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Abstract 

Light pollution constitutes a major threat to biodiversity by decreasing habitat quality and 

landscape connectivity for nocturnal species. While there is an increasing consideration of 

biodiversity in urban management policies, the impact of artificial light is poorly accounted for. 

This is in a large part due to the lack of quantitative information and relevant guidelines to limit 

artificial light’s negative effects. This study investigated the impact of light pollution on bat 

activity in three large cities while comparing two sources of information on artificial light: the 

location of streetlights and nocturnal pictures taken from the International Space Station (ISS). We 

tested the relevance of both sources of information by testing 20 different light variables based on 

either source of information. We used citizen science data to model the activity of Pipistrellus 

pipistrellus, a species considered “light tolerant”, in response to these variables. Our results show 

that at the city scale, P. pipistrellus activity is negatively impacted by light pollution whatever 



light variable was used. This detrimental effect was better described by the variables based on ISS 

pictures than those based on the location of streetlights. We built this methodology with low data 

requirement so it can be easily reproduced and used in urban planning. We believe it could help 

take the impact of light pollution into consideration and promote a biodiversity-friendly 

management of artificial light

1 
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1. Introduction 2 

Urbanization is characterized by an increase of impervious surfaces (McKinney, 2002) but also 3 

by the emission of environmental stressors such as chemical, noise, and light pollution (Isaksson, 4 

2015). Amongst these pollutants the least understood, in terms of impacts on species and 5 

ecosystems, is light pollution (Gaston, Visser, & Holker, 2015; Hölker, Moss, Griefahn, & 6 

Kloas, 2010), i.e. the emission of artificial light that alter the natural patterns of light and dark in 7 

ecosystems (Longcore & Rich, 2004). The modification of the natural day/night rhythm can have 8 

considerable impacts on ecosystems (Navara & Nelson, 2007) especially as nocturnal species 9 

represent 30% of vertebrates and more than 60% of invertebrates (Hölker, Wolter, Perkin, & 10 

Tockner, 2010). In recent decades, light emissions increased globally at an average rate of 6% 11 

per year (Hölker, Moss, et al., 2010) and currently, 88% of Europe experience light-polluted 12 

nights (Falchi et al., 2016). Moreover, there is a shift in lighting technologies from yellow light 13 

sources (e.g., high- and low-pressure sodium vapor lamps) to broader-spectrum white light 14 

sources with a higher proportion of blue wavelength (e.g., metal halide and light emitting diodes) 15 

that have a higher energy efficiency (Gaston, Visser, & Holker, 2015). This change will most 16 

likely result in a global increase in short wavelength (i.e. blue light) emission (Falchi, Cinzano, 17 

Elvidge, Keith, & Haim, 2011) and might have major impacts on nocturnal biodiversity. 18 

 19 

A green infrastructure policy was adopted by the European Union to preserve and promote 20 

ecological corridors and landscape connectivity. However the green infrastructure policy does 21 

not account for the impact of artificial light. Thus the corridors designed following this policy 22 

might be ineffective for nocturnal species. Taking into account light pollution’s effects on 23 

nocturnal species is crucial to design biodiversity-friendly urban lighting plans. 24 
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Recommendations to mitigate the negative impacts of artificial lighting on biodiversity are 25 

scarce with only few studies proposing possible local measures (e.g., Azam et al., 2018; Rydell, 26 

Eklöf, & Sánchez-Navarro, 2017). More quantitative information on the impact of artificial light 27 

is needed to be able to design a city’s lighting plan preserving some dark areas that can be used 28 

as habitats and corridors for nocturnal biodiversity. 29 

 30 

Due to their nocturnal lifestyle, bats are good model species to study the impact of artificial light. 31 

European bats are long-lived insectivorous species that have great potential as bio-indicators 32 

partly because their population trends tend to reflect those of lower trophic levels species such as 33 

arthropods (Jones, Jacobs, Kunz, Willig, & Racey, 2009; Stahlschmidt & Brühl, 2012). Some bat 34 

species can live in urban areas and are hence directly confronted to light pollution. For instance, 35 

species such as Pipistrellus spp., Plecotus spp., Rhinolophus ferrumequinum, R. hipposideros, 36 

Myotis daubentonii, and Myotis myotis often use man-made structures as breeding roosts and can 37 

live in built areas (Marnell & Presetnik, 2010; Simon, Hüttenbügel, & Smit-Viergutz, 2004). In 38 

addition, since all bat species are protected at the EU level (Council Directive 92/43/EEC, 1992), 39 

they represent one of the few cases of protected species living within urban environments. 40 

 41 

Light-sensitive species such as Rhinolophus and Myotis species are negatively impacted by 42 

artificial lighting through a decrease of their fitness (Boldogh, Dobrosi, & Samu, 2007) and a 43 

loss and fragmentation of their habitat (Stone, Jones, & Harris, 2009, 2012). Yet species such as 44 

P. pipistrellus, P. Kuhlii, and Nyctalus leisleri forage in urbanized and illuminated areas 45 

(Bartonicka & Zukal, 2003; Gaisler, Zukal, Rehak, & Homolka, 1998; Rainho, 2007). These 46 

three species are qualified as light tolerant because they prey on insects that are attracted and 47 
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trapped within the halo of streetlights (Eisenbeis, 2006; van Langevelde, Ettema, Donners, 48 

WallisDeVries, & Groenendijk, 2011). But although the short-term installation of streetlights on 49 

a previously dark flying route did not change Pipistrellus species activity level (Stone et al., 50 

2012), a study showed that the activity of P. pipistrellus was similar or lower in lit areas 51 

compared to dark areas in environments with scattered vegetation (Mathews et al., 2015) and 52 

another that, P. pipistrellus will not cross brightly lit gaps while flying along a hedgerow (Hale, 53 

Fairbrass, Matthews, Davies, & Sadler, 2015). While considering a large scale dataset, collected 54 

at a national scale across 8 years and mostly looking at permanent street lighting, Azam et al. 55 

(2016) showed that bat activity was negatively affected by artificial light even for species 56 

described as light tolerant. Hence, overall it would seem that the global effect of light pollution 57 

might actually be deleterious even to light tolerant species.  58 

 59 

Assessing the impact of light pollution on biodiversity first requires the ability to measure it. 60 

This is not straightforward as artificial light is composed of several measurable characteristics 61 

such as intensity, spectral composition, or flux directionality. As street lighting is the most 62 

persistent, aggregated, and intense source of lighting in urban areas (Gaston, Davies, Bennie, & 63 

Hopkins, 2012), the location of streetlights can be a relevant source of information. Streetlight 64 

location data exist for most large cities and are easy to understand, however they do not contain 65 

information on the light characteristics or on private lighting which could have a substantial role 66 

in light pollution (Gaston et al., 2012). Remote sensing data, such as aerial or satellite pictures 67 

are another information source and include all types of lighting (public and private) and also the 68 

skyglow (Kyba & Hölker, 2013). Aerial pictures can have a spatial resolution up to 1 m (Hale et 69 

al., 2013; Kuechly et al., 2012), but are seldom available as they are very expensive to produce. 70 
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DMSP OLS and VIIRS Day-Night Band are grey-scale satellite images of the surface of the 71 

