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hanifa.boucheneb@polymtl.ca)

Abstract: We consider an extension of Timed Petri Nets “à la Ramchandani” where the
transitions are partitioned into delayable and non-delayable transitions which has proven to
be suitable for the design of synchronous circuits. For this model called Delayable Timed Petri
Net (DTPN), the firing delay of a non-delayable transition is strict whereas a delayable transition
can miss its firing delay. Since the delays are natural numbers, this model can be studied as a
discrete time model.
We deal with the expressiveness of DTPN by a comparison with the well known Merlin’s Time
Petri Net model for which transitions can fire in a time interval. We show that DTPN are
strictly more expressive w.r.t. weak timed bisimilarity than Merlin’s model under the discrete-
time semantics.
We then deal with the symbolic reachability analysis of DTPN, for which we show the complexity
of the successor symbolic state computation to be O(n). In addition, we propose a reduction of
the number of edges to explore that preserves the markings and the firing sequences.
The symbolic state space exploration is implemented in a prototype tool, which is evaluated on
a classical TPN problem and a circuit design application.
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1. INTRODUCTION

The concept of quantitative time is not explicitly given
in the original definition of Petri Nets and has been intro-
duced for performance evaluation and scheduling problems
of dynamic systems. Time has been associated with transi-
tions or places by assigning time delays, either using a fixed
and deterministic value or choosing it from a probability
distribution.

Petri nets and time The two main extensions of Petri
Nets with non-stochastic time are Timed Petri Nets
(TdPN) (Ramchandani, 1974) and Time Petri Nets (TPN)
(Merlin, 1974). The first one associated a firing dura-
tion with each transition of the net and the second one
associated a time interval with each transition in order
to model an uncertain occurrence of the transition. In
TdPNs, delays were first associated with transitions (T-
TdPN) and then to places (P-TdPN). The two correspond-
ing subclasses are expressively equivalent (Ramchandani,
1974; Sifakis, 1977). Thus, a time delay can represent a
minimum duration of firing or a minimum residence time
of a token in a place.

State space exploration For interval time model, as long
as dense-time semantics is considered, the state space is
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generally infinite. Verification algorithms then compute fi-
nite abstractions, e.g. state class graph or zone graph, with
dedicated and data structures like Difference Bounded
Matrices (Dill, 1989) (DBM).

In (Popova, 1991), Popova proposes to analyse the whole
behavior of a TPN by using only its so-called “integer-
states” (i.e. states where the current local time for all
enabled transitions are integers). The relationship between
discrete and dense time semantics have been discussed
for various timed models, showing that in many cases,
the discrete time analysis allows capturing reachability or
time-bounded properties (Henzinger et al., 1992; Popova,
1991, 2006). However, discrete-time based approaches suf-
fer from a combinatorial explosion of the state space and
reach their limits as soon as there are transitions with a
large time interval in the model.

Petri nets and circuit design An important step in logic
circuit design is the placement of the pipeline stages. The
circuit composed of atomic operators is divided into several
stages physically implemented with memories (flip-flops),
allowing the concurrent execution of the stages and the
synchronisation of their inputs/outputs. Timed Petri Nets
“à la Ramchandani” have been defined for the modeling
of circuits. An extension of Timed Petri Nets with a reset
action (RTPN) has been proposed in (Parrot et al., 2021b)
for pipelined synchronous circuit design. It integrates the
impacts of registers on the circuit delay with a special reset
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“à la Ramchandani” have been defined for the modeling
of circuits. An extension of Timed Petri Nets with a reset
action (RTPN) has been proposed in (Parrot et al., 2021b)
for pipelined synchronous circuit design. It integrates the
impacts of registers on the circuit delay with a special reset

Expressiveness and analysis of Delayable
Timed Petri Net ⋆
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behavior of a TPN by using only its so-called “integer-
states” (i.e. states where the current local time for all
enabled transitions are integers). The relationship between
discrete and dense time semantics have been discussed
for various timed models, showing that in many cases,
the discrete time analysis allows capturing reachability or
time-bounded properties (Henzinger et al., 1992; Popova,
1991, 2006). However, discrete-time based approaches suf-
fer from a combinatorial explosion of the state space and
reach their limits as soon as there are transitions with a
large time interval in the model.

Petri nets and circuit design An important step in logic
circuit design is the placement of the pipeline stages. The
circuit composed of atomic operators is divided into several
stages physically implemented with memories (flip-flops),
allowing the concurrent execution of the stages and the
synchronisation of their inputs/outputs. Timed Petri Nets
“à la Ramchandani” have been defined for the modeling
of circuits. An extension of Timed Petri Nets with a reset
action (RTPN) has been proposed in (Parrot et al., 2021b)
for pipelined synchronous circuit design. It integrates the
impacts of registers on the circuit delay with a special reset

operation, and allows some time constraints to be relaxed
with delayable transitions. This model has been shown to
be effective for circuit design in (Parrot et al., 2021a).

Our contribution In this article we consider the class of
RTPN in which we keep the timed features of transition
but without the reset action. The reset can be expressed
with the other features of the model, which makes this
class a superclass of RTPN. This model, that we call
Delayable Timed Petri Net (DTPN), can then be defined
as an extension of Timed Petri nets “à la Ramchan-
dani” where the transitions are partitioned into delayable
and non-delayable transitions. The firing delay of a non-
delayable transition is strict. A delayable transition can
however miss its firing delay.

Firstly, we give the semantics of the DTPN model which
is a maximal-step semantics. Then, we provide a simple
DTPN model for which there is no weakly timed bisimilar
Merlin’s model, and we show that, under the discrete-time
semantics, any Merlin’s model can be translated into a
DTPN model that preserves the weak timed bisimilarity.
These two results allow concluding that DTPN are strictly
more expressive w.r.t. weak timed bisimilarity.

