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Large Deviations for Ablowitz-Ladik lattice, and the Schur flow

G. Mazzuca* R. Memin'

January 23, 2023

Abstract

We consider the Generalized Gibbs ensemble of the Ablowitz-Ladik lattice, and the Schur
flow. We derive large deviations principles for the distribution of the empirical measures of
the equilibrium measures for these ensembles. As a consequence, we deduce their almost sure
convergence. Moreover, we are able to characterize their limit in terms of the equilibrium
measure of the Circular, and the Jacobi beta ensemble respectively.

1 Introduction

The defocusing Ablowitz-Ladik (AL) lattice is the system of ODEs
idy = —(ajs1 + ajo1 — 205) + |y *(aj-1 + aji1), (1.1)

dovs
that describe the evolution of the complex functions «;(t), j € Z and t € R, here & = %. We

assume N-periodic boundary conditions a1y = «; , for all j € Z. For simplicity, we consider
the case N even, and, when not mentioned, the limits as N — o0 is taken along N even. This
system was introduced by Ablowitz and Ladik [2,3] as a spatial discretization of the defocusing
Nonlinear Schréodinger Equation (NLS)

0 1) = 503w 1) + 1 (o, ) P, 1),

The NLS is a well-known integrable model [35], and the Ablowitz-Ladik lattice is one of the
several discretizations that preserve integrability |26].
It is straightforward to verify that the two quantities

N N
K(O) = H (1 - |Oéj|2) > K(l) == Z Oéjaj+1,
j=1 j=1

are constants of motion for the AL lattice. Since K(© is conserved along the flow, it implies
that if |a;(0)] < 1 for all j = 1,..., N, then |a;(t)| <1 for all times. Thus, we can consider DV
as our phase space, where D = {z € C||z| < 1}.

On this phase space we consider the symplectic form w [14,(17]

N
1
MZiZ ?daj rdaj, pj=4/1—]j?. eq:symplect
j=1"rj

*Department of Mathematics, The Royal Institute of Technology, Stockholm, Sweden.
email: mazzuca@kth.se

TUMPA ENS de Lyon, Lyon, France.
email: ronan.memin@ens-lyon.fr




1 INTRODUCTION 2

The corresponding Poisson bracket is defined for functions f, g € C*(DV) as
l of 99 of dg
{f9y =i, 0; (—) : (1.2)
j

Using this Poisson bracket, it is possible to rewrite the equations of motion (1.1} of the AL
lattice in Hamiltonian form as

dj = {aj, Har}, Har(e) = —2In(K©) + KO 4+ KO,

here a = (aq,...,an).

Conserved quantities. As we already mentioned, the AL lattice is an integrable model: this
was proved by Ablowitz and Ladik [1,2]. Specifically, they were able to obtain a Lax pair for the
Ablowitz-Ladik lattice by discretizing the 2 x 2 Zakharov-Shabat Lax pair of the cubic nonlinear
Schrodinger equation.

Nenciu and Simon in [25,27| constructed a new Lax pair for the Ablowitz-Ladik lattice,
exploiting the connection of this system to the orthogonal polynomials on the unit circle. This
link is the analogue of the well-known link between the Toda lattice and orthogonal polynomials
on the real line (see e.g. [8]). This connection was also generalized to the non-commutative
case [6].

Following [25,27], we construct the Lax matrix as follows. Consider the 2 x 2 unitary matrices

—_ —_ a; Py .
:(aj)=:j=<p; _éj), pi =4/1—laj|?, j=1,...,N,

and the N x N matrices

—QN PN
=P} =1
=, =
M = , . L= . . (1.3)
En—2 En-1
PN an

Now let us define the Lax matrix

E=LM, (1.4)
which has the following structure

%

*

* % ¥ ¥

*

*

* ¥ ¥ ¥
* ¥ ¥ ¥
* ¥ X ¥

The matrix £ is a periodic CMV matrix (after Cantero, Moral and Velazquez [7]). It is straight-
forward to verify that the equations of motions (|1.1)) are equivalent to the following Lax equation
for the matrix &:

=il +(EN, (1.5)

eq:poisson_

eq:hamilton

matrix_Xi

eq:Lax_matr

eq:Lax_pair
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where T stands for hermitian conjugate, and
1 .
365 J=Fk
Ejfk: Eirx k=j+1mod Nork = j+2mod N

0 otherwise.

rem:unitary| Remark 1.1. We notice that since all the Z; are unitary, then also £ is unitary, this implies that
all the eigenvalues \; lie on the unit circle, and they can be written in terms of their argument,
namely for all j =1,..., N there exists a 0; € T := [—m, ) such that

)\] _ eiej

In view of this identification, and in order to simplify the notations, for any function f(z) :
oD — R, we write f(0) in place of f(e¥) when it is convenient. Further, we will write in-
differently §p f(0)du(0) or §,p f(2)du(z) for any probability measure p having support on the
circle.

Remark 1.2. We notice that (7)1 4+ (EN* = €T and [£,£T] = 0 since £ is unitary. Therefore,
the Lax pair (1.5)) can be rewritten in the equivalent form

=i [5,5+ — (ST)+] . eq:Lax_pair

The formulation (|1.5)) implies that the quantities

KO — Ty <g€> , £=1,...,N—1, eq:constant

are constants of motion for the defocusing AL system ([1.1).
As in [24}28|, we introduce the Generalized Gibbs ensemble for the Ablowitz-Ladik lattice,
namely the following probability measure on the phase space DV

N
dPYy y(on,.. . an) = ZALV 5 H (1= loj )P 1o, cpp exp(—Tr(V(€)))d e, (1.6)

where V(e??) : T — R is a continuous function, 14 is the indicator function of the set A, and
Z{*(V, B) is the partition function of the system

LV, ) = f Hl—!aﬂ L exp(—Te(V(€)))d2a.

Furthermore we consider the empirical measure py(E) of the eigenvalues e . e~ of the

matrix & , namely

LN
pN(E) =+ D60 s
o

here ¢, is the delta function centred at x, furthermore, we notice that we can just consider the
arguments 61,. .., 0y of the eigenvalues since the matrix £ is unitary, see Remark [I.1]

Our main result is a large deviations principle (LDP) with good rate function for the sequence
(un(€)) under the law P A L ~ (L.6). Namely, denoting by P(T) the set of probability measures
on the Torus T endowed with the topology of weak convergence, there exists a function Jg)/ :
P(T) — [0, 4+0] such that:
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1. it is lower semicontinuous/good, namely for any a > 0, {x € P(T) | Jé/(/,t) <a} < P(T)is
compact,

2. it satisfies a large deviations lower bound, namely for all O < P(T) open,

1
—ing < liminfﬁlnP(,uN(S) € 0),

N even

3. it satisfies a large deviations upper bound, namely for all F' < P(T) closed,

1
limsup —InP(un(€) € F) < —ir}f J.

N even

We refer to |9] for a general introduction to large deviations.

Remark 1.3. We notice that, by compactness of P(T), it is sufficient to prove a weak large
deviations principle, see |9, Section 1.2], which is equivalent to a full large deviations principle,
except that the large deviation upper bound (point 8) holds only for compact subsets of P(T).

From this large deviations principle we are able to deduce that pn(€) converges almost surely
as N goes to infinity.

