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Large Deviations for Ablowitz-Ladik lattice, and the Schur flow

We consider the Generalized Gibbs ensemble of the Ablowitz-Ladik lattice, and the Schur flow. We derive large deviations principles for the distribution of the empirical measures of the equilibrium measures for these ensembles. As a consequence, we deduce their almost sure convergence. Moreover, we are able to characterize their limit in terms of the equilibrium measure of the Circular, and the Jacobi beta ensemble respectively.

Introduction

The defocusing Ablowitz-Ladik (AL) lattice is the system of ODEs i 9 α j " ´pα j`1 `αj´1 ´2α j q `|α j | 2 pα j´1 `αj`1 q , (1.1) eq:AL that describe the evolution of the complex functions α j ptq, j P Z and t P R, here 9 α j " dα j dt . We assume N -periodic boundary conditions α j`N " α j , for all j P Z. For simplicity, we consider the case N even, and, when not mentioned, the limits as N Ñ 8 is taken along N even. This system was introduced by Ablowitz and Ladik [START_REF] Ablowitz | Nonlinear differential-difference equations[END_REF][START_REF]Nonlinear differential-difference equations and Fourier analysis[END_REF] as a spatial discretization of the defocusing Nonlinear Schrödinger Equation (NLS)

iB t ψpx, tq " ´1 2 B 2
x ψpx, tq `|ψpx, tq| 2 ψpx, tq.

The NLS is a well-known integrable model [35], and the Ablowitz-Ladik lattice is one of the several discretizations that preserve integrability [START_REF] Quispel | Linear integral equations and nonlinear difference-difference equations[END_REF].

It is straightforward to verify that the two quantities

K p0q :" N ź j"1 `1 ´|α j | 2 ˘, K p1q :" ´N ÿ j"1
α j α j`1 , eq:K0_K1 are constants of motion for the AL lattice. Since K p0q is conserved along the flow, it implies that if |α j p0q| ă 1 for all j " 1, . . . , N , then |α j ptq| ă 1 for all times. Thus, we can consider D N as our phase space, where D " tz P C | |z| ă 1u.

On this phase space we consider the symplectic form ω [START_REF] Ercolani | A bi-Hamiltonian structure for the integrable, discrete non-linear Schrödinger system[END_REF][START_REF] Gekhtman | Multi-hamiltonian structurefor the finite defocusing ablowitz-ladik equation[END_REF] ω " i

N ÿ j"1 1 ρ 2 j dα j ^dα j , ρ j " b 1 ´|α j | 2 .
eq:symplecti

1 INTRODUCTION 2 
The corresponding Poisson bracket is defined for functions f, g P C 8 pD N q as tf, gu " i

N ÿ j"1 ρ 2 j ˆBf Bα j Bg Bα j ´Bf Bα j Bg Bα j ˙.
(1.2) eq:poisson_b

Using this Poisson bracket, it is possible to rewrite the equations of motion (1.1) of the AL lattice in Hamiltonian form as 9 α j " tα j , H AL u, H AL pαq " ´2 lnpK p0q q `Kp1q `Kp1q , eq:hamiltoni here α " pα 1 , . . . , α N q.

Conserved quantities. As we already mentioned, the AL lattice is an integrable model: this was proved by Ablowitz and Ladik [START_REF] Ablowitz | Coherent pulse propagation, a dispersive, irreversible phenomenon[END_REF][START_REF] Ablowitz | Nonlinear differential-difference equations[END_REF]. Specifically, they were able to obtain a Lax pair for the Ablowitz-Ladik lattice by discretizing the 2 ˆ2 Zakharov-Shabat Lax pair of the cubic nonlinear Schrödinger equation. Nenciu and Simon in [START_REF] Nenciu | Lax pairs for the Ablowitz-Ladik system via orthogonal polynomials on the unit circle[END_REF][START_REF] Simon | Orthogonal Polynomials on the Unit Circle[END_REF] constructed a new Lax pair for the Ablowitz-Ladik lattice, exploiting the connection of this system to the orthogonal polynomials on the unit circle. This link is the analogue of the well-known link between the Toda lattice and orthogonal polynomials on the real line (see e.g. [START_REF] Deift | Orthogonal polynomials and random matrices: a Riemann-Hilbert approach[END_REF]). This connection was also generalized to the non-commutative case [START_REF] Cafasso | Matrix biorthogonal polynomials on the unit circle and non-abelian Ablowitz-Ladik hierarchy[END_REF].

Following [START_REF] Nenciu | Lax pairs for the Ablowitz-Ladik system via orthogonal polynomials on the unit circle[END_REF][START_REF] Simon | Orthogonal Polynomials on the Unit Circle[END_REF], we construct the Lax matrix as follows. Consider the 2ˆ2 unitary matrices Ξpα j q " Ξ j " ˆαj ρ j ρ j ´αj ˙, ρ j " b 1 ´|α j | 2 , j " 1, . . . , N , matrix_Xi and the N ˆN matrices

M " ¨´α N ρ N Ξ 2 Ξ 4 . . . Ξ N ´2 ρ N α N ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' , L " ¨Ξ1 Ξ 3 . . . Ξ N ´1‹ ‹ ‹ '
.

(1.3) eq:cM_cL Now let us define the Lax matrix E " LM , (1.4) eq:Lax_matri which has the following structure E " ¨˚˚˚.

. . . . .

˚˚˚˚‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ '
.

The matrix E is a periodic CMV matrix (after Cantero, Moral and Velazquez [START_REF] Cantero | Minimal representations of unitary operators and orthogonal polynomials on the unit circle[END_REF]). It is straightforward to verify that the equations of motions (1.1) are equivalent to the following Lax equation for the matrix E: 9 E " i " E, E ``pE `q: ‰ , (1.5) eq:Lax_pair where : stands for hermitian conjugate, and

E j,k " $ ' & ' %
1 2 E j,j j " k E j,k k " j `1 mod N or k " j `2 mod N 0 otherwise.

rem:unitary Remark 1.1. We notice that since all the Ξ j are unitary, then also E is unitary, this implies that all the eigenvalues λ j lie on the unit circle, and they can be written in terms of their argument, namely for all j " 1, . . . , N there exists a θ j P T :" r´π, πq such that λ j " e iθ j .

In view of this identification, and in order to simplify the notations, for any function f pzq : BD Ñ R, we write f pθq in place of f pe iθ q when it is convenient. Further, we will write indifferently ş T f pθqdµpθq or ş BD f pzqdµpzq for any probability measure µ having support on the circle.

Remark 1.2. We notice that pE `q: `pE : q `" E : and rE, E : s " 0 since E is unitary. Therefore, the Lax pair (1.5) can be rewritten in the equivalent form 9 E " i " E, E `´pE : q `‰ .

eq:Lax_pair1

The formulation (1.5) implies that the quantities K p q " Tr ´E ¯, " 1, . . . , N ´1, eq:constant_ are constants of motion for the defocusing AL system (1.1).

As in [START_REF] Mazzuca | Generalized gibbs ensemble of the ablowitz-ladik lattice, circular β-ensemble and double confluent heun equation[END_REF][START_REF] Spohn | Hydrodynamic equations for the ablowitz-ladik discretization of the nonlinear schroedinger equation[END_REF], we introduce the Generalized Gibbs ensemble for the Ablowitz-Ladik lattice, namely the following probability measure on the phase space D N dP V,β AL,N pα 1 , . . . , α N q " 1 Z AL N pV, βq N ź j"1 p1 ´|α j | 2 q β´1 1 tα j PDu expp´TrpV pEqqqd 2 α, (1.6) GGE AL

where V pe iθ q : T Ñ R is a continuous function, 1 A is the indicator function of the set A, and Z AL N pV, βq is the partition function of the system

Z AL N pV, βq " ż D N N ź j"1 p1 ´|α j | 2 q β´1 expp´TrpV pEqqqd 2 α.
Furthermore, we consider the empirical measure µ N pEq of the eigenvalues e iθ 1 , . . . , e iθ N of the matrix E (1.4), namely

µ N pEq " 1 N N ÿ j"1
δ e iθ j pEq , here δ x is the delta function centred at x, furthermore, we notice that we can just consider the arguments θ 1 , . . . , θ N of the eigenvalues since the matrix E is unitary, see Remark 1.1.

Our main result is a large deviations principle (LDP) with good rate function for the sequence pµ N pEqq under the law P V,β AL,N (1.6). Namely, denoting by PpTq the set of probability measures on the Torus T endowed with the topology of weak convergence, there exists a function J V β : PpTq Ñ r0, `8s such that: We refer to [START_REF] Dembo | Large deviations techniques and applications[END_REF] for a general introduction to large deviations.

strong ldp Remark 1.3. We notice that, by compactness of PpTq, it is sufficient to prove a weak large deviations principle, see [9, Section 1.2], which is equivalent to a full large deviations principle, except that the large deviation upper bound (point 3) holds only for compact subsets of PpTq.

From this large deviations principle we are able to deduce that µ N pEq converges almost surely as N goes to infinity.

THM:MAIN_1 Theorem 1.4. Let β ą 0. For any continuous function V : T Ñ R the following holds. a. the sequence µ N pEq under the law P V,β AL,N satisfies a large deviations principle at speed N with a good rate function J V β , b. J V β achieves its minimum at a unique probability measure ν V β , c. µ N pEq converges almost surely and in L 1 pTq towards ν V β .

