It exploits the similarities between the input data,
called attention scores, which are linearly combined with the current embed-
dings to produce new embeddings. A review of similarity functions is given in
Chaudhari et al (2021).



Springer Nature 2021 LATEX template

6 GNN Comparison for Nesting Efficiency Estimation

In the case of self-attention, the scores are based on the similarities between
all elements of the input data. One can see it as a n×n self-similarity matrix,
where n is the size of the input dataset. In cross-attention, the scores are
computed between two distinct sets of input data (using a n × m similarity
matrix, with m being the size of the second input dataset). Soft (or global)
attention (Luong et al, 2015) is a specific case of cross-attention where one of
the input sets has a size of 1 (i.e., a n× 1 matrix). Attention has gained much
interest in NNs since the development of the transformer model (Vaswani et al,
2017), primarily in the field of natural language processing, then on image
data with vision transformers (Dosovitskiy et al, 2021) and in more general
industrial applications (Mo et al, 2021).

The gated graph sequence NN (Li et al, 2017) first applies attention to
graphs using GNNs. Given a set of graph-level tasks, this method produces
sequences and uses an attention mechanism that weights nodes according to
their relevance to the current task. The application of attention at the node
level was formalized in graph attention network (Veličković et al, 2018) with
self-attention between neighboring vertices. Self-attention between nodes is
also used in self-attention graph pooling (SAGPool) (Lee et al, 2019) to down-
sample or prune graph nodes according to their scores. Graph attention has
also been used in graph transformers networks (GTNs) (Yun et al, 2019;
Dwivedi and Bresson, 2021) to generate node embeddings.

These GNN methods mainly focus on producing node embeddings. As
seen previously, in our approach, edges represent nesting constraints, and edge
attributes encode constraint parameters. We now review how edge information
can be used in GNN models.

2.4 GNNs with edge features

In GNNs, three levels of edge information can be used. The first relies on
edges’ weights by using a weighted adjacency matrix. The second deals with
edge types. Edge features are vectors of integer values that can be represented
by an integer-filled adjacency matrix, as in an R-GCN (Schlichtkrull et al,
2018) or GNN- featurewise linear modulation (FiLM) (Brockschmidt, 2020).
Depending on the types of edges different transformations are applied to the
nodes. The third and the most general level concerns multidimensional edge
features, where each edge is represented by a vector. This can be seen as a
three-dimensional adjacency matrix of shape N × N × E, where N is the
number of nodes, and E is the dimensionality of the edge vector features. In
message passing GNNs (Gilmer et al, 2017), the edge features can be passed
directly in the message function with the source and target node embedding.
This principle is also used in the crystal GCN (Xie and Grossman, 2018). These
models use node and edge features to build node embeddings, as in SchNet
(Schütt et al, 2017). The gated GCN (Bresson and Laurent, 2018) updates
node and edge embeddings using edge gates. Another approach is to use edge
features to build edge embeddings, as in edge GNNs (Gong and Cheng, 2019)



Springer Nature 2021 LATEX template

GNN Comparison for Nesting Efficiency Estimation 7

or GTNs (Dwivedi and Bresson, 2021) by combining self-attention with the
node and edge embeddings.

In this paper, we compare nonattentional message passing architectures
with an attention-based architecture for different edge information integration
methods. In the remaider of the paper, we compare an R-GCN (nonattentional,
one-dimensional integer edge type), the CF-GCN from SchNet (nonatten-
tional, multidimensional edge features, only node embeddings are updated),
a gated GCN (soft attention, multidimensional edge features, the node and
edge embeddings are updated) and a GTN (self attention, multidimensional
edge features, the node and edge embeddings are updated). The next section
presents our general process and architecture, first by modeling the input data
and then utilizing our general GNN approach.

3 Dataset

Several open nesting datasets exist (ESICUP, 2021), but we do not use them,
as they do not fit our needs because 1) they lack variability in the input data
(low part cardinality and no or few constraints), 2) they possess a low number
of nesting instances for building a learning dataset and 3) they contain no
prediction variables (their efficiency is generally unknown). We thus propose a
new dataset to achieve improved performance on the efficiency prediction task.

This dataset is composed of 100, 000 nesting tasks performed by about
a hundred of our fashion customers with the same nesting algorithm. This
dataset is freely available on Zenodo1. The nesting time is constant (5 min-
utes) for all tasks. The use of real customer data permits us to form a large
dataset distribution for evaluating our approach. The 100, 000 nesting tasks
are composed of 7.4 million parts referencing 400, 000 distinct shapes and 7.6
million constraints.

Fig. 3 Dataset distributions. From left to right: number of parts per task, constraints per
task, and number of points, width, and height (in m−4) per shape.

1https://doi.org/10.5281/zenodo.6610253

https://doi.org/10.5281/zenodo.6610253


Springer Nature 2021 LATEX template

8 GNN Comparison for Nesting Efficiency Estimation

The distribution of parts and the constraint count per task are presented in
Figure 3, as along with the numbers of points, width, and height descriptors.
On average (the red dots in Figure 3), there are 74 parts and 75 constraints
per graph, and the parts are also defined by a mean of 184 points, a width of
468 mm and a height of 320 mm.

Fig. 4 Left: efficiencies distribution in the dataset. Right: main variables Pearson correla-
tion matrix (efficiency, duration, sheet width, height and type, constraints and parts count).
Detailed distributions are shown in Figure A1 of the Appendix.

Each nesting point is labeled with its computed efficiency. The efficiency
distribution is shown in Figure 4 (79.2% on average with a standard deviation
of 10.9%). The main descriptors of a nesting task are its duration, nesting zone
(sheet width and sheet length), type and numbers of constraints and parts
composing each task. Figure 4 shows no obvious correlation between any of
these variables and efficiency.

4 Our approach

Let us recall that the input data of a nesting problem are 2D parts’ shapes
along with their associated constraints and a nesting area, as described in
Figure 1. One challenge is the relational nature of these data. Constraints
may relate to 1) two different parts (e.g., the distance between them), 2) a
part property (e.g., rotations), or 3) a part relative to the nesting area (e.g.,
distances to edge borders).