Earth at night (https://www.ngdc.noaa.gov/eog/) but due to their coarse resolution they cannot be 72 

used for city-scale land management studies (Fig. 1). Another remote sensing information source 73 

are the pictures taken from the International Space Station (ISS ; https://eol.jsc.nasa.gov) that 74 

have started to be geo-referenced by the citizen science program Cities at Night 75 

(http://citiesatnight.org ‒ Sánchez De Miguel et al., 2014). ISS pictures can reach a spatial 76 

resolution of 10 m, contain four spectral bands in the visible range (one red, two green, one 77 

blue), and each pixel’s intensity is proportional to the emitted light (Fig. 1). There are a variety 78 

of sources of information on artificial light with different spatial resolution, extent, and 79 

information on light characteristics. Ground-based and remote sensing data sources both have 80 

advantages and drawbacks (presented in Table 1) and represent an opportunity to better 81 

understand the impact of artificial light on biodiversity as well as a challenge for their 82 

application to an ecological and land management context (Kyba et al., 2014). 83 

 84 

This study investigated the impact of light pollution on bat activity at the city scale comparing 85 

two sources of information on artificial light: the location of streetlights and ISS nocturnal 86 

pictures. We chose these two sources of information because their resolution was coherent with 87 

the scale of our study, they were easily accessible, and their comparison may bring insights on 88 

which source of information is the most adapted to measure the impact of light pollution on bats. 89 

Our aims were (i) to evaluate how light pollution affected P.pipistrellus activity at the city scale, 90 

(ii) to determine which source of information on artificial light was the most relevant to measure 91 

the effect of light pollution and (iii) to define a reproducible methodology that could be used in 92 

land management to make recommendations for a biodiversity-friendly lighting planning and 93 

https://www.ngdc.noaa.gov/eog/
https://eol.jsc.nasa.gov/
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hence keeping low data requirements. To achieve these goals, we examined how P. pipistrellus 94 

activity was affected by artificial light within three large cities of using a panel of light variables 95 

based on either source of information. Although P. pipistrellus is considered a light tolerant 96 

species, we expected a negative impact of light pollution on its activity as at the national scale 97 

the average radiance had a negative effect (Azam et al., 2016). 98 
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2. Methods 99 

2.1 Study sites 100 

To address our main research questions we based the analysis on bat activity and environmental 101 

data from three large and highly urbanized cities of France: Paris, Lille, and Montpellier (Fig. 2). 102 

These three cities are amongst the most light-polluted areas of France with nights 20 to 40 times 103 

brighter than natural illumination in Lille and Montpellier and over 40 times brighter in Paris 104 

(Falchi et al., 2016). Paris is the largest of the three cities with 105 km2 (Fig. 2.A). There are few 105 

green areas in Paris’ center but there are two large parks on the outskirts (Vincennes on the East 106 

side and Boulogne on the West side) which represent 17 km2 in total. Tree cover represented 107 

21% of Paris’ surface however, when not including the two large parks, it only represented 12%. 108 

Montpellier and Lille have a smaller surface than Paris (respectively, 57 and 40 km2 – Fig 2.B 109 

and 2.C). Only 14% of the surface of Lille corresponded to vegetation whereas Montpellier was 110 

the greenest of the tree cities with 21% of vegetation distributed in small patches across the city. 111 

The three cities had a similar overall density of streetlights per square kilometer (549 SL/km2). 112 

 113 

2.2 Bat monitoring 114 

Bat activity recordings were taken following the recommendations of the French national bat-115 

monitoring scheme ‘Vigie-Chiro’ (http://vigienature.mnhn.fr/page/vigie-chiro), a citizen-science 116 

program running since 2006 and coordinated by the National Museum of Natural History of 117 

Paris (France). All recordings occurred between June and October, the seasonal peak in bat 118 

activity. Recordings were only carried out when weather conditions were favorable (i.e. no rain, 119 

wind speed below 7 m/s, temperature at sunset above 12°C). 120 

http://vigienature.mnhn.fr/page/vigie-chiro


9 

 

 121 

The data for Paris and Montpellier were provided by the French bat-monitoring scheme 122 

(http://vigienature.mnhn.fr/page/vigie-chiro/page/protocoles) following two different protocols. 123 

The first was the pedestrian protocol for which volunteer surveyors recorded bat activity for 6 124 

minutes at 10 selected locations within a 4 km2 area. The volunteers began their sampling 30 125 

minutes after sunset. In Paris, volunteers used a time expansion detector (Tranquility Transect 126 

Bat detector, Courtpan Design Ltd, UK) and in Montpellier, they used a SM2BAT detector 127 

(Widlife Acoustics Inc). The second protocol was the full-night protocol for which volunteers 128 

placed a SM2BAT detector at a given location 30 minutes before sunset and let it until the 129 

morning (30 minutes after sunrise) to record bat activity all night. Data for Lille were recorded 130 

by authors following the full-night protocol and using SM2BAT detectors. In Paris, 923 131 

recordings lasting 6 minutes were taken at 282 different points following the pedestrian protocol 132 

between 2008 and 2013. In Lille, each of the 73 points was sampled once in 2015 using the full-133 

night protocol. In Montpellier, 82 points were sampled with the full-night protocol and 71 points 134 

sampled with the pedestrian protocol (2011 and 2012). To have a similar data sampling unit 135 

among cities, we only took into account recordings of the full-night protocol occurring during 136 

the first two hours of the night (beginning 30 minutes after sunset) and split the recordings into 6 137 

minutes time slots. Then, to avoid pseudo-replication, we calculated the mean activity per point. 138 

When considering entire nights of recordings, bat activity was fairly stable throughout the night, 139 

slightly decreasing toward the end of the night (see Appendix A – Fig. A.1). 140 

 141 

http://vigienature.mnhn.fr/page/vigie-chiro/page/protocoles
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2.3 Bat acoustic data analysis 142 

All bat calls recorded in Paris and Montpellier were identified by volunteers and then validated 143 

by experts using Syrinx software version 2.6 (Burt, 2006). For data recorded in Lille, we used the 144 

software SonoChiro (Bas et al. 2013) to automatically classify the echolocation calls to the most 145 

accurate taxonomic level possible. All ambiguous calls were then checked manually using 146 

Syrinx software. As it is impossible to identify individual bats from their echolocation calls, we 147 

calculated bat activity as the number of bat passes per species. A bat pass is defined as the 148 

occurrence of a single or several echolocation calls of the same bat species during a 5-second 149 

interval (Millon, Julien, Julliard, & Kerbiriou, 2015). Although bat activity did not allow us to 150 

assess bat abundance, it reflected the suitability of the habitat in terms of food resource. P. 151 

pipistrellus and P. nathusii were the only bat species detected in the three cities (Appendix A - 152 

