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Abstract
1.	 Popular current methods for quantifying variation in biological shape are well-

suited to analyses of isolated parts (e.g. the same bone from the skeletons of 
many individuals). An analytical challenge exists for quantifying variation be-
tween the shapes of multiple-part objects where each part has a different 
position, rotation or scale (e.g. partial or whole articulated skeletons). We inves-
tigated regularised consensus principal component analysis (RCPCA) as a multi-
block method for quantifying variation in the shape of multiple-part objects. 
Multiblock methods are routinely used in other big data research fields such 
as bioinformatics/medicine, marketing and food research, but have not been 
widely embraced for evolutionary biology research.

2.	 We have created the new package morphoBlocks for the r programming lan-
guage to make RCPCA more accessible for shape evolution research. morph-
oBlocks provides a complete workflow for formatting, analysing and visualising 
the variation between multiple-part objects by integrating functions from a di-
verse range of other packages. In particular, global components produced by 
RCPCA provide a consensus space that we present here as a morphospace for 
multiple-part objects.

3.	 morphoBlocks is demonstrated with a case study of manually placed landmarks 
and automatically placed pseudolandmarks from the partial wing skeletons of 15 
extant penguin species and five fossil penguin species. Our case study provides 
quantitative support for a historical hypothesis about the magnitude and mode 
of morphological change across the evolutionary history of penguins.

4.	 RCPCA can be used to analyse two- or three-dimensional datasets with 10s of 
landmarks, or 100s to 1,000s of semilandmarks or pseudolandmarks, from 10s 
to 100s of specimens comprised of two or more parts. We use morphoBlocks on 
a small three-bone case study and provide a framework for applying this method 
to much larger studies investigating the ecological or evolutionary significance 
of multiple-part objects.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in 
any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2021 The Authors. Methods in Ecology and Evolution  published by John Wiley & Sons Ltd on behalf of British Ecological Society.
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1  |  INTRODUC TION

Evolution of shape is a major research theme across biology (Felice 
& Goswami, 2018; Kysela et al., 2016; Sherratt et al., 2017). Shape 
is often analysed by recording positions of p points in k dimensions 
across n biological parts, where points represent corresponding 
structures across the set of objects (Bookstein, 1978). Points iden-
tify homologous anatomical features (i.e. landmarks) or are inter-
polated between homologous anatomical features (e.g. semi- or 
pseudolandmarks; Pomidor et  al.,  2016; Webster & Sheets,  2010). 
The kp measures of landmarks or semilandmarks from each object are 
superimposed, rotated and rescaled to minimise the sum of squared 
distances between corresponding points in each of the n objects 
(Procrustes transformation; see Rohlf & Slice, 1990 and references 
therein). Shape evolution research produces big n × kp datasets: k = 2 
or 3 dimensions for p = 10s of landmarks or 100s to 1,000s of semi- 
or pseudolandmarks across n  =  10s to 100s of objects (Goswami 
et al., 2019). Shape differences are therefore commonly studied by 
reducing kp to fewer dimensions that explain major sources of varia-
tion in the dataset (Kendall, 1984; Mitteroecker & Huttegger, 2009).

Geometric morphometrics (i.e. shape analyses) typically focus on 
the landmark configuration from one part per individual (e.g. the left 
femora of 256 people; Cavaignac et al., 2016), where Procrustes trans-
formation is applied to a single n × kp block to give all objects the same 
Cartesian origin (Mitteroecker & Huttegger, 2009). Consider that the 
shape of femora from n individuals is easily compared as a single block 
of data, but the shape of the lower limb skeleton must account for 
the shape of each leg bone and also the rotations of bones around 
the knee and other joints. Each individual bone in the lower leg would 
have a different Cartesian origin and is therefore a separate n × kp 
block. Here we investigate a method for analysing the shapes of ob-
jects that contain multiple parts (i.e. skeletons instead of single bones).

Established methods for analysing multiple-part objects either 
(1) make a priori decisions about the positions and rotations of each 
part relative to one another and then fix the parts into those posi-
tions and rotations (e.g. ShapeRotator in r; Vidal-García et al., 2018), 
or (2) superimpose the parts into a new amalgamated configuration 
about the same Cartesian origin and then analyse the amalgam (e.g. 
Adams, 1999). For (2), the landmark subsets from each fixed part (i.e. 
each block) are transformed using generalised Procrustes analysis 
and scaled (Adams, 1999; Collyer et al., 2020; Profico et al., 2019). A 
scaling method that normalises landmark configurations using cen-
troid size is described by Adams (1999) and Collyer et al. (2020), and 
has recently been introduced into the geomorph package for the r 
programming language (see geomorph::combine.subsets; Adams & 
Otárola-Castillo, 2013). The scaled and transformed landmark con-
figurations from the fixed parts are then combined and analysed as 
a single set of landmarks per individual (i.e. Adams,  1999; Collyer 

et  al.,  2020). Downstream analyses of landmark configurations 
presented as a single block often use principal component analysis 
(PCA), where components of variation describe distances between 
samples with respect to the greatest sources of variation in the data-
set (although see Bookstein, 2017 for discussion). For both (1) and 
(2), the a priori decisions about the scaling, positions and rotations 
of each part in the multiple-part object prior to fusion can introduce 
artificial sources of variation to shape analyses.