Therefore, we choose to model nesting problems as graphs, where nodes
are parts, edges are constraints and edge features are constraint parameters.
Our task is then a regression problem, where a graph representation must be
associated with an expected efficiency level. We choose to use GNNs to extract
graph representations, and several GNN models are compared in terms of the
efficiency estimation performance achieved on our dataset. In the next section,
we present the data modeling approach and the deep learning-based regression
pipeline. This pipeline is summarized in Figure 5 and developed in the next



Springer Nature 2021 LATEX template

GNN Comparison for Nesting Efficiency Estimation 9

section with a focus on the graph data model and feature engineering; then, the
message passing phase and the readout are provided and finally, the regression
phase is described.

Fig. 5 General process and architecture. From an input graph (1), node features are
built from the latent image space projection of an auto-encoder (2.a), and edge features are
handcrafted (2.b, Section 4.1). They are both merged in (3) as inputs for (4) where node
and edge embeddings are updated. Node embeddings are passed in the readout function
to generate the graph embedding (5, Section 4.2). Eventually, the decoder uses the graph
embedding to regress to a single output value, that is the efficiency level (6, Section 4.3).



Springer Nature 2021 LATEX template

10 GNN Comparison for Nesting Efficiency Estimation

4.1 Graph modeling

To model our input data as a graph, we propose 1) using part images to
compute node-level features, 2) using constraint properties to compute edge-
level features, and 3) using high-level nesting properties, e.g., area dimensions,
as graph-level features.

Node-level features are representations of the parts. They aim to capture
the geometric representation of these parts (Figure 5 2.a). We discretize the
parts’ shapes into binary images with a fixed dimensionality. Then, the images
are fed into a convolutional NN-based encoder to generate embeddings.

Fig. 6 Left: the convolutional NN image encoder. Right: the decoder used in the image
reconstruction task

This LeNet-like (Lecun et al, 1998) convolutional NN architecture is
described in Figure 6 and is validated in a side task consisting of reconstruct-
ing the input images (illustrated in Figure 7). The autoencoder is trained on
an image reconstruction task using a mean squared error (MSE) loss.

Fig. 7 Examples of image reconstruction tasks used to optimize and validate the convolu-
tional NN encoder. Top: input images, center: encoder output, bottom: reconstructed images
used to compute the loss. The encoder is then used as a convolutional NN to generate node
embeddings

The width, height, and area of each of the original parts, lost during the
discretization process, are concatenated to the embeddings to generate node
features.

Edge-level features are representations of constraints. Our objective is
to transform heterogeneous data from their original constraint parameters into
normalized input edge features. The more predominant constraints are rota-
tions, groups, and pattern alignments. Rotation constraints define rotation



Springer Nature 2021 LATEX template

GNN Comparison for Nesting Efficiency Estimation 11

ranges in degrees (e.g., [−45; 45]). There is always one rotation constraint for
each part, which is designed as a self-connection on the node representing that
part. Group constraints define sets of parts that share a property. For instance,
a group can share a position interval on one axis. They are designed by the
Cartesian product of the connections between the parts in the group. Pattern
alignments describe how two parts must be aligned according to their mate-
rial patterns. This constraint and the remaining constraints are represented
by one-to-one relations.

To properly use message passing, multiple edges are merged into one with
a normalized vector of features (see Figure 5 2.b). Moreover, variables with
ranges (e.g., a rotation in [−45; 45]) are binarized in fixed subranges to have
a constant number of attributes. The resulting vector features are sparse, only
the relative attributes of the constraint are filled, and the others are left as 0.

Graph-level features are high-level information regarding the nesting
problem. The width, height, and constraints of the nesting area relative to the
nesting zone (e.g., the exclusion zone) are used as graph features. Exclusion
zones are represented as low-definition binary images inside the graph feature
vector.

In the next section, we present the global GNN architecture we use to
estimate the efficiency based on these extracted features.

4.2 Message passing phase

Our objective is to build high-level representations of the graph to regress from
the graph-level representation to a value (the efficiency). To this end, we use
a message passing framework (Gilmer et al, 2017), consisting of two phases:
message passing and readout (Steps 4 and 5 in Figure 5, respectively). Message
passing runs for T time steps, which are implemented as layers. During this
phase, the hidden states of each node/edge in the graph are updated based on
exchanged messages. We propose and compare several GNN architectures in
Section 5.

The readout phase computes an embedding for the entire graph. As
described in Figure 5, Step 5, the node embeddings are aggregated to obtain
the final graph-level feature vector to be passed to the regression module. The
readout module is implemented by a sum aggregation function, as in Xu et al
(2019). The last part of the process is the regression module presented below.

4.3 The regression module

This module transforms a graph embedding into a single value (the nesting effi-
ciency). This is done with a pyramidal multilayer perceptron with one output
cell, which is defined as

y = W3.σ(W2.σ(W1x)) (1)

where y is the output of the network, i.e., the estimated efficiency. W1, W2

and W3 are learnable projections of size x× 2h, 2h×h and h× 1, respectively



Springer Nature 2021 LATEX template

12 GNN Comparison for Nesting Efficiency Estimation

where x is the size of the input graph embedding. It is built from the output of
the readout function concatenated with the graph-level features (see Figure 5,
Step 6). h is the hidden layer size. σ is an activation function.

In the next section, we present the experimental process followed and the
different tested message passing methods.

5 Experiment

In this section, we first present the implementation of our benchmark, and
then we provide the experimental protocol and our results.

For all experiments, the task input data are obtained at node, edge, and
graph levels. We discretize the input shapes into (64×64) binary images to have
a fixed dimensionality. The convolutional NN output is an image embedding
with 128 dimensions. The nodes are then described by 131 features: 128 for
the shape image, plus the width, height, and area. The input edge data are
represented by 44 features: 13 binary features for the constraint types and,
source and target nodes indices, and 31 for describing the constraints features
(e.g., 4 for rotations, 2 for x/y position offsets, etc.). The input graph data are
described by 87 features: 6 for the main problem variables (duration, nesting
width/height, nesting type, constraints, and part count), 2 for the nesting
folding y min/max, 64 for the binary rasterized exclusion zone, and 15 for
the constraint counts grouped by type. All the features are standardized (the
mean is removed, and the variance is scaled to 1).