Theorem 1.4. Let 8 > 0. For any continuous function V. : T — R the following holds.

a. the sequence un(E) under the law PX’fN satisfies a large deviations principle at speed N
with a good rate function JX,

%

7

b. J[‘{ achieves its minimum at a unique probability measure v

c. un(E) converges almost surely and in L'(T) towards Vg.

Moreover, following [19}24,28|, we are able to characterize the measure I/g in terms of the

equilibrium measure of the Circular beta ensemble at high temperature |20,21]. More precisely,
consider the functional p — fg,/ () given, for any p € P(T) absolutely continuous with respect

to Lebesgue measure and with density %’ by

) =5 | g (16— ') nlaoyu(aio) + los2)+ |

TxT T
It is shown in [20], that the previous functional reaches its minimum for a unique absolutely
continuous probability measure /J,‘ﬁ/. Moreover in [24] it is proved that this measure is almost
surely differentiable with respect to 8. Exploiting this result, and Theorem we are able to
show that

Theorem 1.5. For any continuous V, f : T — R

[roage -2 (s r0a5®) .

Thus, we obtain a unique characterization of the measure V/‘;.

In [24]28|, the authors considered the GGE (1.6) with polynomial potential, and they were
able to prove Theorem for this particular class of potentials using a transfer operator
technique. In this sense, we generalize their result, extending it to the class of continuous
potentials.

ineq:large

ineq:large

x/(e)u(<19)+fT log (j’é‘(@)) 1(d8) +log(2r) .
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In the last part of the manuscript, we consider another integrable model related to the
Ablowitz-Ladik lattice, namely the so-called Schur flow [18]. Also for this system, the Lax matrix
is £ (|1.4). Following the same construction as in the Ablowitz-Ladik lattice case, we define a
GGE for this model. We are able to show analogous results to Theorem and Theorem
for the Schur flow. The main difference is that in place of the Circular beta ensemble, we have
the Jacobi one.

To give a wider overview of the relevant literature, we mention that, H. Spohn in [2§],
applying the theory of generalized hydrodynamics |11], argues that the correlation functions of
the Ablowitz-Ladik lattice with respect to the GGE (1.6) show a ballistic behaviour. As we
already mentioned, in [24] the authors rigorously proved Theorem for polynomial potential
V(z). Moreover, they computed explicitly the density of states in the case V(z) = n(z + 2),
which corresponds to the classical Gibbs ensemble.

Lastly, it is worth to mention that this link between random matrix and integrable system
was first noticed in [31]. In this paper the author considered the GGE for the Toda lattice, and
he was able to study this ensemble, comparing it with the Gaussian beta ensemble [12]. We
refer to |19}|23}24}29,130,32| for subsequent developments.

In particular, our work was inspired by the recent paper [19]. In this paper, the authors
obtained a large deviations principle for the Toda lattice, and obtain an analogous result to
Theorem [I.5] where in place of the Circular beta ensemble, they had the Gaussian one.

The structure of the paper is the following. In Section[2] we prove the first point of Theorem
In Section [3] we collect some known results related to the Circular beta ensemble in the
high-temperature regime. Moreover, we reformulate the already known large deviations principle
for this ensemble in terms of the AL lattice. In Section [ we conclude the proof of Theorem
and we prove Theorem Section [B], is dedicated to the Schur flow, where we prove the
analogue of Theorem [I.4] and Theorem [I.5] for this integrable model. Finally, we defer to the
appendix the most technical results of our manuscript.

2 Existence of a Large deviations principle for the empirical mea-
sure of the Ablowitz-Ladik lattice

The aim of this section is to prove the first point of Theorem [I.4] namely to show that, for
N 5 N > 2 and even, the sequence of empirical measures py(€) = % Zjvzl 0 io;(e) satisfies a large
deviations principle. The strategy of proof is the following. First, we show that if £ is distributed
according to Pf‘ LN = IP’%’% y defined in , then the sequence of random probability measures
(un(E))N even satisfies a large deviations principle in P(T), the space of probability measures
on T, endowed with the topology of weak convergence. Since according to this toppology P(T)
is compact, it suffices to show that the sequence (un(E))n even satisfies a weak large deviations
principle, see Remark . Then, applying Varadhan’s Lemma [13| Theorem 1.2.1], we obtain
the existence of a large deviations principle for arbitrary continuous V', i.e. the first point of
Theorem [L.4

We also notice that when V' = 0 in the a;’s are independent and identically distributed
(i.7.d) with distribution ©2441, where ©, is defined for v > 1 as the random variable such that
for f : C — R bounded and measurable

1%

BLACOT = 55 [ - 1eR) 7 . (2.)

Remark 2.1. We recall that for integer v = 2, such measure has the following geometrical
interpretation: if u = (uy,...,uy,+1) s chosen at random according to the surface measure on
the unit sphere S” in Rt then uy + iug is ©,, distributed [22].

def theta



2 WEAK LPD FOR AL 6

To show that the sequence (un(E))N even satisfies a weak large deviations principle according
to the law PiL ~» We only need the a;’s to be i.i.d according to some law o with supp(o) < D.
Thus, we just assume the latter hypothesis, and we prove the result in more generality.

2.1 Large Deviations Principle for periodic CMV matrix

Let d be the distance on P(T) defined by

d(p,v) = sup {de,u — ffdu } . def_distanc:
Iflip <L, flBV<

Where the Lipschitz and the bounded variation norms are defined on the space of functions
f:T—>Ras

|f (eiﬁl) _ f (ewg) ’

‘eiel _ 67:02‘

| flip = sup
01,00€T
01#6o

9

n—1

I flBv = sup Z ‘f (ei9k+1) — (ez‘ek)

n>=1,0=01<02<...<0,=27 =1

The distance d is compatible with the weak convergence of probability measures [19]. We
recall that for a V x N matrix A, its empirical measure of eigenvalues is defined by

1 N
wA) =+ Zl%(A),
j=

where \j(A), j = 1,..., N, are the eigenvalues of A. The following Lemma, whose proof can
be found in Appendix[A] gives an upper bound on the distance of the empirical measures of two
unitary matrices.

STANCE_INEQ| Lemma 2.2. For any A, B unitary matrices of size N x N,
o For f with bounded variation,

rank(A — B)

[ rana - [ sauim| < 112

o For f Lipschitz,

[ rauca) - [ faum)| < 11y S 4= Bl

i,j=1

As a consequence,

N
A(u(A), u(B)) < min {”’“%‘B)}V 34— B>z-,j|} -
ij=1

We are now in position to prove that the sequence puy(€) with (@)1 i.i.d with law o,
such that supp(c) < D, satisfies a large deviations principle. The proof of the following Lemma
follows the same line as the corresponding one in [19].

ma weak ldp| Lemma 2.3. Let (0;)i=1 be an i.i.d sequence of law o with supp(c) S D, and & be the associated
matriz defined in (1.4). Then the sequence of empirical measures (un(E))N even Satisfies a large
deviations principle in P(T) endowed with the topology of weak convergence.
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Proof. We use a subadditivity argument to show that for any fixed € P(T) the following holds

T | - 1
%1_1}1})1]1\[11(13‘1/3? N InIP’<,uN(5) € Bu(5)> = %glgﬂ;ﬁf N ln}P’(uN(E) € Bu(5)>’ (2.2)

where B, (9) := {v € P(T) | d(u,v) < }. Then, applying |9, Theorem 4.1.11], along with the
fact that in our setting a weak LDP is equivalent to a full LDP, due to the compactness of P(T),
see remark we conclude.