Moreover, following [START_REF] Guionnet | Large deviations for gibbs ensembles of the classical toda chain[END_REF][START_REF] Mazzuca | Generalized gibbs ensemble of the ablowitz-ladik lattice, circular β-ensemble and double confluent heun equation[END_REF][START_REF] Spohn | Hydrodynamic equations for the ablowitz-ladik discretization of the nonlinear schroedinger equation[END_REF], we are able to characterize the measure ν V β in terms of the equilibrium measure of the Circular beta ensemble at high temperature [START_REF] Hardy | CLT for circular beta-ensembles at high temperature[END_REF][START_REF] Killip | Matrix models for circular ensembles[END_REF]. More precisely, consider the functional µ Þ Ñ f V β pµq given, for any µ P PpTq absolutely continuous with respect to Lebesgue measure and with density dµ dθ , by

f V β pµq " ´β ż TˆT log ´|e iθ ´eiϕ | ¯µpdθqµpdϕq`β logp2q`ż T V pθqµpdθq`ż T log ˆdµ dθ pθq ˙µpdθq`logp2πq .
It is shown in [START_REF] Hardy | CLT for circular beta-ensembles at high temperature[END_REF], that the previous functional reaches its minimum for a unique absolutely continuous probability measure µ V β . Moreover in [START_REF] Mazzuca | Generalized gibbs ensemble of the ablowitz-ladik lattice, circular β-ensemble and double confluent heun equation[END_REF] it is proved that this measure is almost surely differentiable with respect to β. Exploiting this result, and Theorem 1.4 we are able to show that AL_RELATION Theorem 1.5. For any continuous V, f :

T Ñ R ż T f pθqdν V β pθq " B β ˆβ ż T f pθqdµ V β pθq ˙.
Thus, we obtain a unique characterization of the measure ν V β . In [START_REF] Mazzuca | Generalized gibbs ensemble of the ablowitz-ladik lattice, circular β-ensemble and double confluent heun equation[END_REF][START_REF] Spohn | Hydrodynamic equations for the ablowitz-ladik discretization of the nonlinear schroedinger equation[END_REF], the authors considered the GGE (1.6) with polynomial potential, and they were able to prove Theorem (1.5) for this particular class of potentials using a transfer operator technique. In this sense, we generalize their result, extending it to the class of continuous potentials.

In the last part of the manuscript, we consider another integrable model related to the Ablowitz-Ladik lattice, namely the so-called Schur flow [START_REF] Golinskii | Schur flows and orthogonal polynomials on the unit circle[END_REF]. Also for this system, the Lax matrix is E (1.4). Following the same construction as in the Ablowitz-Ladik lattice case, we define a GGE for this model. We are able to show analogous results to Theorem 1.4 and Theorem 1.5 for the Schur flow. The main difference is that in place of the Circular beta ensemble, we have the Jacobi one.

To give a wider overview of the relevant literature, we mention that, H. Spohn in [START_REF] Spohn | Hydrodynamic equations for the ablowitz-ladik discretization of the nonlinear schroedinger equation[END_REF], applying the theory of generalized hydrodynamics [START_REF] Doyon | Lecture Notes On Generalised Hydrodynamics[END_REF], argues that the correlation functions of the Ablowitz-Ladik lattice with respect to the GGE (1.6) show a ballistic behaviour. As we already mentioned, in [START_REF] Mazzuca | Generalized gibbs ensemble of the ablowitz-ladik lattice, circular β-ensemble and double confluent heun equation[END_REF] the authors rigorously proved Theorem 1.5 for polynomial potential V pzq. Moreover, they computed explicitly the density of states in the case V pzq " ηpz `zq, which corresponds to the classical Gibbs ensemble.

Lastly, it is worth to mention that this link between random matrix and integrable system was first noticed in [START_REF]Generalized Gibbs Ensembles of the Classical Toda Chain[END_REF]. In this paper the author considered the GGE for the Toda lattice, and he was able to study this ensemble, comparing it with the Gaussian beta ensemble [START_REF] Dumitriu | Global spectrum fluctuations for the β-Hermite and β-Laguerre ensembles via matrix models[END_REF]. We refer to [START_REF] Guionnet | Large deviations for gibbs ensembles of the classical toda chain[END_REF][START_REF] Mazzuca | On the mean density of states of some matrices related to the beta ensembles and an application to the toda lattice[END_REF][START_REF] Mazzuca | Generalized gibbs ensemble of the ablowitz-ladik lattice, circular β-ensemble and double confluent heun equation[END_REF][START_REF]Ballistic space-time correlators of the classical toda lattice[END_REF][START_REF]The collision rate ansatz for the classical toda lattice[END_REF][START_REF]Hydrodynamic equations for the toda lattice[END_REF] for subsequent developments.

In particular, our work was inspired by the recent paper [START_REF] Guionnet | Large deviations for gibbs ensembles of the classical toda chain[END_REF]. In this paper, the authors obtained a large deviations principle for the Toda lattice, and obtain an analogous result to Theorem 1.5, where in place of the Circular beta ensemble, they had the Gaussian one.

The structure of the paper is the following. In Section 2, we prove the first point of Theorem 1.4. In Section 3, we collect some known results related to the Circular beta ensemble in the high-temperature regime. Moreover, we reformulate the already known large deviations principle for this ensemble in terms of the AL lattice. In Section 4, we conclude the proof of Theorem 1.4, and we prove Theorem 1.5. Section 5, is dedicated to the Schur flow, where we prove the analogue of Theorem 1.4 and Theorem 1.5 for this integrable model. Finally, we defer to the appendix the most technical results of our manuscript.

2 Existence of a Large deviations principle for the empirical measure of the Ablowitz-Ladik lattice ec:weak_LPD

The aim of this section is to prove the first point of Theorem 1.4, namely to show that, for N Q N ě 2 and even, the sequence of empirical measures µ N pEq " 1 N ř N j"1 δ e iθ j pEq satisfies a large deviations principle. The strategy of proof is the following. First, we show that if E is distributed according to P β AL,N :" P 0,β AL,N defined in (1.6), then the sequence of random probability measures pµ N pEqq N even satisfies a large deviations principle in PpTq, the space of probability measures on T, endowed with the topology of weak convergence. Since according to this toppology PpTq is compact, it suffices to show that the sequence pµ N pEqq N even satisfies a weak large deviations principle, see Remark 1.3. Then, applying Varadhan's Lemma [13, Theorem 1.2.1], we obtain the existence of a large deviations principle for arbitrary continuous V , i.e. the first point of Theorem 1.4.

We also notice that when V " 0 in (1.6) the α i 's are independent and identically distributed (i.i.d ) with distribution Θ 2β`1 , where Θ ν is defined for ν ą 1 as the random variable such that for f : C Ñ R bounded and measurable Erf pXqs "

ν ´1 2π ż D f pzqp1 ´|z| 2 q ν´3 2 d 2 z.
(2.1) def theta erpretation Remark 2.1. We recall that for integer ν ě 2, such measure has the following geometrical interpretation: if u " pu 1 , . . . , u ν`1 q is chosen at random according to the surface measure on the unit sphere S ν in R ν`1 , then u 1 `iu 2 is Θ ν distributed [START_REF] Killip | CMV: the unitary analogue of Jacobi matrices[END_REF].

To show that the sequence pµ N pEqq N even satisfies a weak large deviations principle according to the law P β AL,N , we only need the α i 's to be i.i.d according to some law σ with supppσq Ď D. Thus, we just assume the latter hypothesis, and we prove the result in more generality.

Large Deviations Principle for periodic CMV matrix

Let d be the distance on PpTq defined by dpµ, νq " sup }f } Lip ď1,}f } BVď1

"ˇˇˇˇż f dµ ´ż f dν ˇˇˇ* .

def_distance

Where the Lipschitz and the bounded variation norms are defined on the space of functions f :

T Ñ R as }f } Lip " sup θ 1 ,θ 2 PT θ 1 ‰θ 2 |f `eiθ 1 ˘´f `eiθ 2 ˘| |e iθ 1 ´eiθ 2 | , }f } BV " sup ně1,0"θ 1 ăθ 2 ă...ăθn"2π n´1 ÿ k"1 ˇˇf ´eiθ k`1 ¯´f ´eiθ k ¯ˇˇ.
The distance d is compatible with the weak convergence of probability measures [START_REF] Guionnet | Large deviations for gibbs ensembles of the classical toda chain[END_REF]. We recall that for a N ˆN matrix A, its empirical measure of eigenvalues is defined by

µpAq " 1 N N ÿ j"1 δ λ j pAq ,
where λ j pAq, j " 1, . . . , N , are the eigenvalues of A. The following Lemma, whose proof can be found in Appendix A, gives an upper bound on the distance of the empirical measures of two unitary matrices.