As described in Section 4, the global process is based on four main steps.
First, the input shape images are fed into a convolutional NN and then com-
bined with the image width, height, and area to create node features. Second,
according to each model, the nodes and edges are updated by a message passing
phase. Third, the resulting node embeddings are fed into the readout function.
The output of the readout, with 128 dimensions, is concatenated with the 87
graph-level features to form a graph embedding possessing 215 features and
then finally fed to the 3-layer regression module. Each layer of this module has
shapes of (215× 256), (256× 128) and (128× 1). The activation functions are
rectified linear unit (ReLU) functions except for the final activation function
used for the loss calculation, which is a sigmoid function. The final output is
the estimated efficiency.

The models compared in our benchmark can be split into two groups:
baseline models and graph-based models. On the one hand, the baseline models
do not use the graph paradigm. On the other hand, in the GNN group, the
models use constraint parameters as edge information and a graph convolution
function as the message passing phase. The implementations are based on
PyTorch (Paszke et al, 2019) and on the Deep Graph Library (Wang et al,
2020).



Springer Nature 2021 LATEX template

GNN Comparison for Nesting Efficiency Estimation 13

5.1 Baseline models

The baseline models are 1) constant-mean, 2) regression and 3) composed
network models.

The constant-mean model is a simple baseline that returns the average
of the observed efficiency for the training dataset, which is slightly different
from that of the full dataset (78.9 instead of the 79.2 seen in Section 3).
This approach is quite similar to the efficiency table technique presented in
Section 1.

The regression model is a preliminary model that can be seen as a vali-
dation of the module architecture used for the regression step. It was the first
baseline NN approach to predict efficiency using only high-level graph descrip-
tors. This model uses only the regression module described in Section 4.3 and
employs 87 graph features as inputs.

The composed network does not use the graph paradigm; i.e., no edges,
constraints, or message passing are used. This model uses the target architec-
ture but without message passing. It aims to validate the mechanics related
to the creation of image embeddings, readout, and regression. It builds a top-
level representation using only node representations with no knowledge of the
graph connectivity or edge information. The node embeddings are based on
the output of the convolutional NN and are then directly passed through the
readout function to build the nesting embedding.

5.2 Graph-based models

In the GNN group, the models include 1) relational GCN, which uses only the
constraint types as edge information. Other models, 2) a continuous filtering
GCN (CF-GCN), 3) a gated GCN and 4) a GTN, use constraint parameters
as edge features in different ways, as seen in Section 2.

The R-GCN model integrates only the constraint types as edge informa-
tion into message passing. It uses two layers of relational graph convolutions,
as defined in (Schlichtkrull et al, 2018) by:

hl+1
i = σ(W l

0.h
l
i +

∑
r∈R

∑
j∈Nr

i

1

cir
W l

r.h
l
j) ∀i ∈ N, r ∈ R (2)

where R is the set of relation types (15 total), c is a scale factor (set to 1),
σ is the ReLU function, W0 and Wr are learnable projections, and each Wr is
specific to each type of edge, i.e., 15 per layer. For each layer, the sizes of the
matrices are (131× 512) and (512× 128). W0 is used for the self-connections.
In our case, the rotation constraints are represented as self-connections. Our
implementation is based on the R-GCN layer from the Deep Graph Library.

The CF-GCN model integrates multidimensional edge features in the mes-
sage passing phase and updates only the node embeddings. Message passing
is performed with two layers of continuous filter convolutions, from SchNet
(Schütt et al, 2017), which are described as:



Springer Nature 2021 LATEX template

14 GNN Comparison for Nesting Efficiency Estimation

hl+1
i = Ol

o.
∑
j∈Ni

(W l.hlj �Ol
e.eij) ∀i ∈ N, e ∈ E (3)

where l is the layer index. � is the Hadamard product operation (elemen-
twise multiplication). W is a learnable projection with size of (131× 256) for
the first layer and (128 × 256) for the second layer. Oo and Oe are learnable
nonlinear projections defined by

Oe = σ(W2.σ(W1.x)) (4a)

Oo = σ(W3.x) (4b)

where σ is the shifted softplus activation function. W1, W2 and W3 are
layer-specific learnable projections of size e× h, h× h and h× o, respectively,
where e is the size of the edge features (45), h is the number of hidden features
(256), and o is the number of output features (128). We use the implementation
from the Deep Graph Library.

The gated GCN model integrates multidimensional edge features and
updates node and edge embeddings. Message passing is achieved with two
gated GCN layers from Bresson and Laurent (2018). For each layer l, the edge
gate is denoted gij , and the node and edge feature update functions are

glij =
θ(elij)∑

j′∈Ni
θ(elij′) + ε

(5a)

el+1
ij = elij + σ(norm(Al.hli +Bl.hlj + Cl.elij)) (5b)

hl+1
i = hli + σ(norm(U l.hli +

∑
j∈Ni

glij � V l.hlj) (5c)

∀i ∈ N, e ∈ E

where l is the layer index and h and e are the node and edge vectors,
respectively. N and E are the sets of graph vertices and edges. An edge from
j to i is denoted as eij . The embeddings of the edge target and source nodes
are denoted as hi and hj , respectively; θ and σ are the sigmoid and ReLU
functions, respectively; norm represents 1-dimensional batch normalization; ε
is a small constant used for stability. Finally, A, B, C, U and V are layer-
specific learnable linear projections with compatible dimensions in this case
(128×128). � is the Hadamard product. Unlike the CF-GCN, this convolution
function uses residual connections on each layer and propagates updated edge
and node representations. The gate gij uses edge information as a soft attention
mechanism in the node embedding update process. The implementation is
based on Dwivedi et al (2020).

The graph transformer network (GTN) is described in Dwivedi and
Bresson (2021). It builds node and edge embeddings using self-attention



Springer Nature 2021 LATEX template

GNN Comparison for Nesting Efficiency Estimation 15

between the neighbor nodes and edge projections, defined as

w′ij =
Q.hli.K.h

l
j√

d
.W.elij (6a)

wij = softmax(w′ij) (6b)

hl+1
i = Oh.

