
Springer Nature 2021 LATEX template

Design and veri�cation of pipelined circuits

with Timed Petri Net*

Rémi Parrot1, Mikaël Briday1 and Olivier H. Roux1

1Nantes Université, École Centrale de Nantes, LS2N UMR CNRS
6004, 1 rue de la Noë, Nantes, 44300, France.

Contributing authors: remi.parrot@ec-nantes.fr;
mikael.briday@ec-nantes.fr; olivier-h.roux@ec-nantes.fr;

Abstract

A fundamental step in circuit design is the placement of
pipeline stages, which can drastically increase the data through-
put. The retiming allows optimizing the pipeline with regard
to a criterion, for example the required number of registers.
This article presents an extension of Timed Petri
Net to model synchronous electronic circuits, in
order to explore the design space of pipelines.
The Timed Petri Nets �à la Ramchandani� with a maximal step �r-
ing rule, have been notably used for the modeling of electronic circuits.
The RTPN extension, through the reset which model the pipeline
stages, and through the delayable transitions which relax some tempo-
ral constraints, makes possible to widen the design space of pipelined
systems, and thus to deal with both the retiming and the veri�cation.
After a formal de�nition of this model, we present a method
to explore pipelines verifying temporal properties. We apply our
approach to a time-multiplexing property allowing the mutual-
ization of operators while minimizing the number of registers.

Keywords: pipeline optimization, model checking, Timed Petri Net, resource

sharing, time-multiplexing, synchronous circuit

*This work is supported by the Renault-Centrale Nantes chair dedicated to the
propulsion performance of electric vehicles.

1

Springer Nature 2021 LATEX template

2 Design and veri�cation of pipelined circuits with TPN

1 Introduction

Timing constraints are a major problem in the design of synchronous log-
ical circuits. To meet these constraints the pipeline is often inevitable, it
allows increasing the operating frequency and thus the throughput. The cir-
cuit composed of atomic operators is sliced in several steps called stages. This
slicing, physically implemented with memories (�ip-�ops), allows the concur-
rent execution of stages and the synchronization of their inputs/outputs. The
automatic generation of pipeline, i.e. the e�cient placement of �ip-�ops (1 bit
registers), aims not only at ensuring a target frequency but also minimizing
the resources consumed by the pipeline.

1.1 Automatic pipeline generation

The automatic pipeline generation was initially formalized by Leiserson and
Saxe in [15], using a model of graph. Their method is based on the retiming,
i.e. moving registers in the circuit without altering the behavior. Thanks to the
retiming they are able to build a pipeline guaranteeing a minimal throughput,
while minimizing the resources consumed by the pipeline registers [15]. They
reformulate the problem with a minimum cost �ow problem. But it turned
out to be ine�cient for large circuits, and therefore has been replaced in [10]
by a reformulation into an iterative maximal �ow problem. This solution is
implemented at the logical synthesis level in the ABC tool [3], which is to
our knowledge the current state of the art. However, these algorithms are in
practice hard to implement, and are mainly used by FPGA vendor tools at
the logical synthesis level.

We propose a new approach able to solve this same problem, but also to
verify by model checking temporal constraints. Moreover, this model, which
preserves the structure of the circuit, is quite suitable for optimizations beyond
the pipeline, such as the sharing of circuit parts.

1.2 Circuit design with Petri Nets

The authors of [15] introduced an abstraction of circuit with a weighted
directed graph. The intuition behind this model is actually a marked graph,
which is a subclass of Petri Net (PN) where every place has exactly one input
arc and one output arc. Because of their concurrent nature, the PNs have been
widely employed to analyze and optimize temporal properties of synchronous
and asynchronous circuits: [6, 7, 16,23].

They proved to be very e�cient for latency insensitive systems. Bu�stov
et al. [6] extended the works of Leiserson and Saxe on latency insensitive sys-
tems, by combining retiming with recycling, i.e. insertion of bubbles (registers
with no informative value), in order to reduce the total number of registers
while ensuring a minimal throughput. More recently, Josipovic et al. [12] pro-
posed a temporal optimization of circuits generated from an HLS (High Level

Synthesis) description with control �ow structures, by applying the approach
of [6] on extracted sub-circuits.

Springer Nature 2021 LATEX template

Design and veri�cation of pipelined circuits with TPN 3

All those works share the same solving method: deduce temporal con-
straints from the structure of the PN, and reformulate with a linear optimiza-
tion problem. In contrast, our approach makes use of the semantics of PNs
and synthesizes directly the pipeline from the states of the model. The explicit
exploration of the states o�ers a simple way to verify logical and temporal
properties on the resulting pipelined circuit.

1.3 Model-Checking

The model-checking originates in the veri�cation of electronic circuits [13]. The
expressive power of formal models like PN, allows modeling both the circuit
and its environment, thus to verify a complete system. We can, for example,
verify an FPGA working together with a microcontroler, and all connected to
a set of sensors and actuators.

The temporal logics were �rst introduced by Pnueli [20] as speci�cation
languages to describe the behavior of sequential and concurrent systems. The
TCTL [2] and weighted CTL [5] logics extend respectively the temporal tree
logic CTL, to time and to cost constraints.

We propose to illustrate a usage of those temporal logics for the model-
checking of circuits with the example of time-multiplexing. It is a technique of
resources sharing using time to sequence the access to a resource. This kind of
property can be easily expressed and veri�ed on a PN model.

1.4 Time-Multiplexing

Time-multiplexing is especially interesting for applications with a low through-
put with respect to the clock frequency. Such applications include, for example,
signal processing applications implemented on FPGA, which require a very low
sampling rate compared to the FPGA frequency (e.g. a 1 MHz signal process-
ing algorithm onto a 100 MHz FPGA). In this kind of context, it is bene�cial
to implement only once, parts of the circuit which are used several times, and
to schedule their access with the pipeline.

Many works have been carried out in this domain, notably through a prob-
lem called modulo scheduling. This problem aims for a minimal latency in a
time-multiplexed circuit, given limited available resources (arithmetic or logic
operators). The authors of [25] proposed an ILP (Integer Linear Program-

ming) formulation which combines scheduling constraints, bounds on available
resources, minimization of needed registers, and mutualization of registers
when it is possible. More recently, a two steps process was demonstrated
by [24]: �rst the shareable con�gurations are detected, then each con�gura-
tion is scheduled. This approach called folding allows sharing portions of the
circuit in contrast with the previous approaches which were only able to share
operators one by one.

Springer Nature 2021 LATEX template

4 Design and veri�cation of pipelined circuits with TPN

1.5 Putting it all together

As part of the work with Renault, the automotive company, we aim at opti-
mizing VHDL synthesis for an FPGA target, from a Matlab/Simulink project.
Speci�cally, the goal is to implement a synchronous circuit with a minimum
resource consumption, both for logical units and �ip-�ops, while ensuring that
the whole computation is done in a limited time-frame (the sampling period).
A tool is under heavy development, in order to propose a complete chain for
the hardware implementation of control laws directly in FPGA. This section
brie�y introduces the di�erent parts considered in this tool.

The compiler is classically organized around an internal representation,
independent of both the input (Simulink) and output (VHDL) representa-
tions. This internal model serves as a pivot for all the tools, with di�erent
optimizations. The general architecture of the tool is depicted in Figure 1.

Internal
Model

Front-end
(Simulink
parser)

Back-end
(VHDL

generation)

input �le
(.mdl/.slx)

output �les
(.vhd)

Fixpoint
Datawidth
Evaluation

Operator
Delay

Evaluation

RTPN
Generation

RTPN Model

pipeline
+ folding
Operation

1 2

3

Fig. 1: Simulink-to-VHDL compiler data�ow diagram.

The front-end consists in parsing the input �le to transform it into this
internal model. During this phase, some optimizations are directly performed,
such as signal connections between the di�erent modules. In the same way, the
back-end (VHDL only at this date) allows generating the hardware descrip-
tion. These output �les can be synthesized through the hardware vendor
development chain.