STANCE_INEQ Lemma 2.2. For any A, B unitary matrices of size N ˆN ,

• For f with bounded variation, ˇˇˇż f dµpAq ´ż f dµpBq ˇˇˇď }f } BV rankpA ´Bq N ,

• For f Lipschitz,

ˇˇˇż f dµpAq ´ż f dµpBq ˇˇˇď }f } Lip 1 N N ÿ i,j"1 |pA ´Bq i,j |.
As a consequence, dpµpAq, µpBqq ď min

# rankpA ´Bq N , 1 N N ÿ i,j"1 |pA ´Bq i,j | + .
distance

We are now in position to prove that the sequence µ N pEq with pα i q iě1 i.i.d with law σ, such that supppσq Ď D, satisfies a large deviations principle. The proof of the following Lemma follows the same line as the corresponding one in [START_REF] Guionnet | Large deviations for gibbs ensembles of the classical toda chain[END_REF]. ma weak ldp Lemma 2.3. Let pα i q iě1 be an i.i.d sequence of law σ with supppσq Ď D, and E be the associated matrix defined in (1.4). Then the sequence of empirical measures pµ N pEqq N even satisfies a large deviations principle in PpTq endowed with the topology of weak convergence.

Proof. We use a subadditivity argument to show that for any fixed µ P PpTq the following holds

lim δÑ0 lim inf N even 1 N ln P ˆµN pEq P B µ pδq ˙" lim δÑ0 lim sup N even 1 N ln P ˆµN pEq P B µ pδq ˙, (2.
2) eq weak ldp where B µ pδq :" tν P PpTq | dpµ, νq ă δu. Then, applying [START_REF] Dembo | Large deviations techniques and applications[END_REF]Theorem 4.1.11], along with the fact that in our setting a weak LDP is equivalent to a full LDP, due to the compactness of PpTq, see remark 1.3, we conclude. The first step to prove the result is to approximate the matrix E (whose law we denote by E pN q ) by a diagonal block matrix of independent blocks. To this end, fix q P N even such that q ď N , write the euclidean division of N by q, N " kq `r with 0 ď r ă q. We consider M given by (1.3),

M " ¨´α N ρ N Ξ 2 Ξ 4 . . . Ξ N ´2 ρ N α N ‹ ‹ ‹ ‹ ‹ ‹ ‹ '
, and approximate it the following way. Let Ă M " diagpM 1 , . . . , M k , Rq, where M i is the block diagonal matrix given by

M i " ¨´r α pi´1qq r ρ pi´1qq Ξ pi´1qq`2 Ξ pi´1qq`4 . . . Ξ iq´2 r ρ pi´1qq r α pi´1qq ‹ ‹ ‹ ‹ ‹ ‹ ‹ '
, where pr α pi´1qq q 1ďiďk are i.i.d of law σ, independent of the α i 's, r ρ i " a 1 ´|r α i | 2 , and the remaining block (of size r ˆr) R is defined similarly: R "

¨´r α kq r ρ k Ξ kq`2 Ξ kq`4 . . . Ξ N ´2 r ρ kq`1 r α kq ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' .
Following the same decomposition of N " kq `r we write

L " diagpL 1 , . . . , L k , L k`1 q, with L i of size q for 1 ď i ď k and L k`1 of size r.
Notice that by construction, we have andE k`1 has law E prq . Furthermore, using that rankpABq ď min trankpAq; rankpBqu for A, B two square matrices, and (2.3) we get rankpE ´Ẽq " rankpLpM ´Ă Mqq ď 4pk `1q.

rankpM ´Ă Mq ď 2pk `1q. (2.3) ineq_rank_ti Now, defining r E " L Ă M, r E is a block diagonal matrix diagpE 1 , . . . , E k , E k`1 q.Then, the blocks E i , 1 ď i ď k `1 are independent, each E i , i " i, . . . , k, has law E pqq ,
By the first point of Lemma 2.2 we deduce

dpµ N pEq, µ N p r Eqq ď 4pk `1q N ď 8 q .
Moreover, we can rewrite µ N p r Eq as

µ N p r Eq " q N k ÿ "1 µ q pE q `r N µ r pE k`1 q .
Using the independence of the blocks of r E, we deduce that P ˆµq pE 1 q P B µ pδq ˙kP ˆµr pE k`1 q P B µ pδq ˙" P ˆµq pE 1 q, . . . , µ q pE k q, µ r pE k`1 q P B µ pδq

ď P ˆq N k ÿ l"1 µ q pE l q `r N µ r pE k`1 q P B µ pδq " P ˆµN p Ẽq P B µ pδq ď P ˆµN pEq P B µ ˆδ `8 q ˙˙,
Where we used the convexity of balls in the first inequality. This implies that, setting u N pδq " ´ln pPpµ N P B µ pδqqq , we have u N ˆδ `8 q ˙ď ku q pδq `ur pδq.

We now conclude as in [START_REF] Guionnet | Large deviations for gibbs ensembles of the classical toda chain[END_REF]Lemma 2.3]. Let δ ą 0 and choose q in such a way that 8 q ď δ, so we deduce that

u N p2δq N ď u N ´δ `8 q N ď u q pδq q `ur pδq N ,
since urpδq N Ñ 0 as N Ñ 8, we deduce that lim sup

N Ñ8 u N p2δq N ď u q pδq q .
The previous inequality holds true for all q big enough, so we conclude that lim sup

N Ñ8 u N p2δq N ď lim inf N Ñ8 u N pδq N .
From this last inequality we deduce that

lim δÑ0 lim sup N Ñ8 u N pδq N ď lim δÑ0 lim inf N Ñ8 u N pδq N ,
thus we obtain (2.2), and the conclusion follows applying [START_REF] Dembo | Large deviations techniques and applications[END_REF]Theorem 4.1.11].

Since pPpTq, dq is compact, Lemma 2.3 automatically implies the existence of a strong large deviations principle. Furthermore, the corresponding rate function J ,which depends on the distribution σ of the entries of L and M, can be seen to be convex. We collect these results in the following proposition.

deviations Proposition 2.4. In the same hypothesis and notations as in Lemma 2.3, the sequence of empirical measures pµ N pEqq N even satisfies a large deviations principle with good, convex rate function J : PpTq Ñ r0, `8s, i.e.

• The function J is convex and its level sets J ´1pr0, asq, a ě 0, are compact,

• For all O Ă PpTq open, ´inf O J ď lim inf N even 1 N ln Ppµ N pEq P Oq,
• For all F Ă PpTq closed,

lim sup N even 1 N ln Ppµ N pEq P F q ď ´inf F J.
Proof. We already established all the claims except the fact that the function J is convex and that the level sets J ´1pr0, asq are compact. The latter comes from the fact that these sets are closed, see [START_REF] Dembo | Large deviations techniques and applications[END_REF]Theorem 4.1.11]. To prove the convexity of J, we follow the same argument as [START_REF] Guionnet | Large deviations for gibbs ensembles of the classical toda chain[END_REF]Theorem 2.4].

Let µ 1 , µ 2 P PpTq. Since µ 2N pEq can be approximated by the sum of two independent µ N pEq's up to a mistake smaller than 4 N by the first point of Lemma 2.2, for δ ą 0 the following holds

P pµ N pEq P B µ 1 pδqq P pµ N pEq P B µ 2 pδqq ď P ˆµ2N pEq P B µ 1 `µ2 2 ˆδ `4 N ˙˙,
taking minus the logarithm of both sides, dividing by 2N , taking the limit for N going to infinity and then for δ to zero, we deduce that:

J ˆµ1 `µ2 2 ˙ď 1 2 pJpµ 1 q `Jpµ 2 qq ,
which, together with the lower semi-continuity of J, implies the convexity of J, see [9, Lemma 4.1.21] .

Large deviations principle for the Ablowitz-Ladik lattice

Taking σ " Θ 2β`1 given by equation (2.1), Proposition 2.4 applies to pµ N pEqq N even , where E follows P β AL,N defined in (1.6). Thus, pµ N pEqq N even with law P β AL,N satisfies a large deviations principle, with a good convex rate function, that we denote by J β .

We can now state the existence of a large deviations principle for pµ N pEqq N even under P V,β AL,N for V continuous.

or: LDP AL Corollary 2.5. Let β ą 0, and V : T Ñ R be continuous. Under P V,β AL,N the sequence pµ N pEqq N even fulfils a large deviations principle with good, convex rate function J V β pµq " g V β pµq´inf νPPpTq g V β pνq, where g V β pµq is given for µ P PpTq by

g V β pµq " J β pµq `żT V dµ .
(2.4) eq: rate fu

Proof. Let us write 

dP V,β AL,N " Z AL N p0, βq Z AL N pV, βq e ´N ş T V dµ N dP β AL,N " 1 Z AL,V N e ´N ş T V dµ N dP β AL,N . The function µ Þ Ñ ş T V
f : PpTq Ñ R we have lim N 1 N ln ż D N e N f pµ N qdP V,β AL,N " sup µPPpTq " f pµq ´ˆJ β pµq `ż V dµ ´inf νPPpTq " J β pνq `ż V dν *˙* ,
which ensures by [13, Theorem 1.2.3] that pµ N q satisfies a large deviations principle under P V,β AL,N with the announced rate function. Since the function J V β is an affine perturbation of J β , which is convex, J V β is also convex.

The first point of Theorem 1.4 is proven.

3 Circular β ensemble at high temperature ec Circular

In this section, we consider the Circular β ensemble, and we collect some known results that we exploit in our treatment. The aim of this section is to prove an alternative formulation of the large deviations principle for the Circular beta ensemble in the high-temperature regime, see Theorem 3.11 below. Our formulation allows us to relate the large deviations principle of the Coulomb gas with the one of Ablowitz-Ladik, proved in the previous section.