⊕c

∑
j∈Ni

wij .V.h
l
j

 (6c)

el+1
ij = Oe.

(
⊕cw

′
ij

)
(6d)

∀i ∈ N, e ∈ E, c ∈ H

where l is the layer index and h is a node vector. eij is the edge vector
from j to i. N and E are the sets of graph nodes and edges, respectively. The
embeddings of the edge target and source nodes are denoted by hi and hj ,

respectively.
√
d is a normalization coefficient. For each layer, Q,K, V and W

are learnable linear projections for the query, key, value and edge projections,
respectively. The attention weight between nodes i and j is wij . The concate-
nation operation used in the multihead attention process is denoted by ⊕, and
H is the number of heads. Oh and Oe are the nonlinear learnable projections
of nodes and edges, i.e., multilayer perceptron, defined as

x′ = norm(x+W1.x) (7a)

y = norm(x′ +W3.σ(W2.x
′)) (7b)

where norm is a 1-dimensional batch normalization, σ is a ReLU function
and W1, W2 and W3 are learnable linear projections with sizes of h×h, h×2h
and 2h×h, respectively. h is the number of features in the input vector x (here
128). y is the output vector with a size of 128.

In contrast with the gated GCN, this convolution model uses a transformer-
like architecture. This model integrates edge information in the computation of
the attention weights wij . As in the gated GCN, the node and edge embeddings
are updated and then propagated to the next layer. The node and edge features
are projected in compatible dimensional spaces (64 dimensions here, as needed
by the scaled dot-product similarity) using a single linear layer. Then, these
node and edge embeddings are passed through 2 graph transformer layers of
size (128× 16) with 8 heads to produce a final node embedding size of 128.

5.3 Experimental protocol and results

With this benchmark, our objective is to compare the baseline models (the
constant-mean, simple regression and composed network models) with four
GNN convolution models (the R-GCN, CF-GCN, gated GCN and GTN) to
best fit our task data, given our architecture, by achieving the lowest average



Springer Nature 2021 LATEX template

16 GNN Comparison for Nesting Efficiency Estimation

error. The task dataset is split randomly into training, validation, and test
subsets, with a (70, 15, 15) percent split. The optimizer is adaptative moment
estimation (Adam) with a batch size of 16. The optimization loss is

y = αL1(x) + βL2(x) (8)

where L1 computes the MAE and L2 computes the MSE. The L2 part of the
loss can be seen as a manual regularization to penalize high errors. The α and
β weights are fixed to 1 and 2, respectively. The learning rate is 0.001 with
a weight decay (regularization) of 5.10−4. We use an adaptative learning rate
with a reduction factor of 0.5 and a patience of 5 for a total of 100 epochs.
Our benchmark environment is based on Azure ML using 16 cores, 110 GB of
memory and one Tesla T4 with 16 GB of memory.

On average, for each model (except the baseline models), a training step
takes 35 minutes per epoch. The results are summarized in Table 1, where
the presented values are averaged over 5 runs. The presented metrics are the
MAE, MSE, explained variance and error under 3% (denoted as < 3%). The
MAE is the mean absolute error, which gives a model’s average error. The
explained variance gives a measure of the link between a model output and the
variable to predict. For the efficiency estimation task, we want to avoid models
that produce high errors. The MSE and < 3% are introduced to this end.
The MSE is the mean squared error, where errors are squared and weighted:
high error values are more penalized than lower values. The business-oriented
metric, denoted as < 3%, is defined by the percentage of the error distribution
under the 3% threshold. This is a threshold beyond which the estimation is no
longer meaningful. For all GNN models, we use two convolution layers with
an internal representation possessing the same size and an output of 128 as
the readout function input. This explains the variations in the numbers of
parameters. The dispersion for each metric of the composed network, R-GCN,
CF-GCN, gated GCN and GTN is shown in Figure A2.

Network Edge feat. Param. MAE MSE Ex.Var < 3%

constant mean – – 7.36 119.9 0.0 26.22
simple regression – 56.3 K 5.20 66.51 45.25 47.93
composed net. – 193 K 1.80 12.29 89.76 85.06
R-GCN + 2.3 M 1.65 11.07 90.78 86.98
CF-GCN ++ 463 K 2.09 15.41 87.16 81.73
Gated GCN ++ 696 K 2.06 14.61 87.86 81.61
GTN ++ 661 K 2.05 14.75 87.76 82.04

Table 1 Comparative benchmark. +: edge type only, ++: edge features. Metrics are
Param.: the model parameters, MAE: the mean absolute error, MSE: the mean squared
error, Ex.Var: the explained variance, and < 3%: the percentage of predictions under the
3% error threshold. These values are averaged over 5 runs for each model. See Figure A2
for a view of the distributions.



Springer Nature 2021 LATEX template

GNN Comparison for Nesting Efficiency Estimation 17

The p-values presented next are computed from test sample comparisons,
i.e., 75000 (5 × 15000) predictions per model, involving a Wilcoxon signed-
rank test, which is nonparametric and specific to dependent and nonnormal
distributions with a standard significance rate ρ = 0.05.

First, the constant-mean model with a baseline MAE of 7.36 shows that
the use of complex input data, i.e., parts and constraints, provides a benefit
over other approaches and confirms that the efficiency is highly correlated with
the nesting input data. Recall that this approach is quite similar to the use of
efficiency tables.

Second, the simple regression model, which uses only the graph-level
input data, achieves an MAE of 5.2, showing that the graph-level data carry
meaningful information and validating the regression module of our general
approach (all p-values < 9.9e−4). The composed network is another validation
model that uses graph-level and input shape data (images and image meta-
data) as inputs. Yielding an MAE of 1.8, the input shape information is critical
for the efficiency estimation task (all p-values < 1.56e−10).

Next, the R-GCN, which uses graph-level data, shape data, and partial
edge information (only edge types) as inputs, achieves the best performance
on our benchmark, with an MAE of 1.65 (all p-values < 1.56e−10). It also
achieves interesting performance in terms of other metrics, with over 90% of
the variance explained and almost 87% of its estimations under the 3% error
threshold.