From a symbolic reachability analysis point of view, the
computation complexity of the time part of a successor
symbolic state is O(n) for the DTPN model but O(n2)
for the Merlin’s model, n being the number of transitions
in the model. In this context, for the DTPN model under
the maximal-step semantics, we show how to reduce the
number of maximal-steps to be explored, from a symbolic
state, without affecting the set of reachable markings.

Outline of the paper Section 2 defines the DTPN model
and its (maximal-step) semantics. Section 3 is devoted to
the expressiveness of the DTPN model relatively to the
Merlin’s model. Sections 4 and 5 deal with the symbolic
reachability analysis and its complexity. Section 6 evalu-
ates an implementation of the symbolic state space explo-
ration with two applications. Finally, Section 7 concludes
this paper.

2. DEFINITION

N and R≥0 are respectively the sets of integers and non-
negative real numbers. For vectors of size n, the usual
operators +,−,×, <,≤, >,≥ and = are used on vectors
of Nn and Rn

≥0 and are the point-wise extensions of their

counterparts in N and R≥0. Let 0̄ be the null vector of size
n. The operator ⊖ over elements of R≥0 and taking values
in R≥0 ∪ {−∞}, is defined by ∀a, b ∈ R≥0, a ⊖ b = a − b
if a ≥ b and = −∞ otherwise.

2.1 Delayable Timed Petri Net

The authors of (Parrot et al., 2021b) defined a semantics of
DTPN classically associating with each transition a clock
which increases with time. In this work, we propose an
equivalent semantics using instead decreasing delays. This
will come in handy with the state exploration, in particular
for the delayable transitions that missed their firing date
(delayed transitions).

Informally, with each transition of the net is associated
a dynamic delay. Time elapsing decreases its value. The
dynamic delay sets a firing condition: the transition may
and must fire when it is equal to zero. Moreover, some
transitions are delayable and may fire when the dynamic
delay is equal to zero but can fire later. In this case, its
value is noted −∞.

Formally:

Definition 1. (DTPN). A Delayable Timed Petri Net is a
tuple N = (P, T,•(.), (.)•, δ,M0) defined by:

• P = {p1, p2, . . . , pm} is a non-empty set of places;
• T = {t1, t2, . . . , tn} is a non-empty set of transitions;
• TD ⊆ T is the set of delayable transitions;
• •(.) : T → NP is the backward incidence function;
• (.)• : T → NP is the forward incidence function;
• M0 ∈ NP is the initial marking of the Petri Net;
• δ : T → N is the function giving the firing times
(delays) of transitions.

This paper considers the DTPN model, in the context of
the maximal-step firing semantics, which means that, from
each state, the largest possible sets of transitions are fired
simultaneously.

Let N be DTPN . A marking M of N is an element of NP

such that ∀p ∈ P , M(p) is the number of tokens in place
p. A marking M enables a transition t ∈ T if M ≥• t. The
set of transitions enabled at M is denoted by enab(M).
A set of transitions τ ⊆ T is an enabled step at M , if
all its transitions are enabled at M and not in conflict:
M ≥ Σt∈τ

(•
t
)
. The simultaneous firing of the step τ leads

to the marking M ′ = M +Σt∈τ

(
t• −•t

)
. A transition t′ is

said to be newly enabled by the firing of an enabled step τ
from M , if M +Σt∈τ

(
t•−•t

)
enables t′ and (M −Σt∈τ

•t)
does not enable t′. If t remains enabled after its firing then
t is newly enabled. The set of transitions newly enabled by
a step τ from a marking M is noted ↑enab (M, τ).

A state of N is a pair q = (M,∆), where M is a marking
and ∆ ∈ (R≥0 ∪ {−∞})T is the vector of dynamic delays.

When a transition t ∈ T is newly enabled, its dynamic
delay ∆(t) is set to δ(t) then it decreases synchronously
with time. Thus, δ(t) −∆(t) gives the time elapsed since
the transition has been newly enabled. A non-delayable
transition must fire immediately, when its dynamic delay
reaches 0, unless it is disabled by another firing. The
firing of a delayable transition t ∈ TD is however not
mandatory, when its dynamic delay reaches 0. Its delay
may be negative. All the negative delays are represented
by −∞.

Definition 2. (Timed Transition System). A timed transi-
tion system (TTS) over the set of actions A is a tuple
S = (Q, q0,A,→) where Q is a set of states, q0 ∈ Q is the
initial state, A is a finite set of actions disjoint from R≥0,
→⊆ Q× (A ∪R≥0)×Q is a set of edges. If (q, e, q′) ∈→,

we also write q
e−→ q′.

The semantics of a DTPN N = (P, T,•(.), (.)•, δ,M0)
is a TTS SN = (Q, q0,A,→), where Q = NP × RT ,
q0 = (M0,∆0), where M0 is the initial marking and ∆0

is the valuation assigning δ(t) to every transition t, and
A = 2T .
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operation, and allows some time constraints to be relaxed
with delayable transitions. This model has been shown to
be effective for circuit design in (Parrot et al., 2021a).

Our contribution In this article we consider the class of
RTPN in which we keep the timed features of transition
but without the reset action. The reset can be expressed
with the other features of the model, which makes this
class a superclass of RTPN. This model, that we call
Delayable Timed Petri Net (DTPN), can then be defined
as an extension of Timed Petri nets “à la Ramchan-
dani” where the transitions are partitioned into delayable
and non-delayable transitions. The firing delay of a non-
delayable transition is strict. A delayable transition can
however miss its firing delay.

Firstly, we give the semantics of the DTPN model which
is a maximal-step semantics. Then, we provide a simple
DTPN model for which there is no weakly timed bisimilar
Merlin’s model, and we show that, under the discrete-time
semantics, any Merlin’s model can be translated into a
DTPN model that preserves the weak timed bisimilarity.
These two results allow concluding that DTPN are strictly
more expressive w.r.t. weak timed bisimilarity.