Several steps are then performed, each time based on the same internal
model and input and output. They allow re�ning the model. On the diagram
presented in Figure 1, only the 3 main steps are shown.

The �rst pass concerns the evaluation of the size of the signals and the
associated encoding (�xpoint). It is currently done manually and is based on
a labeling of the signals. This pass can be replaced by the internal tools of
Matlab like the toolbox �xpoint designer. Eventually, the goal is to make this
pass semi-automatic, using both interval arithmetic and a�ne arithmetic [14],
and recent work for example for linear looped systems [9].

The evaluation of operator delays is required in modeling with Petri nets
extensions de�ned in the paper. The level of abstraction of the operators in

Springer Nature 2021 LATEX template

Design and veri�cation of pipelined circuits with TPN 5

Simulink does not allow to calculate precisely these delays. The approach used,
as for the FloPoco tool [8], is to synthesize each operator to determine its crit-
ical path. The delay of each evaluated operator is then recorded in a database
because this synthesis is computer intensive. This pass is automated through a
script and is based on an experimental-only approach. The delay of the oper-
ators will necessarily vary during the synthesis of the �nal project (branching,
internal optimizations, interconnections, . . .). It is only possible to validate
that all deadlines are met after the �nal synthesis.

The last pass (in green in the �gure) is the one that is presented in this
article and is a synthesis and extension of the articles [18,19], which introduce
the model Timed Petri Net with reset and delayable transitions (RTPN in
short) and present its usage for pipeline synthesis. Here, the focus is on the
addition of temporal logic constraints to the generation of pipelines.

1.6 Outline

We �rst present in the Section 2 a semantics of Timed Petri Nets �à la Ram-
chandani� [22] with an atomic �ring rule using maximal steps, i.e. without the
three phases �ring. Then, in the Section 3, we present an extension of Timed
Petri Nets (proposed in [19]) closer to the real synchronous circuits, which
embeds the impacts of registers on the delay of the circuit with a particu-
lar reset operation, and which allows relaxing some temporal constraints with
delayable transitions.

Thanks to this accurate model of pipelined synchronous circuits, we present
in the Section 4 a design space exploration guided by a cost which stands for
the number of needed registers (proposed in [18]). We extend this approach
in the Section 5 in order to build optimized pipelines (in terms of number
of registers), while guaranteeing that a set of properties are veri�ed by the
synthesized circuit. We apply this approach to the time-multiplexing problem.

2 A synchronous model for the pipeline

The use of deterministic time in PN was �rst introduced by Ramchandani [22],
which led to a model called Timed Petri Net. Each transition is associated
with a delay, representing the fact that actions take time to complete.
N and R≥0 are respectively the sets of integer and non-negative real num-

bers. For vectors of size n, the usual operators +,−, <,≤, >,≥ and = are
used on vectors of Nn and Rn≥0 and are the point-wise extensions of their
counterparts in N and R≥0. Let 0̄ be the null vector of size n.

2.1 The three-phases �ring semantics

Ramchandani's semantics is a three-phases �ring semantic: delete the input
tokens of the transition (consumption), wait until the �ring time is reached
(delay) and create the output tokens of the transition (production). Once ini-
tiated, this �ring process cannot be interrupted or stopped. The consumption

Springer Nature 2021 LATEX template

6 Design and veri�cation of pipelined circuits with TPN

phase can therefore be seen as a reservation (in particular in case of con�ict).
Moreover, the transitions in the �ring process are synchronized to a global
clock. He furthermore prohibits zero time �ring, which prevents the same
transition from being �red twice when other transitions are in con�ict.

Popova proposed a semantic based on the same three-phases �ring, but
selecting beforehand a maximal step of transitions to �re in the same atomic
action [21]. In other words, instead of being reserved one after the other, the
transitions are selected and then reserved all at the same time (consumption
phase).

2.2 The maximal-step �ring semantics

Classically the semantics of (timeless) PN is the interleaving semantics, in
which transitions are �red one after the other. In the maximal-step seman-
tics, a maximal set of �reable transitions is selected and are then �red all at
once. In practice the maximal-step semantics avoids the interleaving, which
is interesting for the modeling of synchronous systems. It imposes more con-
straints than the interleaving semantics, and thus increases the expressiveness
and eliminates reachable markings.

Popova shows how a counter machine can be encoded and simulated by
timeless PN with maximal-step �ring, which then also applies to TPNs [21]. In
particular, she shows the modeling of the so-called zero-test, which is recalled
in Figure 2a. It means that Timeless as Timed PNs �ring in maximal-step are
Turing equivalent.

2.3 An atomic semantics for TPNs

We consider a TPNs atomic semantics [19] without any reservation: waiting is
done while keeping the tokens in their place, then when at least one transition
is �reable we select the maximal step and �re (consumption and production)
all the transitions in one atomic action. The maximal step contains enabled
transitions which have been enabled for a period of time equal to their delays.

Informally, a clock and a delay are associated with each transition of the
Net. The clock measures the time elapsed since the transition has been enabled
and the delay is interpreted as a �ring condition: the transition may and must
�re if the value of its clock is equal to the delay.

Formally:
De�nition 1 (TPN). A TPN is a tuple (P, T,•(.), (.)•, δ,M0) de�ned by:

� P = {p1, p2, . . . , pm} is a non-empty set of places,
� T = {t1, t2, . . . , tn} is a non-empty set of transitions,
�
•(.) : T → NP is the backward incidence function,

� (.)• : T → NP is the forward incidence function,
� M0 ∈ NP is the initial marking of the Petri Net,
� δ : T → N is the function giving the �ring times (delays) of transitions.

Springer Nature 2021 LATEX template

Design and veri�cation of pipelined circuits with TPN 7

A marking M is an element of NP such that ∀p ∈ P , M(p) is the number
of tokens in place p. A marking M enables a transition t ∈ T if: M ≥• t. The
set of transitions enabled by a marking M is enab (M) = {t ∈ T |M ≥• t}. A
transition is �reable if it is enabled and its clock has reached its delay.

Fireable transitions are �red simultaneously according to the maximal-step
�ring rule. For marked graph where every place has one incoming arc, and one
outgoing arc, there can not be any con�ict and the �ring of a transition cannot
disable another transition. In the general case, there can be con�ict and, from
a given state, there can be several maximal steps τ .

From a marking M , the simultaneous �ring of a set τ of transitions leads
to a marking M ′ = M + Σt∈τ

(
t• −•t

)
.

A transition t′ is said to be newly enabled by the �ring of a set of transitions
τ if M + Σt∈τ

(
t• −• t

)
enables t′ and (M − Σt∈τ

•t) did not enable t′. If t
remains enabled after its �ring then t is newly enabled. The set of transitions
newly enabled by a set of transitions τ for a markingM is noted ↑enab (M, τ).

A state is a pair (M,v) where M is a marking and v ∈ RT≥0 is a time
valuation of the system (i.e. the value of the clocks). v(t) is the time elapsed
since the transition t ∈ T has been newly enabled. 0̄ is the valuation assigning
0 to every transition.
De�nition 2 (Maximal Step). Let q = (M, v) be a state of the TPN
(P, T,•(.), (.)•, δ,M0), τ ⊆ T is a maximal step from q i�:

1. ∀t ∈ τ, v(t) = δ(t)
2.
∑

t∈τ
•t ≤M

3. ∀t′ ∈ T, (v(t′) = δ(t′) and •t′ ≤M and t′ 6∈ τ)⇒
∑

t∈τ
•t +•t′ 6≤M

The set of maximal steps from q is noted maxStep(q)
The �rst condition ensures that the transitions are ready to �re, i.e. the

clocks are equal to the delays. The second condition ensures that the transition
are �reable, i.e. enabled and not in con�ict with another transition of τ . The
third condition disallows the existence of a proper superset of τ which ful�lls
the previous two conditions.