Large deviations principle for Circular β ensemble

Coulomb gas on the torus T " r´π, πq at temperature r β ´1 are described by

dP V, r β C,N " 1 Z C N pV, r βq ź jď ďN |e iθ j ´eiθ | r β e ř N j"1 V pθ j q dθ , (3.1 
) eq:circular_ here V : T Ñ R is a continuous potential, and θ " pθ 1 , . . . , θ N q. When V " 0, Killip and Nenciu showed that dP 0, r β C,N is the law of the eigenvalues of a CMV matrix [START_REF] Killip | Matrix models for circular ensembles[END_REF], see Theorem 3.4. In this manuscript, we are interested in the so-called high-temperature regime of this ensemble, namely the limit of number of particles N going to infinity with the constraint that r βN Ñ 2β ą 0. This regime was considered by Hardy and Lambert in [START_REF] Hardy | CLT for circular beta-ensembles at high temperature[END_REF], who proved the following large deviations principle for the measure µ N " 1 N ř N j"1 δ e iθ j , where the θ j are distributed according to (3.1).

_LDPCoulomb Theorem 3.1. Let r β " 2β N , β ą 0 and assume V : T Ñ R to be continuous. Define for any µ P PpTq absolutely continuous with respect to the Lebesgue measure the functional

f V β pµq " ´β ż TˆT log ´|e iθ ´eiϕ | ¯µpdθqµpdϕq`β logp2q`ż T V pθqµpdθq`ż
T log ˆdµ dθ pθq ˙µpdθq`logp2πq , then i. the functional f V β pµq is strictly convex and achieves its minimal value at the unique probability measure µ V β absolutely continuous with respect to the Lebesgue measure;

ii. the sequence pµ N q satisfies a large deviations principle in PpTq equipped with the weak topology at speed βN with rate function defined for absolutely continuous µ P PpTq with respect to Lebesgue measure by

I V β pµq " f V β pµq ´f V β pµ V β q, and I V β pµq " `8 otherwise. In particular µ N a.s. Ý ÝÝÝ Ñ N Ñ8 µ V β .
Exploiting this result, in [START_REF] Mazzuca | Generalized gibbs ensemble of the ablowitz-ladik lattice, circular β-ensemble and double confluent heun equation[END_REF] the authors deduced several useful properties of the minimizer µ V β , specifically they proved the following.

prop circ Lemma 3.2 (cf. [START_REF] Mazzuca | Generalized gibbs ensemble of the ablowitz-ladik lattice, circular β-ensemble and double confluent heun equation[END_REF] Lemma 3.5 ). Let β ą 0, consider a continuous potential V : T Ñ R, then the following holds i. The map β Ñ inf ´f V β pµq ¯is Lipschitz;

ii. Let D be the distance on PpTq given by

Dpµ, µ 1 q " ˆ´ż TˆT ln ˇˇˇs in ˆθ ´φ 2 ˙ˇˇˇp µ ´µ1 qpdθqpµ ´µ1 qpdφq ˙1{2 " d ÿ kě1 1 k ˇˇp µ k ´p µ 1 k ˇˇ2 , eq:distance
where p µ k " ş T e ikθ µpdθq. Then for any ε ą 0 there exists a finite constant C ε such that for all β, β 1 ą ε 

Dpµ V β , µ V β 1 q ď C ε ˇˇβ ´β1 ˇˇ. ( 3 
ÿ k‰0 p f k p ν k " ÿ k‰0 k p f k p ν k k .
Then, by Cauchy-Schwartz inequality, we deduce the following inequality

ˇˇˇż T f pθqνpdθq ˇˇˇ2 ď ˇˇˇˇÿ k‰0 k p f k ÿ k‰0 p ν k k ˇˇˇˇď 4||f || 2 1 2
Dpν, 0q norm, the map

β Ñ ş T f dµ V β pθq is Lipschitz for β ą 0.

Relation with the large deviations principle of the Ablowitz-Ladik lattice

In the case V " 0, for any r β ą 0, Killip and Nenciu in [START_REF] Killip | Matrix models for circular ensembles[END_REF] showed that the law P 0, r β C,N (3.1) coincides with the distribution of the eigenvalues of a certain CMV matrix. Specifically they proved the following: Killipenciu Theorem 3.4 (cf. [START_REF] Killip | Matrix models for circular ensembles[END_REF] Theorem 1.2). Consider the block diagonal N ˆN matrices L " diag pΞ 1 , Ξ 3 , Ξ 5 . . . , q and M " diag pΞ 0 , Ξ 2 , Ξ 4 , . . .q , eq:LME

where the block Ξ j , j " 1, . . . , N ´1, takes the form

Ξ j " ˆαj ρ j ρ j ´αj ˙, ρ j " b 1 ´|α j | 2 ,
eq:xi_def while Ξ 0 " p1q and Ξ N " pα N q are 1 ˆ1 matrices. Define the N ˆN sparse matrix

E " LM, (3.4) E
and suppose that the entries α j are independent complex random variables with α j " Θ r βpN ´jq`1

for 1 ď j ď N ´1 and α N is uniformly distributed on the unit circle. Then the eigenvalues of E are distributed according to the Circular Ensemble (3.1) at temperature β´1 .

To simplify the notation, we will denote by P To achive our goal, we need several technical results regarding the distribution Θ ν (2.1), and the CMV matrix E (3.4). First, in the next Lemma, we give a reprensentation of Θ ν in terms of Gaussian, and Chi distributions.

resentation Lemma 3.5. Let ν ą 1. Let X 1 , X 2 , Y ν be independent, X 1 , X 2 standard Gaussian variables and Y ν be χ ν´1 distributed, i.e. with density

χ ν´1 pxq " 2 3´ν 2
Γp ν´1 2 q

x ν´2 e ´x2 {2 1 xą0 , here Γpxq is the classical Gamma function [10, §5] Γpxq "

ż `8 0 t x´1 e ´tdt , (3.5 

) eq gamma

Then, Z :"

X 1 `iX 2 pX 2 1 `X2 2 `Y 2 ν q 1{2 follows the law Θ ν . Remark 3.6. If ν ě 2 is an integer, Y 2
ν has the law of

ř ν´1 i"1 N 2 i
where the N i 's are i.i.d. standard gaussians random variables, thus Z is equal in distribution to

X 1 `iX 2 pX 2 1 `¨¨¨`X 2 ν`1 q 1 2
, which follows the law Θ ν by Remark 2.1.

Proof. We identify C with R 2 and check that for any f : D Ñ R bounded and measurable,

Erf pZqs " ν ´1 2π ż D f pzqp1 ´|z| 2 q ν´3 2 d 2 z,
i.e. that for some constant c,

ż R 2 ˆR˚f ˆx1 px 2 1 `x2 2 `y2 q 1{2 , x 2 px 2 1 `x2 2 `y2 q 1{2 ˙e´x 2 1 `x2 2 2 e ´y2 2 y ν´2 dx 1 dx 2 dy " c ż D f pu, vqp1 ´pu 2 `v2 qq ν´3 2 dudv .
For fixed y ą 0, we perform the diffeomorphic change of variables pu, vq "

1 px 2 1 `x2 2 `y2 q 1{2 px 1 , x 2 q.
Its inverse px 1 , x 2 q " y p1´pu 2 `v2 qq 1{2 pu, vq has Jacobian equal to y 2 p1 ´pu 2 `v2 qq ´2. The integral becomes

ż D f pu, vq p1 ´pu 2 `v2 qq 2 ż R ˚e´y 2 2p1´pu 2 `v2 qq y ν dydudv " c π 2 ż D f pu, vq p1 ´pu 2 `v2 qq 3{2 Er|X u,v | ν sdudv ,
where X u,v denotes a Gaussian variable N p0, 1 ´pu 2 `v2 qq. By [START_REF] Winkelbauer | Moments and absolute moments of the normal distribution[END_REF],

Er|X u,v | ν s " c ν p1 ´pu 2 `v2 qq ν 2
for some constant c ν independent of u, v. Substituting this last equality in the previous integral, we conclude.

To obtain our main result, we need some technical lemmas. Since they are based on standard techniques, we just state them here, and we defer their proofs to the appendix A.

The first one gives an estimate that we use combined with Lemma 2.2.

ate_product Lemma 3.7. Let N " 2k be even and A be a N ˆN matrix. Then,

• ř N i,j"1 |pLAq i,j | ď 2 ř N i,j"1 |A i,j |, • ř N i,j"1 |pAMq i,j | ď 2 ř N i,j"1 |A i,j |,
where M, and L are defined in (1.3).