The first step to prove the result is to approximate the matrix £ (whose law we denote by £(V))
by a diagonal block matrix of independent blocks. To this end, fix g € N even such that ¢ < N,
write the euclidean division of N by ¢, N = kq + r with 0 < r < q. We consider M given by
3.

—QanN PN

[1]
V)

[1
~

EN-2
PN an
and approximate it the following way.
Let M = diag(Mji,..., Mg, R), where M, is the block diagonal matrix given by

~

—0(i—1)q P(i—1)q
(i—-1)g+2

[1]

[1]

(i—1)g+4

Eiq—? .
Pli-1)q G(i-1)q
where (&(j—1)¢)1<i<k are i.i.d of law o, independent of the «a;’s, p; = /1 —|&[?, and the
remaining block (of size r x r) R is defined similarly:

~

_&kq Pk
E'k:q-&-2
Ekgrd
=N-2
ﬁkq+1 62kq
Following the same decomposition of N = kq + r we write £ = diag(Ly, ..., Lk, Lr+1), with £;
of size q for 1 < i < k and Ly, of size r.
Notice that by construction, we have

rank(M — M) < 2(k + 1). (2.3)

Now, defining £ = E/W, £ is a block diagonal matrix diag(&y, . .., &k, Ek+1).-Then, the blocks &;,
1 <i<k+1 are independent, each &, i = i,...,k, has law £@, and &, has law £,
Furthermore, using that rank(AB) < min {rank(A);rank(B)} for A, B two square matrices, and
(12.3) we get

rank(€ — €) = rank(L(M — M)) < 4(k + 1).

By the first point of Lemma [2.2| we deduce

@) (@) < T <2,

eq weak ldp

ineq_rank_t
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Moreover, we can rewrite yuy (€) as
vE) =L i (&)
N 0) Nur(5k+1) :
Using the independence of the blocks of E , we deduce that

P(er) e Buw))kw(ur(ml) € B) = P(aE). o €0 (Evi) € Bulo))

2\@

k
<B( £ (e + oo (Even) € 5o
1=

- P(v(@ € B0))

< ]P’(/;,N(S) € B, <5+ 2) ),

Where we used the convexity of balls in the first inequality.
This implies that, setting

—_

un(6) = —In (P(un € Bu())) ,
we have

N <5 + i) < kug(6) + ur(5).

We now conclude as in |19, Lemma 2.3]. Let 6 > 0 and choose ¢ in such a way that % < 4, so
we deduce that
8
an(@0) _ " (0+5) ) w®)

< < :
N N g N

UT]\(;S) — 0 as N — o0, we deduce that

lim sup N (29) < 4g(9) .
N—o0 N q

The previous inequality holds true for all ¢ big enough, so we conclude that

26 )
lim sup m < lim inf UL() .
N—oo N—0 N

From this last inequality we deduce that

- un (9) un (%)

lim 1 < lim lim

50 N SO TN
thus we obtain (12.2)), and the conclusion follows applying |9, Theorem 4.1.11]. O

Since (P(T),d) is compact, Lemma [2.3| automatically implies the existence of a strong large
deviations principle. Furthermore, the corresponding rate function J ,which depends on the
distribution ¢ of the entries of £ and M, can be seen to be convex. We collect these results in
the following proposition.

- deviations| Proposition 2.4. In the same hypothesis and notations as in Lemmal2.3, the sequence of empir-
ical measures (uN(E))N even satisfies a large deviations principle with good, convex rate function
J:P(T) — [0, +o0], i.e

e The function J is convex and its level sets J~1([0,a]), a = 0, are compact,
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e For all O < P(T) open,

—irolfJ < liminf%IHP(uN(é') € 0),

N even

e For all F < P(T) closed,

1
limsupﬁlnIP’(uN(S) eF) < —i%f J.

N even

Proof. We already established all the claims except the fact that the function J is convex and
that the level sets J~1([0,a]) are compact. The latter comes from the fact that these sets are
closed, see |9, Theorem 4.1.11]. To prove the convexity of J, we follow the same argument
as [19, Theorem 2.4].

Let pi,p2 € P(T). Since pan(€) can be approximated by the sum of two independent
un(€)’s up to a mistake smaller than % by the first point of Lemma for § > 0 the following
holds

P (1 (€) € By, (6)) P (un(E) € Byy(6)) < P (uzN(g) ¢ Buiim (5 N é)) ,

taking minus the logarithm of both sides, dividing by 2N, taking the limit for IV going to infinity
and then for § to zero, we deduce that:

7 (M) < 5 0ta) + T

which, together with the lower semi-continuity of .J, implies the convexity of J, see |9, Lemma
4.1.21] . O

2.2 Large deviations principle for the Ablowitz-Ladik lattice

Taking o = Ogp41 given by equation (2.1)), Proposition applies to (un(€))N even, Where £
follows Pi 1. defined in (L.6). Thus, (un(E))N even With law ]P’f‘ 1. satisfies a large deviations
principle, with a good convex rate function, that we denote by Jj.

We can now state the existence of a large deviations principle for (un(€)) N even under IP’X’L’H N
for V' continuous.

Corollary 2.5. Let 5 >0, andV : T — R be continuous. Under IP’X’Lﬁ’N the sequence (uN(E))N even

fulfils a large deviations principle with good, convex rate function JY (1) = gV(,u)—infl,ep(T) gg(u),
B B
where gg(,u) is given for pe€ P(T) by

950 = Jatu) + | v, (2.4)
Proof. Let us write
Z35(0, B) 1
APy v = Sh e N Vdingpl o = = e Vi Vdivgpf
AL,N Z],eL(u B) AL,N Z],?[L,V AL,N

The function p — ST Vdu being bounded continuous, by the large deviations principle under

IP’ﬁL y and Varadhan’s Lemma, |13, Theorem 1.2.1|, we see that for any bounded continuous
f:P(T) - R we have

1 .
li]{anlnfDN eNf(“N)dIP’X’gN = sup) {f(,u) — (Jg(u) + JVdu — inf : {Jg(l/) + deV}) } ,

peP(T veP(T

eq: rate f
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which ensures by [13| Theorem 1.2.3| that () satisfies a large deviations principle under
IP’XL n With the announced rate function. Since the function JY 5 is an affine perturbation of Jg,
which is convex, JY 3 is also convex. ]

The first point of Theorem is proven.

3 Circular 3 ensemble at high temperature

In this section, we consider the Circular 5 ensemble, and we collect some known results that we
exploit in our treatment. The aim of this section is to prove an alternative formulation of the
large deviations principle for the Circular beta ensemble in the high-temperature regime, see
Theorem below. Our formulation allows us to relate the large deviations principle of the
Coulomb gas with the one of Ablowitz-Ladik, proved in the previous section.

3.1 Large deviations principle for Circular S ensemble

Coulomb gas on the torus T = [—m, 7) at temperature 3*1 are described by

5 1 . % N
AP = ———— e — e |Pe2im1 Vi) qg (3.1)

here V : T — Risa continuous potential, and @ = (01, ...,0y). When V' = 0, Killip and Nenciu

showed that dIP’%’ v is the law of the eigenvalues of a CMV matrix [21], see Theorem In this
manuscript, we are interested in the so-called high-temperature regime of this ensemble, namely
the limit of number of particles N going to infinity with the constraint that 5N — 28 > 0. This
regime was considered by Hardy and Lambert in [20], who proved the following large deviations
principle for the measure puy = % Z;VZI 6 i0;, where the 0; are distributed according to (3.1)).