From a symbolic reachability analysis point of view, the
computation complexity of the time part of a successor
symbolic state is O(n) for the DTPN model but O(n2)
for the Merlin’s model, n being the number of transitions
in the model. In this context, for the DTPN model under
the maximal-step semantics, we show how to reduce the
number of maximal-steps to be explored, from a symbolic
state, without affecting the set of reachable markings.

Outline of the paper Section 2 defines the DTPN model
and its (maximal-step) semantics. Section 3 is devoted to
the expressiveness of the DTPN model relatively to the
Merlin’s model. Sections 4 and 5 deal with the symbolic
reachability analysis and its complexity. Section 6 evalu-
ates an implementation of the symbolic state space explo-
ration with two applications. Finally, Section 7 concludes
this paper.

2. DEFINITION

N and R≥0 are respectively the sets of integers and non-
negative real numbers. For vectors of size n, the usual
operators +,−,×, <,≤, >,≥ and = are used on vectors
of Nn and Rn

≥0 and are the point-wise extensions of their

counterparts in N and R≥0. Let 0̄ be the null vector of size
n. The operator ⊖ over elements of R≥0 and taking values
in R≥0 ∪ {−∞}, is defined by ∀a, b ∈ R≥0, a ⊖ b = a − b
if a ≥ b and = −∞ otherwise.

2.1 Delayable Timed Petri Net

The authors of (Parrot et al., 2021b) defined a semantics of
DTPN classically associating with each transition a clock
which increases with time. In this work, we propose an
equivalent semantics using instead decreasing delays. This
will come in handy with the state exploration, in particular
for the delayable transitions that missed their firing date
(delayed transitions).

Informally, with each transition of the net is associated
a dynamic delay. Time elapsing decreases its value. The
dynamic delay sets a firing condition: the transition may
and must fire when it is equal to zero. Moreover, some
transitions are delayable and may fire when the dynamic
delay is equal to zero but can fire later. In this case, its
value is noted −∞.

Formally:

Definition 1. (DTPN). A Delayable Timed Petri Net is a
tuple N = (P, T,•(.), (.)•, δ,M0) defined by:

• P = {p1, p2, . . . , pm} is a non-empty set of places;
• T = {t1, t2, . . . , tn} is a non-empty set of transitions;
• TD ⊆ T is the set of delayable transitions;
• •(.) : T → NP is the backward incidence function;
• (.)• : T → NP is the forward incidence function;
• M0 ∈ NP is the initial marking of the Petri Net;
• δ : T → N is the function giving the firing times
(delays) of transitions.

This paper considers the DTPN model, in the context of
the maximal-step firing semantics, which means that, from
each state, the largest possible sets of transitions are fired
simultaneously.

Let N be DTPN . A marking M of N is an element of NP

such that ∀p ∈ P , M(p) is the number of tokens in place
p. A marking M enables a transition t ∈ T if M ≥• t. The
set of transitions enabled at M is denoted by enab(M).
A set of transitions τ ⊆ T is an enabled step at M , if
all its transitions are enabled at M and not in conflict:
M ≥ Σt∈τ

(•
t
)
. The simultaneous firing of the step τ leads

to the marking M ′ = M +Σt∈τ

(
t• −•t

)
. A transition t′ is

said to be newly enabled by the firing of an enabled step τ
from M , if M +Σt∈τ

(
t•−•t

)
enables t′ and (M −Σt∈τ

•t)
does not enable t′. If t remains enabled after its firing then
t is newly enabled. The set of transitions newly enabled by
a step τ from a marking M is noted ↑enab (M, τ).

A state of N is a pair q = (M,∆), where M is a marking
and ∆ ∈ (R≥0 ∪ {−∞})T is the vector of dynamic delays.

When a transition t ∈ T is newly enabled, its dynamic
delay ∆(t) is set to δ(t) then it decreases synchronously
with time. Thus, δ(t) −∆(t) gives the time elapsed since
the transition has been newly enabled. A non-delayable
transition must fire immediately, when its dynamic delay
reaches 0, unless it is disabled by another firing. The
firing of a delayable transition t ∈ TD is however not
mandatory, when its dynamic delay reaches 0. Its delay
may be negative. All the negative delays are represented
by −∞.

Definition 2. (Timed Transition System). A timed transi-
tion system (TTS) over the set of actions A is a tuple
S = (Q, q0,A,→) where Q is a set of states, q0 ∈ Q is the
initial state, A is a finite set of actions disjoint from R≥0,
→⊆ Q× (A ∪R≥0)×Q is a set of edges. If (q, e, q′) ∈→,

we also write q
e−→ q′.

The semantics of a DTPN N = (P, T,•(.), (.)•, δ,M0)
is a TTS SN = (Q, q0,A,→), where Q = NP × RT ,
q0 = (M0,∆0), where M0 is the initial marking and ∆0

is the valuation assigning δ(t) to every transition t, and
A = 2T .



286 Rémi Parrot  et al. / IFAC PapersOnLine 55-28 (2022) 284–290

Let q = (M,∆) be a state of N , t ∈ T and τ ⊆ T a step
enabled at M . A non-delayable (resp. delayable) transition
t is firable at q if it is enabled and its dynamic delay
is equal to 0 (resp. equal to 0 or −∞). The step τ is a
maximal-step at q, if for every non-delayable transition
t firable at state q, either t ∈ τ or τ ∪ {t} is not an
enabled step at M . Note that a maximal-step may contain
some delayable transitions, but it must contain at least
one transition t, which has not yet missed its deadline, i.e.
such that ∆(t) = 0. The firing of a maximal-step τ ⊆ T

from state (M,∆) is denoted (M,∆)
τ−→ (M ′,∆′). It leads

to the new marking M ′ = M + Σt∈τ

(
t• −• t

)
, and sets to

δ(t) the delay of all newly enabled transitions. In a Marked
Graph where every place has one incoming arc, and one
outgoing arc, there can not be conflict and the firing of
a transition cannot disable another transition. But in the
general case, there can be conflicts, and thus there can be
several maximal-steps τ from a given state.