We now give an explicit coupling between Θ ν (2.1) and Θ ν`h for ν ą 1, h ą 0. Let X 1 , X 2 be N p0, 1q independent variables, and let Y ν´1 " χ ν´1 , Y h " χ h be independent, and independent of X 1 , X 2 (notice that pY 

2 h `Y 2 ν´1 q 1 2 is χ ν`h´1 distributed). Let α ν " X 1 `iX 2 pX 2 1 `X2 2 `Y 2 ν´1 q 1 2 , α ν`h " X 1 `iX 2 pX 2 1 `X2 2 `Y 2 ν´1 `Y 2 h q 1 2 . ( 3 
|α ν ´αν`h | ď Y h pX 2 1 `X2 2 `Y 2 h q 1 2
almost surely ,

|ρ ν ´ρν`h | ď Y h pX 2 1 `X2 2 `Y 2 h q 1 2
almost surely, where X 1 , X 2 " N p0, 1q, Y h " χ h are all independent.

ii. define Z h "

Y h pX 2 1 `X2 2 `Y 2 h q 1 2
, and aphq " ´1 2 lnphq `1, then there exists a constant K independent of h such that sup 0ăhă1 E rexppaphqZ h qs ď K .

(3.7) eq:sup_bound ne coupling Remark 3.9. Let h ă h 1 , and let Z h , Z h 1 be given by

Z h " Y h pX 2 1 `X2 2 `Y 2 h q 1 2 , Z h 1 " Y h 1 pX 2 1 `X2 2 `Y 2 h 1 q 1 2
, where Y h " χ h and Y h 1 " χ h 1 are χ variables coupled by

Y h 1 " b Y 2 h `Z2 ,
Z being a χ h 1 ´h variable independent of Y h . Then, because of the monotonicity of the function x Þ Ñ x ? a`x 2 for a ą 0, we have almost surely Z h ď Z h 1 . We are now in position to give an alternate formulation of the large deviations principle for the sequence of measures pµ N pEqq under the law P 

ř i ν iβ{q PBµpδq # 1 q q ÿ i"1 J iβ{q pν iβ{q q + ,
where J η is the rate function of Proposition 2.4 applied to σ " Θ 2η`1 .

Proof. Following the same line as in [19, Lemma 3.3], we proceed by exponential approximation. Let q ě 1 be an integer, since N is even, we can write N " kq `r, with k even, and with 0 ď r ă 2q ´2. Consider the following family of matrices L piq , M piq , i " 1, . . . q defined as

M piq k " ¨´α ik ρ ik Ξ piq 2 Ξ piq 4 . . . Ξ piq k´2 ρ ik α ik ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' , L piq k " ¨Ξpiq 1 Ξ piq 3 . . . Ξ piq k´1 ‹ ‹ ‹ ‹ '
, where Ξ piq are defined as

Ξ piq pα ipk´1q` q " Ξ piq " ˆαipk´1q` ρ ipk´1q` ρ ipk´1q` ´αipk´1q` ˙, ρ ipk´1q` " b 1 ´|α ipk´1q` | 2 , " 1, . . . , k´1 , (3.8 
) eq: local x and pα ipk´1q` q 1ďiďq,1ď ďk is a family of independent random variables such that α ipk´1q` " Θ 2β N ´ik N `1, " 1, . . . k, i " 1, . . . , q.

From these two families of matrices, we can define a third one, namely E piq k " L piq k M piq k , i " 1, . . . , q. We notice that E piq k is distributed according to P β N ´ik N AL,k , and that the E piq k , 1 ď i ď q, are independent.

Our aim is to prove that the empirical measure of the matrix

C q N C q N " ¨Ep1q k E p2q k . . . E pqq k 0 rˆr ‹ ‹ ‹ ‹ ‹ ‹ '
, where 0 rˆr is a null block of size rˆr, is an exponential approximation (see [9, Definition 4.2.14])

of the empirical measure of E " P 1 N ln `P `d `µN pEq, µ N pC q N q ˘˘ą δ ˘" ´8 , eq:real clai

where P denotes the coupling introduced in equation (3.6). In this way, we obtain the claim as an application of [START_REF] Dembo | Large deviations techniques and applications[END_REF]Theorem 4.2.16]. The strategy of proof is the following. First we approximate C q N and E by two block diagonal matrices r C q N , r E q N respectively. Finally, we will prove that both r C q N , and r E q N approximate a third matrix B q N .

Consider another family of matrices p Ă M piq k q 1ďiďq of size k ˆk, defined as

Ă M piq k " diag ´r Ξ piq 0 , Ξ piq 2 , Ξ piq 4 , . . . , r Ξ piq k ¯,
where the matrices Ξ piq are defined in (3.8), while r Ξ piq 0 " p1q and r Ξ piq k " pα ik q are 1 ˆ1 matrices, where the α ik are independent, uniformly distributed on the unit circle for all i " 1, . . . , q, and independent from pα ipk´1q`l q 1ďiďq,1ď ďk´1 . Define the kˆk family of CMV matrices

r E piq k " L piq k Ă M piq k i " 1, . . . , q .
From the family of matrices p r E piq k q 1ďiďq , we define the block diagonal matrix:

r C q N " ¨r E p1q k r E p2q k . . . r E pqq k 0 rˆr ‹ ‹ ‹ ‹ ‹ ‹ ' .
We claim that r C q N is such that rankpC q N ´r C q N q ď 2q .

(3.9) eq:rank_1

Indeed, we take the same α piq k q ď 2, and we deduce (3.9). From (3.9) and Lemma 2.2, we deduce that

dpµ N pC q N q, µ N p r C q N qq ď 2 k ,
and for any δ ą 0 and sufficiently large N , we can take k such that 2 k ď δ 4 . Consider now another two families of matrices pL piq k q 1ďiďq , and pM piq k q 1ďiďq , constructed in the same way as pL piq k q 1ďiďq , and p Ă M piq k q 1ďiďq by means of independent variables r α pi´1qk`j , where each r α pi´1qk`j " Θ 2β N ´pi´1qk´j N is coupled to α pi´1qk`j by equation (3.6), for all j " 0, . . . , k ´1, and i " 1, . . . , q, and where r α ik " α ik for i " 1, . . . , q is uniformly distributed on the unit circle. Define the family of CMV matrices pE piq k q 1ďiďq as

E piq k " L piq k M piq k , i " 1, . . . , q .
Define the block diagonal matrix E q N as:

E q N " ¨Ep1q k E p2q k . . . E pqq k 0 rˆr . ‹ ‹ ‹ ‹ ‹ ‹ '
From the definition of P 2β N C,N and E q N , we conclude that for some E " P 2β N C,N , we have rankpE ´Eq N q ď 2q `r . As before, from the previous inequality we deduce that

dpµ N pEq, µ N p r E q N qq ď 4 k .
Finally, we define the matrix B q N as

B q N " ¨Bp1q k B p2q k . . . B pqq k 0 rˆr , ‹ ‹ ‹ ‹ ‹ ‹ '
where

B piq k " L piq k Ă M piq k . Let δ ą 0, for N large enough such that 4 k ď δ 4 , we have almost surely dpµ N pC q N q, µ N p r C q N qq `dpµ N pEq, µ N pE q N qq ą δ 2 .
As a consequence,

P `dpµ N pC q N q, µ N pEqq ą δ ď P ´dpµ N pC q N q, µ N p r C q N qq `dpµ N p r C q N q, µ N pB q N qq `dpµ N pB q N q, µ N pE q N qq `dpµ N pE q N q, µ N pEqq ą δ ď P ˆdpµ N p r C q N q, µ N pB q N qq `dpµ N pB q N q, µ N pE q N qq ą δ 2 ˙.
Moreover, combining Lemma 2.2 and Lemma 3.7 we deduce that

dpµ N p r C q N q, µ N pB q N qq ď 2 N q ÿ i"1 ÿ 1ď ,jďk |L piq k p , jq ´Lpiq k p , jq| , dpµ N pB q N q, µ N p r E q N qq ď 2 N q ÿ i"1 ÿ 1ď ,jďk |M piq k p , jq ´Ă M piq k p , jq| .
Applying Lemma 3.8 point i., we deduce that

dpµ N p r C q N q, µ N pB q N qq `dpµ N pB q N q, µ N p r E q N qq ď 8 N q ÿ i"1 k´1 ÿ j"0 Z piq k´j N
, where the last sum denotes the sum of independent random variables with law Z k´j N , defined in Lemma 3.8.

Thus, for N large enough such that 4 k ď δ 4 , we deduce that for any non-negative function apq ´1q: P `dpµ N pC q N q, µ N pEqq ą δ ˘ď P

˜q ÿ i"1 k´1 ÿ j"0 Z piq k´j N ą N δ 16 ḑ e ´apq ´1qN δ{16 ˆsup 0ăhă1 E rexppaphqZ h qs ˙qk ,
Where in the last inequality we used Remark 3.9, namely, since k´j N ď 1 q , we have

Erexppapq ´1qZ k´j N s ď Erexppapq ´1qZ 1 q s.
Setting aphq " ´1 2 lnphq `1 and applying Lemma 3.8 point ii., we deduce that there exist constants r K and c ą 0, independent of q, such that 1 N ln `P `dpµ N pC q N q, µ N pEqq ą δ ˘˘ď ´c lnpqqδ `r K , And we obtain the claim.