Fig. 8 R-GCN error distribution. Left: the nonuniform histogram of the error distribu-
tion for the best instance of the R-GCN. The focus is on the < 3% threshold on the left of the
histogram. Here most of the error (around 50%) is under 1% threshold and approximately
87% of the error is under the 3% threshold. Right: Details of efficiency against prediction
error for the same instance of the R-GCN. In red, a linear regression shows that the error
is underestimated for high efficiency nestings and overestimated for low efficiency nestings,
with few extremes values.

Finally, the comparison among the five main models (the composed net-
work, R-GCN, CF-GCN, gated GCN and GTN) yields significant differences



Springer Nature 2021 LATEX template

18 GNN Comparison for Nesting Efficiency Estimation

between each pair (all p-values < 1.56e−10). The approaches with complete
edge information (the CF-GCN, gated GCN and GTN) perform surpris-
ingly worse than the partial edge information approach (the R-GCN). This is
particularly true for the GTN since transformer-based architectures are the
state-of-the-art sequence processing approaches (related to graph processing)
in deep learning. These points are discussed further in the next section with a
specific focus on the GTN.

This work shows that our global approach works on the presented dataset
(described in Section 3) with a validation of the part encoding module (by using
an autoencoding task on the image encoding, as presented in Section 4.1), the
regression module (Section 4.3) and finally the message passing module with
the R-GCN. Combining these modules provides sufficiently accurate predic-
tions (in terms of the MAE) to enable efficiency-dependent optimization use
cases.

6 Discussion and limitations

Below, we discuss the important elements with respect to the encoding of the
parts, the dataset, and the edge information significance within the complete
edge information-based models.

Part encoding

To compute the piece shape descriptors, we choose to use embeddings extracted
from a convolutional NN in an autoencoding task. Other solutions exist, such
as boundary-based shape descriptors (Fourier or wavelet descriptors as in Laga
et al (2006)), or region-based descriptors, representing shapes by local moment
encoding (Xu and Li, 2008). Newer approaches are also available, such as
GNNs (using shapes as graphs) or attentional mechanisms (using shapes as
sequences of points). We could develop these approaches instead of the actual
deep shape descriptors.

Dataset

First, the nesting algorithm used to generate our dataset depends on the time
allocated to explore the solution space. For the collected dataset, this param-
eter is set to 5 minutes. This corresponds to the specific use of our customers,
which can be considered a limitation of our dataset. Introducing some vari-
ability to this parameter could permit us to evaluate whether our approach
generalizes to nesting operations with varying times. Additionally, we com-
pute some descriptors on the graph dataset: the density (a measure of vertex
interconnection), the clustering coefficient (the fraction of connected nodes
triplets, i.e., triangles (Saramaki et al, 2007)), the average global efficiency
(i.e., the inverse of the shortest path distances between all pairs of nodes),
and the largest connected component for each graph. These metrics show that
in our graphs, the densities are generally low, they contain no clustering-like
structures (hardly any triangles), and they exhibit a low global efficiency. The



Springer Nature 2021 LATEX template

GNN Comparison for Nesting Efficiency Estimation 19

average global efficiency and connected component size distributions are shown
in Figure 9. Most of the connected components have only very few nodes, thus
confirming that our graphs are very sparse. We interpret this as the patterns
learned by the models relying more on the local node and edge information
than on the graph’s global structural cells (Bodnar et al, 2021).

Fig. 9 Graph dataset metrics distribution. Left: average global efficiency, right: largest
connected component size

Edges information uses

The performance of the edge-based GNNs (the CF-GCN, gated GCN and
GTN) is quite mixed. Our interpretation is that 1) the input handcrafted edge
features do not provide sufficient information for improving the model results
and/or 2) we may not have found the optimal architecture/hyperparameter
combination.

To test the importance of the edge information, we compare the three
edge based models (the CF-GCN, gated GCN and GTN) with the protocol
described in Section 5 by masking the edge information in the following ways:
1) with zero masking: all the edge information except for edge types is set to
zero, 2) with random masking: all the edge information except for edge types
is set to a random value following a normal distribution, and 3) only for the
CF-GCN, the edge information is truncated only to edge types. The edge types
are one-hot encoded features and are considered qualitative information. Other
edge features are constraint parameters, as described in Section 4.1, that are
encoded on numeric features and are considered quantitative information. The
results are shown in Table 2.

The masking of edges slightly improves the performance of the gated GCN
and GTN. For instance, with noise masking, the MAE of the gated GCN drops
from 2.06 to 2.01 with a p-value = 1.19e−44 < 0.05. For the GTN, the MAE
drops from 2.05 to 2.03 with a p-value = 3.06e−46 < 0.05. For the CF-GCN,
edge masking has the opposite effect: we first attempt edge masking with
zero noise, which shows a strong negative impact on performance (with an



Springer Nature 2021 LATEX template

20 GNN Comparison for Nesting Efficiency Estimation

Network masking MAE MSE Ex.Var < 3%

CF-GCN zero 5.21 66.62 45.32 47.64
CF-GCN noise 5.23 67.01 44.86 47.30
CF-GCN truncated 5.21 66.46 45.36 47.49
gated GCN zero 2.03 14.39 88.04 81.99
gated GCN noise 2.01 14.23 88.16 82.33
GTN zero 2.02 14.33 88.04 82.15
GTN noise 2.03 14.54 87.88 81.96

Table 2 Edge masking. zero: edge information are set to zero; noise: edge information
are set to a random value following a normal distribution, and truncated: only the edge
types are kept. These values are averaged over 5 runs for each model.

MAE similar to that of simple regression at approximately 5.20). This seems
to show that the CF-GCN is very sensitive to noise. To extend beyond this
noise sensitivity, we then try to use truncated edge information (only edge
type information is used). The performance are still low, with an MAE of 5.21.
This result seems to show that the CF-GCN also must use quantitative edge
information.