Theorem 3.1. Let E = %, B8 >0 and assume V : T — R to be continuous. Define for any
w € P(T) absolutely continuous with respect to the Lebesque measure the functional

1Y) =6 [ tog (16 - 1) m(an)utdp)+Slos(2)+ |

TxT T
then

1. the functional fg(u) 1s strictly convex and achieves its mimimal value at the unique prob-

ability measure /ﬂg absolutely continuous with respect to the Lebesgue measure;

ii. the sequence (un) satisfies a large deviations principle in P(T) equipped with the weak
topology at speed BN with rate function defined for absolutely continuous p € P(T) with
respect to Lebesque measure by Ig(,u) = f/}/(u) - f};(ug), and Ig(,u) = 400 otherwise. In
particular

a.s.
MNT’MB

Exploiting this result, in [24] the authors deduced several useful properties of the minimizer
ug, specifically they proved the following.

Lemma 3.2 (cf. [24] Lemma 3.5 ). Let § > 0, consider a continuous potential V. : T — R,
then the following holds

i. The map S — inf (f};(;ﬁ) is Lipschitz;

eq:circular

V() [ 10z (50)) n(a)+iog(zn).
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it. Let D be the distance on P(T) given by

= Zl{ﬁk—%
=k

sin (252 0= wt@0) e - 1009 "

eq:distance

2

)

where i, = {1 e™*01(d6). Then for any € > 0 there exists a finite constant C- such that
for all 3,8 > ¢

DY ) < C.ls - . 52)
lip_moments| Remark 3.3. We observe that if f € L*(T) with derivative in L?(T), we can set ||f]|. =
2

kst l’<:|!)/";€|2 So, for any measure v with zero mass we obtain the following

[ rowan) = 33 fim = S

k#0 k#0

Then, by Cauchy-Schwartz inequality, we deduce the following inequality

Y kfi Y, | < 4llfIR D, 0). (3.3)

k£0  k#0

Combining (3.2)) and (3.3), we deduce that for any function f with finite ||f||1 norm, the map
2

B — fd,ug(e) is Lipschitz for 8 > 0.

2
<

] [ sowas)

3.2 Relation with the large deviations principle of the Ablowitz-Ladik lattice

In the case V = 0, for any 3 > 0, Killip and Nenciu in [21] showed that the law ]P’% ~v (3-1)
coincides with the distribution of the eigenvalues of a certain CMV matrix. Specifically they
proved the following:

Killipenciu| Theorem 3.4 (cf. [21] Theorem 1.2). Consider the block diagonal N x N matrices

L = diag(Z1,23,Z5...,) and M = diag(Zo,Z2,Z4,...) ,

where the block 25, j = 1,...,N — 1, takes the form

_ . . -
== (52 m=yimlan,
J J
while Z¢g = (1) and Ex = (@n) are 1 x 1 matrices. Define the N x N sparse matrix

E=LM, (3.4)

and suppose that the entries o are independent complex random variables with o ~ GE(N—J‘)H
for 1 < j < N —1 and ay is uniformly distributed on the unit circle. Then the eigenvalues of
E are distributed according to the Circular Ensemble (3.1) at temperature 37 1.

To simplify the notation, we will denote by Pg, n the law ]P%gv. We give an alternative
28
formulation of the large deviations principle for the empirical measure under the law P4 5 based

on the Killip-Nenciu matrix representation. This alternative formulation allows us to relate the
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rate function of the Coulomb gas I in terms of the rate function Jg of the Ablowitz-Ladik lattice.
Finally, applying Varadhan’s Lemma |13, Theorem 1.2.1] we obtain an alternative formulation of
the large deviations principle for the Circular beta ensemble at high temperature with continuous
potential, see Theorem below.

To achive our goal, we need several technical results regarding the distribution ©, , and
the CMV matrix E (3.4]). First, in the next Lemma, we give a reprensentation of ©, in terms
of Gaussian, and Chi distributions.

Lemma 3.5. Let v > 1. Let X1, X9,Y, be independent, X1, Xo standard Gaussian variables
and Y, be x,—1 distributed, i.e. with density

3—v

272

L34

o .2
v 262/21

XV—1(1‘) =

>0

here T'(z) is the classical Gamma function (10, §5/
v
[(x) = f t* et (3.5) [eq gamma
; [°q gamma]

Then, Z := wﬁ{% follows the law ©,,.

Remark 3.6. If v > 2 is an integer, Y2 has the law of Zi”:_ll N? where the Ni’s are i.i.d.
standard gaussians random variables, thus Z is equal in distribution to —23FX2  hich

(F -+ X,)
follows the law ©, by Remark[21]
Proof. We identify C with R? and check that for any f : D — R bounded and measurable,

NI

1%

E[f(2)] =

o | ra -1y e,

i.e. that for some constant c,

2 2 2
€1 T2 _@i4my 42 V2
’ e 2 e 2 dx1daed
JRZXRi f ((x% + x% + y2)1/2 (l‘% + x% 4 y2)1/2> Y 1axr2dy
= CJ Flu,0)(1 = (W2 + v%)) 2 dudv .
D

For fixed y > 0, we perform the diffeomorphic change of variables (u,v) = ﬁ (z1,22).
(x14+25+y?)

Its inverse (x1,x2) = u,v) has Jacobian equal to y?(1 — (u? + v?))~2. The integral

R
(1—(u240v2))1/2
becomes

? (U, ’U) J~ 5 y; >y \/Trf f (U, ’U) v
e (1—(u®+v=)) —
JD (1 (UQ —+ /1)2))2 Y dydudv 2 (] (u2 /1)2))3/2]EUXU,’U’ ]dUdU ’

where X, , denotes a Gaussian variable A'(0,1 — (u? + v?)). By [34],

*
+

E[|Xuo"] = eo(1 - (4 +0%))3

for some constant ¢, independent of u,v. Substituting this last equality in the previous integral,
we conclude.

O]

To obtain our main result, we need some technical lemmas. Since they are based on standard
techniques, we just state them here, and we defer their proofs to the appendix [A]
The first one gives an estimate that we use combined with Lemma [2.2]
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ate_product| Lemma 3.7. Let N = 2k be even and A be a N x N matriz. Then,
N N
o Dot [(LA)isl <2355 Al
N N
* Zi,jzl [(AM); 5| < 221‘,3':1 | A,
where M, and L are defined in (|1.3).

We now give an explicit coupling between O, (2.1) and ©,, for v > 1, h > 0.
Let X1, X2 be N(0,1) independent variables, and let Y,_1 ~ x,_1, Y ~ x» be independent,
and independent of X7, X9 (notice that (Yh2 + Yu271)% is Xy4+n—1 distributed). Let

X1 +1 X5 X1 +1iXo

oy = , Qpyyp = .
C(XZHXE4YE) (X2 XIHYR YR

(3.6) |eq_coupling
By Lemma [3.5] oo, ~ ©, and au45, ~ Opyp.