Waiting for a duration d ∈ R≥0 from a state (M,∆) is

denoted (M,∆)
d−→ (M,∆′). It leads to the new valuation

∆′ such that for all enabled transitions t, ∆′(t) = ∆(t)⊖d.
A delay transition is possible only if the clock of all non-
delayable transition t ∈ T \ TD are greater or equal than
the duration ∆(t) ≥ d.

2.2 Graphical representation and example

A Petri net is a directed bipartite graph, in which the
transitions are represented by boxes (or bars), places are
represented by circles and backward forward incidence
functions (pre and post conditions) of transitions are
represented by arrows. Moreover, we use the following
notations: the delay of a transition is in red and a delayable
transition is in grey.

Let us consider the DTPN of Fig. 1. To simplify the
notation we note a marking as a set of marked places
(instead of a vector), and we give the valuation ∆ only for
the enabled transitions. For example, in the initial state,
we have tokens in places p0 and p1, and only two enabled
transitions t0 and t1 with a delay of 1, then the initial state

is noted q0 =
{p0, p1}
∆(t0) = 1
∆(t1) = 1

t0

t1

t2

t3

t4

1

1

2

2

1

p0

p1

p2

p3

p4

p5

Fig. 1. A Delayable Timed Petri Net example

Some runs of the DTPN of Fig. 1 from the initial state q0
are given in Fig. 2.

Notice that, as the transition t4 is delayable, it can fire
either alone when ∆(t4) = 0 (in q3), or it can wait to fire
with t2 and t3 when ∆(t4) = −∞ (from q4). But when its
delay is missed ∆(t4) = −∞, and no other transition can
fire at its delay, then t4 can no more fire (in q5).
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Fig. 2. Part of the state graph of DTPN of Fig. 1

3. EXPRESSIVENESS

In this section, we will compare DTPN with different
classes of Petri Nets with time:

• Time Petri Net “à la Merlin” (TPN) where a dense
time interval is associated with each transition. Since
a transition is enabled, it can fire after elapsing a
duration in the associated interval and must fire
before the upper bound. The formal semantics is
given in (Berthomieu and Diaz, 1991).

• TPN with discrete time semantics (TPNdt) where
transition can fire only for integer values of the
elapsing time as studied in (Popova, 1991).

• TPN with a maximal-step semantics (TPNms) where,
in a single execution step, a largest possible set of
enabled transitions, not in conflict, will fire simulta-
neously.

• TPN with discrete time and maximal-step semantics
(TPNdt

ms).

3.1 Weak Timed bisimulation

Two TTS S1 and S2 are strongly (timed) bisimilar if there
exists a strong (timed) bisimulation relation between S1

and S2. We use the classical definition of Strong Timed
bisimulation as in (Bérard et al., 2005).

Let A be a set of actions (or alphabet). We denote Aε =
A ∪ {ε} with ε ̸∈ A, where ε is an invisible action (empty
word).

Let S = (Q, q0,Aε,→) be a TTS. We define the ε-abstract
TTS Sε = (Q, q0,A, →ε) (with no ε-transitions) by:

• q
d−→ε q′ with d ∈ R≥0 iff there is a run in S from q

to q′ of duration d (possibly 0) with only ε actions,

• q
a−→ε q′ with a ∈ A iff there is a run in S from q to

q′ of duration 0 with a unique visible action a.

Let S1 = (Q1, q
1
0 ,Aε,→1) and S2 = (Q2, q

2
0 ,Aε,→2) be

two TTS. S1 and S2 are weakly (timed) bisimilar if there
exists a strong (timed) bisimulation relation between Sε

1
and Sε

2 .

t

1

p

Fig. 3. The DTPN N0

3.2 TPN vs DTPN

First we prove that bounded TPN, TPNms, TPN
dt and

TPNdt
ms are not more expressive than bounded DTPN

w.r.t. weak timed bisimilation.

For all these models, their semantics are TTS, and their
state are pairs (m, ν) where m is a marking and ν is a
representation of the enabling time of transitions.

We first recall the lemma of (Bérard et al., 2005) stating
that Waiting Cannot Disable Transitions in TPN and the
same result applies for TPNms, TPN

dt and TPNdt
ms.

Lemma 3. (Waiting Cannot Disable Transitions).

Let (m, ν) be a state of a TPN. If (m, ν)
t1t2···tk−−−−−−→ with

t1t2 · · · tk an instantaneous firing sequence and (m, ν)
d−→

(md, νd) for some d ≥ 0, then (md, νd)
t1t2···tk−−−−−→.

Lemma 4. There is no TPN, TPNms, TPN
dt or TPNdt

ms
weakly timed bisimilar to the DTPN N0 (Fig. 3).

Proof. Assume there is a TPN N that is weakly timed
bisimilar to N0 and let ≈ be a weak timed bisimulation
between their semantics SN and SN0

. Let (m0, ν0) be the
initial state of SN and (M0, 1) the initial state of SN0

.

We have (M0, 1)
1−→ (M0, 0) and (m0, ν0)

1−→ε (m1, ν1)
with (M0, 1) ≈ (m0, ν0) and (M0, 0) ≈ (m1, ν1). As t
can be fired from (M0, 0) all the states (m′

1, ν
′
1) reachable

from (m1, ν1) in null duration (ε transitions) can fire an
instantaneous sequence labelled t. Since t is a delayable
transition, there must be one such state (m′

1, ν
′
1) s.t. some

duration d > 0 can elapse from (m′
1, ν

′
1) reaching (m′′, ν′′)

weakly timed bisimilar to (M0, 0−d) (denoted (M0,−∞))
which prevents a t to be fired. However, by Lemma 3,
some instantaneous sequence labelled by t can be fired
from (m′′, ν′′) which is a contradiction. The reasoning is

the same for TPNms, TPN
dt and TPNdt

ms. �

We now study the relationship in the other direction.