Table A.1). However the number of bat passes of P. nathusii was very low in Paris and Lille 153 

(respectively 6 and 37 bat passes) hence we only performed the analysis on P. pipistrellus. 154 

 155 

2.4 Light pollution variables 156 

We used two sources of information for light pollution. Firstly, we used the location of 157 

streetlights. Data for Montpellier were accessible for free at http://data.montpellier3m.fr/ and 158 

data for Paris and Lille were provided by the private companies managing the cities’ public 159 

lights (Engie Ineo for Lille and Evesa for Paris). Secondly, we used nighttime ISS pictures from 160 

the Cities At Night program. The images were corrected for linearity of the sensor, vidgenting, 161 

and calibrated absolutely using reference stars on other lenses and relatively to the VIIRS image 162 

of May 2014 using synthetic photometry (Sánchez De Miguel, 2016).  There was no atmospheric 163 

http://data.montpellier3m.fr/
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correction. The value of each pixel corresponded to the radiance which is the radiant flux 164 

reflected or emitted by a given surface (units   nW/cm2/sr/A).  165 

 166 

A study investigating the impact of light pollution on bat at different scales showed that the best 167 

spatial scale to study the impact of artificial light on P. pipistrellus was 200 m (the smaller 168 

spatial scale tested; Azam et al., 2016). Thus we defined our light variables within a 200 m 169 

buffer but also within a 100 m buffer to explore if a smaller spatial scale could bring further 170 

insights. We calculated several light variables based on either source using QGIS 2.8.3 (QGIS 171 

Development Team, 2017). Using the streetlight location, we calculated the distance to the 172 

closest streetlight from each recording point, the number of streetlights within a 100 m and a 200 173 

m buffer around each recording point, and the weighted density of streetlights within the same 174 

buffers (the sum of the multiplicative inverse of the distance to streetlights within the 100 m and 175 

200 m buffers). For several species, the impact of a streetlight seems to be detectable within a 25 176 

m distance (Azam et al., 2018) so we built two more variables based on this information: the 177 

presence of a streetlight within 25 m of the recording point (binary variable) and the proportion 178 

of surface impacted by artificial light within a 100 m and a 200 m buffer. As Azam et al. (2018) 179 

found that light had an effect up to 25 m away from a streetlight, we considered that all surface 180 

within 25 m of a streetlight was impacted by light pollution. We used the four color bands (one 181 

red, one blue, and two green bands) that compose the ISS pictures separately and calculated two 182 

variables for each color band: the pixel value at each recording point and the mean pixel value 183 

within a 100 m and a 200 m buffer around the recording point. Hence in total there were 8 184 

variables based on the location of streetlights and 12 based on the ISS pictures (Table 2). All 185 

variables were calculated using the same 60 m x 60 m grid in order to have the same resolution. 186 
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For the analysis, we removed recordings taken at four points considered as outliers because of 187 

their very high radiance value due to a singular urban context (e.g., Eiffel Tower illuminations ; 188 

n=12; 1% of the dataset). Note that similar results were obtained when including these 189 

recordings in the analysis (see Appendix B). 190 

 191 

2.5 Environmental and meteorological variables  192 

Bat activity is influenced by environmental conditions both at a fine (i.e. flight path) and 193 

intermediate (i.e home range) scale hence we included several variables to account for their 194 

effect using BD TOPO data (IGN; Table 2). Several studies identified aquatic habitat as a 195 

favorable habitat for bats (Kaňuch et al., 2008; Rainho & Palmeirim, 2011; Russo & Jones, 196 

2003) thus we calculated the distance to the closest water source(in meters). In addition, as the 197 

distance and the extent of wooded areas are positively correlated with bat presence (Boughey, 198 

Lake, Haysom, & Dolman, 2011), we calculated the distance to the nearest tree cover (in 199 

meters), and the proportion (%) of tree cover within a 200 m buffer. A set of complementary 200 

variables were used as fixed effects to control for specific recording conditions: the method 201 

(pedestrian or full-night protocol), the year (Kerbiriou et al., 2018), the Julian day and its 202 

associated quadratic term as bat activity is expected not to be linear across the study period and 203 

include a peak when young start to fly (Kerbiriou et al., 2018; Newson, Evans, & Gillings, 204 

2015), and meteorological conditions at sunset (temperature C°, wind speed m/s, and humidity 205 

%; Ciechanowski, Zając, Biłas, & Dunajski, 2008; O’Donnell, 2000). 206 

 207 
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2.6 Bat activity modeling 208 

We built statistical models to test the effect of light pollution on P. pipistrellus activity (response 209 

variable) while accounting for environmental and meteorological parameters. To outline a 210 

general pattern and build robust models, data from the three cities were analyzed as a single 211 

dataset. Several light variables were correlated with one another (Spearman’s |r|>0.7; Dormann 212 

et al., 2013; see Appendix C) thus we built a separate full model for each light variable (i.e. 20 213 

models). We ensured that all the variables used within the same model had a Spearman’s rho 214 

between -0.7 and 0.7. As all variables showed a VIF value <3 (Heiberger & Holland, 2004) and 215 

as the mean of VIF values <2 (Chatterjee & Bose, 2000) there was no obvious sign of 216 

multicollinearity. 217 

We performed Generalized Linear Mixed Models (GLMM ; glmmTMB 0.2.0 ; Brooks et al., 218 

2017) using bat activity as the response variable and a light variable, environmental variables 219 

and, meteorological variables as fixed effects. According to the nature of the response variable 220 

(i.e. count data with over-dispersion) we used a negative binomial error distribution with a log 221 

link (Zuur, Ieno, Walker, Saveliev, & Smith, 2009; See Appendix A – Fig A.2). Recording 222 

points were distributed within the three cities and sometimes replicated hence we included the 223 

city as a fixed effect and a random effect on the recording point. Explanatory variables were 224 

standardized to facilitate comparisons between estimates. We added an interaction between the 225 

light variable and the proportion of vegetation as a study found a difference in the responses of 226 

P. pipistrellus activity to the presence of streetlights depending on the local tree cover (Mathews 227 

et al., 2015). The full models were written as follow: 228 

 229 
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𝐵𝑎𝑡 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ~ 𝑙𝑖𝑔ℎ𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ∗ 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 + 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛230 

+  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑤𝑎𝑡𝑒𝑟 + 𝐽𝑢𝑙𝑖𝑎𝑛 𝑑𝑎𝑦 + (𝐽𝑢𝑙𝑖𝑎𝑛 𝑑𝑎𝑦)2 + 𝑌𝑒𝑎𝑟 + 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒231 

+ ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦 + 𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑 + 𝑟𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙 + 𝑐𝑖𝑡𝑦232 

+  (1|𝑟𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡) 233 

 234 

Where light variable was one of the 20 light variables listed in Table 2. Hence we had 20 full 235 

models. For each full model, we ran all possible combinations (subsets) of fixed effects (MuMIn 236 

1.15.6 ; Barton, 2013). Among each ensemble of candidate models (one full model and its subset 237 

models), we selected the best model using Akaike’s Information criterion (AIC; Burnham & 238 

Anderson, 2002). However, the AIC tends to overestimate the number of parameters in a model 239 

by adding uninformative variables that do not improve fit (Guthery, Brennan, Peterson, & Lusk, 240 

2005) hence, amongst the best models (i.e. within a ΔAIC of two of the minimum AIC), we 241 

selected the simplest model that had significant parameters. Thus, at the end of the selection 242 

process, we had 20 best models, one per light variable. We compared these 20 models using the 243 

AIC. To explore the possible nonlinear effect of the light variable, we tested a GAMM (mgcv 244 

1.8-16 ; Wood, 2011) model with the same structure as the overall best model (lowest AIC) with 245 

a smoothing effect on the light variable. The degree of smoothness is left to be estimated as part 246 

of the fitting. All analyses were conducted using R 3.3.3 (R Core Team, 2017). 247 

 248 
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3. Results 249 

3.1 Bat acoustic data analysis 250 

A total of 20,599 bat passes of P. pipistrellus were recorded at the 508 recording points (1,205 in 251 

Paris, 7,035 in Montpellier, and 12,359 in Lille; see Appendix A – Table A.1 for details on all 252 

the species recorded). P. pipistrellus represented 47% of the overall bat passes recorded (86% in 253 

Paris, 24% in Montpellier, and 98% in Lille) and was detected in 48% of the recordings (27% in 254 

Paris, 40% in Montpellier, and 98% in Lille).  255 

 256 

3.2 Bat activity modeling 257 

We selected one best model for each light variable (Table 3). After model selection on the full 258 

models, for five models, the light variable was not retained and the best model was the one 259 

without light variable. Three of the light variables not retained were based on streetlight location 260 

(streetlight distance, streetlight presence and streetlight density in a 100 m radius) and two on 261 

ISS pictures (pixel value for the Red 1 and Green 3 color band). In all models with a light 262 

variable, P. pipistrellus activity was negatively affected by light. Seven out of the eight models 263 

containing a light variable based on streetlight location did not perform better than the model 264 

containing no light variable. The three models that performed the best (ΔAIC<2) were based on 265 

mean values of the ISS picture in a 100 m or 200 m radius. Globally, among the 15 models 266 

where a light variable was retained, all the models containing a light variable based on the ISS 267 

pictures performed better than models containing a light variable based on the streetlight 268 

location. For six models, the interaction between the light variable and the proportion of tree 269 

cover was retained. Within these six models, five had a light variable based on one of the green 270 

color band of the ISS picture and one on the red color band. The interaction showed that for low 271 
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proportions of tree cover, the radiance level had a negative effect on bat activity whereas for high 272 

proportions of tree cover, the radiance level had a positive effect on bat activity (Fig. 3). 273 

However no recording were taken at points combining high levels of vegetation and high level of 274 

radiance. The GAMM model built with the same structure as the best overall model with a 275 

smooth function on the light variable (mean pixel value of the blue color band in a 100 m radius) 276 

showed that there was no nonlinear effect of the light variable. 277 

 278 

After model selection, all the best models contained the same environmental and meteorological 279 

variables except for the distance to tree cover that was not retained in six models. The distance to 280 

water and to tree cover negatively impacted the activity of P. pipistrellus and the proportion of 281 

tree cover had a positive effect on P. pipistrellus activity (Appendix D – Table D.1) as expected. 282 

The Julian day and its quadratic term were retained, reflecting the fluctuations of bat activity 283 

along the seasons (see Appendix D – Fig. D.1). The wind speed had a positive effect on P. 284 

pipistrellus activity. Wind speed usually has a negative effect on bat activity when considering 285 

high wind speed. Here wind speed were always low with 91% of data taken for wind speed 286 

below 5.5 m/s.   287 
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4. Discussion 288 

We found that, whatever the light variables tested, P. pipistrellus activity was negatively affected 289 

by artificial light at the city scale. This result is coherent with large scale studies (Azam et al., 290 

2016; Mathews et al., 2015) although numerous small scale studies showed a local positive effect 291 

of artificial light on light tolerant bat species (e.g., Azam et al., 2018; Rydell, 1992). The models 292 

containing ISS picture based variables were better in terms of AIC than the models with 293 

streetlight location based variables showing that ISS pictures explain the effect of light than 294 

streetlight location for bats. The methodology we used to measure the impact of artificial light on 295 

bats had low data requirements and could be reproduced elsewhere as these data are available for 296 

most cities. Prediction derived from our models could be used to produce maps to identify 297 

favorable areas for bats that should be preserved and to work on landscape connectivity. 298 

 299 

The negative effect of light pollution on P.pipistrellus at the city scale suggests that the local 300 

foraging advantage streetlights can represent (Rydell, 1992) is outweighed by the global negative 301 

impact of artificial light.  Moths preyed on by bats are attracted to short wavelengths (blue) 302 

(Koh, 2008; van Langevelde et al., 2011) thus we could have expected areas with high values of 303 

radiance of the blue color band to be areas of high concentration of prey and consequently areas 304 

of high bat activity. But on the contrary, our results showed that high radiance values affected 305 

negatively the activity of P. pipistrellus irrespective of the color band used. The underlying 306 

mechanisms that drive the negative response of bats to artificial light are not clear. Rydell (1992) 307 

suggested that bats might avoid lit areas due to an intrinsic perception of increased predation 308 

risk. However the interaction between the proportion of tree cover and the radiance level showed 309 

that the effect of light on bat activity could be positive in areas with important tree cover 310 
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although this combination was not present in our study areas. Similarly, Mathews et al (2015) 311 

found that P. pipistrellus activity was higher in lit than dark environments when there was an 312 

important tree cover although in open areas, light had a negative effect on this species’ activity. 313 

Hence it is possible that the tree cover reduces the risk of predation linked to lit areas but also 314 

that streetlights close to wooded areas attract more insects and therefore are particularly 315 

advantageous foraging grounds. Despite the negative effect of artificial light, P.  pipistrellus is 316 

still present in urbanized and strongly illuminated areas. This species is more resilient to 317 

anthropogenic pressures than other species that are seldom found in urban landscapes. Hence 318 

species that are more sensitive to light pollution might experience an even more detrimental 319 

impact highlighting the importance of including biodiversity in artificial lighting planning 320 

schemes. 321 

 322 

Surprisingly, the two sources of data on artificial light were weakly correlated (Spearman’s |r| = 323 