Exploiting this coupling, we bound the differences |a, — 15| and |p, — py4p| by a random
variable Zp,, where p, = 4/1 — ||, and pyop = /1 — |au4n|?. Moreover, we find an upper
bound for the exponential moments of Z,.

lem:bomb| Lemma 3.8. Let oy, and ay,yp, defined by equation (3.6). Define p, = /1 — |y |?, and p,1p =
V1= |ew1n|?, then the following holds

i
Yy

(X2 + X2 +Y2)2
Yy,

(XT + X3 + 1))

lo, — apqn| < almost surely,

lov — posn| < almost surely,

N

where X1, Xo ~ N(0,1), Yy, ~ xp are all independent.

i. define Z, = —b—— and a(h) = —11In(h) + 1, then there exists a constant K
(X2+X2+Y2)2
independent of h such that

sup E[exp(a(h)Z,)] < K. (3.7) |eq:sup_boun

O<h<1

ne coupling| Remark 3.9. Let h < h/, and let Zy, Zy, be given by

Y)
Zp = - A=
(X?+X3+Y2)2

Vi
(X} + X3+ V)

NI

where Yy ~ xn, and Yy ~ xp are x variables coupled by

Vi =4/Y2 + Z2,

Z being a xp—p variable independent of Yy,. Then, because of the monotonicity of the function
T — \/ﬁ for a > 0, we have almost surely Z;, < Zy,.

We are now in position to give an alternate formulation of the large deviations principle for

28
the sequence of measures (py(E)) under the law P4, given by Theorem 3.1
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28
Lemma 3.10. Let 3 > 0. The law of the empirical measure (jin(E)) Neven under PA  satisfies

a large deviations principle at speed N and with a good rate function

1 q

1 = lim lim inf inf - > J; ;

p(p) = limliminf  inf {q ; zﬂ/q(l/z,()’/q)} ;

7 Xivip/q€Bu(®) =

where Jy, is the rate function of Pmposz’tion applied to o = Ogpy1.
Proof. Following the same line as in |19, Lemma 3.3|, we proceed by exponential approximation.
Let ¢ = 1 be an integer, since N is even, we can write N = kq + r, with k even, and with
0 <r < 2q— 2. Consider the following family of matrices L&, M@, j =1,...q defined as

— Qi ' Pik

MO = =4 ) o= 3 ) ,

Pik Qg

where Egi) are defined as

[1]

—( i Qj(f— i(k—
:E)(ai(k_l)ﬂg) = g) = ( (b=1)+e Pilk—1)+0 > s Pik—1)+6 = \/1 —|vig—ny+e?, £=1,... k=1,

Pi(k—1)+£ —Ci(k—1)+¢
(3.8) |eq: local
and (ai(k,1)+g>1si<q,1<[sk is a family of independent random variables such that

ai(k,1)+g~@25 —ik+1,£=1,...]€,i= 1,...,q.

N
N

From these two families of matrices, we can define a third one, namely Slii) = E,(f)./\/l,(j), 1=
. N—ik .

1,...,q. We notice that 5,8) is distributed according to ]P’iLf}’C , and that the 5,8), 1 <1i<yg,

are independent.

Our aim is to prove that the empirical measure of the matrix C%

g
g?
Y = ,

(c/’]gq )

0"" xXr
where 0, x, is a null block of size r x r, is an exponential approximation (see |9, Definition 4.2.14])

26
of the empirical measure of £ ~ P4 (3.4)), that is, for any positive real number §:

lim lim sup %ln (P (d (,uN(E), ,U,N(C'qu))) > (5) = —0, eq:real cla

q—>OO NHOO

where P denotes the coupling introduced in equation (3.6). In this way, we obtain the
claim as an application of |9, Theorem 4.2.16|. The strategy of proof is the following. First we
approximate C'%, and E by two block diagonal matrices 1 ,E}]\, respectively. Finally, we will
prove that both C'%, and E?V approximate a third matrix BY,.
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Consider another family of matrices (MI(;))KKQ of size k x k, defined as
M = diag (20,20,20,... 50 ,
where the matrices Eg) are defined in (3.8]), while E(()i) = (1) and ES) = (au) are 1 x 1

matrices, where the «;; are independent, uniformly distributed on the unit circle for all i =
1,...,q, and independent from (ai(k,1)+z)1<i<q,1<g<k,1. Define the k x k family of CMV matrices

B _ L0 -1, .

From the family of matrices (g’gi))lgigq, we define the block diagonal matrix:

&
e
ot~
glgq)
OT’XT’
We claim that CN’?V is such that
rank(CY, — C%) < 2q. (3.9)

Indeed, we take the same ozj(-i) in the construction of EN}C and of &}, except for the entries of the
corners of ./\/lg), where ./\/lg)(l, 1) is replaced by 1, ./\/l,(:)(k, k) is replaced by a uniform variable
on the circle, and both entries M,(j)(l, k) and ./\/lg)(k, 1) are replaced by 0. This shows that

~

rank(/\/l,(:) - M,(;)) <2,

and
rank(Elgl) - g]gz)) = rank(ﬁ,&z) (./\/ll(;) - /(/lv,(;))) < rank(/\/lg) - ./{/lvl(;)) < 2,

and we deduce (3.9). From (3.9) and Lemma we deduce that

~ 2
A () i (C)) < =
and for any 6 > 0 and sufficiently large NV, we can take k such that % < %.

Consider now another two families of matrices (Sg))lgigq, and (mtlgi))lgigq, constructed in
the same way as (El(j))lgigq, and (M,gi))lgigq by means of independent variables &(; 1)y j, where
each a(;_1yp4; ~ (—DQIBN—(i]—vl)k—j is coupled to a(;_1)k4; by equation , forall j =0,...,k—1,
andi=1,...,q, and where q;; = oy fqr i =1,...,q is uniformly distributed on the unit circle.

Define the family of CMV matrices (QE](;))]_gigq as

e — el 1.

Define the block diagonal matrix EY; as:

¢t

B =
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28 28
From the definition of P4y and EY;, we conclude that for some E ~ P&, we have

rank(E — E%) <2q+r.

As before, from the previous inequality we deduce that

~ 4
Ao (B), i (B4)) < .
Finally, we define the matrix Bj; as
BM
B
BY =
(@)
qu
OTXT )

where B(A s(i)/\“/l“(')
Let 5 > 0, for N large enough such that 4 i, we have almost surely
~ 4]
d(pn (CR), un (CF) + dlun (B), un (EY)) > 5

As a consequence,

P (d(un(CY), un(E)) > 9)
< P (d(un(CH), i (C4)) + dlian (CF), v (BY) + dlpan (BY), i (BY)) + dlpan (B, v (B)) > 6)

< P (v (C4).in(BR)) + dun (B )i (1) > 5 )

Moreover, combining Lemma [2.2] and Lemma [3.7] we deduce that

d(pn (Ch), un(BY)) 2 Moleleq) -l e,
z 11<4,5<k

d(pn(BY), pn (%)) 2 S e, g) - MY (e, 5)
i=1 SKJ<]€

Applying Lemma point 7., we deduce that

d(un(Ch), pn (BY)) + d(pun (BY), i Z Z z\ b

z 15=0
where the last sum denotes the sum of independent random variables with law Zx—;, defined in
N

Lemma [3.8
Thus, for N large enough such that % < g, we deduce that for any non-negative function

a(g™!):

P (d(un(Cx), un(E)) > 6) <P (Z 7, > ﬁ?)

qk
< (@ )N/16 ( sup E[exp(a(h)Zh)]> ’
O<h<1
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Where in the last inequality we used Remark [3.9] namely, since k—Nj < é, we have