We can apply the previous Lemma to study the case of continuous potential, indeed as a consequence of Varadhan's Lemma we obtain the main result of this section, namely rnative LDP Theorem 3.11. In the same notation as before. Let β ą 0, and V : T Ñ R continuous. The law of the empirical measures µ N pEq under dP V, 2β N C,N satisfies a large deviations principle at speed N , with a good rate function

I V β pµq " f V β pµq ´inf νPPpTq f V β pνq, where f V β pµq " lim δÑ0 lim inf qÑ8 inf ν β{q ,...,ν β 1 q ř i ν iβ{q PBµpδq # 1 q q ÿ i"1 ˆJiβ{q pν iβ{q q `żT V dν iβ{M ˙+ , (3.10 
) eq: rate fu

4 Proof of the main results

ec main thm

In this section, we conclude the proof of Theorem 1.4 and prove Theorem 1.5. The main tool to prove these theorems is the uniqueness of the minimizer of the rate function for the β ensemble. Define the free energies of the Ablowtiz-Ladik lattice and the Circular beta ensemble at high temperature as

F AL pV, βq " inf νPPpTq g V β pνq , F C pV, βq " inf νPPpTq f V β pνq ,
where g V β , and f V β are given by (2.4) and (3.10). We claim that _conclusion Lemma 4.1. Let β ą 0, and V : T Ñ R continuous, then the following holds: a. the map β Ñ F C pV, βq is continuously differentiable on R ˚. Moreover:

F AL pV, βq " B β pβF C pV, βqq ; b.
for almost all β ą 0 there exists a unique minimizer ν V β of the functional J V β pµq, see Corollary 2.5, given by

ν V β " B β pβµ V β q , i.e for continuous f : T Ñ R, ż T f dν V β " B β ˆβ ż T f dµ V β ˙.
we recall that the measure µ V β is defined as the unique minimizer of the functional I V β in Theorem 3.11. Remark 4.2. Our definition of Free Energy is different from the one used in [START_REF] Mazzuca | Generalized gibbs ensemble of the ablowitz-ladik lattice, circular β-ensemble and double confluent heun equation[END_REF][START_REF] Spohn | Hydrodynamic equations for the ablowitz-ladik discretization of the nonlinear schroedinger equation[END_REF]. Indeed, in virtue of Varadhan's Lemma [13, Theorem 1.2.1], we have

F AL pV, βq " inf νPPpTq g V β pνq " ´lim N 1 N ln E β AL,N " e ´TrV pEq ı , F C pV, βq " inf νPPpTq f V β pνq " ´lim N 1 N ln E β C,N " e ´TrV pEq ı , (4.1 
) eq:equality instead in [START_REF] Mazzuca | Generalized gibbs ensemble of the ablowitz-ladik lattice, circular β-ensemble and double confluent heun equation[END_REF][START_REF] Spohn | Hydrodynamic equations for the ablowitz-ladik discretization of the nonlinear schroedinger equation[END_REF], the authors defined the free energies as

r F AL pV, βq " ´lim N Ñ8 1 N lnpZ AL N pV, βqq , r F C pV, βq " ´lim N Ñ8 1 N lnpZ C N pV, βqq .
We notice that it is possible to recover one expression from the other since

F AL pV, βq " r F AL pV, βq ´r F AL p0, βq , F C pV, βq " r F C pV, βq ´r F C p0, βq .
To prove uniqueness of the minimizer ν V β , we need to consider a continuous family pµ s q 0ăsăβ , where each µ s minimizes J V s , see Corollary 2.5. We address the existence of such a family in the next Lemma, which we prove in the appendix A.

_minimizers Lemma 4.3. Let M V β " pJ V β q ´1pt0uq be the set of minimizers of J V β , defined in Corollary 2.5. Then, β Þ Ñ M V
β is continuous in the sense that for all ε ą 0, there exists δ ą 0 such that for all 0 ď h ď δ, M V β`h Ă pM V β q ε , where for A Ă PpTq we denote A ε " tµ P PpTq | dpµ, Aq ď εu. Proof of Lemma 4.1. First, we notice that for any probability measure µ P PpTq, Theorem 3.11 implies

f V β pµq ě lim inf qÑ8 inf νPPpTq # 1 q q ÿ i"1 ˆJiβ{q pνq `żT V dν ˙+ " ż 1 0 inf νPPpTq g V sβ pνq " ż 1 0 F AL pV, sβqds , (4.2 

) eq:lb_energy

Where we noticed that the Riemann sums indeed converge towards the integral since s Þ Ñ F AL pV, sβq is concave, this can be seen by applying Hölder inequality to equation (4.1).

To prove the first part of the claim, we show that the lower bound is achieved. For s P r0, 1s, let ν sβ be a minimizer of inf νPPpTq g V sβ pνq. From Lemma 4.3, we can choose ν sβ such that the map s Ñ ν sβ is continuous. This implies that µ β " ş 1 0 ν sβ ds is a well-defined probability measure on T. We claim that this measure minimizes f V β (3.10), and so I V β . Indeed, from Theorem 3.11, we deduce that 3), and performing the change of coordinates sβ " t we deduce that:

f V β pµ β q " lim δÑ0 lim inf qÑ8 inf ν β{q ,...,ν β 1 q ř i ν iβ{q PB µ β pδq # 1 q q ÿ i"1 ˆJiβ{q pν iβ{q q `żT V dν iβ{q ˙+ ď lim inf qÑ8 # 1 q q ÿ i"1 ˆJiβ{q pν iβ{q q `żT V dν iβ{q ˙+ " lim inf qÑ8 # 1 q q ÿ i"1 inf νPPpTq ˆJiβ{q pνq `żT V dν ˙+ " ż 1 0 inf νPPpTq g V sβ pνq " ż 1 0 F AL pV, sβqds .
βF C pV, βq " ż β 0 F AL pV, tqdt .
Moreover, from Lemma 3.2 we deduce that the map β Ñ F C pV, βq is Lipschitz in β, and so almost surely differentiable. This implies that for almost all β ą 0

F AL pV, βq " B β pβF C pV, βqq .
Furthermore, we have just shown that I V β pµq " f V β pµq ´inf νPPpTq f V β pνq reaches its minimum at ş 1 0 ν sβ ds. By uniqueness of the minimizer of I V β pµq, Theorem 3.1, we deduce that we have the equality between probability measures µ V β "

ş 1 0 ν sβ ds. Taking f : T Ñ R continuous we get β ż T f dµ V β " ż β 0 ż T f dν s ds.
Note that the function s Þ Ñ ş T f dν s is continuous, therefore by differentiating this equality, we get that ν β is the unique minimizer of J V β , which we denote by ν V β , and satisfies for f continuous

ż T f ν V β " B β ˆβ ż T f µ V β ˙,
proving point b.

Remark 4.4. As a corollary of the previous Lemma we obtain Theorem 1.4.

The Schur Flow sec: Schur

In this section, we consider another integrable model, namely the Schur flow. Our goal is to show that is possible to obtain a similar result to the one that we presented for the Ablowitz-ladik lattice. Namely, we prove the existence of a large deviations principle for the Schur flow, and we relate its density of state to the one of the Jacobi beta ensemble in the high temperature regime.

Generalized Gibbs Ensemble

The Schur flow is the system of ODEs [START_REF] Golinskii | Schur flows and orthogonal polynomials on the unit circle[END_REF] 9 α j " ρ 2 j pα j`1 ´αj´1 q , ρ j " b 1 ´|α j | 2 (5.1) eq:schur and, as before, we consider periodic boundary conditions, namely α j " α j`N for all j P Z.

In [START_REF]Nonlinear differential-difference equations and Fourier analysis[END_REF], it is argued that the continuum limit of (5.1) is the modified Korteweg-de Vries equation:

B t u " B 3
x u ´6u 2 B x u . We notice that, if one chooses an initial data such that α j p0q P R for all j " 1, . . . , N , then α j ptq P R for all times. Moreover, it is straightforeward to verify that K 0 " ś N j"1 `1 ´|α j | 2 ˘is conserved along the Schur flow. This implies that we can choose as phase space for the Schur flow the N -cube I N , where I :" p´1, 1q.

On this phase space, we consider the Poisson braket (1.2), so we can rewrite the Schur flow (5.1) in Hamiltonian form as 9 α j " tα j , H S u, H S " ´i N ÿ j"1 pα j α j`1 ´αj α j`1 q .

It is well known that the Schur flow admits as Lax matrix the same one as the AL [START_REF] Golinskii | Schur flows and orthogonal polynomials on the unit circle[END_REF], namely E (1.4) is the Lax matrix of the Schur flow. This implies that the Ablowitz-Ladik's constants of motion are conserved also along the Schur flow (5.1).

Following the same construction made for the Ablowitz-Ladik lattice, on I N we define the finite volume limit GGE as

dP V,β S,N pα 1 , . . . , α N q " 1 Z S N pV, βq N ź j"1 p1 ´α2 j q β´1 1 tα j PIu expp´TrpV pEqqqdα, (5.2 

) GGE Schur

where Z S N pV, βq is the partition function of the system

Z S N pV, βq " ż I N N ź j"1
p1 ´α2 j q β´1 expp´TrpV pEqqqdα.

Since according to the measure (5.2) the matrix E is real, its eigenvalues come in pairs [START_REF] Simon | Orthogonal Polynomials on the Unit Circle[END_REF], meaning that if e iθ j is an eigenvalue, then its conjugate e ´iθ j is also an eigenvalue. This implies that for a system of size N even, there are just n " N {2 independent eigenvalues. Following the same idea as in [START_REF] Killip | Matrix models for circular ensembles[END_REF], it is more convenient to restrict the argument of the eigenvalues in r0, πq and then consider x j " cospθ j q, j " 1, . . . , n. In these variables, the empirical spectral measure µ n pEq reads:

µ n pEq " 1 n n ÿ j"1
δ x j , x j P I .