The semantics of TPN is de�ned as a Timed Transition System (TTS).
Waiting in a marking is a delay transition of the TTS and �ring a maximal
step is a discrete transition of the TTS.
De�nition 3 (Semantics of a TPN). The semantics of a TPN is de�ned by
the Timed Transition System S = (Q, q0,→):

� Q = NP ×RT≥0 is the set of states,
� q0 = (M0, 0̄) is the initial state,
� →∈ Q × (R≥0 ∪ 2T) × Q is the transition relation including a discrete
transition and a delay transition.

• The delay transition is de�ned ∀d ∈ R≥0 by:

(M,v)
d−→ (M,v′) iff ∀t ∈ enab (M) , v′(t) = v(t) + d and v′(t) ≤ δ(t)

• The discrete transition is de�ned ∀τ ∈ maxStep
(
(M, v)

)
by:

Springer Nature 2021 LATEX template

8 Design and veri�cation of pipelined circuits with TPN

(M,v)
τ−→ (M ′, v′) iff

M ′ = M +

∑
t∈τ
(
t• −•t

)
v′(t) =

{
0 if t ∈↑enab (M, τ) or t 6∈ enab (M ′)

v(t) otherwise

A run in a TPN is a sequence q0
α1−→ q1

α2−→ . . . , such that for all i,

qi
αi+1−−−→ qi+1 is a transition in the semantics.
In the absence of con�ict, the atomic semantics of De�nition 3 is equivalent

to the three-phases one of Ramchandani (extended with zero �ring delay [21]):
it exists only one run, no indeterminism. In case of con�ict, it is possible to con-
struct the three-phases �ring in our semantics: just add a zero time transition
before each transition, in order to simulate the reservation action [19].

2.4 Zero-test and model of the pipeline

Thanks to the maximal step �ring, a TPN represented on Figure 2a can per-
form the zero-test. After �ring the transition start, the transitions test and
cancel are �red simultaneously if and only if the place p is marked. The next
step will contain the transition is_zero i� p wasn't marked, which leads to a
token in pzero. We will use this test several times in the following, thus we will
replace it by the graphical shortcut of Figure 2b for convenience.

Using this zero-test, it is directly possible to model the data�ow of a
pipeline. The TPN of Figure 3 models a D �ip-�op, which is used for the syn-
chronization of a signal between two pipeline stages. The marking of the place
Qi (or Di) represents the presence of data (not its truth value).

On the left of the zero-test, the generator models the oscillator by adding
a token in the place clock every N time unit. When the place clock is marked,
the zero-test will put a token in Qi (output) only if the place Di (input) is
marked. We thus model a D �ip-�op (copy the input signal Di to the output
Qi on a rising edge of the clock), which synchronizes the data�ow with clock.

Model-checking on pipeline is then possible. However, this model only
allows the study of one pipeline (one placement of the D �ip-�ops in the circuit)
at a time.

3 TPN with reset and delayable transitions

We have proposed in [19] an extension of TPN where transitions are separated
in two groups: asap transitions (non-delayable) must �re as soon as possible, as
in the De�nition 1, and delayable transitions can �re when their clock reaches
their delay, or when their clock exceeds their delay and they are associated
with another transition whose clock just reaches its delay. In addition, the
clocks can be resetted (the corresponding action is called reset) and the delay
between two consecutive resets is �xed by an interval Ireset.

Springer Nature 2021 LATEX template

Design and veri�cation of pipelined circuits with TPN 9

start

test

cancel

is_not_zero

is_zero

0

0

0 0

0penab

ptest

pcancel

ptested

pcancelled

p

pzero

pzero

(a) Zero-test pattern

E

(= 0)?

6= 0

= 0

penab

p

pzero

pzero

(b) Notation

Fig. 2: Zero-test pattern

E

(= 0)?

= 0

6= 0

N

generator clock

Qi

Di

Fig. 3: Model of pipeline data�ow with frequency 1
N (D �ip-�op)

3.1 De�nitions

De�nition 4 (RTPN). A RTPN N is a tuple (P, T, TD,
•(.), (.)•, δ, Ireset,M0)

de�ned by:

� (P, T,•(.), (.)•, δ,M0) is a TPN;
� TD ⊆ T is the set of delayable transitions;
� Ireset is the reset time interval with lower (Ireset) and upper (Ireset) bounds
in N.

Springer Nature 2021 LATEX template

10 Design and veri�cation of pipelined circuits with TPN

From a state (M, v), a transition is �reable if it is enabled and its clock is
greater or equal to its delay. As for the TPN, the clock of an asap transition
t 6∈ TD cannot exceed δ(t). Consequently, v(t) ≤ δ(t) and t must �re when its
clock is equal to its delay. A delayable transition t ∈ TD, may �re either when
v(t) = δ(t) (not delayed in that case), or when v(t) > δ(t), but in this case t
must be associated with at least one (or more) other �reable transition t′ such
that v(t′) = δ(t′).

The maximal step is then maximal only with regard to the asap transitions:
De�nition 5 (Maximal Step w.r.t. TD). Let q = (M, v) be a state of N . τ ⊆ T
is a maximal step with regard to TD from q i�:

1. ∀t ∈ τ, v(t) ≥ δ(t)
2. ∃t ∈ τ s.t. v(t) = δ(t)
3.
∑

t∈τ
•t ≤M

4. ∀t′ ∈ T \ TD, (v(t′) = δ(t′) and •t′ ≤M and t′ 6∈ τ)⇒
∑

t∈τ
•t +•t′ 6≤M

The set of maximal steps w.r.t. TD from q is noted maxStep\TD
(q).

A state is now a pair (M,v) such that v ∈ RT∪{reset}≥0 is extended with
a clock value for reset, evaluating the time elapsed since the last reset. The
reset action resets all clocks of the net. It is possible only when its clock is in
the reset interval v(reset) ∈ Ireset.

The semantics of a RTPN is de�ned as a Timed Transition System (TTS).
Waiting in a marking is a delay transition of the TTS, and �ring a maximal
step or the reset are discrete transitions of the TTS.
De�nition 6 (Semantics of a RTPN). The semantics of a RTPN N is de�ned

by the Timed Transition System SN = (Q, q0,→) with Q = NP × RT∪{reset}≥0

is the set of states; q0 = (M0, 0̄) is the initial state; and →∈ Q× (R≥0 ∪ 2T ∪
{reset}) × Q is the transition relation including a discrete transition and a
delay transition:

� The delay transition is de�ned ∀d ∈ R≥0 by:

(M,v)
d−→ (M,v′) iff

∀t ∈ enab (M) ∪ {reset}, v′(t) = v(t) + d

v′(reset) ≤ Ireset
∀t ∈ enab (M) \ TD, v′(t) ≤ δ(t)

� The discrete transition is de�ned by:

� ∀τ ∈ maxStep\TD

(
(M, v)

)
,

(M,v)
τ−→ (M ′, v′) iff

M ′ = M + Σt∈τ

(
t• −•t

)
v′(t) =

{
0 if t ∈↑enab (M, τ) or t 6∈ enab (M ′)

v(t) otherwise

� (M,v)
{reset}−−−−−→ (M, v′) iff

{
v(reset) ∈ Ireset
v′ = 0̄

Springer Nature 2021 LATEX template

Design and veri�cation of pipelined circuits with TPN 11

De�nition 7 (Runs). Let N be a RTPN and SN its semantics. A run of N
from q is �nite or in�nite sequence ρ = q

d1−→ qd1
τ1−→ qτ1 . . .

dn−→ qdn
τn−→ qτn

of alternating delay di (possibly null) and discrete transition τi where either

τi ⊆ T or τi = {reset}. For all run ρ, it exists a discrete run ρd̄ = q
τ1−→

qτ1 . . .
τn−→ qτn , in which only the discrete transitions are present.