E[exp(a(qfl)z%] < IE[eXlD(a(q*l)Zé]-

Setting a(h) = —% In(h) + 1 and applying Lemma point 7., we deduce that there exist
constants K and ¢ > 0, independent of g, such that

I (B (A (CF), v (B)) > 6)) < —eln(q)i + K,

And we obtain the claim. O

We can apply the previous Lemma to study the case of continuous potential, indeed as a
consequence of Varadhan’s Lemma we obtain the main result of this section, namely

Theorem 3.11. In the same notation as before Let 8>0,andV : T — R continuous. The

law of the empirical measures pyn(E) under dIP’CN satisfies a large deviations principle at speed
N, with a good rate function Ig(,u) f,B (1) — inf eper f,B (v), where

. 1¢
¥ (w) = lmliminf — inf { > ( i8/a(Vig/q) f VdViﬁ/M>} : (3.10)

) q:
7 Zi vip/q=Bu(®)

4 Proof of the main results

In this section, we conclude the proof of Theorem and prove Theorem The main tool to
prove these theorems is the uniqueness of the minimizer of the rate function for the 8 ensemble.

Define the free energies of the Ablowtiz-Ladik lattice and the Circular beta ensemble at high
temperature as

Far(V,B) = Elg(fT)gg() Fc(V,B)=V€ig(fT)ng(V),

where gg, and fg/ are given by (2.4) and (3.10). We claim that

Lemma 4.1. Let >0, and V : T — R continuous, then the following holds:

a. the map B — Fc(V, B) is continuously differentiable on R% . Moreover:
Far(V,B) = 0g(BFc(V,B));

b. for almost all B > 0 there exists a unique minimizer I/g of the functional Jg(,u), see

Corollary (2.3, given by

vy = ds(Buy ),

Josaes = (o sos)

we recall that the measure ug 1s defined as the unique minimizer of the functional Ig m

Theorem [3.11].

i.e for continuous f: T — R,

eq:

rate f
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Remark 4.2. Our definition of Free Energy is different from the one used in [24), 28]. Indeed,
in virtue of Varadhan’s Lemma [15, Theorem 1.2.1], we have

1 .
Far(V,B) = Velg(fmgg( v) = _hzrvnﬁlnEﬁL,N [e TV(g)] 7

41)
. o1 o (
FC’(V7B) = l,elgf’]l‘) fg/(V) = _hgfnﬁ IDEBC,N [e TV(E)] ,

instead in [24, 28], the authors defined the free energies as

Far(V,B) = — lim NIH(Z Lv,8)),

N—o
~ 1 c
Fo(v.p) =~ lim < In(Z§(V,5)).
We notice that it is possible to recover one expression from the other since
Far(V,8) = Far(V, 8) — Far(0,5)

Fo(V,B) = Eo(V, B) — Fc(0,8).

V

To prove uniqueness of the minimizer Vg, we need to consider a continuous family (1} )o<s<g,

where each p¥ minimizes JY, see Corollary We address the existence of such a family in
the next Lemma, which we prove in the appendix [A]

Lemma 4.3. Let Mg)/ = (Jg)_l({()}) be the set of minimizers of Jg, defined in Corollary .
Then, B +— Mé/ s continuous in the sense that for all € > 0, there exists § > 0 such that for all
0<h<é, Mgﬂrh c (Mé/)a, where for A < P(T) we denote A* = {pne€ P(T) | d(u, A) < €}.
Proof of Lemmal[{.1] First, we notice that for any probability measure p € P(T), Theorem
implies

13
v .. .
fa (n) = hgliloglf Vel;)l(fT) {q ; (Jw/q(u) + fT le/) }
1 1
= f inf g;/ﬁ(y) = f Fur.(V,s8)ds
0

o veP(T)

(4.2)

Where we noticed that the Riemann sums indeed converge towards the integral since s —
Far(V,sfB) is concave, this can be seen by applying Holder inequality to equation (4.1).

To prove the first part of the claim, we show that the lower bound is achieved. For s € [0, 1],
let 175 be a minimizer of inf, ep(r) g;/ﬁ( v). From Lemma E we can choose v such that the

map s — v* 43 1s continuous. This implies that p% B Sé Z/:ﬂds is a well-defined probability measure

on T. We claim that this measure minimizes fﬁ (3.10)), and so Ig. Indeed, from Theorem
we deduce that

1 q
= lim li f inf - Vdu:
f5 (up) = limliminf  inf {q ) ( i8/9(Vig/q) f Vwm)}

iy ”iﬂ/qEBu;; O) i=1

1< <

< liminf < — Jigq(VE; f Vdv}; )
S R

= lgggjlf qi_Zl Velg(fm <Jig/q(y) + J"JF de>

1 1
= J inf gs‘,/ﬁ(y) = J FAL(V, sﬂ)ds

o veP(T) 0

eq:equality

eq:1lb_energ

eq:ub_energ
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Combining (4.2)-(4.3), and performing the change of coordinates s = t we deduce that:

I°]
BFe(V, 8) = fo Fap(V.4)dt .

Moreover, from Lemma we deduce that the map 5 — Fg(V, ) is Lipschitz in /3, and so
almost surely differentiable. This implies that for almost all 8 > 0

Far(V,B) = ds(BFc(V,B)) -
Furthermore, we have just shown that Il‘a/ (1) = fé/ (1) —inf,ep(m) f[‘a/ (v) reaches its minimum
at Sé vigds. By uniqueness of the minimizer of IX(M); Theorem we deduce that we have the
equality between probability measures ,ug = Sé V;‘Bds. Taking f : T — R continuous we get

6 JT fduy = L ’ ﬁr fdvids.

Note that the function s — {; fdv¥ is continuous, therefore by differentiating this equality, we
get that I/E is the unique minimizer of J g/ , which we denote by Vg, and satisfies for f continuous

[y =aa (5] au¥).

proving point b.

Remark 4.4. As a corollary of the previous Lemma we obtain Theorem [1.])

5 The Schur Flow

In this section, we consider another integrable model, namely the Schur flow. Our goal is to show
that is possible to obtain a similar result to the one that we presented for the Ablowitz-ladik
lattice. Namely, we prove the existence of a large deviations principle for the Schur flow, and
we relate its density of state to the one of the Jacobi beta ensemble in the high temperature
regime.

5.1 Generalized Gibbs Ensemble
The Schur flow is the system of ODEs [18§]

daj = pilaje —aj-1),  pj=4/1— oy (5.1)

and, as before, we consider periodic boundary conditions, namely a; = a1y for all j € Z.
In [3], it is argued that the continuum limit of (5.1) is the modified Korteweg-de Vries
equation:

O = 03u — 6u’o,u.

We notice that, if one chooses an initial data such that «;(0) € R for all j = 1,..., N, then
a;(t) € R for all times. Moreover, it is straightforeward to verify that Ko = Hj\[:l (1—Jay|?) is
conserved along the Schur flow. This implies that we can choose as phase space for the Schur
flow the N-cube IV, where I := (—1,1).

On this phase space, we consider the Poisson braket , so we can rewrite the Schur flow
in Hamiltonian form as
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=

&y ={aj, Hs}, Hs=—i ), (a1 —Taj) .
j=1

It is well known that the Schur flow admits as Lax matrix the same one as the AL [1§],
namely & is the Lax matrix of the Schur flow. This implies that the Ablowitz-Ladik’s
constants of motion are conserved also along the Schur flow .