For DTPN, a discrete transition can occur only when at
least one transition has been enabled for a duration δ ∈ N,
then all discrete transitions occur at an integer value of
time, and we have the following lemma.

Lemma 5. Let N be a DTPN and

ρ = q1
τ1−→ q2

d−→ q3
τ2−→ q4 be a sequence in its semantics

SN with τ1 ⊆ T , d ∈ R and τ2 ⊆ T , then d ∈ N.

We can then state the following theorem.

Theorem 6. DTPN and TPN are incomparable w.r.t. weak
timed bisimularity, as are DTPN and TPNms.

Proof. In TPN and TPNms, a transition can be fired at
any time in dense time interval which, from Lemma 5,
cannot happen in a DTPN. Lemma 4 ends the proof. �

We now focus on TPNdt and TPNdt
ms that have discrete-

time semantics.

The Timed State Graph of bounded TPNdt and TPNdt
ms

can be written as a tight Durational Kripke structure
(DKS) (Alur and Henzinger, 1994; Popova, 1998) where

the set of labels is the set T of transitions for a TPNdt

or is in 2T for a TPNdt
ms. This DKS can be translated

into a DTPN (with labels and with a unique token)
weakly timed bisimilar to the initial net. For lack of space,
we do not formalise the translation nor the bisimulation
relationship, but we illustrate the translation in Figure 4
from the TPNdt N1 into the DTPN on the right where all
transitions are delayable except those corresponding to an
upper bound of N2 (as t1 from m1 in figure 4). Moreover,
each transition (such as t0) in the initial net with an
infinite upper bound leads to an ε loop in one time unit
associated with an immediate delayable transition labelled
with t0 (as from m4 in figure 4).
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Fig. 4. A TPNdt N1 and its translation into DTPN

Theorem 7. Bounded DTPN are strictly more expressive
than bounded TPNdt and TPNdt

ms w.r.t. weak timed bisim-
ularity.

Proof. The previous translation shows that every boun-
ded TPNdt or TPNdt

ms can be translated into a weak
timed bisimilar DTPN. Lemma 4 completes the strict
relation. �

4. SYMBOLIC STATE SPACE

4.1 Symbolic semantics

The semantics of DTPN is a time transition system where
the states are pairs of a marking and a dynamics value of
delays. A symbolic abstraction is proposed in this section
in order to regroup the states. All states reachable from a
given state by time progression can be grouped together
to constitute a symbolic state.

Let q = (M,∆) and q′ = (M ′,∆′) be two states such
that q′ is reachable from q by d time units. According to
the DTPN semantics, it holds that M = M ′ and for each
transition t ∈ enab(M),∆′(t) = ∆(t)⊖ d. It follows that q
simulates q′, which means that every discrete run feasible
from q′ is also feasible from q. Consequently, a symbolic
state can be represented by the greatest state it contains,
in terms of dynamics value of delays.

Definition 8. (Symbolic state). A symbolic state is a pair

(M, ∆̂) where M is a marking and ∆̂ is a set of dynamic
delays defined by:
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dt and
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ms are not more expressive than bounded DTPN
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For all these models, their semantics are TTS, and their
state are pairs (m, ν) where m is a marking and ν is a
representation of the enabling time of transitions.

We first recall the lemma of (Bérard et al., 2005) stating
that Waiting Cannot Disable Transitions in TPN and the
same result applies for TPNms, TPN

dt and TPNdt
ms.

Lemma 3. (Waiting Cannot Disable Transitions).

Let (m, ν) be a state of a TPN. If (m, ν)
t1t2···tk−−−−−−→ with

t1t2 · · · tk an instantaneous firing sequence and (m, ν)
d−→

(md, νd) for some d ≥ 0, then (md, νd)
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Lemma 4. There is no TPN, TPNms, TPN
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ms
weakly timed bisimilar to the DTPN N0 (Fig. 3).

Proof. Assume there is a TPN N that is weakly timed
bisimilar to N0 and let ≈ be a weak timed bisimulation
between their semantics SN and SN0

. Let (m0, ν0) be the
initial state of SN and (M0, 1) the initial state of SN0

.

We have (M0, 1)
1−→ (M0, 0) and (m0, ν0)

1−→ε (m1, ν1)
with (M0, 1) ≈ (m0, ν0) and (M0, 0) ≈ (m1, ν1). As t
can be fired from (M0, 0) all the states (m′

1, ν
′
1) reachable

from (m1, ν1) in null duration (ε transitions) can fire an
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transition, there must be one such state (m′
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′
1) s.t. some

duration d > 0 can elapse from (m′
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′
1) reaching (m′′, ν′′)

weakly timed bisimilar to (M0, 0−d) (denoted (M0,−∞))
which prevents a t to be fired. However, by Lemma 3,
some instantaneous sequence labelled by t can be fired
from (m′′, ν′′) which is a contradiction. The reasoning is

the same for TPNms, TPN
dt and TPNdt

ms. �

We now study the relationship in the other direction.

For DTPN, a discrete transition can occur only when at
least one transition has been enabled for a duration δ ∈ N,
then all discrete transitions occur at an integer value of
time, and we have the following lemma.

Lemma 5. Let N be a DTPN and

ρ = q1
τ1−→ q2

d−→ q3
τ2−→ q4 be a sequence in its semantics

SN with τ1 ⊆ T , d ∈ R and τ2 ⊆ T , then d ∈ N.

We can then state the following theorem.

Theorem 6. DTPN and TPN are incomparable w.r.t. weak
timed bisimularity, as are DTPN and TPNms.