3.2 Example

Let us consider the RTPN depicted in Figure 4a. Figure 4b shows a part of its
state graph, restricted to the �rst occurrence of a reset. States after a reset are
framed in cyan. For more convenience, the markings are represented as the set
of marked places. The initial state of the net is the state q0 in the state graph.

Note that the transition t0 being delayable, it can �re when it reaches its
delay (edge between q1 and q2), or together with t3 (edge between q8 and q9).
Finally, it should be noted that not all the possible runs are represented here.
It is for example possible to wait 7 time units from q0 and then do a reset.
Actually it exists in�nitely many runs, as a result of the density of time.

3.3 Properties of RTPNs

Symbolic state

The RTPN semantics is a transition system in which each state consists of a
marking and a valuation of the clocks. Note that there is (because we only
consider bounded nets) only a �nite number of markings, but there is an
uncountable quantity of valuations because of the density of time (particularly
for the states from which a reset is possible). For example, there is in�nitely
many states between q8 and q11 (in the Figure 4b). These states correspond
to the wait between 6 and 9 from the state q0 which can be abstracted by
v(t0) = v(t3) = v(reset) ∈ [6, 9]. The state space can then easily be abstracted
by a �nite set of symbolic states.
De�nition 8 (Symbolic state). A symbolic state is a pair (M,Z) where M is
a marking, and the zone Z is a set of valuation v of T ∪{reset} de�ned by the
conjunction of:

� rectangular constraints: (v(x) ∼ c) where x ∈ T ∪ {reset}, ∼∈ {≤,=,≥}
and c ∈ N,

� diagonal constraints: (v(reset)− v(t) = c) where t ∈ enab (M) and c ∈ N.

It is then possible to build a symbolic state graph as de�ned in [19] illus-
trated in the example Figure 5. Compared to the part of state graph of
Figure 4b, we can see that some states have been grouped into a single symbolic
state.

It is interesting to note that the zones have a particular shape: the diagonal
constraints are equalities and compare all the clocks with v(reset). Thus, by
simply setting a value of v(reset) we can �choose� a point of the zone. The
discrete actions (other than reset) are then only done on integer points of the
space and the symbolic state space preserve the language in addition to the

Springer Nature 2021 LATEX template

12 Design and veri�cation of pipelined circuits with TPN

t0

t1

t2

t3

5

4

2

9

p0

p1

p2

p3

p4

p5

p6

Ireset = [6, 10]

(a) Example of RTPN N

{p0, p3}
v(t0) = 0
v(t3) = 0
v(reset) = 0

{p0, p3}
v(t0) = 5
v(t3) = 5
v(reset) = 5

{p1, p2, p3}
v(t1) = 0
v(t2) = 0
v(t3) = 5
v(reset) = 5

{p1, p2, p3}
v(t1) = 2
v(t2) = 2
v(t3) = 7
v(reset) = 7

{p1, p5}
v(t1) = 2
v(reset) = 7

{p1, p5}
v(t1) = 4
v(reset) = 9

{p4, p5}
v(reset) = 9

{p4, p5}
v(reset) = 0

{p0, p3}
v(t0) = 9
v(t3) = 9
v(reset) = 9

{p1, p2, p6}
v(t1) = 0
v(reset) = 9

{p1, p2, p6}
v(t1) = 0
v(reset) = 0

{p0, p3}
v(t0) = 6
v(t3) = 6
v(reset) = 6

{p0}
v(t0) = 9
v(reset) = 9

{p0}
v(t0) = 0
v(reset) = 0

{p1, p2, p3}
v(t1) = 1
v(t2) = 1
v(t3) = 6
v(reset) = 6

{p1, p2, p3}
v(t1) = 0
v(t2) = 0
v(t3) = 0
v(reset) = 0

{p1, p5}
v(t1) = 0
v(reset) = 0

5 {t0} 2 {t2}

2

{t1}

{reset}

9

{t0, t3}

{reset}

6

{reset}

{t3}

{reset}

1

{reset}

{reset}

q0 q1
q2 q3

q4

q5

q6

q7

q8

q9

q10

q11

q12

q13

q14

q15

q16

(b) Part of the state graph of N (until the �rst resets)

Fig. 4: Example of RTPN and some possible runs. Delays are represented in
red under the transitions, and delayable transitions are in gray (only t0 in this
example).

reachability. Based on this abstraction it is possible to build a single clock
automata that recognized the same language, as presented in [19].

An abstraction preserving the branching is readily accessible. Simply split
the zone when a transition is no more �reable. For example the state sa of
Figure 5 becomes the states presented in Figure 6.

Without going into details on symbolic state graph, it should be noted that
only few discrete runs are su�cient to describe all the behaviors. We will then
only represent the relevant states in the following state graphs.

Decidability and complexity

Timeless PNs, with the maximal step �ring, are as expressive as a Turing
Machine and are a subclass of RTPN for whom the reachability problem is then

Springer Nature 2021 LATEX template

Design and veri�cation of pipelined circuits with TPN 13

{p0, p3}
0 ≤ v(t0)
0 ≤ v(t3) ≤ 9
0 ≤ v(reset) ≤ 10
v(reset)− v(t0) = 0
v(reset)− v(t3) = 0

{p1, p2, p3}
0 ≤ v(t1) ≤ 4
0 ≤ v(t2) ≤ 2
5 ≤ v(t3) ≤ 9
5 ≤ v(reset) ≤ 10
v(reset)− v(t1) = 5
v(reset)− v(t2) = 5
v(reset)− v(t3) = 0

{p1, p2, p6}
0 ≤ v(t1) ≤ 4
9 ≤ v(reset) ≤ 10
v(reset)− v(t1) = 9

{p0, p6}
9 ≤ v(t0)
9 ≤ v(reset) ≤ 10
v(reset)− v(t0) = 0

{p1, p2, p3}
0 ≤ v(t1) ≤ 4
0 ≤ v(t2) ≤ 2
0 ≤ v(t3) ≤ 9
0 ≤ v(reset) ≤ 10
v(reset)− v(t1) = 0
v(reset)− v(t2) = 0
v(reset)− v(t3) = 0

{p1, p5}
2 ≤ v(t1) ≤ 4
7 ≤ v(reset) ≤ 10
v(reset)− v(t1) = 5

{p1, p2, p6}
0 ≤ v(t1) ≤ 4
0 ≤ v(reset) ≤ 10
v(reset)− v(t1) = 0

{p0, p6}
0 ≤ v(t0)
0 ≤ v(reset) ≤ 10
v(reset)− v(t0) = 0

{p1, p5}
0 ≤ v(t1) ≤ 4
0 ≤ v(reset) ≤ 10
v(reset)− v(t1) = 0

{p4, p5}
9 ≤ v(reset) ≤ 10

{p4, p5}
0 ≤ v(reset) ≤ 10

{reset}

{t0
}

{t0, t3}

{t
3 }

{re
set

}

{t2}

{reset}

{reset}

{re
se

t}

{t1}

{
r
e
s
e
t
}sa

sb

sc

sd

se

sf

sg

sh

si

sj

sk

Fig. 5: Part of the symbolic state graph of N (until the �rst resets)

{p0, p3}
0 ≤ v(t0) ≤ 5
0 ≤ v(t3) ≤ 9
0 ≤ v(reset) ≤ 10
v(reset)− v(t0) = 0
v(reset)− v(t3) = 0

{p0, p3}
5 ≤ v(t0)
5 ≤ v(t3) ≤ 9
5 ≤ v(reset) ≤ 10
v(reset)− v(t0) = 0
v(reset)− v(t3) = 0

{
t 0

}

5

{reset}

{t0, t3
}

{t3}

s1a s2a

Fig. 6: Abstraction preserving the branching of state sa of Figure 5

also not decidable. But if we consider bounded nets, we obtain the following
results:
Theorem 1. Reachability and TCTL model checking for a bounded TPN, with
or without reset and delayable transitions, are PSPACE-complete.