(5.3) eq:empirical

As a corollary of Lemma 2.3 and Proposition 2.4, we obtain the existence of a large deviations principle for the sequence pµ n pEqq, namely: Corollary 5.1. Let V : I Ñ R be continuous. Under P V,β S,n the sequence pµ n pEqq fulfils a large deviations principle with good, convex rate function S V β pµq " h V β pµq ´inf νPPpIq h V β pνq, where

h V β pνq " K β pνq `żI V dν ,
where K β pνq is the rate function of µ n under the law P 0,β S,n .

Jacobi beta ensemble in the high temperature regime

The Jacobi beta ensemble refers to the distribution of charges constrained to the segment I, and subjected to an external potential W pxq " ´a lnp1 ´xq ´b lnp1 `xq `V pxq, here a, b ą ´1 and W pxq P C 0 pIq. Specifically the joint distribution of these particles is

dP pV, r βq J,n " 1 Z J N pV, r βq ź iăj |x i ´xj | r β n ź j"1
p1 ´xj q a p1 `xj q b e ´V px j q dx j .

(5.4) eq:JbE

In [START_REF] Killip | Matrix models for circular ensembles[END_REF], Killip and Nenciu were able to show that the distribution (5.4) can be realized as the eigenvalues distribution of a particular CMV matrix, specifically they proved the following p1´α j q a`1´r β{4 p1`p´1q j`1 α j q b`1´r β{4 e TrV pEq dα j , and α 2n " ´1, here Z N pV, βq is the normalization constant. Then all the eigenvalues of E come in pairs, meaning that if e iθ j is an eigenvalue, then also e ´iθ j is one. Moreover, under the change of variables cospθ j q " x j , the x j s are distributed according to (5.4).

Remark 5.3. We notice that the previous proposition is not stated in this way in [START_REF] Killip | Matrix models for circular ensembles[END_REF], but this equivalent formulation is more useful for our purpose.

Also in this case, we are interested in the high temperature regime for this ensemble. Specifically we consider the situation r β " 4β N " 2β n , and a " b " ´1 `r β 4 , in this regime dP

pV, β n q J,n reads dP pV, 2β n q J,n " 1 Z J N ´V, β n ¯ź iăj |x i ´xj | 2β n n ź j"1
p1 ´xj q ´1`β 2n p1 `xj q ´1`β 2n e ´V px j q dx j , (5.5) eq:JbE_ht and dB pV,

β n q n becomes dB pV, β n q n " 1 Z n ´V, β n ¯2n´1 ź j"1 p1 ´α2 j q βp1´j 2n q´1 2n´1 ź j"1
e TrV pEq dα j .

We mention that this particular regime was considered in [START_REF] Forrester | The classical β-ensembles with β proportional to 1{N : from loop equations to Dyson's disordered chain[END_REF][START_REF] Trinh | Beta Jacobi Ensembles and Associated Jacobi Polynomials[END_REF]. In these papers the authors computed the density of states for this ensemble in the case V " 0.

We can apply [16, Corollary 1.3] to (5.5) to obtain a large deviations principle for the empirical measure µ n pEq " 1 n ř n j"1 δ x j . Specifically, we deduce that Proposition 5.4. For any continuous V : I Ñ R. The law of the empirical measures µ n pEq under dP pV, 2β n q J,n satisfies a large deviations principle at speed n in the space PpIq, with a good rate function µ Þ Ñ Q V β pµq given for µ absolutely continuous with respect to Lebesgue measure, and with density dµ dx , by Q V β pµq " q V β pµq ´inf νPPpIq q V β pνq, where q V β pµq " (5.6) eq: functio and Q V β pµq " `8 otherwise. We notice that the arguments in Section 3 and 4 can be applied also in this context with

dP pV, 2β n q J,n in place of dP pV, 2β N q C,N
, and dP V,β S,N in place of dP V,β AL,N . Hence, we deduce the following result Theorem 5.5. Consider the sequence of measures µ n pEq (5.3) under the law dP V,β S,2n (5.2), then

µ n pEq a.s. Ý Ý Ñ ν V β .
Moreover, ν V β is absolutely continuous with respect to the Lebesgue measure, and it reads ν V β " B β pβµ V β q , where µ V β is the unique minimizer of the functional q V β (5.6).

Finally, it is worth to mention that in the case V pxq " 0, it is possible to compute explicitly the densities of states for both the Jacobi beta ensemble at high temperature and for the Schur flow [START_REF] Forrester | The classical β-ensembles with β proportional to 1{N : from loop equations to Dyson's disordered chain[END_REF][START_REF] Mazzuca | On the mean density of states of some matrices related to the beta ensembles and an application to the toda lattice[END_REF].

A Technical Results

app:A

In this appendix we collect the proof of all the technical results that we exploit along the proof of the main theorem. For reader convenience, we report here the statement of Lemmas.

Proof of Lemma 3.7

Lemma A.2. Let N " 2k be even and A be a N ˆN matrix. Then,

• ř i,j |pLAq i,j | ď 2 ř i,j |A i,j |, • ř i,j |pAMq i,j | ď 2 ř i,j |A i,j
|, where M, and L are defined in (1.3).

Proof. We will just prove the first point, since the proof of the second one follows the same lines.

For 0 ď l ď k ´1 and 1 ď j ď N , consider

pLAq 2l`1,j " α 2l`1 A 2l`1,j `ρ2l`1 A 2l`2,j and pLAq 2l`2,j " ρ 2l`1 A 2l`1,j ´α2l`2 A 2l`2,j .
Summing over i, j,

ÿ i,j |pLAq i,j | " k´1 ÿ l"0 N ÿ j"1 |pLAq 2l`1,j | `|pLAq 2l`2,j | ď 2 k´1 ÿ l"0 N ÿ j"1 |A 2l`1,j | `|A 2l`2,j | " 2 ÿ i,j |A i,j |,
where we used that |α i |, ρ i ď 1.

Proof of Lemma 3.8

Lemma A.3. Let α ν and α ν`h defined by equation (3.6). Define ρ ν " a 1 ´|α ν | 2 , and ρ ν`h " a 1 ´|α ν`h | 2 , then the following hold i.

|α ν ´αν`h | ď Y h pX 2 1 `X2 2 `Y 2 h q 1 2
, almost surely ,

|ρ ν ´ρν`h | ď Y h pX 2 1 `X2 2 `Y 2 h q 1 2
, almost surely , where X 1 , X 2 " N p0, 1q, Y h " χ h are all independent.

ii. define Z h "

Y h pX 2 1 `X2 2 `Y 2 h q 1 2
, and aphq " ´1 2 lnphq `1, then there exists a constant K independent of h such that sup 0ăhă1 E rexppaphqZ h qs ď K . (A.2) eq:sup_bound

Proof. First, we focus on claim i.. We recall that α ν , α ν`h are defined by

α ν " X 1 `iX 2 pX 2 1 `X2 2 `Y 2 ν´1 q , α ν`h " X 1 `iX 2 pX 2 1 `X2 2 `Y 2 ν´1 `Y 2 h q .
From the previous equation, we deduce that

|α ν ´αν`h | " |X 1 `iX 2 | pX 2 1 `X2 2 `Y 2 ν´1 q 1 2 ¨1 ´ˆX 2 1 `X2 2 `Y 2 ν´1 X 2 1 `X2 2 `Y 2 ν´1 `Y 2 h ˙1 2 ' " |X 1 `iX 2 | pX 2 1 `X2 2 `Y 2 ν´1 q 1 2 ˜1 ´ˆ1 ´Y 2 h X 2 1 `X2 2 `Y 2 ν´1 `Y 2 h ˙1 2 ḑ ˆX2 1 `X2 2 X 2 1 `X2 2 `Y 2 ν´1 ˙1 2 Y h pX 2 1 `X2 2 `Y 2 ν´1 `Y 2 h q 1 2
, where we used in the previous line that for 0 ď a ď b we have ? b ď ? b ´a `?a (A.3) eq_sqroot and we took a "

Y 2 h X 2 1 `X2 2 `Y 2 ν´1 `Y 2 h , b " 1.
The last term is bounded by the announced bound.

One can proceed analogously for |ρ ν ´ρν`h | obtaining that |ρpα ν`h q ´ρpα ν q| "

a 1 ´|α ν`h | 2 ´a1 ´|α ν | 2 ď a |α ν | 2 ´|α ν`h | 2 " d X 2 1 `X2 2 X 2 1 `X2 2 `Y 2 ν´1 d 1 ´X2 1 `X2 2 `Y 2 ν´1 X 2 1 `X2 2 `Y 2 ν´1 `Y 2 h ď Y h pX 2 1 `X2 2 `Y 2 ν´1 `Y 2 h q 1 2
where we used again equation (A.3) with a " 1 ´|α ν | 2 and b " 1 ´|α ν`h | 2 . Thus, point i. is proved.