0.13±0.06, Appendix C). This absence of clear relationship between the two types of data is most 324 

likely due to the absence of information on private lighting such as monuments, university or 325 

shop lights in the streetlight location data although they can be a major source of illumination 326 

within cities. Moreover, location data do not inform on light characteristics (e.g., height, type, 327 

intensity) which determine the repartition and brightness of the light. Conversely, ISS pictures 328 

include both public and private lighting and are a measure the radiance due direct and reflected 329 

light emissions, including skyglow. The ISS pictures encompass the global level of radiance and 330 

hence might be a closer representation of what bats experience than streetlight location. 331 

Nevertheless, the streetlight density in a 200 m radius was informative and had a similar effect as 332 

ISS picture based variables. Hence ideally, using the mean pixel value of an ISS picture within a 333 
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100 radius would be best but if there is no picture available, streetlight location data can be 334 

useful. Moreover, if information on streetlight characteristics are available, this could further 335 

increase the explicative power of the ground-based data.   336 

 337 

We deliberately kept a low data requirement to allow our model to be reproducible although 338 

complex models using streetlights characteristics and light dispersion models have been 339 

developed to map cities nighttime light emissions (Bennie, Davies, Inger, & Gaston, 2014). Our 340 

goal was to construct a methodology using fairly simple variables and analysis to be applied to 341 

other cities as a management tool. Our model can be used to produce predictive maps of bat 342 

activity and to visualize areas where light pollution should be reduced. Furthermore, in addition 343 

to preserving dark areas, it is crucial to also consider the landscape scale through which this 344 

species move. Favorable habitat patches need to be connected to one another by corridors to 345 

sustain populations and allow for daily movement (e.g., foraging), seasonal movement (e.g., 346 

migration), and dispersion (i.e. gene flow). As artificial light can have a barrier effect on bats 347 

(Hale et al., 2015), it is important to evaluate its impact on landscape connectivity and our 348 

methodology could help map potential ecological corridors for bats at the city scale. Then, to 349 

adapt lighting at a fine scale, the information brought by studies on light types (Lewanzik & 350 

Voigt, 2017; Rowse, Harris, & Jones, 2016; Stone, Wakefield, Harris, & Jones, 2015) and 351 

spectrum (Spoelstra et al., 2017) could help target light sources that might have important 352 

impacts on bats. We found a linear negative effect of artificial light on bat activity, whereby 353 

increasing radiance was associated with a proportional decrease in bat activity. This relationship 354 

suggests that reducing lighting pollution will have a positive effect on bats. Moreover it was 355 

shown that even a slight decrease in artificial light intensity could greatly enhance the number of 356 
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dark patches necessary to nocturnal species (Marcantonio et al., 2015). With the development of 357 

adaptable lighting technologies in terms of flux directionality and light intensity, it seems 358 

feasible to decrease light intensity and limit trespass while still complying with socio-economic 359 

and security constraints (Gaston et al., 2012).  360 

 361 

Remote sensing data offer promising opportunities to account for artificial light impact in urban 362 

planning and their availability increases greatly with citizen-science initiatives such as Cities At 363 

Night (http://citiesatnight.org ‒ Sánchez De Miguel et al., 2014). Although some technical 364 

difficulties remain (need for location, calibration, and correction of the images) the technological 365 

advances in nocturnal remote sensing represent an opportunity to have a direct representation of 366 

the global artificial light emissions at fine resolutions. Thus citizen science programs of 367 

biodiversity monitoring and remote sensing imaging and interdisciplinary collaboration between 368 

ecologists and astrophysicists will undoubtedly help increase our understanding of light pollution 369 

and its impact on the environment.  370 

http://citiesatnight.org/
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Individual tables 

 

Table 1 

Comparison of the advantages and drawbacks of two sources of information on artificial light: 

ground-based data (GB; e.g.. streetlights location) and remote sensing data (RS, e.g., ISS pictures). 

  

Ground-

based data 

(GB) 

Remote 

sensing data 

(RS)  

Comparison 

Precision 

+ - 
GB data give the precise location of light 

sources whereas RS data give a global 

radiance value for a pixel      
Height perspective 

relative to bat flight 

height + - 

Streetlight heights (GB data) are closer 

to bats flight height whereas RS data 

give a radiance value as perceived from 

space     
Exhaustiveness 

- + 
RS data include all types of lighting 

whereas GB data only include public 

lighting     
Light characteristics 

- + 

RS data give information on the quantity 

and the spectrum of the light whereas 

GB data do not always include 

information on the light sources 

characteristics 
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Table 2 

List of all the variables used as explanatory variables to model bat activity. Each light variables were used in a separate full model and 

all environmental variables, meteorological variables and covariables were included in all full models. Variables based on the ISS 

pictures are defined for each color band, the red (Red 1), the two green (Green 2 and Green 3), and the blue (Blue 4). Variables with a 

(*) are defined for a 100 m and 200 m buffer. 

  Variable Description Units Reference 

LIGHT VARIABLES 

Streetlight location 

SL distance Distance to the closest streetlight m  
SL density* Number of streetlights within a given radius   

SL weighted 

density* 

Sum of the multiplicative inverse of the 

distance to streetlights within a given radius m-1  
SL presence Presence/absence of a streetlight within 25 m   

Impacted surf.* 

Proportion of surface within 25 m of 

streetlight in a given radius %  

ISS pictures 

Color band - pixel Pixel value of the ISS picture 

nW/cm2/sr/

A  

Color band - mean* Mean pixel value in a given radius 

nW/cm2/sr/

A  
ENVIRONMENTAL VARIABLES 

  

Dist. to water Distance to the closest water surface m 

Kaňuch et al., 2008; Rainho & 

Palmeirim, 2011; Russo & Jones, 

2003 

Dist. to tree cover Distance to the closest tree cover m Boughey et al., 2011 

Prop. of tree cover Proportion of tree cover within 200 m % Boughey et al., 2011 

METEOROLOGICAL VARIABLES 

  

Temperature Temperature at sunset °C  
Humidity Humidity at sundet % ? 

Wind speed Wind speed at sunset m/s ? 

COVARIABLES 
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Year Year of recording  ? 

Julian Day Julian day of recording  ? 

City City where the recording took place   

Recording point Identification of the recording point   

Method 

Recording method: fullnight or pedestrian 

protocol   ? 
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Table 3 

Selection of best models to explain bat activity using a light variable and best model without 

light variable. Estimates of the light variable and the interaction between the light variable and 

the proportion of tree cover (when retained in the model selection). After model selection on the 

20 full models, for five models, the light variable was not retained and the best model was the 

one without light variable. (**) indicates a p-value between 0.001 and 0.01; (*) indicates a p-

value between 0.01 and 0.05 and (.) indicates a p-value between 0.05 and 0.1. 