We conclude that

• the CF-GCN is sensitive to noise, probably because of the use of the input
edge features eij at each layer (no edge embeddings are propagated from
layer to layer) and the use of the Hadamard product in Equation 3 which
contrasts with the gated GCN and GTN, which propagate edge embeddings
and use sum or dot products in the edge update functions in Equations 5b
and 6a;

• the CF-GCN needs quantitative edge information, and
• all of these models are not able to extract enough pertinent task information

from the edge information to perform as well as the R-GCN which uses only
edge type information. This can be an effect of our data modeling approach,
where quantitative edge features seem to not be significant. As shown in
Figure 9, the low number of edges for each graph also seems to have a
negative impact on those models.

Regarding these points, we believe that the global performance of our
approach can still be enhanced.

7 Conclusion

In this paper, we introduce a regression approach for estimating the efficiency
of a nesting problem without solving it. This novel approach models a 2D
nesting problem as a graph, where the nodes are images derived from parts
and the edges hold the constraints. Convolutional NNs for image-based aspects
and attentional GNNs for constraint aspects are combined. We propose and
give to the community a large dataset with 100,000 labeled examples based



Springer Nature 2021 LATEX template

GNN Comparison for Nesting Efficiency Estimation 21

on real customer data. These dataset properties differ from those of graph-
oriented datasets found in the literature. We evaluate an implementation of
our approach on customer data and achieve sufficiently accurate results (MAE
of 1.65) to enable several business use cases. In addition, we report on the
performance and generalization capabilities of four GNN architectures on these
nesting graphs. Such graph models can help the textile industry to be more
sustainable by helping optimize material consumption in various phases:

• in the design phase with shape fitness representing material consumption;
• in the planning phase with automation and improved efficiency tables during

the process of section planning;
• and eventually, in the postproduction phase by providing insights into a

global nesting efficiency analysis.

For future work, we have three directions.

• We will use the edge embedding information in the readout function (the
current version is a sum aggregation of node embeddings). By using both
node and edge embeddings, we can achieve improved performance, especially
for models using complete edge information (the CF-GCN, gated GCN and
GTN);

• Specifically on the GTN, the performances are quite low. This seems to be
a problem seen in the literature (Ying et al, 2021), where authors make
the following observation: “it is still an open question whether Transformer
architecture is suitable to model graphs and how to make it work in graph
representation learning”. The authors proposed several structural informa-
tion encoding innovations to improve graph transformer models, such as
centrality encoding as special node features that aim to capture the impor-
tance of nodes in a graph according to their degrees. Spatial encoding aims
to add nodes’ relative spatial relations to the attention similarity function,
and finally, the authors provided a new specific edge encoding method where
the edges on a path between nodes are considered in the correlation process
of the attention method. We propose to use these innovations to see how
they impact the performance of the GTN approach.

• As seen in Section 6, the graphs of our dataset are loosely connected. Another
improvement could be with the use of a master node, as described in Gilmer
et al (2017), which is connected to all other nodes in each graph. This could
enable the generalization of the message passing phase to all nodes, even to
orphan nodes and those with few connections.

Declarations

The authors declare:

• The manuscript is not submitted to more than one journal.
• The submitted work is original and has not been published.
• This work is not split in several parts to increase to quantity of submissions.



Springer Nature 2021 LATEX template

22 GNN Comparison for Nesting Efficiency Estimation

• Results are presented clearly, honestly, without fabrication, falsification or
inappropriate data manipulation.

• No data, text, or theories by others are presented as if they were the author’s
own.

The authors did not receive support from any organization for the submit-
ted work. However, Corentin Lallier is a PhD student (and is employed) at the
Lectra company. Laurent Vézard is also employed by Lectra.

References

Bengio Y, Lodi A, Prouvost A (2021) Machine learning for combinatorial opti-
mization: A methodological tour d’horizon. European Journal of Operational
Research (EJOR) 290(2):405–421. doi:10.1016/j.ejor.2020.07.063

Bennell JA, Oliveira JF (2009) A tutorial in irregular shape packing prob-
lems. Journal of the Operational Research Society 60(sup1):S93–S105.
doi:10.1057/jors.2008.169

Bodnar C, Frasca F, Otter N, et al (2021) Weisfeiler and Lehman go cel-
lular: CW networks. In: Ranzato M, Beygelzimer A, Dauphin Y, et al
(eds) Advances in Neural Information Processing Systems, vol 34. Curran
Associates, Inc., pp 2625–2640, URL https://proceedings.neurips.cc/paper/
2021/file/157792e4abb490f99dbd738483e0d2d4-Paper.pdf

Bresson X, Laurent T (2018) Residual Gated Graph ConvNets.
arXiv:171107553 [cs, stat] doi:10.48550/arXiv.1711.07553

Brockschmidt M (2020) GNN-FiLM: Graph neural networks with feature-wise
linear modulation. In: Proc. of the 37th Int. Conf. on Machine Learn-
ing. JMLR.org, ICML’20, URL https://dl.acm.org/doi/10.5555/3524938.
3525045

Chaudhari S, Mithal V, Polatkan G, et al (2021) An attentive survey of atten-
tion models. ACM Trans Intell Syst Technol 12(5). doi:10.1145/3465055

Dosovitskiy A, Beyer L, Kolesnikov A, et al (2021) An image is worth 16x16
words: Transformers for image recognition at scale. In: Int. Conf. on Learning
Representations, URL https://openreview.net/forum?id=YicbFdNTTy

Dowsland KA, Vaid S, Dowsland WB (2002) An algorithm for polygon
placement using a bottom-left strategy. European Journal of Operational
Research (EJOR) 141(2):371–381. doi:10.1016/S0377-2217(02)00131-5

Dwivedi VP, Bresson X (2021) A Generalization of Transformer Networks to
Graphs. Deep Learning on Graphs: Method and Applications (DLG-AAAI)
doi:10.48550/arXiv.2012.09699

https://doi.org/10.1016/j.ejor.2020.07.063
https://doi.org/10.1057/jors.2008.169
https://proceedings.neurips.cc/paper/2021/file/157792e4abb490f99dbd738483e0d2d4-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/157792e4abb490f99dbd738483e0d2d4-Paper.pdf
https://doi.org/10.48550/arXiv.1711.07553
https://dl.acm.org/doi/10.5555/3524938.3525045
https://dl.acm.org/doi/10.5555/3524938.3525045
https://doi.org/10.1145/3465055
https://openreview.net/forum?id=YicbFdNTTy
https://doi.org/10.1016/S0377-2217(02)00131-5
https://doi.org/10.48550/arXiv.2012.09699