Proof. PSPACE-hardness comes from the PSPACE-completness of the reach-
ability problem for a safe timeless PN with the classical interleaving semantics,
which is a subclass of bounded TPN. Then the PSPACE-completness is
obtained by applying the same procedure as in [2, 4] by checking TCTL for-
mulae with an inductive algorithm for region graph exploration, which is
polynomial in space.

Theorem 2. For bounded RTPN, the universality and language inclusion
problems are decidable for �nite timed words.

Proof. It is a consequence of the translation preserving the timed bisimulation
proposed in [19] of bounded RTPNs to one clock timed automata, for which
these problems are decidable [1, 17].

Springer Nature 2021 LATEX template

14 Design and veri�cation of pipelined circuits with TPN

4 Pipeline synthesis

The model presented in Section 3 can accurately represent pipelined syn-
chronous circuits. The following will demonstrate how to use this model
to build an optimized pipeline which ensures a minimal frequency while
minimizing the required registers (and thus the material resource consumed).

In this modeling, transitions represent the operators and places represent
the connections of the circuit. The PN is actually a Marked Graph, and there
is no con�ict. However, the state space still has an exponential size regarding
the size of the RTPN. Some features are then used to limit the exploration
according to an optimization objective.

The goal is to build the pipeline which minimizes the total number of �ip-
�op (1 bit register). The RTPN model is then extended with a cost representing
the number of �ip-�ops of a given pipeline. Note that the considered circuits
are �nite and with unfolded loops, so we focus on �nite runs of RTPN: the
accumulation of an increasing cost will not a�ect the termination.

This pipeline building problem which minimizes the number of registers
while ensuring a minimal frequency was already solved by [15]. However, the
proposed solution cannot be easily extended with additional constraints on
the pipeline. The originality of the approach lies in the possibility to append
a set of properties to check, to the pipeline synthesis. Those properties can,
for example, permit sharing a portion of the circuit between several pipeline
stages. The synthesis of pipeline allowing resource sharing will be addressed
afterwards in the Section 5.

4.1 RTPN with cost

The RTPN is extended with a cost on each place, and a marking cost function.
De�nition 9 (CRTPN). A CRTPN is a tuple (N , C, ω) where N =
(P, T, TD,

•(.), (.)•, δ, Ireset,M0) is a RTPN and

� C : P → N is the cost assigned to each place;
� ω : NP → N is the marking cost function (recall that a marking isM ∈ NP).

A classical marking cost function is ω(M) =
∑

p∈P M(p) · C(p) which is
the sum of the marking of each place weighted by its cost. This function is not
necessarily linear, as we will see for the model of branching points.
De�nition 10 (Cost of a run). The cost Ω(ρ) of a run ρ is the accumulated
marking cost of the states after each reset in the run, starting by the cost of
the initial marking.

It is de�ned inductively on a run ρn = ρn−1
αn−−→ qn, with αn ∈ R≥0 ∪ 2T ∪

{reset} and qn = (Mn, vn) by:

� Ω(q0) = ω(M0)

� Ω(ρn) =

{
Ω(ρn−1) + ω(Mn) if αn = {reset}
Ω(ρn−1) otherwise

Springer Nature 2021 LATEX template

Design and veri�cation of pipelined circuits with TPN 15

4.2 Modeling the circuit

A set of rules to model a circuit with a CRTPN is de�ned in this section.
Figure 7 shows an example of circuit, with the operators opi connected by
signals si. The size of each signal is noted between parenthesis (in green).
The propagation delay of each operator is noted under it (in red). Lastly the
pipeline's registers are represented by (blue) rectangles on the edges.

s0(7:0)
op0

s1(7:0)
op1

op2

op3

s2(3:0)

s3(7:0)

s4

op4

op5

op6

5 6

1

6

3

6

1

s5(7:0)

s6(15:0)

s7

s8(15:0)

(a) Pipelined circuit (frequency f ≥ 1
8)

op0 b1

op1

op2

op3

op4

op5

op6

5 0

6

1

6

3

6

1

s0 s1

s11

s12

s13

s2

s3

s4

s5

s6

s7

s8

8 8

4

8

1

8

16

1

168

Ireset = [4, 8]

(b) Model of the circuit with a CRTPN

Fig. 7: An example of pipelined circuit and its corresponding model

In the following, a circuit is considered as a weighted graph (V,E, d, w), in
which V = Op ∪ B is the set of operators Op joint with the set of branching
points B, and E is the set of signals. Additional signals following a branching
point are de�ned, in order to match with the edges of the graph (on the example
Figure 7 the signal s1 gives three signals s11, s12 and s13 after the branching).
Finally, the weights d and w represent respectively the propagation delay of
the operators d(op) and the size of the signals w(s) (number of bits).

The CRTPN ((P, T,•(.), (.)•, δ, Ireset,M0), C, ω) built from the circuit
Figure 7a is represented on Figure 7b, and is obtained thanks to 7 rules. The
four �rst rules preserve the elements of the circuit and their connections:

rule 1: ∃φe : E 7→ P a bijection, with ∀s ∈ E, C(φe(s)) = w(s);
rule 2: ∃φv : V 7→ T a bijection, with ∀op ∈ Op, δ(φv(op)) = d(op) and ∀b ∈ B,
δ(φv(b)) = 0;

Springer Nature 2021 LATEX template

16 Design and veri�cation of pipelined circuits with TPN

T = TOp] TB with TOp = φv(Op) and TB = φv(B).
rule 3: If s ∈ E is an input signal of v ∈ V , then •t(p) = 1 with t = φv(v) and
p = φe(s);
rule 4: If s ∈ E is an output signal of v ∈ V , then t•(p) = 1 with t = φv(v) and
p = φe(s);

A place and its associated cost model respectively a signal and its size. A
transition and its �ring delay model respectively an operator and its propa-
gation delay. Moreover, a transition with a null delay model each branching
point (only b1 in the example). Its purpose is to allow the placement of reg-
isters either before the branching (s1), or on a particular output branch (s11,
s12 or s13). The rules 3 and 4 preserve the structure of the net.

All the input signals are considered synchronous, which is equivalent to
have them all on the �rst pipeline stage. In the model, this corresponds to the
initial marking M0 de�ned by rule 5:

rule 5: If s is an input signal (not outgoing from any operator), thenM0(p) = 1 with
p = φe(s);

The reset action models the placement of a border of pipeline stage, and
resets all the clocks of the CRTPN for the following stage. The rule 6 de�nes
the upper bound of the reset interval:

rule 6: Ireset =
1
f ;

The time elapsed since the last reset is �stored� in v(reset). The semantics
enforces a reset to happen only if v(reset) ∈ Ireset. Then, if the upper bound
is �xed to 1

f , the pipeline produced has at least a frequency f . Here 1
f , and in

the following 1
2f , are supposed to be in N, but they can be rational without

altering the results.
The cost function gives the total number of �ip-�ops needed in the current

pipeline stage:

rule 7: We de�ne POp = {p ∈ P | ∃t ∈ TOp, t•(p) = 1} and PB(p) = {p′ ∈ P | ∃t ∈
TB ,
•t(p) = 1 and t•(p′) = 1}.

Then ∀M ∈ {0, 1}P , ω(M) =
∑
p∈POp

C(p) ·max(M(p),maxp′∈PB(p)(M(p′))).

Indeed, the cost of a place matches with the size of the signal, and
consequently with the number of �ip-�ops needed per register. The cost
function manages speci�cally the branching points, where a mutualization
of the registers on the output is possible. That explains why the cost of
places after a transition modeling a branching point following a place p, is
C(p) ·maxp′∈PB(p)(M(p′)).

These modeling rules are su�cient to fully de�ned the circuit model with
CRTPN. All possible pipelines can then be explored thanks to this model. In
particular it is possible to �nd the optimal one, i.e. the one which minimizes the
resource consumed while ensuring a minimal frequency. However, in practice
we quickly face a combinatorial explosion during the state space exploration.
To avoid the combinatorial explosion, the two heuristics proposed in [18] lead

Springer Nature 2021 LATEX template

Design and veri�cation of pipelined circuits with TPN 17

to good pratical results by limiting the number of delayable transitions1 and
increasing the lower bound of the reset interval.