Light variable in the 

model 

Estimates 

AIC ΔAIC 

      

Light 

variable 

Light 

variable 

* Tree 

cover Weights 

Marginal 

R2 

Conditional 

R2 

Blue 4 - 100 -0.34 **     3331.3 0.0 0.26 0.33 0.62 

Green 2 - 100 -0.21 
 

0.25 . 3332.0 0.7 0.18 0.34 0.63 

Red 1 - 200 -0.16   0.27 * 3333.1 1.8 0.11 0.33 0.63 

Green 2 - pixel -0.13 
 

0.31 * 3333.6 2.3 0.08 0.33 0.63 

Green 2 - 200 -0.15 
 

0.24 * 3333.9 2.6 0.07 0.33 0.63 

Blue 4 - pixel -0.26 *  

 
3334.4 3.1 0.06 0.32 0.62 

Red 1 - 100 -0.31 *  

 
3334.5 3.2 0.05 0.33 0.62 

Blue 4 - 200 -0.26 *  

 
3334.8 3.5 0.05 0.32 0.62 

Green 3 - 200 -0.10 
 

0.27 * 3335.2 3.9 0.04 0.32 0.63 

Green 3 - 100 -0.06 
 

0.28 * 3336.3 5.0 0.02 0.32 0.62 

SL density - 200 -0.19 *     3336.6 5.3 0.02 0.31 0.62 

Impacted surf. - 200 -0.20 *     3336.8 5.5 0.02 0.31 0.62 

Impacted surf. - 100 -0.19 .     3337.0 5.7 0.02 0.31 0.62 

SL density - 100 -0.17 .     3337.2 5.9 0.01 0.31 0.63 

SL weighted density - 

200 -0.15 

. 

  

  3337.7 

6.4 0.01 0.31 0.62 

None         3338.7 7.4 0.01 0.30 0.62 
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List of figures 

 

Fig. 1. Different possible sources of information on light pollution. DMSP – OLS (A) and VIIRS 

–DNB (B) satellite images of France with a zoom on Paris and its surrounding. The resolution of 

the images is too low (930 m for DMSP – OLS and 460 m for VIIRS – DNB) to see the difference 

of radiance emitted in Paris. The better resolution (60m) of this ISS picture of Paris (C) allows to 

distinguish areas with low and high radiance at a fine scale. Also, this picture is composed by 4 

color bands (2 green, 1 blue, and 1 red) which represent the radiance emitted in each spectral band. 

Another source of information on light pollution is the location of streetlights (D). Each orange 

dot represent a streetlight (over 51 000 in Paris). 

 

Fig. 2. Study sites: Lille (A), Paris (B), and Montpellier (C). Triangles represent points of full-

night recordings and dots represent points of pedestrian recordings.  

 

Fig. 3 Interaction between the light variable (mean value of radiance within a 100 m radius for the 

Green 2 color band of the ISS picture) and the proportion of tree cover. The color scale represent 

the predicted mean number of bat passes per six minutes. Black dots represent combination of light 

variable values and tree cover proportion sampled in the data. 
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Fig. 1. Different possible sources of information on light pollution. DMSP – OLS (A) and VIIRS 

–DNB (B) satellite images of France with a zoom on Paris and its surrounding. The resolution of 

the images is too low (930 m for DMSP – OLS and 460 m for VIIRS – DNB) to see the difference 

of radiance emitted in Paris. The better resolution (60m) of this ISS picture of Paris (C) allows to 

distinguish areas with low and high radiance at a fine scale. Also, this picture is composed by 4 

color bands (2 green, 1 blue, and 1 red) which represent the radiance emitted in each spectral band. 

Another source of information on light pollution is the location of streetlights (D). Each orange 

dot represent a streetlight (over 51 000 in Paris). 
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Fig. 2 Study sites: Lille (A), Paris (B), and Montpellier (C). Triangles represent points of full-

night recordings and dots represent points of pedestrian recordings.  



38 

 

 

Fig. 3 Interaction between the light variable (mean value of radiance within a 100 m radius for the 

Green 2 color band of the ISS picture) and the proportion of tree cover. The color scale represent 

the predicted mean number of bat passes per six minutes (log scale). Black dots represent 

combination of light variable values and tree cover proportion sampled in the data. 
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Appendix A. Bat activity data 

 

Fig. A.1. Mean activity of P. pipistrellus per 6 minutes throughout the night for the full night 

recordings in Lille. 

 

Table A.1. Number of bat passes during the two first hours of the night per species for each city 

and occurrence within the recording points of each city. 

    Paris Lille Montpellier 

  
  

Bat 

passes 
Occ. 

Bat 

passes 
Occ. 

Bat 

passes 
Occ. 

Species 
             

 Pipistrellus pipistrellus 1,205 27% 12,359 99% 7,035 61% 

 Pipistrellus pygmaeus 1 0%   13,367 73% 

 Pipistrellus kuhlii 122 3%   6,581 66% 

 Pipistrellus nathusii 6 0% 37 1% 723 9% 

 Nyctalus noctula 45 1%     

 Nyctalus leisleri   8 0% 1,032 14% 

 Eptesicus serotinus   246 5% 150 2% 

 Myotis daubentonii 22 1%   753 6% 
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 Myotis emarginatus     3 0% 

 Myotis nattereri     9 0% 

 Miniopterus schreibersii     2 0% 

 Plecotus austriacus     45 1% 

 Tadarida teniotis     3 0% 

 Hypsugo savii     14 0% 

Single-genus group 
      

 P. nathusii / P. kuhlii   5 0%   

 Myotis spp. 1 0%   1 0% 

 Plecotus spp.     2 0% 

Mult-genus group       

  Nyctalus / Eptesicus     4 0%     

 

 

 

Fig. A.2. Number of P. pipistrellus passes in 6 minutes of recording. For full-night recordings, we 

only considered the two first hours of the night and the activity of the night was the average number 
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of bat passes per 6 minutes time slots. The number of occurrence of each number of bat passes is 

given in bold above the x-axis. 
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Appendix B. Definition of the outliers and results when including them in the dataset 

 

We considered four recording points to be outliers because of their particularly high radiance 

value on the ISS picture (Fig. B.1.). Three recording points with the highest values of radiance 

are located next to the Eiffel Tower and the fourth one is on the Esplanade Charles de Gaulle, in 

Montpellier city center.  

We carried the same analysis as in the core paper and found similar results when including the 4 

outlier points (Table B.1.). 

 

Fig. B.1. The four sites considered as outliers for their particularly high radiance value are 

represented in red. 

Table B.1. 