Springer Nature 2021 LATEX template

GNN Comparison for Nesting Efficiency Estimation 23

Dwivedi VP, Joshi CK, Laurent T, et al (2020) Benchmarking Graph Neural
Networks. arXiv:200300982 [cs, stat] doi:10.48550/arXiv.2003.00982

ESICUP (2021) cutting and packing - datasets. URL https://www.euro-online.
org/websites/esicup/data-sets/#1535972088237-bbcb74e3-b507

Gilmer J, Schoenholz SS, Riley PF, et al (2017) Neural Message Passing for
Quantum Chemistry. Proc of Machine Learning Research (PMLR) URL
https://dl.acm.org/doi/10.5555/3305381.3305512

Gomes AM, Oliveira JF (1999) Nesting irregular shapes with simulated
annealing. Extended Abstracts of MIC1999—III Metaheuristics Int Conf pp
19–22

Gong L, Cheng Q (2019) Exploiting Edge Features in Graph Neu-
ral Networks. Computer Vision and Pattern Recognition Conf (CVPR)
doi:10.1109/CVPR.2019.00943

Goodman E, Tetelbaum A, Kureichik V (1994) A Genetic Algorithm Approach
to Compaction, Bin Packing, and Nesting Problems. Tech. rep., Michian
State University, URL http://garage.cse.msu.edu/papers/GARAGe94-4.
pdf

Henninger CE, Alevizou PJ, Oates CJ (2016) What is sustainable fash-
ion? Journal of Fashion Marketing and Management 20(4):400–416.
doi:10.1108/JFMM-07-2015-0052

Kipf TN, Welling M (2017) Semi-supervised classification with graph convo-
lutional networks. In: Int. Conf. on Learning Representations, URL https:
//openreview.net/forum?id=SJU4ayYgl

Laga H, Takahashi H, Nakajima M (2006) Spherical wavelet descriptors
for content-based 3D model retrieval. Int Conf on Shape Modeling and
Applications (SMI) doi:10.1109/SMI.2006.39

Lecun Y, Bottou L, Bengio Y, et al (1998) Gradient-based learning
applied to document recognition. Proc of the IEEE 86(11):2278–2324.
doi:10.1109/5.726791

Lee J, Lee I, Kang J (2019) Self-Attention Graph Pooling. In: Proc. of the 36th
Int. Conf. on Machine Learning (ICML), PMLR, URL http://proceedings.
mlr.press/v97/lee19c/lee19c.pdf

Li Y, Tarlow D, Brockschmidt M, et al (2017) Gated Graph Sequence
Neural Networks. In: Int. Conf. on Learning Representations (ICLR),
doi:10.48550/arXiv.1511.05493

https://doi.org/10.48550/arXiv.2003.00982
https://www.euro-online.org/websites/esicup/data-sets/#1535972088237-bbcb74e3-b507
https://www.euro-online.org/websites/esicup/data-sets/#1535972088237-bbcb74e3-b507
https://dl.acm.org/doi/10.5555/3305381.3305512
https://doi.org/10.1109/CVPR.2019.00943
http://garage.cse.msu.edu/papers/GARAGe94-4.pdf
http://garage.cse.msu.edu/papers/GARAGe94-4.pdf
https://doi.org/10.1108/JFMM-07-2015-0052
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1109/SMI.2006.39
https://doi.org/10.1109/5.726791
http://proceedings.mlr.press/v97/lee19c/lee19c.pdf
http://proceedings.mlr.press/v97/lee19c/lee19c.pdf
https://doi.org/10.48550/arXiv.1511.05493


Springer Nature 2021 LATEX template

24 GNN Comparison for Nesting Efficiency Estimation

Li Z, Milenkovic V (1995) Compaction and separation algorithms for non-
convex polygons and their applications. European Journal of Operational
Research (EJOR) 84(3):539–561. doi:10.1016/0377-2217(95)00021-H

Liu Hy, He Yj (2006) Algorithm for 2D irregular-shaped nesting problem based
on the NFP algorithm and lowest-gravity-center principle. J Zhejiang Univ
- Sci A 7(4):570–576. doi:10.1631/jzus.2006.A0570

Luong T, Pham H, Manning CD (2015) Effective approaches to attention-
based neural machine translation. In: Proc. of Conf. on Empirical Methods
in Natural Language Processing. Association for Computational Linguistics,
Lisbon, Portugal, pp 1412–1421, doi:10.18653/v1/D15-1166

Mirhoseini A, Goldie A, Yazgan M, et al (2021) A graph placement method-
ology for fast chip design. Nature 594(7862):207–212. doi:10.1038/s41586-
021-03544-w

Mo Y, Wu Q, Li X, et al (2021) Remaining useful life estimation via trans-
former encoder enhanced by a gated convolutional unit. Journal of Intelligent
Manufacturing 32(7):1997–2006. doi:10.1007/s10845-021-01750-x

Oliveira JFC, Ferreira JAS (1993) Algorithms for Nesting Problems. In: Fan-
del G, Trockel W, Vidal RVV (eds) Applied Simulated Annealing, vol 396.
Springer Berlin Heidelberg, Berlin, Heidelberg, p 255–273, doi:10.1007/978-
3-642-46787-5 13

Oztemel E, Gursev S (2020) Literature review of industry 4.0 and
related technologies. Journal of Intelligent Manufacturing 31(1):127–182.
doi:10.1007/s10845-018-1433-8

Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-
performance deep learning library. In: Proc. of the 33rd Int. Conf. on Neural
Information Processing Systems. Curran Associates Inc., Red Hook, NY,
USA, 721, URL https://dl.acm.org/doi/10.5555/3454287.3455008

Popescu A, Polat-Erdeniz S, Felfernig A, et al (2021) An overview of machine
learning techniques in constraint solving. Journal of Intelligent Information
Systems doi:10.1007/s10844-021-00666-5

Rissanen TI (2013) Zero-waste fashion design : a study at the intersection of
cloth, fashion design and pattern cutting. Thesis, University of Technology
Sydney, URL http://hdl.handle.net/10453/23384