4.3 Pipeline synthesis from the model

Each reachable state of the model represents a pipeline stage that is possible
on the real circuit. The reset operation sets the transition from a stage to the
following one. The full pipeline is recovered by walking through a branch of
the state graph, and accumulating the states following a reset.

{s0}
v(op0) = 0
v(reset) = 0

{s0}
v(op0) = 5
v(reset) = 5

{s1}
v(b1) = 0
v(reset) = 5

{s11, s12, s13}
v(op1) = 0
v(op2) = 0
v(op3) = 0
v(reset) = 5

{s11, s12, s13}
v(op1) = 0
v(op2) = 0
v(op3) = 0
v(reset) = 0

{s11, s12, s13}
v(op1) = 6
v(op2) = 6
v(op3) = 6
v(reset) = 6

{s2, s12, s13}
v(op2) = 6
v(op3) = 6
v(reset) = 6

{s2, s12, s13}
v(op2) = 0
v(op3) = 0
v(reset) = 0

{s2, s12, s13}
v(op2) = 1
v(op3) = 1
v(reset) = 1

{s2, s3, s4, s13}
v(op3) = 1
v(op4) = 0
v(op5) = 0
v(reset) = 1

{s2, s3, s4, s13}
v(op3) = 6
v(op4) = 5
v(op5) = 5
v(reset) = 6

{s2, s3, s4, s5}
v(op4) = 5
v(op5) = 5
v(op6) = 0
v(reset) = 6

{s2, s3, s4, s5}
v(op4) = 6
v(op5) = 6
v(op6) = 1
v(reset) = 7

{s6, s7, s8}
v(reset) = 7

{s6, s7, s8}
v(reset) = 0

5

{op0}

{b1}

{reset}

6

{op1}

{reset}

1

{op2}

5

{op3}

1

{op4, op5, op6}

{reset}

q0

q1

q2

q3

q4

q5 q6

q7

q8
q9

q10

q11 q12

q13

q14

(a) A run of the CRTPN of Figure 7b. The states following a reset are framed in cyan (q0, q4, q7 and
q14)

s0(7:0)
op0

s1(7:0)

op1

op2

op3

s2(3:0)

s3(7:0)

s4

op4

op5

op6

5 6

1

6

3

6

1

s5(7:0)

s6(15:0)

s7

s8(15:0)

(b) A possible pipeline of the circuit of Figure 7a

Fig. 8: Example of pipeline synthesized from a run

A run ρ of the CRTPN of Figure 7b, is represented on Figure 8a. It
is actually the best achievable run, i.e. the one minimizing the cost. The
corresponding pipeline in the circuit is drawn on Figure 8b.

Let qi = (Mi, vi) (0 ≤ i ≤ 14) be the states of this run ρ. The marking of
each state after a reset gives the placement of the registers in the pipelined

1This explains why in the Figure 7b, the transitions modeling the operators op0 and op5 are
not delayable.

Springer Nature 2021 LATEX template

18 Design and veri�cation of pipelined circuits with TPN

circuit. Except for the signals after a branching point: if several are marked,
then only one register is needed in the pipelined circuit (mutualization). For
example, the marking M4 = {s11, s12, s13} leads to only one register on s1.

The cost of this run is Ω(ρ) = ω(M0) + ω(M4) + ω(M7) + ω(M14) =
C(s0)+C(s1)+(C(s1)+C(s2))+(C(s6)+C(s7)+Cs8) = 61. This cost matches the
total number of �ip-�ops in the pipeline of Figure 8b. On this example, a clas-
sical greedy �as-soon-as-possible� algorithm as implemented in FloPoCo [11]
(a generator of pipelined arithmetic operators for FPGA), produces the exam-
ple of Figure 7a, with a total of 94 �ip-�ops (54% more). The improvement
of this approach over the classical greedy has been studied in [18], on several
arithmetic circuits.

5 Application to the time-multiplexing

The RTPN model allows exploring many pipelines of a circuit with a frequency
guaranteed in an interval. We can check temporal logic properties, such as
ensuring that the time spent between the production and consumption of a
data on a portion of the circuit is less than a bound. It is in fact possible to
impose some speci�c constraints to the resulting pipelines.

In this section, we apply this approach to the time-multiplexing problem.
As stated in the introduction, we focus here on circuits with a low throughput
compared to the clock frequency, thus the whole computation is done in one
sampling period.

5.1 Folding or time-multiplexing

With an ongoing concern of saving resources, a method called time-
multiplexing (also called folding) has been developed. It aims at sharing the
instantiation of operators or group of operators which are needed at sev-
eral places of the circuit. The sharing is secured by sequential access to the
instantiation.

Figure 9 shows an example of circuit that is suitable for resource sharing
(based on an example of [26]). Suppose that the operators op1 (resp. op2; op3)
and op′1 (resp. op′2; op

′
3) are two instances of the same operator. It is then

possible to instantiate only once the portions of circuit in (orange) dotted
frame, and to share the instantiation. Note that the signal sizes are willingly
omitted for ease of understanding, but this approach is still valid with di�erent
signal sizes (as long as they are equal on the portions to share).

The sequencing of resources access is done with a particular pipeline. Iden-
tify this (or one of these) pipeline constitutes the modulo scheduling problem.
A key of the modulo scheduling is to �nd the initiation interval : the delay
between two introductions of new entries in the circuit. This periodical data
introduction can be represented in a RTPN by a token generator on the input.
However, as a �rst step, we will assume that a new data is introduced once the

Springer Nature 2021 LATEX template

Design and veri�cation of pipelined circuits with TPN 19

s0

s1

s2

s3

op0

op1

s4

s5
op2

s6

op3

op′1

s7

s8

op4

op′2

s9

s10

op′3
s11

4

1 2

4 1

1 2

4

(a) Circuit to fold (f ≥ 1
5)

s0

s1

s2

s3

op0

op1

s4

s5
op2

s6

op3

op′1

s7

s8

op4

op′2

s9

s10

op′3
s11

4

1 2

4 1

1 2

4

(b) Not foldable pipeline (f ≥ 1
5)

Fig. 9: Example of time-multiplexing

whole computation is done. This assumption is perfectly relevant in signal pro-
cessing, where the initiation interval (the sampling period) is often signi�cantly
higher than the pipeline period (related to the FPGA frequency).

Our goal is to �nd this particular pipeline on the initial circuit containing
all the instances, and afterwards to fold the instances (i.e. to merge them).
The pipeline must then verify two properties:

1. The �rst is the mutual exclusion. The resources must not be accessible at
the same time by several clients.

2. The second concerns the register placement. The registers must be placed
on the same locations in the portions of circuit to fold.

In the example Figure 9, the �rst constraint means to ensure that there is
never some data at the same time on the twin signals: simultaneously in s5

(resp. s6) and in s8 (resp. s10). The second constraint means that there must
be the same amount of registers in the pair of twin signals. That is why the
pipeline of the Figure 9b doesn't allow time-multiplexing, contrary to the one
of the Figure 9a. Indeed, s5 crosses no register whereas s8 crosses one, which
violates the second constraint.

It is possible to build this particular pipeline, using the approach pre-
sented in Section 4, by guiding the exploration with CTL properties. Thus, the
exploration will be restricted to runs verifying those properties. The mutual
exclusion can be simply expressed as a marking constraint veri�ed by all states
of the run. However, the CTL properties are expressed on markings, they do
not allow observing the reset �red, which is required by the second constraint.

Springer Nature 2021 LATEX template

20 Design and veri�cation of pipelined circuits with TPN

As the reset is de�ned in the semantics of the model, it is not explicitly present
in the net like the other transitions, it then cannot be connected to an observer
place. Somehow the CTL must be extended with the ability to capture the
resets �red in each place.