Proof. In TPN and TPNms, a transition can be fired at
any time in dense time interval which, from Lemma 5,
cannot happen in a DTPN. Lemma 4 ends the proof. �

We now focus on TPNdt and TPNdt
ms that have discrete-

time semantics.

The Timed State Graph of bounded TPNdt and TPNdt
ms

can be written as a tight Durational Kripke structure
(DKS) (Alur and Henzinger, 1994; Popova, 1998) where

the set of labels is the set T of transitions for a TPNdt

or is in 2T for a TPNdt
ms. This DKS can be translated

into a DTPN (with labels and with a unique token)
weakly timed bisimilar to the initial net. For lack of space,
we do not formalise the translation nor the bisimulation
relationship, but we illustrate the translation in Figure 4
from the TPNdt N1 into the DTPN on the right where all
transitions are delayable except those corresponding to an
upper bound of N2 (as t1 from m1 in figure 4). Moreover,
each transition (such as t0) in the initial net with an
infinite upper bound leads to an ε loop in one time unit
associated with an immediate delayable transition labelled
with t0 (as from m4 in figure 4).
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Theorem 7. Bounded DTPN are strictly more expressive
than bounded TPNdt and TPNdt

ms w.r.t. weak timed bisim-
ularity.

Proof. The previous translation shows that every boun-
ded TPNdt or TPNdt

ms can be translated into a weak
timed bisimilar DTPN. Lemma 4 completes the strict
relation. �

4. SYMBOLIC STATE SPACE

4.1 Symbolic semantics

The semantics of DTPN is a time transition system where
the states are pairs of a marking and a dynamics value of
delays. A symbolic abstraction is proposed in this section
in order to regroup the states. All states reachable from a
given state by time progression can be grouped together
to constitute a symbolic state.

Let q = (M,∆) and q′ = (M ′,∆′) be two states such
that q′ is reachable from q by d time units. According to
the DTPN semantics, it holds that M = M ′ and for each
transition t ∈ enab(M),∆′(t) = ∆(t)⊖ d. It follows that q
simulates q′, which means that every discrete run feasible
from q′ is also feasible from q. Consequently, a symbolic
state can be represented by the greatest state it contains,
in terms of dynamics value of delays.

Definition 8. (Symbolic state). A symbolic state is a pair

(M, ∆̂) where M is a marking and ∆̂ is a set of dynamic
delays defined by:
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(M, ∆̂) = {(M,∆′) | ∀t ∈ enab(M), ∆′(t) = ∆(t)⊖ d,

with d ∈ R≥0 and

if enab(M) \ TD ̸= ∅, d ≤ min
t∈enab(M)\TD

(∆(t))}

The symbolic state (M, ∆̂) holds all the states reachable
from the state (M,∆) by elapsing time.

Definition 9. (Successor symbolic states). Let (M, ∆̂) be

a symbolic state and τ be a maximal-step of (M, ∆̂). The

successor symbolic state of (M, ∆̂) by τ is the symbolic

state (M ′, ∆̂′) s.t.

(M,∆)
d−→ (M,∆d) and (M,∆d)

τ−→ (M ′,∆′),

where d = max
t∈τ

(∆(t)). This successor is denoted by

Succ((M, ∆̂), τ).

For a DTPN N with an initial state (M0,∆0) we build the
symbolic state graph by applying iteratively the operator

Succ starting from the initial symbolic state (M0, ∆̂0),
and converging by equality of symbolic state. The set of
reachable symbolic states from the initial symbolic state
is Reach(N ).

Lemma 10. Let N be a bounded DTPN. Reach(N ) is
finite.

Proof. First, the number of reachable marking is bounded.
Second, from Lemma 5 we deduce that there are a finite
number of states from which maximal-steps can be fired
in a symbolic state. Finally, there are a finite number
of transitions, and thus finite number of maximal-steps
fireable from any state. �

Building the symbolic state graph by converging by in-
clusion allows regrouping the states even further. For this
purpose we define the following subsumption relation over
symbolic states.

Definition 11. (Subsumption). Let (M, ∆̂) and (M ′, ∆̂′)

be two symbolic states. We say that (M, ∆̂) is subsumed

by (M ′, ∆̂′), and we write (M, ∆̂) ⊑ (M ′, ∆̂′) iff all the

states of (M, ∆̂) are reachable from (M ′, ∆̂′) by elapsing
time.

The subsumption relation defines a simulation: if (M, ∆̂) ⊑
(M ′, ∆̂′) then all the states in (M, ∆̂) are simulated by

(M ′, ∆̂′).

4.2 Covering steps

The aim of this section is to reduce the number of
maximal-steps to be explored from each symbolic state
while preserving markings and firing sequences of steps.
The following theorem establishes that according to the
semantics of the DTPN, a maximal-step τ1 covers any
larger maximal-step τ2. Consequently, there is no need to
explore the maximal-steps larger than τ1.

Theorem 12. Let q = (M,∆) be a state, τ1 and τ2 two
maximal-steps firable from q such that τ1 ⊂ τ2. According
to the semantics, the transitions within τ2 \ τ1 are all
delayable. Let q1 = (M1,∆1) and q2 = (M2,∆2) be the
successors of q = (M,∆) by τ1 and τ2, respectively.
Then the step τ2 \ τ1 is firable from q1 = (M1,∆1)

and this firing leads to a state q′1 = (M ′
1,∆

′
1) such that

q′1 = (M ′
1,∆

′
1) simulates q2, in fact q′1 = q2.