Following the same construction made for the Ablowitz-Ladik lattice, on IV we define the
finite volume limit GGE as

N
1 _
AP (a1, ... ay) = [T = ad)" 1 en exp(—Tx(V(£)))dey, (5:2)

ZIAORE

where Z3(V, B) is the partition function of the system

Z5(V. ) = JHN H (1 - a2)’! exp(~Tr(V(£)))dar.

Since according to the measure the matrix £ is real, its eigenvalues come in pairs 27|,
meaning that if €7 is an eigenvalue, then its conjugate e~ is also an eigenvalue. This implies
that for a system of size N even, there are just n = N /2 independent eigenvalues. Following the
same idea as in |21], it is more convenient to restrict the argument of the eigenvalues in [0, )
and then consider z; = cos(6;), j = 1,...,n. In these variables, the empirical spectral measure
tn(€) reads:

1 n
— iel. .
ng ) I]E (53>

As a corollary of Lemma[2.3]and Proposition[2.4] we obtain the existence of a large deviations
principle for the sequence (p,(£)), namely:

Corollary 5.1. Let V : T — R be continuous. Under Pg’g the sequence (un(E)) fulfils a large
deviations principle with good, convex rate function S[‘_}/(,u) = hg(,u) — inf ep(n) h‘é(y), where

hY (v) Jde

where Kg(v) is the rate function of p, under the law Pg’z .

5.2 Jacobi beta ensemble in the high temperature regime

The Jacobi beta ensemble refers to the distribution of charges constrained to the segment I, and
subjected to an external potential W(z) = —aln(l —z) —bIn(1 + x) + V(x), here a,b > —1 and
W(z) e CO(I). Specifically the joint distribution of these particles is

n

dIP(V’B) i — T (1—z,)"Q+=x V@) g, . 5.4
Jn Z‘]Vﬁ E‘ ] ];[ ] ]) J ( )

In [21], Killip and Nenciu were able to show that the distribution (5.4 can be realized as
the eigenvalues distribution of a particular CMV matrix, specifically they proved the following

GGE Schur

eq:empirica
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Theorem 5.2 (cf. [21] Proposition 5.3). Let N = 2n, consider the CMV matriz E in (3.4) with

parameters oq, . .., ao,_1 € 1 distributed according to
- 1 2n—1 - 2n—1 N N
dE%V”B) - H (l_a?)ﬁ(2n—j)/4—1 H (1—04j)a+1_’8/4(1+(—1)j+1Oéj)b+1_ﬂ/4eTrV(E)dOzj,
3n(V, B) j=1 j=1
and agy, = —1, here 3n(V, B) is the normalization constant. Then all the eigenvalues of E come

in pairs, meaning that if €% is an eigenvalue, then also e~ is one. Moreover, under the change

of variables cos(0;) = x;, the x;s are distributed according to (5.4]).

Remark 5.3. We notice that the previous proposition is not stated in this way in [21], but this
equivalent formulation is more useful for our purpose.

Also in this case, we are interested in the high temperature regime for this ensemble. Specif-

~ Pt B
ically we consider the situation § = % = %, and a = b= -1+ g, in this regime dPSY;")
reads

v,22 1 . ,
dPS,n ) - 7 (v B [lwi— i [Ja- ) (L4 ay) e V@day,  (5.5)
Zy (V7 ﬁ) i<j j=1
B
and dIB%(zV’") becomes
(V§> 1 2n—1 i 2n—1
By " = —— < [ (1 —a2)(=5) 1 T ™V day .
s () B
n ‘n J=1 7=1

We mention that this particular regime was considered in |1533|. In these papers the authors
computed the density of states for this ensemble in the case V = 0.

We can apply |16 Corollary 1.3] to to obtain a large deviations principle for the em-
pirical measure pu,(F) = %2?21 dz; Specifically, we deduce that

Proposition 5.4. For any continuous V' : 1T — R. The law of the empirical measures p,(E)

v,z : L o : :
under dIF’Sn w) satisfies a large deviations principle at speed n in the space P(I), with a good
rate function p — Q‘B/(u) given for u absolutely continuous with respect to Lebesgue measure,

and with density 3—‘;, by Qg(,u,) = qg(u) — inf epm ng/(u), where

00 = [ (V@) n(t+0) m0-0)aute)-25 [ mae-san(ehautn+ [ 10 (L) duto)

(5.6)

IxI

and Q‘é(,u) = +0 otheruwise.
We notice that the arguments in Section [3] and [4] can be applied also in this context with
V.28 V.28
dPS’Ti w) in place of d]P’éJ’VN ), and dIP)g:]’b;, in place of dIP’X’g n- Hence, we deduce the following
result

Theorem 5.5. Consider the sequence of measures j,(E) (5.3) under the law d}P’g’gn (5.2), then

pn(€) == vy -

Moreover, yg 1s absolutely continuous with respect to the Lebesque measure, and it reads

vy = ds(Buy) .
where ug 1s the unique minimizer of the functional q/g (15.6]) .

eq:JbE_ht

eq: functi
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Finally, it is worth to mention that in the case V(x) = 0, it is possible to compute explicitly
the densities of states for both the Jacobi beta ensemble at high temperature and for the Schur
flow [15,23].

A Technical Results

In this appendix we collect the proof of all the technical results that we exploit along the proof
of the main theorem. For reader convenience, we report here the statement of Lemmas.

Proof of Lemma [2.2]

Lemma A.1. For any A, B unitary matrices of size N x N, we have

e For f with bounded variation,

[
[

rank(A — B)

<|Iflsv N ;

o For f Lipschitz,

1
< HfHLipN Z (A= B)i;l
2%

As a consequence,

A(u(A). p(B)) < min {"’“(;3‘3) e Bm} -

27‘7

Proof. The first point is a consequence of the fact that the eigenvalues of A and B interlace on
the unit circle.

First, we order the eigenvalues A\1(A),...,AN(A), A\ (B),...,An(B) of A, B in such a way
that

—m <arg(Ai(A)) <...<arg(Av(4)) <,

and analogously for B.

Write B = (Iy + (B — A)A™YA and set U := Iy + (B — A)A™!. One checks that U is
unitary, B = UA, and that rank(U — I) = rank(B — A) =: r. By |5} section 6, equation (85)],
we deduce that for 1 < j < N

arg(Ajr(4)) < arg(X;(B)) < arg(Aj4r(4)). (A1)

This means that \;j(B) lies on the anticlockwise arc (arg(\;j—(A)),arg(\j1r(A4))) of the
circle. If 7 —r < 0 we identify A\;_, with A\;_,x, and analogously for the case j +r > N.
It is a classical result (see [4]) to deduce from (A.1]) that

r r

[ rauna = [ sauni| < 1s1ovg; - 5.

for any f: T — R such that ||f||py < 1. As a consequence, we obtain the first point.
The proof of the second point is the same as in the symmetric case, see [19, (16)]. Indeed, we
only use the fact that a normal matrix is unitarily diagonalizable. O

interlacing
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Proof of Lemma

Lemma A.2. Let N = 2k be even and A be a N x N matriz. Then,
d Z” [(LA)i ] < 221',]' |Aijl,
* Z” [(AM)5| < 2Zi,j | Aijl,

where M, and L are defined in .