5.2 Explicit reset

As explained in section 3, due to the density of time the reset can �re from an
in�nite number of states with the same marking, but the successor state will
always be the same. Therefore, the only relevant �ring times are either on the
bounds of the interval (Ireset and Ireset) or together with a maximal step (in
the semantics just after the maximal step �ring). One can then consider the
reset as a delayable transition with a temporal upper bound, and this preserves
the discrete runs. Thus, for all RTPN, a TPN with delayable transitions that
veri�es the same CTL properties can be built.

Indeed, a reset can be explicitly expressed with the pattern drawn in the
Figure 10. The place preset holds a token since the last �ring of reset. The
delayable transition with delay Ireset and the non-delayable transition with

delay Ireset model the reset interval. For all place pi of the net, the pattern in
dashed frame is added and connected to the transitions reset and end_reset.
This pattern achieves the reset of the transitions enabled by the place pi. It
works in two steps: �rst the tokens in the place are drained and temporarily
held in pstocki , then once the draining is �nished all tokens are set back in the
place pi. Each step is based on a zero-test with a loopback which simulates
a while loop. In other words, the tokens are removed from pi (resp. p

stock
i)

while there is some left. Note that with a safe net, the pattern can be greatly
simpli�ed: only one zero-test that removes and sets back the token in pi is
enough.

reset

reset

E

(= 0)?

6= 0

= 0 E

(= 0)?

6= 0

= 0 end_resetIreset

Ireset

0

preset

pdraini

pi

pstocki

pfilli

pendi

pobsi

Fig. 10: Pattern expressing the reset

Springer Nature 2021 LATEX template

Design and veri�cation of pipelined circuits with TPN 21

In the pattern drawn in the Figure 10, the place pobsi counts the total
number of tokens which underwent a reset in pi since the initial state. This
observer place allows us to extend the temporal logic CTL for the RTPN.
De�nition 11. Let N be an RTPN, and q = (M,v) a state of N . Let the
property φ = (reset(pi) ∼ n) with ∼∈ {<,>,≤,≥,=, 6=} and n ∈ N. The state
q veri�es the property φ if and only if q veri�es the property ψ = ((M(pobsi) ∼
n).

5.3 Synthesis of a pipeline for the folding

With the RTPN approach and the CTL extension presented previously, it is
possible to solve the modulo scheduling problem for the folding of circuits.
More speci�cally, it is possible to build a pipeline allowing the folding, while
ensuring a minimal frequency and minimizing the number of �ip-�ops. This
solution is applied to the example of circuit given in Section 5.1.

Our method for solving the folding problem is a reachability problem, where
a CTL property de�ne the mutual exclusion. This property allows the state
space exploration to be pruned on the �y. Thus, the synthesis is guided by the
CTL property.

The RTPN model of the circuit of Figure 9 is built using the modeling
rules presented in Section 4. It is represented in the Figure 11a. Note that
the transitions modeling the shared operators are delayable in order to relax
the exploration, and so to satisfy the folding constraints. The places drawn in
orange (s5, s6, s6a, s6b, s8 and s10) are subject to CTL constraints.

A �rst atomic property guarantees the mutual exclusion of data in the twin
places: φmutex = (M(s5) + M(s8) ≤ 1) ∧ (M(s6) + M(s10) ≤ 1) ∧ (M(s6a) + M(s10) ≤ 1) ∧

(M(s6b) +M(s10) ≤ 1). In fact, in the model, tokens represent both the placement
of the future registers, and the data propagated when the circuit is pipelined
(as soon as pipeline registers are in place). The property φmutex checks that
the two signals s5 (resp. s6, s6a, s6b) and s8 (resp. s10) will never contain data
simultaneously.

A second atomic property guarantees the consistency of registers placement
in the twin places in a �nal state (state with the �nal marking): φconsist =

(M(s11) = 1) ∧ (reset(s5) = reset(s8)) ∧ (reset(s6) + reset(s6a) = reset(s10)) ∧ (reset(s6) +

reset(s6b) = reset(s10)). It checks that in a �nal state (M(s11) = 1), the twin places
have passed through the same number of reset.

The �nal CTL property guarantees that φmutex holds until it is satis�ed
together with φconsist (once a �nal state is reached): φfold = A(φmutexU(φmutex ∧

φconsist)). The pruning during the state space exploration insures that each run
sati�es the property φfold, as the one presented in Figure 11b. The synthesized
pipeline from this run is the one drawn in the Figure 9a.

5.4 From the model to the folded circuit

The parts of shareable circuits are currently selected by hand. This problem
has been addressed in the literature as automatic identi�cation of isomorphic

Springer Nature 2021 LATEX template

22 Design and veri�cation of pipelined circuits with TPN

op0

op1 op2 b6

op3

op′1

op4

op′2

op′3

4

1 2 0

4 1

1 2

4

s0

s1

s2

s3

s4

s5 s6

s6a

s6b

s7

s8

s9

s10

s11

Ireset = [5
2 , 5]

(a) RTPN

{s0, s1, s2, s3}
v(op0) = 0
v(op1) = 0
v(reset) = 0

{s0, s3, s5}
v(op0) = 1
v(op2) = 0
v(reset) = 1

{s3, s4, s6}
v(b6) = 0
v(reset) = 4

{s3, s4, s6}
v(b6) = 0
v(reset) = 0

{s3, s4, s6a, s6b}
v(op3) = 0
v(op′1) = 0
v(reset) = 0

{s4, s6a, s8}
v(op3) = 1
v(op′2) = 0
v(reset) = 1

{s7, s10}
v(op4) = 0
v(reset) = 4

{s9, s10}
v(op′3) = 0
v(reset) = 5

{s9, s10}
v(op′3) = 0
v(reset) = 0

{s11}
v(reset) = 4

{s11}
v(reset) = 0

1, {op1} 3, {op0, op2} {reset} 0, {b6}

1, {op′1}

3, {op′2, op3}1, {op4}{reset}4, {op′3}{reset}

q0 q1 q2 q3
q4

q5q6q7q8q9q10

(b) A run allowing the folding

Fig. 11: Time-multiplexing with RTPN

subgraphs, and some solutions have already been proposed [26]. In our case
study, we bene�t from the high-level abstraction of Matlab/Simulink and some
parts of the evaluated models have fairly obvious redundancies to be deter-
mined. On the other hand, the use of libraries facilitates the identi�cation of
shareable parts.

Once the portions to be shared have been chosen, a minimum bound on
the pipeline frequency fp can be deduced from the desired minimum sampling
rate fs. Let n be the maximum number of times a circuit portion is shared,
then the pipeline frequency must satisfy fp ≥ n · fs. This bound generalizes
to the case of sharing nested parts, by multiplying the maximum number of
occurrences between nested levels. However, this bound does not guarantee
that the resulting folded circuit will have the minimum sampling rate fs. A
post-selection of the produced pipelines, based on their latency (which is the
sampling period), is therefore necessary. In other words, the lower bound on the
pipeline frequency fp is only used to reduce the exploration to a few potential
solutions.

Our pipeline synthesis approach for folding has been implemented in a
prototype tool. The �rst tests are encouraging, and on the example presented,
the tool produces the expected pipeline in a few milliseconds: 24ms on an Intel
Core i7 xxx processor.

The last step is to generate the operators e�ectively folding the circuit. To
do so, the shareable parts are merged, and multiplexers (MUX) are added in
the circuit in place of their input/output registers. Figure 12 shows the folded

Springer Nature 2021 LATEX template

Design and veri�cation of pipelined circuits with TPN 23

s0
op0

MUX1

sel

s1

MUX2

sel

s2

s3

s4

s1,6

s2,3

op1

s5,8

MUX3

sel

op2

s9,4

s6,10

op3

s11,7

DEMUX

sel

s11

s7

op4

s9

4

1 2

4

1

Fig. 12: Circuit de�ned in Figure 9a folded

circuit obtained from the pipelined circuit of Figure 9a. Multiplexers (and de-
multiplexers) are associated with a control signal produced by a sequencer
(sel on the �gure), that selects the input (output) signals. This part is under
development since the code generation associated with the folding step is not
yet implemented.