Figure 5 depicts this situation.

q

q1 q2

q′1

τ1 τ2

τ2 \ τ1

Fig. 5. Covering steps

Proof. To begin with, the associativity of addition over
vectors gives M ′

1 = M2.
Firstly, if a transition t is disabled in q′1, it is also the case
in q2, and thus ∆′

1(t) = ∆(t) = ∆2(t).
Secondly, if a transition is newly enabled from M by
τ2, then it is newly enabled from M by τ1 or from M1

by τ2 \ τ1, formally: ↑ enab (M, τ2) ⊆↑ enab (M, τ1)∪ ↑
enab (M1, τ2 \ τ1). Indeed, let t ∈↑ enab (M, τ2). If t ∈↑
enab (M, τ1) then ∆1(t) = δ(t), and as t stays enabled in
q′1 then ∆′

1(t) = δ(t) = ∆2(t). If t ∈↑ enab (M1, τ2 \ τ1)
then ∆′

1(t) = δ(t) then ∆′
1(t) = δ(t) = ∆2(t).

Finally, if a transition is enabled in q but not newly
enabled from M by τ2 then it stays enabled in q1, and
it is neither newly enabled from M by τ1 nor from M1 by
τ2 \ τ1, formally:enab (M) ∩ ↑enab (M, τ2) ⊆ enab (M1) ∩
↑enab (M, τ1) ∩ ↑enab (M1, τ2 \ τ1). Let t ∈ enab (M) ∩
↑enab (M, τ2), then ∆1(t) = ∆′

1(t) = ∆(t) = ∆2(t). �

Remark 13. The step τ2 \ τ1 may not be a maximal-step
from q1, because it can contain only delayed transitions,
which is forbidden by the semantics. However, firing it
leads to a reachable state. Thus, this new discrete transi-
tion can be added to the semantics without altering the
reachability.

5. COMPLEXITY

This section focuses on establishing the complexity of
exploring the symbolic state graph of Delayable Timed
Petri Net.

Symbolic state space of timed models are usually based
on difference bound matrix (DBM) representing the union
of timed domains as in state class (Berthomieu and Diaz,
1991) for Merlin’s TPN. The computation of a successor
state class, based on the Floyd-Warshall’s algorithm, is, in
general, of complexity O(n3) with regard to the number
n of transitions in the net. In (Boucheneb and Rakkay,
2007), the authors have reduced this complexity to O(n2).

In the case of the DTPNs, DBMs are not necessary because
as shown in Section 4, only one value per transition
is sufficient to describe the symbolic state. Thus, the
data structure of the vector of dynamic delays ∆ greatly
simplifies the computation of successor.

Theorem 14. Let N be an DTPN, and (M, ∆̂) a symbolic

state of N . The successor of (M, ∆̂) by a maximal-step τ ,

Succ((M, ∆̂), τ) can be computed in O(n) with n the
number of transitions.

Proof. In Definition 9, the delay d can be computed in
|τ | steps (calculation of a maximum), the delay transition
can be computed in |enab(M)| steps, and the discrete
transition can be computed in |P | × |τ | steps.
Remark 15. In fact, the computation of the maximal-steps

doable from a symbolic state (M, ∆̂) is very complex.
In the real implementation, we first compute the delays
d that lead to states where maximal-steps can be fired:
basically we calculate the minimum of ∆(t) among the
non-delayable enabled transitions, then all the ∆(t) among
delayable enabled transitions that are inferior to it. Then
we compute the states obtained by elapsing the delays,
and for each one we compute the maximal-steps. Yet, the
computation of symbolic successor remains of complexity
O(n).

Eventhough the successors can be computed efficiently, the
size of the symbolic state graph remains exponential in
the number of transitions, as for Timed Petri Net. The
complexity of the algorithm building the symbolic state
graph is then clearly not linear.

However, thanks to the data structure of the vector of
dynamic delays, some required algorithms are of complex-
ity O(n) with n the number of transitions. This is the
case of the computation of subsumption relation between
symbolic states of Definition 11.

6. EXPERIMENTS

We have implemented the symbolic abstraction proposed
in Section 4.1 and the approach minimizing the explored
edges proposed in Section 4.2. We compare the simple
symbolic abstraction with the symbolic abstraction with
edge minimisation on two examples.

First we look at the classical level-crossing problem pro-
posed in (Berthomieu and Vernadat, 2003). The net is
adapted to the DTPN model by using two parallel tran-
sitions instead of one transition with the interval seman-
tics: one delayable for the minimum bound, and one non-
delayable for the maximum bound. The example can be
easily scaled up by adding more trains. The results are
presented in Table 1.

Second we look at the pipeline optimisation approach pro-
posed in (Parrot et al., 2021a). The DTPN model is used
to explore various pipeline configurations of arithmetic
operators, and a cost allows representing the resources
consumed by the pipeline. Note that in this experiment
we choose to explore the whole symbolic state graph, but
the real goal is to find the run minimizing the cost. The
circuits are generated using FloPoCo (de Dinechin and
Pasca, 2011), a tool generating floating point arithmetic
operators. They are then modeled with a DTPN. The
results are displayed in Table 2.

The two experiments show good improvement in the num-
ber of edges in the symbolic state graph, and thus in the
number of successors computation. The explored edges are
reduced up to 24.6%. Note that in some case, the two
approaches can produce a different number of symbolic
states. This happens when the order of computation of
successors is changed, and thus a bigger state (in terms of
subsumption) is found sooner. Also note that the dedicated

Nb trains
6 7 8 9 10

Symbolic Nb States 213 283 363 453 553
Nb Edges 11 913 33 666 129 547 365 556 1 396 313

Symbolic Nb States 213 283 363 453 553
Min-edges Nb Edges 10 159 30 955 114 329 341 506 1 192 241

Improvement 14.7% 8.0% 11.7% 6.6% 14.6%

Table 1. Level crossing

FPAdd(8,23) FPDiv(8,23) FPSqrt(8,23)
500 MHz 500 MHz 500 MHz

Symbolic Nb States 1695 329 540
Nb Edges 11 150 901 2 095

Symbolic Nb States 1693 328 540
Min-edges Nb Edges 8 411 831 1 728

Improvement 24.6% 7.8% 17.5%

Table 2. Arithmetic operators pipelining

tool is a non-optimal prototype, so the computation time
and memory usage are not representative of the com-
plexity. In this implementation, the “Min-edges” approach
does not show great gains compared to the simple symbolic
exploration.