Saramaki J, Kivela M, Onnela JP, et al (2007) Generalizations of the clustering
coefficient to weighted complex networks. Physical Review E 75(2):027,105.
doi:10.1103/PhysRevE.75.027105

https://doi.org/10.1016/0377-2217(95)00021-H
https://doi.org/10.1631/jzus.2006.A0570
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.1038/s41586-021-03544-w
https://doi.org/10.1038/s41586-021-03544-w
https://doi.org/10.1007/s10845-021-01750-x
https://doi.org/10.1007/978-3-642-46787-5_13
https://doi.org/10.1007/978-3-642-46787-5_13
https://doi.org/10.1007/s10845-018-1433-8
https://dl.acm.org/doi/10.5555/3454287.3455008
https://doi.org/10.1007/s10844-021-00666-5
http://hdl.handle.net/10453/23384
https://doi.org/10.1103/PhysRevE.75.027105


Springer Nature 2021 LATEX template

GNN Comparison for Nesting Efficiency Estimation 25

Scarselli F, Gori M, Tsoi AC, et al (2009) The Graph Neural
Network Model. IEEE transactions on neural networks 20(1):61–80.
doi:10.1109/TNN.2008.2005605

Schlichtkrull M, Kipf TN, Bloem P, et al (2018) Modeling relational data with
graph convolutional networks. In: European semantic web conf., Springer,
pp 593–607, doi:10.1007/978-3-319-93417-4 38

Schütt KT, Kindermans PJ, Sauceda HE, et al (2017) SchNet: A continuous-
filter convolutional neural network for modeling quantum interactions. In:
Proc. of the 31st Int. Conf. on Neural Information Processing Systems.
Curran Associates Inc., Red Hook, NY, USA, NIPS’17, p 992–1002, URL
https://dl.acm.org/doi/abs/10.5555/3294771.3294866

Soong ZW (2015) Reinforcement learning for the 2D - packing prob-
lem. PhD thesis, The Hong Kong University of Science and Technology,
doi:10.14711/thesis-b1514577

Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all
you need. In: Guyon I, Luxburg UV, Bengio S, et al (eds)
Advances in Neural Information Processing Systems, vol 30. Cur-
ran Associates, Inc., URL https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Veličković P, Cucurull G, Casanova A, et al (2018) Graph Atten-
tion Networks. Int Conf on Learning Representations (ICLR) p 12.
doi:10.17863/CAM.48429

Wang B, Tao F, Fang X, et al (2021) Smart manufacturing and intel-
ligent manufacturing: A comparative review. Engineering 7(6):738–757.
doi:10.1016/j.eng.2020.07.017

Wang M, Zheng D, Ye Z, et al (2020) Deep Graph Library: Towards Efficient
and Scalable Deep Learning on Graphs. Computing Research Repository
(CoRR) URL https://www.dgl.ai/

Xie T, Grossman JC (2018) Crystal Graph Convolutional Neural Networks for
an Accurate and Interpretable Prediction of Material Properties. Physical
Review Letters 120(14):145,301. doi:10.1103/PhysRevLett.120.145301

Xu D, Li H (2008) Geometric moment invariants. Pattern Recognition
41(1):240–249. doi:10.1016/j.patcog.2007.05.001

Xu K, Hu W, Leskovec J, et al (2019) How powerful are graph neural networks?
In: Int. Conf. on Learning Representations, URL https://openreview.net/
forum?id=ryGs6iA5Km

https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1007/978-3-319-93417-4_38
https://dl.acm.org/doi/abs/10.5555/3294771.3294866
https://doi.org/10.14711/thesis-b1514577
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.17863/CAM.48429
https://doi.org/10.1016/j.eng.2020.07.017
https://www.dgl.ai/
https://doi.org/10.1103/PhysRevLett.120.145301
https://doi.org/10.1016/j.patcog.2007.05.001
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km


Springer Nature 2021 LATEX template

26 GNN Comparison for Nesting Efficiency Estimation

Xu Y, Thomassey S, Zeng X (2020) An application of machine learning to
marker prediction in garment industry: Marker length estimation by neural
network for the exponentially increasing magnitude of possible size combina-
tions. In: Proc. of the 3rd Int. Conf. on Applications of Intelligent Systems.
ACM, pp 1–5, doi:10.1145/3378184.3378219

Ying C, Cai T, Luo S, et al (2021) Do transformers really perform badly
for graph representation? In: Beygelzimer A, Dauphin Y, Liang P, et al
(eds) Advances in Neural Information Processing Systems, URL https://
openreview.net/forum?id=OeWooOxFwDa

Yun S, Jeong M, Kim R, et al (2019) Graph transformer net-
works. In: Wallach H, Larochelle H, Beygelzimer A, et al (eds)
Advances in Neural Information Processing Systems, vol 32. Cur-
ran Associates, Inc., URL https://proceedings.neurips.cc/paper/2019/file/
9d63484abb477c97640154d40595a3bb-Paper.pdf

https://doi.org/10.1145/3378184.3378219
https://openreview.net/forum?id=OeWooOxFwDa
https://openreview.net/forum?id=OeWooOxFwDa
https://proceedings.neurips.cc/paper/2019/file/9d63484abb477c97640154d40595a3bb-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/9d63484abb477c97640154d40595a3bb-Paper.pdf


Springer Nature 2021 LATEX template

GNN Comparison for Nesting Efficiency Estimation 27

Appendix A Supplementary Materials

Fig. A1 Pair plot between the main variables

Fig. A2 Distribution of the benchmark results for the composed network, R-GCN, CF-
GCN, gated GCN and GTN for the < 3% error threshold, the explained variance, the MAE
and the MSE (the further to the left the better for all plots).


	Introduction
	Related work
	ML in combinatorial problems
	Graph Neural Networks
	Attention-based GNNs
	GNNs with edge features

	Dataset
	Our approach
	Graph modeling
	Message passing phase
	The regression module

	Experiment
	Baseline models
	Graph-based models
	Experimental protocol and results

	Discussion and limitations
	Conclusion
	Supplementary Materials