Proof. We will just prove the first point, since the proof of the second one follows the same lines.
ForO0<li<k—1and1<j< N, consider

(LA)o1415 = Qo1 Aty + pat1Aogo; and  (LA)yg2j = par1Aoiiij — aorpoAoigo).

Summing over i, j,

k-1 N k-1 N
DULAY = > > (LA 115] + (LA 2142, < Z D Agin sl + [Aiga gl = 2 1Al
%, =0 j5=1 =0 j=1 i,J
where we used that |o;|, p; < 1. O
Proof of Lemma [3.8

Lemma A.3. Let oy, and oy, 1y defined by equation (3.6). Define p, = /1 — |, |?, and p,1p =

A1 = |ayin)?, then the following hold
1.

, almost surely,

oy — posn| < , almost surely,

(X?+ X2 + Yg)%

where X1, Xo ~ N(0,1), Y ~ xp are all independent.

ii. define Z, = ——— and a(h) = —11In(h) + 1, then there exists a constant K
(XP+XZ+Y}7)2
independent of h such that
sup E[exp(a(h)Zp)] < K. (A.2) |eq:sup_boun
O<h<1

Proof. First, we focus on claim i.. We recall that oy, a,, are defined by

X1 +1Xy X1 +1Xy
o= . Quip= )
X+ XS YY) T+ XA YE + YD)

From the previous equation, we deduce that

1
Gy — ] = | X1 + i Xo| ( X2+ X2+Y2, >2
v — Uyt - -

(X2+ X2+Y2,): X{+X3+Y7, +Y)
1
B | X1 +iXo| - (1_ Y2 )2
(X2+ X2+Y2,): XP+ X3+, +Y

( X? + X3 )2 Y;,
CA\XTH XS (X2 X24 Y2, 4+ YPR)E
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where we used in the previous line that for 0 < a < b we have

Vb<vVb—a++a (A.3)

2
Y, b = 1. The last term is bounded by the announced bound.

h
XZ2+X24Y2 [ +V2
One can proceed analogously for |p, — p,45| obtaining that

and we took a =

[p(ewsn) = plaw)| = V1 —layn? = V1= < VV]ew? — |awsnl?

X2+ X3 X2+ X3+Y2, '
= — g T
XP+X3+Y7, XP+XF+Y7 0 +Y) (X244 X2+Y2, +V2)2

where we used again equation with @ = 1 — |ay|? and b = 1 — |a, 1|2, Thus, point 1.
is proved.

To prove point ii., we find explicitly the law of Z;. Thus, we consider a continuous function
f:(0,1) - R, and we compute:

@2+ a34y>
j f Y T |e” = Y"1 daady .
R2 xR (;v% + 23+ yz) 2

Performing the change of coordinates (u,v) = m(m, x2), which is the same one that
1 2
we performed in Lemma [3.5] we obtain that

a3+ a3 4y>
J‘ f Y 1 e . ; yhildxldxgdy
R2xR (.CU% + ZL‘% + y2) 2

[T
DxR4

e 20-w?=%) yhHldydud
(1—u?—02)2 Yy Yy

Vi-uZ—v?t=y J
]DXR+

h 2
f (\/ 1—u?— v2> (1- u? — 1)2)571 e~ Tth 1 dududt .

We can now explicitly compute the integral in ¢t. Moreover, we can express the remaining part
of the integral in polar coordinates; namely, we apply the change of variables u = pcos(6),v =
psin(f), obtaining that:

J f (\/ 1—u?— U2> (1- u? — 1)2) 31 e_éthﬂdudvdt
DxR4
1
— 2n2fT (Z ¥ 1) L pf(VT= ) (1- )
2

_ =w 1
T ot <f2l + 1> f f(w)w"tdw,
0

here I'(z) is the gamma function (3.5). Thus, in order to obtain the estimate (A.2)), we have to
deduce an upper bound for

ldp

SéeaUﬁu%Uhfldu)
sup

1
0<h<1 So wh=1dw
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For any 0 < h < 1, we can explicitly compute the denominator as

1
1
J whdw = 7 (A.4) |eq:denomina

0

Moreover, we can give an upper bound on the numerator as

1 _ a(h) 1 1 a(h)
a(h)w h—ld a(h):'w—r 1 j r h—ld _ j r h—ld J r, h—1
e w w —_— e'r T e'r r+ e'r'dr
Jo a(h)h 0 a(h>h 0 1

1 1 1 a(h) e ca(h)
< 3 < .
(k) (ejor dr+f1 e"dr a(h)hh+a(h)h
(A.5) |eq:numerato

Combining (A-4)-(AZF), with our choice of a(h) = —31In(h) + 1, we deduce that there exists a
constant K independent of h such that (A.2) holds.

Proof of Lemma [4.3]

Lemma A.4. Let M[‘; = (Jg,/)_l({()}) be the set of minimizers of JX. Then,  — Mg is
continuous in the sense that for all € > 0, there exists 6 > 0 such that for all 0 < h < 0,
M,g’/+h c (Mg)/)e, where for A < P(T) we denote A* = {pne€ P(T) | d(u, A) < €}.

Proof. Let ¢ > 0. We are going to show that for h > 0 small enough, we have

— inf JY., <0,
o)
which will ensure that Jgﬂrh > 0 on [(Mg)s]c, thus [(Mg{)s]c - [(M%/Jrh)]c, and hence the

conclusion. .
By the large deviations principle for (un)N even under ]P’X’Lﬁ ~» Corollary since [( MX)E] is

open, we have

1 c
= B0 T < Hmint 5 PR (@) € [(0)])
B

o]
= lim inf N lnIP’X’gj\,h (d(un(E), MX) > ¢)

N even

1
< limsup + In PR (AN (€), MY) =€) .

N even

Since for any positive h and a € DY H;-V:l(l — |ej*)" < 1 ,we deduce that for any A < DV

1 V,B+h 1 ZyM(V,B) V.8
P ’ < _ P 5. S S A )
N In <PAL,N (A)) N In ZﬁvL(‘/, B + h) +1In (PAL,N(A)) ’
we recall that PZ’I/?, y is defined in ([1.6).
Applying the previous inequality in the case A = {d(un (&), M g/ ) = €}, we conclude that

1 ZJL(V, B)
. 1% . NV, V.8 1%
[ué?ff]c Tpan < Basup 3 (ln (wav, B+ h)) 0 (BAE vl (€). M) > 5))> '

From Corollary we deduce that there exists a positive constant ¢, independent of h, such
that
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lim sup IPALN(d(,uN(E),Mé/) >¢)) < —_ inf J/X < —c.
Voo N [T

Thus, to conclude we have just to prove that the function g(8) = limy_,q % In (Z]’é,L(V,B)) is
continuous in . Actually, we prove that this function is convex in 5. Let 1/p + 1/¢ = 1, and
Bi1, B2 € Ry then

zit (V.2 ) - fDNH 1 JayP) 3 exp (- TRV (€))) P

- fmﬂ“ o) e (- (5 1) mivien) ) e

1 1
Zy" (V. B1)» ZRE (V. Ba)e

where in the last inequality we used Holder inequality. This implies that

B B 1
g (p + q) 2; 9(B1) + 9(52)

thus g(B) is convex, and so continuous, for 5 > 0. We can now choose h is such a way that

1 Zy™(V, B) >
limsup —In [ -2~ )| <¢,
VPN <Z]<‘,L(V, B+ h)

so we obtain that
inf JY , >0.
)]
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