7. CONCLUSION

We have studied an extension of Timed Petri Nets well
suited to solve synchronous circuit design problems, in
which the transitions are divided into two disjoint sets,
corresponding to delayable and non-delayable transitions.

After recalling its semantics, we are interested in its
expressiveness compared to the Merlin’s model, in which
intervals are associated with transitions. We proved that
the DTPN is strictly more expressive w.r.t. weak timed
bisimilarity than Merlin’s model under the discrete-time
semantics.

Our semantics of DTPNs is based on dynamic delays
decreasing with time allowing us to build a symbolic
abstraction that turns out to be efficient. Indeed, the basic
algorithms of the symbolic state graph computation such
as the successor or the subsumption algorithms have a
O(n) complexity. Moreover, we have proposed a reduction
of the successor number to be computed that preserves the
set of reachable states.

Finally, an implementation of the exploration of the sym-
bolic state space has been developed. It is evaluated on
a classical example from the literature, and also on a
concrete case of synchronous circuit design.
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Proof. In Definition 9, the delay d can be computed in
|τ | steps (calculation of a maximum), the delay transition
can be computed in |enab(M)| steps, and the discrete
transition can be computed in |P | × |τ | steps.
Remark 15. In fact, the computation of the maximal-steps

doable from a symbolic state (M, ∆̂) is very complex.
In the real implementation, we first compute the delays
d that lead to states where maximal-steps can be fired:
basically we calculate the minimum of ∆(t) among the
non-delayable enabled transitions, then all the ∆(t) among
delayable enabled transitions that are inferior to it. Then
we compute the states obtained by elapsing the delays,
and for each one we compute the maximal-steps. Yet, the
computation of symbolic successor remains of complexity
O(n).

Eventhough the successors can be computed efficiently, the
size of the symbolic state graph remains exponential in
the number of transitions, as for Timed Petri Net. The
complexity of the algorithm building the symbolic state
graph is then clearly not linear.

However, thanks to the data structure of the vector of
dynamic delays, some required algorithms are of complex-
ity O(n) with n the number of transitions. This is the
case of the computation of subsumption relation between
symbolic states of Definition 11.

6. EXPERIMENTS

We have implemented the symbolic abstraction proposed
in Section 4.1 and the approach minimizing the explored
edges proposed in Section 4.2. We compare the simple
symbolic abstraction with the symbolic abstraction with
edge minimisation on two examples.

First we look at the classical level-crossing problem pro-
posed in (Berthomieu and Vernadat, 2003). The net is
adapted to the DTPN model by using two parallel tran-
sitions instead of one transition with the interval seman-
tics: one delayable for the minimum bound, and one non-
delayable for the maximum bound. The example can be
easily scaled up by adding more trains. The results are
presented in Table 1.

Second we look at the pipeline optimisation approach pro-
posed in (Parrot et al., 2021a). The DTPN model is used
to explore various pipeline configurations of arithmetic
operators, and a cost allows representing the resources
consumed by the pipeline. Note that in this experiment
we choose to explore the whole symbolic state graph, but
the real goal is to find the run minimizing the cost. The
circuits are generated using FloPoCo (de Dinechin and
Pasca, 2011), a tool generating floating point arithmetic
operators. They are then modeled with a DTPN. The
results are displayed in Table 2.

The two experiments show good improvement in the num-
ber of edges in the symbolic state graph, and thus in the
number of successors computation. The explored edges are
reduced up to 24.6%. Note that in some case, the two
approaches can produce a different number of symbolic
states. This happens when the order of computation of
successors is changed, and thus a bigger state (in terms of
subsumption) is found sooner. Also note that the dedicated

Nb trains
6 7 8 9 10

Symbolic Nb States 213 283 363 453 553
Nb Edges 11 913 33 666 129 547 365 556 1 396 313

Symbolic Nb States 213 283 363 453 553
Min-edges Nb Edges 10 159 30 955 114 329 341 506 1 192 241

Improvement 14.7% 8.0% 11.7% 6.6% 14.6%

Table 1. Level crossing

FPAdd(8,23) FPDiv(8,23) FPSqrt(8,23)
500 MHz 500 MHz 500 MHz

Symbolic Nb States 1695 329 540
Nb Edges 11 150 901 2 095

Symbolic Nb States 1693 328 540
Min-edges Nb Edges 8 411 831 1 728

Improvement 24.6% 7.8% 17.5%

Table 2. Arithmetic operators pipelining

tool is a non-optimal prototype, so the computation time
and memory usage are not representative of the com-
plexity. In this implementation, the “Min-edges” approach
does not show great gains compared to the simple symbolic
exploration.

7. CONCLUSION

We have studied an extension of Timed Petri Nets well
suited to solve synchronous circuit design problems, in
which the transitions are divided into two disjoint sets,
corresponding to delayable and non-delayable transitions.

After recalling its semantics, we are interested in its
expressiveness compared to the Merlin’s model, in which
intervals are associated with transitions. We proved that
the DTPN is strictly more expressive w.r.t. weak timed
bisimilarity than Merlin’s model under the discrete-time
semantics.

Our semantics of DTPNs is based on dynamic delays
decreasing with time allowing us to build a symbolic
abstraction that turns out to be efficient. Indeed, the basic
algorithms of the symbolic state graph computation such
as the successor or the subsumption algorithms have a
O(n) complexity. Moreover, we have proposed a reduction
of the successor number to be computed that preserves the
set of reachable states.

Finally, an implementation of the exploration of the sym-
bolic state space has been developed. It is evaluated on
a classical example from the literature, and also on a
concrete case of synchronous circuit design.
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