Selection of best models to explain bat activity using a light variable and best model without 

light variable. After model selection on the 20 full models, for five models, the light variable was 

not retained and the best model was the one without light variable. The reference level for the 

factor variable “city” is the city of Lille. (**) indicates a p-value between 0.001 and 0.01; (*) 

indicates a p-value between 0.01 and 0.05 and (.) indicates a p-value between 0.05 and 0.1.
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Light variable inthe 

model 

Estimates 

AIC ΔAIC 

      

Intercept 

City - 

Paris 

City - 

Montpellier 

Julian 

Day 

(Julian 

day)2 

Wind 

speed 

Dist. to 

water 

Dist. to 

tree 

cover 

Prop. of 

tree cover 

Light 

variable 

Light 

variable * 

Tree 

cover Weights 

Marginal 

R2 

Conditional 

R2 

Green 2 - 100 2.94 *** -3.13 *** -2.60 *** 0.33 *** -0.28 ** 0.16 . -0.27 **     0.61 *** -0.35 ** 0.50 *** 3363.2 0.0 0.32 0.34 0.63 

Blue 4 - 100 2.92 *** -3.12 *** -2.62 *** 0.32 *** -0.28 ** 0.16 . -0.27 **     0.55 *** -0.30 ** 0.38 ** 3365.0 1.8 0.13 0.34 0.63 

Red 1 - 200 2.95 *** -3.14 *** -2.61 *** 0.34 *** -0.29 ** 0.15 . -0.26 ** 
 

 

0.65 *** -0.45 ** 0.60 *** 3365.4 2.2 0.11 0.33 0.63 

Green 2 - pixel 3.00 *** -3.20 *** -2.63 *** 0.33 *** -0.28 ** 0.16 . -0.28 ** 
 

 

0.58 *** -0.19 . 0.36 ** 3365.4 2.2 0.11 0.33 0.62 

Green 2 - 200 2.94 *** -3.13 *** -2.60 *** 0.34 *** -0.30 ** 0.16 . -0.26 ** 
  0.63 *** -0.38 ** 0.52 *** 3366.0 2.8 0.08 0.33 0.62 

Blue 4 - pixel 3.02 *** -3.22 *** -2.67 *** 0.34 *** -0.30 ** 0.14 

 

-0.26 ** -0.19 . 0.43 *** -0.22 * 0.25 * 3366.1 2.9 0.08 0.33 0.62 

Red 1 - 100 2.89 *** -3.10 *** -2.56 *** 0.32 *** -0.28 ** 0.17 . -0.27 ** 
 

 

0.56 *** -0.27 * 0.37 ** 3367.7 4.5 0.03 0.33 0.63 

Green 3 - 200 3.01 *** -3.23 *** -2.68 *** 0.34 *** -0.29 ** 0.16 . -0.27 ** 
 

 

0.61 *** -0.42 ** 0.55 ** 3367.8 4.6 0.03 0.32 0.62 

Green 3 - 100 2.92 *** -3.15 *** -2.60 *** 0.32 *** -0.28 ** 0.16 . -0.27 ** 
 

 

0.56 *** -0.40 ** 0.50 ** 3368.3 5.1 0.03 0.32 0.62 

Blue 4 - 200 3.04 *** -3.26 *** -2.72 *** 0.34 *** -0.29 ** 0.16 . -0.26 ** 
 

 

0.56 *** -0.25 * 0.34 ** 3368.8 5.6 0.02 0.32 0.62 

SL density - 200 3.04 *** -3.33 *** -2.67 *** 0.34 *** -0.29 ** 0.14   -0.20 * -0.26 * 0.27 * -0.20 *     3369.1 5.9 0..02 0.31 0.62 

SL density - 100 3.00 *** -3.28 *** -2.66 *** 0.33 *** -0.29 ** 0.15 . -0.20 * -0.27 * 0.29 ** -0.18 *     3369.8 6.6 0.01 0.31 0.62 

Impacted surf. - 200 2.99 *** -3.27 *** -2.63 *** 0.33 *** -0.29 ** 0.16 . -0.19 . -0.25 * 0.27 * -0.20 .     3369.9 6.7 0.01 0.31 0.62 

Impacted surf. - 100 2.93 *** -3.21 *** -2.61 *** 0.33 *** -0.29 ** 0.16 . -0.19 * -0.26 * 0.28 ** -0.18 .     3370.1 6.9 0.01 0.31 0.62 

SL weighted density - 

200 3.05 

*** 

-3.34 

*** 

-2.70 

*** 

0.34 

*** 

-0.29 

** 

0.15 

. 

-0.21 

* 

-0.26 

* 

0.29 

** 

-0.16 

. 

  

  3370.3 

7.1 0.01 0.31 0.62 

None 2.89 
*** 

-3.18 
*** 

-2.58 
*** 

0.33 
*** 

-0.28 
** 

0.16 
. 

-0.23 
* 

-0.24 
* 

0.35 
*** 

  
  

  
  3371.7 

8.5 0.01 0.30 0.62 
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Appendix C. Correlation between light variables 

Table C.1. Correlation (Spearman’s r) between the light variables tested. Values above 0.5 and below -0.5 are in bold. Correlations 

between variables based on streetlight location are in the dashed rectangle and correlations between variables based on the ISS satellite 

picture are in the dash-dotted rectangle. 

 

 

 

Red 1 Green 2Green 3 Blue 4 Red 1 Green 2Green 3 Blue 4

100 100 100 100 200 200 200 200

-0.52

-0.50 0.87

-0.49 0.90 0.79

-0.50 0.91 0.93 0.94

-0.69 0.82 0.74 0.71 0.73

-0.65 0.73 0.86 0.65 0.76 0.84

-0.01 -0.01 -0.03 0.00 -0.02 -0.06 -0.06

-0.12 0.14 0.13 0.13 0.13 0.09 0.10 0.77

-0.07 0.08 0.06 0.08 0.07 0.03 0.02 0.93 0.84

-0.13 0.15 0.16 0.14 0.15 0.11 0.14 0.55 0.85 0.69

Red 1 100 -0.10 0.11 0.11 0.08 0.09 0.05 0.07 0.80 0.79 0.82 0.60

Green 2 100 -0.17 0.20 0.18 0.16 0.17 0.14 0.13 0.73 0.81 0.80 0.68 0.93

Green 3 100 -0.15 0.19 0.20 0.16 0.18 0.13 0.15 0.74 0.80 0.82 0.67 0.94 0.96

Blue 4 100 -0.14 0.18 0.18 0.15 0.16 0.11 0.11 0.63 0.74 0.72 0.73 0.80 0.90 0.87

Red 1 200 -0.22 0.28 0.32 0.23 0.28 0.21 0.28 0.48 0.63 0.56 0.54 0.78 0.79 0.80 0.74

Green 2 200 -0.24 0.33 0.37 0.26 0.33 0.24 0.30 0.44 0.61 0.54 0.56 0.71 0.79 0.78 0.76 0.95

Green 3 200 -0.22 0.30 0.34 0.24 0.30 0.23 0.27 0.42 0.59 0.52 0.54 0.68 0.74 0.75 0.73 0.95 0.97

Blue 4 200 -0.18 0.28 0.30 0.22 0.28 0.19 0.23 0.35 0.53 0.45 0.53 0.60 0.68 0.67 0.75 0.85 0.92 0.93

Red 1

Green 2
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Appendix D. Model results 

Table D.1. Selection of best models to explain bat activity using a light variable and best model without light variable. After model selection on the 

20 full models, for five models, the light variable was not retained and the best model was the one without light variable. The reference level for the 

factor variable “city” is the city of Lille. (**) indicates a p-value between 0.001 and 0.01; (*) indicates a p-value between 0.01 and 0.05 and (.) 

indicates a p-value between 0.05 and 0.1. 