6 Conclusion

We proposed a model for the pipeline of synchronous circuit based on TPN
�à la Ramchandani�. Although it allows veri�cation, this model is only able to
study one pipeline at a time.

We then focused on the optimization of the pipeline in terms of resources.
The model of RTPN allows generating multiple pipeline with a target fre-
quency, and to select one minimizing the resource consumption with regard to
the size of registers and their eventual mutualization.

Using this result we then concentrated on handling together the optimiza-
tion with the synthesis of pipeline following a speci�cation of temporal logic. In
particular, we presented a solution to the time-multiplexing problem. It relies
on the explicit expression of the reset in the RTPN model. This method pro-
duces a pipeline allowing time-multiplexing, ensuring a target frequency, and
minimizing the number of �ip-�ops.

While these results are encouraging, their implementation may be slow
down by the combinatorial explosion. We consider the possibility to combine
them with an ILP approach in order to obtain both the computation speed and
the possibilities o�ered by the model-checking. We also think about exploiting
further the model-checking towards the interactions with the environment.

Declarations

The authors declare that they have no con�ict of interest.

Springer Nature 2021 LATEX template

24 REFERENCES

References

[1] Parosh Aziz Abdulla, Johann Deneux, Joël Ouaknine, Karin Quaas,
and James Worrell. Universality analysis for one-clock timed automata.
Fundam. Informaticae, 89(4):419�450, 2008.

[2] R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time.
Information and Computation, 104(1):2�34, 1993.

[3] Berkeley Logic Synthesis and Veri�cation Group. ABC: A system for
sequential synthesis and veri�cation, release 70930.

[4] Hanifa Boucheneb, Guillaume Gardey, and Olivier H. Roux. TCTL
model checking of time Petri nets. Journal of Logic and Computation,
19(6):1509�1540, December 2009.

[5] Patricia Bouyer, Kim Guldstrand Larsen, and Nicolas Markey. Model
checking one-clock priced timed automata. Logical Methods in Computer
Science, 4(2), May 2008.

[6] D. Bu�stov, J. Cortadella, M. Kishinevsky, and S. Sapatnekar. A gen-
eral model for performance optimization of sequential systems. In 2007
IEEE/ACM International Conference on Computer-Aided Design, 2007.

[7] J. Campos, G. Chiola, J. M. Colom, and M. Silva. Properties and perfor-
mance bounds for timed marked graphs. IEEE Transactions on Circuits
and Systems I: Fundamental Theory and Applications, 39(5):386�401,
1992.

[8] Florent de Dinechin and Bogdan Pasca. Designing custom arithmetic data
paths with FloPoCo. IEEE Design & Test of Computers, 28(4):18�27,
July 2011.

[9] Thibault Hilaire and Anastasia Volkova. Error analysis methods for the
�xed-point implementation of linear systems. In 2017 IEEE International
Workshop on Signal Processing Systems (SiPS), pages 1�6, 2017.

[10] A. P. Hurst, A. Mishchenko, and R. K. Brayton. Fast minimum-register
retiming via binary maximum-�ow. In Formal Methods in Computer
Aided Design (FMCAD'07), pages 181�187, 2007.

[11] Matei Istoan and Florent de Dinechin. Automating the pipeline of arith-
metic datapaths. In Design, Automation & Test in Europe Conference &
Exhibition (DATE 2017), pages 704�709, Lausanne, Switzerland, 2017.

[12] Lana Josipovi¢, Shabnam Sheikhha, Andrea Guerrieri, Paolo Ienne, and
Jordi Cortadella. Bu�er placement and sizing for high-performance
data�ow circuits. In Proc. of the 2020 ACM/SIGDA Int. Symposium on
Field-Programmable Gate Arrays, FPGA '20, page 186�196, New York,
NY, USA, 2020. Association for Computing Machinery.

[13] Christoph Kern and Mark R. Greenstreet. Formal veri�cation in hardware
design: A survey. ACM Trans. Des. Autom. Electron. Syst., 4, April 1999.

[14] D. U. Lee, A. A. Ga�ar, R. C.C. Cheung, O. Mencer, W. Luk, and G. A.
Constantinides. Accuracy-guaranteed bit-width optimization. Trans.
Comp.-Aided Des. Integ. Cir. Sys., 25(10):1990�2000, October 2006.

[15] Charles E. Leiserson and James B. Saxe. Retiming synchronous circuitry.
Algorithmica, 6(1-6):5�35, June 1991.

Springer Nature 2021 LATEX template

REFERENCES 25

[16] Mehrdad Najibi and Peter A. Beerel. Slack matching mode-based asyn-
chronous circuits for average-case performance. In Proceedings of the
International Conference on Computer-Aided Design, ICCAD '13, page
219�225. IEEE Press, 2013.

[17] J. Ouaknine and J. Worrell. On the language inclusion problem for timed
automata: closing a decidability gap. In Proceedings of the 19th Annual
IEEE Symposium on Logic in Computer Science, 2004., pages 54�63,
2004.

[18] Rémi Parrot, Mikaël Briday, and Olivier H. Roux. Pipeline Optimization
using a Cost Extension of Timed Petri Nets. In The 28th IEEE Interna-
tional Symposium on Computer Arithmetic (ARITH 2021). IEEE, June
2021.

[19] Rémi Parrot, Mikaël Briday, and Olivier H. Roux. Timed Petri Nets with
Reset for Pipelined Synchronous Circuit Design. In The 42th International
Conference on Application and Theory of Petri Nets and Concurrency
(Petri Nets 2021), volume 12734 of Lecture Notes in Computer Science.
Springer, June 2021.

[20] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA,
pages 46�57. IEEE Computer Society, 1977.

[21] Louchka Popova-Zeugmann. Time and Petri Nets. Springer, 2013.
[22] C. Ramchandani. Analysis of asynchronous concurrent systems by timed

Petri nets. PhD thesis, Massachusetts Institute of Technology, Cambridge,
MA, 1974.

[23] Sangyun Kim and P. A. Beerel. Pipeline optimization for asynchronous
circuits: complexity analysis and an e�cient optimal algorithm. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 25(3):389�402, 2006.

[24] P. Sittel, N. Fiege, M. Kumm, and P. Zipf. Isomorphic subgraph-based
problem reduction for resource minimal modulo scheduling. In 2019
International Conference on ReConFigurable Computing and FPGAs
(ReConFig), pages 1�8, 2019.

[25] P. Sittel, M. Kumm, J. Oppermann, K. Möller, P. Zipf, and A. Koch.
Ilp-based modulo scheduling and binding for register minimization. In
2018 28th International Conference on Field Programmable Logic and
Applications (FPL), pages 265�2656, 2018.

[26] Patrick Sittel, Konrad Möller, Martin Kumm, P. Zipf, Bogdan Pasca, and
Mark Jervis. Model-based hardware design based on compatible sets of
isomorphic subgraphs. 12 2017.

	Introduction
	Automatic pipeline generation
	Circuit design with Petri Nets
	Model-Checking
	Time-Multiplexing
	Putting it all together
	Outline

	A synchronous model for the pipeline
	The three-phases firing semantics
	The maximal-step firing semantics
	An atomic semantics for TPNs
	Zero-test and model of the pipeline

	TPN with reset and delayable transitions
	Definitions
	Example
	Properties of RTPNs

	Pipeline synthesis
	RTPN with cost
	Modeling the circuit
	Pipeline synthesis from the model

	Application to the time-multiplexing
	Folding or time-multiplexing
	Explicit reset
	Synthesis of a pipeline for the folding
	From the model to the folded circuit

	Conclusion