To prove point ii., we find explicitly the law of Z h . Thus, we consider a continuous function f : p0, 1q Ñ R, and we compute: Performing the change of coordinates pu, vq "

1 px 2 1 `x2 2
`y2 q 1{2 px 1 , x 2 q, which is the same one that we performed in Lemma 3.5, we obtain that We can now explicitly compute the integral in t. Moreover, we can express the remaining part of the integral in polar coordinates; namely, we apply the change of variables u " ρ cospθq, v " ρ sinpθq, obtaining that: Combining (A.4)-(A.5), with our choice of aphq " ´1 2 lnphq `1, we deduce that there exists a constant K independent of h such that (A.2) holds.

Proof of Lemma 4.3

Lemma A.4. Let M V β " pJ V β q ´1pt0uq be the set of minimizers of J V β . Then, β Þ Ñ M V β is continuous in the sense that for all ε ą 0, there exists δ ą 0 such that for all 0 ď h ď δ, M V β`h Ă pM V β q ε , where for A Ă PpTq we denote A ε " tµ P PpTq | dpµ, Aq ď εu. Proof. Let ε ą 0. We are going to show that for h ą 0 small enough, we have ´inf rpM V β q ε s c J V β`h ă 0, which will ensure that J V β`h ą 0 on " pM V β q ε ı c , thus

" pM V β q ε ı c Ă " pM V β`h q ı c
, and hence the conclusion. By the large deviations principle for pµ N q N even under P V,β AL,N , Corollary 2.5, since

" pM V β q ε ı c is open, we have ´inf rpM V β q ε s c J V β`h ď lim inf N even 1 N ln P V,β`h AL,N ´µN pEq P " pM V β q ε ‰ c " lim inf N even 1 N ln P V,β`h AL,N `dpµ N pEq, M V β q ą ε ď lim sup N even 1 N ln P V,β`h AL,N `dpµ N pEq, M V β q ě ε ˘.
Since for any positive h and α P D N ś N j"1 p1 ´|α j | 2 q h ď 1 ,we deduce that for any A Ď D N we recall that P V,β AL,N is defined in (1.6). Applying the previous inequality in the case A " tdpµ N pEq, M V β q ě εu, we conclude that

´inf rpM V β q ε s c J V β`h ď lim sup N Ñ8
1 N ˆln ˆZAL N pV, βq Z AL N pV, β `hq ˙`ln ´PV,β AL,N pdpµ N pEq, M V β q ě εq ¯˙.

From Corollary 2.5, we deduce that there exists a positive constant c, independent of h, such that lim sup N Ñ8 1 N P V,β AL,N pdpµ N pEq, M V β q ě εqq ď ´inf rpM V β q ε s c J V β ă ´c .

Thus, to conclude we have just to prove that the function gpβq " lim N Ñ8

1 N ln `ZAL N pV, βq ˘is continuous in β. Actually, we prove that this function is convex in β. Let 1{p `1{q " 1, and β 1 , β 2 P R `then Z AL N ˆV,

β 1 p `β2 q ˙" ż D N N ź j"1 p1 ´|α j | 2 q β 1 p `β2 q ´1 expp´TrpV pEqqqd 2 α " ż D N N ź j"1 p1 ´|α j | 2 q β 1 ´1 p `β2 ´1 q exp ˆ´ˆ1 p `1 q ˙TrpV pEqq ˙d2 α ď Z AL N pV, β 1 q 1 p Z AL N pV, β 2 q 1 q ,
where in the last inequality we used Hölder inequality. This implies that g ˆβ1 p `β2 q ˙ď 1 p gpβ 1 q `1 q gpβ 2 q , thus gpβq is convex, and so continuous, for β ą 0. We can now choose h is such a way that ˇˇˇˇl im sup

N Ñ8 1 N ln ˆZAL N pV, βq Z AL N pV, β `hq ˙ˇˇˇˇă c ,
so we obtain that inf rpM V β q ε s c J V β`h ą 0 .

  the law P 0, r β C,N . We give an alternative formulation of the large deviations principle for the empirical measure under the law P 2β N C,N based on the Killip-Nenciu matrix representation. This alternative formulation allows us to relate the rate function of the Coulomb gas I β in terms of the rate function J β of the Ablowitz-Ladik lattice. Finally, applying Varadhan's Lemma [13, Theorem 1.2.1] we obtain an alternative formulation of the large deviations principle for the Circular beta ensemble at high temperature with continuous potential, see Theorem 3.11 below.

  2β N C,N , given by Theorem 3.1. Lemma 3.10. Let β ą 0. The law of the empirical measure pµ N pEqq N even under P 2β N C,N satisfies a large deviations principle at speed N and with a good rate function I β pµq " lim δÑ0 lim inf qÑ8 inf ν β{q ,...,ν β 1 q

piqj

  in the construction of r E i k and of E i k , except for the entries of the corners of M piq k , where M piq k p1, 1q is replaced by 1, M piq k pk, kq is replaced by a uniform variable on the circle, and both entries M piq k p1, kq and M piq k pk, 1q are replaced by 0. This shows that rankpM piq

( 4 . 3 )

 43 eq:ub_energy Combining (4.2)-(4.

Theorem 5 . 2

 52 (cf.[START_REF] Killip | Matrix models for circular ensembles[END_REF] Proposition 5.3). Let N " 2n, consider the CMV matrix E in (3.4) with parameters α 1 , . . . , α 2n´1 P I distributed according to dB pV, r

2 y

 2 h´1 dx 1 dx 2 dy .

2p1´u 2

 2 ´v2 q y h`1 dudvdy? 1´u 2 ´v2 t"y " ż DˆR `f ´a1 ´u2 ´v2 ¯`1 ´u2 ´v2 ˘h 2 ´1 e ´t2 2 t h`1 dudvdt .

fFor any 0 ă h ă 1 , 1 0w 1 0e aphqw w h´1 dwe r r h´1 dr `ż aphq 1 e r r h´1 dr ḑ 1

 11111 pwqw h´1 dw , here Γpxq is the gamma function(3.5). Thus, in order to obtain the estimate (A.2), we have to deduce an upper bound for sup 0ăhă1 ş 1 0 e aphqw w h´1 dw ş 1 0 w h´1 dw . we can explicitly compute the denominator asż h´1 dw " 1 h .(A.4) eq:denominat Moreover, we can give an upper bound on the numerator as ż

  pV, β `hq ˙`ln ´PV,β AL,N pAq ¯˙,

  1. it is lower semicontinuous/good, namely for any a ě 0, tµ P PpTq | J V β pµq ď au Ă PpTq is compact, 2. it satisfies a large deviations lower bound, namely for all O Ă PpTq open,

	´inf O	J ď lim inf N even	1 N	ln Ppµ N pEq P Oq,
	lim sup N even	1 N	ln Ppµ N pEq P F q ď ´inf

ineq:large d 3. it satisfies a large deviations upper bound, namely for all F Ă PpTq closed, F J. ineq:large d

  dµ being bounded continuous, by the large deviations principle under P β AL,N and Varadhan's Lemma, [13, Theorem 1.2.1], we see that for any bounded continuous

  .2) Distance lip_moments Remark 3.3. We observe that if f P L 2 pTq with derivative in L 2 pTq, we can set ||f || 1

		2	"
	b	
	ř	kě1 k| p f k | 2 . So, for any measure ν with zero mass we obtain the following
		ż

T

f pθqνpdθq "

  .6) eq_coupling By Lemma 3.5, α ν " Θ ν and α ν`h " Θ ν`h . Exploiting this coupling, we bound the differences |α ν ´αν`h | and |ρ ν ´ρν`h | by a random variable Z h , where ρ ν " a 1 ´|α ν | 2 , and ρ ν`h " a 1 ´|α ν`h | 2 . Moreover, we find an upper bound for the exponential moments of Z h . :bomb Lemma 3.8. Let α ν and α ν`h defined by equation (3.6). Define ρ ν "

lema 1 ´|α ν | 2 , and ρ ν`h " a 1 ´|α ν`h | 2 , then the following holds i.
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Proof of Lemma 2.2

Lemma A.1. For any A, B unitary matrices of size N ˆN , we have

• For f with bounded variation,

As a consequence, dpµpAq, µpBqq ď min

The first point is a consequence of the fact that the eigenvalues of A and B interlace on the unit circle. First, we order the eigenvalues λ 1 pAq, . . . , λ N pAq, λ 1 pBq, . . . , λ N pBq of A, B in such a way that ´π ď argpλ 1 pAqq ď . . . ď argpλ N pAqq ă π , and analogously for B.

Write B " pI N `pB ´AqA ´1qA and set U :" I N `pB ´AqA ´1. One checks that U is unitary, B " U A, and that rankpU ´Iq " rankpB ´Aq ": r. By [5, section 6, equation (85)], we deduce that for 1 ď j ď N argpλ j´r pAqq ď argpλ j pBqq ď argpλ j`r pAqq .

(A.

1) interlacing

This means that λ j pBq lies on the anticlockwise arc pargpλ j´r pAqq, argpλ j`r pAqqq of the circle. If j ´r ď 0 we identify λ j´r with λ j´r`N , and analogously for the case j `r ą N . It is a classical result (see [START_REF] Anderson | An introduction to random matrices[END_REF]) to deduce from (A.1) that

for any f : T Ñ R such that ||f || BV ď 1. As a consequence, we obtain the first point. The proof of the second point is the same as in the symmetric case, see [19, (16)]. Indeed, we only use the fact that a normal matrix is unitarily diagonalizable.