Light variable inthe 

model 

Estimates 

AIC 

ΔAI

C 

      

Intercept 

City - 

Paris 

City - 

Montpellie

r 

Julian 

Day 

(Julian 

day)2 

Wind 

speed 

Dist. to 

water 

Dist. to 

tree 

cover 

Prop. of 

tree 

cover 

Light 

variable 

Light 

variabl

e * 

Tree 

cover 

Weight

s 

Margina

l R2 

Conditiona

l R2 

Blue 4 - 100 

2.7

7 

**

* 

-

3.05 

**

* -2.59 

*** 0.3

2 

**

* 

-

0.28 

*

* 

0.1

8 

. -

0.24 

*

* 

-

0.21 

. 0.2

5 

* -

0.34 

*

*   

  3331.

3 0.0 0.26 0.33 0.62 

Green 2 - 100 

2.9

2 

**

* 

-

3.11 

**

* -2.58 

*** 0.3

2 

**

* 

-

0.27 

*

* 

0.1

7 

. -

0.27 

*

*  

 
0.5

5 

**

* 

-

0.21 

 

0.25 

. 3332.

0 0.7 0.18 0.34 0.63 

Red 1 - 200 

2.9

8 

**

* 

-

3.15 

**

* -2.59 

*** 0.3

3 

**

* 

-

0.28 

*

* 

0.1

6 

. -

0.27 

*

*   

  0.6

3 

**

* 

-

0.16 

  

0.27 

* 3333.

1 1.8 0.11 0.33 0.63 

Green 2 - pixel 

3.0

0 

**

* 

-

3.19 

**

* -2.61 

*** 0.3

2 

**

* 

-

0.27 

*

* 

0.1

6 

. -

0.28 

*

*  

 
0.5

7 

**

* 

-

0.13 

 

0.31 

* 3333.

6 2.3 0.08 0.33 0.63 

Green 2 - 200 

3.0

5 

**

* 

-

3.23 

**

* -2.67 

*** 0.3

4 

**

* 

-

0.28 

*

* 

0.1

6 

. -

0.27 

*

*  

 
0.6

0 

**

* 

-

0.15 

 

0.24 

* 3333.

9 2.6 0.07 0.33 0.63 

Blue 4 - pixel 

2.8

6 

**

* 

-

3.14 

**

* -2.61 

*** 0.3

2 

**

* 

-

0.28 

*

* 

0.1

7 

. -

0.24 

*

* 

-

0.24 

* 0.2

8 

** -

0.26 

* 

 

 
3334.

4 3.1 0.06 0.32 0.62 

Red 1 - 100 

2.7

4 

**

* 

-

3.02 

**

* -2.55 

*** 0.3

1 

**

* 

-

0.27 

*

* 

0.1

7 

* -

0.24 

*

* 

-

0.21 

. 0.2

6 

* -

0.31 

* 

 

 
3334.

5 3.2 0.05 0.33 0.62 

Blue 4 - 200 

2.8

8 

**

* 

-

3.16 

**

* -2.67 

*** 0.3

3 

**

* 

-

0.28 

*

* 

0.1

6 

. -

0.24 

*

* 

-

0.23 

* 0.2

6 

* -

0.26 

* 

 

 
3334.

8 3.5 0.05 0.32 0.62 

Green 3 - 200 

3.0

7 

**

* 

-

3.25 

**

* -2.65 

*** 0.3

4 

**

* 

-

0.28 

*

* 

0.1

6 

. -

0.27 

*

*  

 
0.6

4 

**

* 

-

0.10 

 

0.27 

* 3335.

2 3.9 0.04 0.32 0.63 

Green 3 - 100 

3.0

0 

**

* 

-

3.19 

**

* -2.57 

*** 0.3

2 

**

* 

-

0.27 

*

* 

0.1

6 

. -

0.27 

*

*  

 
0.6

1 

**

* 

-

0.06 

 

0.28 

* 3336.

3 5.0 0.02 0.32 0.62 

SL density - 200 

3.0

0 

**

* 

-

3.31 

**

* -2.64 

*** 0.3

3 

**

* 

-

0.28 

*

* 

0.1

5 

. -

0.20 

* -

0.27 

* 0.2

7 

* -

0.19 

* 

  

  3336.

6 5.3 0.02 0.31 0.62 

Impacted surf. - 200 

2.9

6 

**

* 

-

3.26 

**

* -2.61 

*** 0.3

3 

**

* 

-

0.28 

*

* 

0.1

6 

. -

0.18 

. -

0.26 

* 0.2

6 

* -

0.20 

* 

  

  3336.

8 5.5 0.02 0.31 0.62 

Impacted surf. - 100 

2.8

9 

**

* 

-

3.20 

**

* -2.58 

*** 0.3

3 

**

* 

-

0.27 

*

* 

0.1

7 

. -

0.19 

* -

0.26 

* 0.2

7 

* -

0.19 

. 

  

  3337.

0 5.7 0.02 0.31 0.62 

SL density - 100 

2.9

6 

**

* 

-

3.27 

**

* -2.63 

*** 0.3

3 

**

* 

-

0.28 

*

* 

0.1

6 

. -

0.20 

* -

0.27 

* 0.2

8 

** -

0.17 

. 

  

  3337.

2 5.9 0.01 0.31 0.63 
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SL weighted density - 

200 

3.0

1 

**

* 

-

3.32 

**

* -2.67 

*** 0.3

3 

**

* 

-

0.28 

*

* 

0.1

5 

. -

0.21 

* -

0.27 

* 0.2

8 

** -

0.15 

. 

  

  3337.

7 6.4 0.01 0.31 0.62 

None 

2.8

5 

**

* 

-

3.17 

**

* -2.56 

*** 0.3

2 

**

* 

-

0.27 

*

* 

0.1

7 

. -

0.23 

* -

0.25 

* 0.3

4 

**

*   

  

  

  3338.

7 7.4 0.01 0.30 0.62 

 

The Julian day and its quadratic term were retained in all models as they reflect the fluctuations of bat activity along the seasons. A GAMM model 

with a smoothed term on the Julian day variable showed a significant nonlinear effect (edf = 4.4, p-value = 0.0006) (Fig. C.1.) 

 

Fig D.1. Representation of the non-linear effect of the date on P. pipistrellus activity.  
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