We investigated regularised consensus principal component 
analysis (RCPCA) as a method for comparing the shapes of multiple-
part objects (Janné et al., 2001; Tenenhaus et al., 2017; Westerhuis 
et  al.,  1998; Wold et  al.,  1996). Regularised consensus principal 
component analysis does not require the positions or rotations of 
parts in a multiple-part object to be arbitrarily fixed relative to one 
another, but does require consideration about scaling parts relative 
to one another. RCPCA (Hanafi et al., 2011; Tenenhaus et al., 2017; 
Westerhuis et al., 1998) is a multiblock method. It is a particular in-
stantiation of regularised generalised canonical correlation analysis 
(RGCCA; Tenenhaus & Guillemot, 2017; Tenenhaus et al., 2017).

Regularised RGCCA is a very general statistical framework for 
multiblock component analysis. RGCCA includes consensus princi-
pal component analysis as a special case. The goal of RCPCA is to 
find jointly a set of components per block (block component) and 
a set of global components. The block components are designed to 
(a) explain their own block well (in terms of variance criteria) and (b) 
be correlated with the global components. The global components 
are obtained as a linear combination of the block components. Block 
components, global components and the weights of the linear com-
bination that link the block components to the global components 
are determined by maximising a covariance-based optimisation 
problem (see Tenenhaus et al., 2017 for a detailed discussion on the 
RCPCA optimisation problem and the links between block compo-
nents and the global components).

Regularised consensus principal component analysis does not have 
any limitations that are not also limitations to PCA, except that RCPCA 
is only relevant when variables are naturally structured in blocks. For 
RGCCA and thus RCPCA the number of data points must be the same 
for each block, but the nature of the variables can differ between 
blocks. In general, and especially for the covariance-based criterion, 
the data might be pre-processed to ensure comparability between 
variables and blocks. To make variables comparable, standardisation 
is applied (zero mean and unit variance). To make blocks comparable, a 
strategy is to divide each block by the square root of its number of vari-
ables. This two-step procedure leads to trace (Xt

j
X) = n for each block 

(i.e. the sum of the eigenvalues of the covariance matrix of block Xj is 
equal to one for each block). Such a pre-processing step is applied by 
default when using RGCCA (see Tenenhaus & Tenenhaus, 2014; Garali 
et al., 2018 for a detailed discussion of these pre-processing steps). The 

K E Y W O R D S
bone, generalised Procrustes surface analysis, geometric morphometrics, morphoBlocks, 
penguin, regularised consensus principal component analysis, regularised generalised 
canonical correlation analysis, shape
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RCPCA algorithm is a very efficient global convergent algorithm and 
supports blocks with large numbers of observations. In terms of opti-
misation, it is possible to include 10s or 100s of blocks, but data inter-
pretation could become more difficult with larger numbers of blocks.

(Standardised) principal component analysis assumes that each 
variable has the same importance in the analysis. The user is not eas-
ily able to weight the contribution of blocks during the analysis (i.e. 
when performing PCA on a concatenated superblock). Instead, block 
weighting can only be determined a priori, for example, by using 
normalised centroid size weighting as a data pre-processing step 
(discussed in Collyer et  al., 2020). In contrast, consensus principal 
component analysis weights the contribution of each block to global 
components. Before RCPCA, users might still adjust the weight of 
each block a priori as a data pre-processing step. Normalised cen-
troid size weighting is applied by default as a pre-processing step in 
morphoBlocks::combineBlocks, meaning that blocks are given similar 
weighting before RCPCA. One consequence of this a priori weight-
ing is that PCA of the superblock and RCPCA of the individual blocks 
can give similar results for many datasets. However, there may be 
analytical reasons why normalised centroid size weighting or other 
scaling steps are not appropriate for particular analyses (discussed 
in Collyer et  al.,  2020). If block weighting is not applied as a pre-
processing step (i.e. morphoBlocks::analyseBlocks, option  =  ‘cent.
scale = FALSE’), then RCPCA will still determine the weighting that 
each block should have to the global components, whereas PCA of 
the superblock will be applied to the unweighted data. In general, 
PCA reveals the contribution of variables to the construction of 
principal components, whereas RCPCA reveals the contribution of 
blocks to the construction of global components.

In the framework of RCPCA, the n × kp block is separated into 
two or more blocks along p. Consider for example p landmarks dis-
tributed across multiple bones in a skeleton, and then repeated for 
skeletons of n individuals, where data for the same bone in all n 
individuals are sectioned off into a separate matrix (i.e. an individ-
ual data block). This process is repeated for each other biologically 
meaningful group of p (e.g. one data block for each type of bone). 
As with PCA performed on a single block, RCPCA reduces the kp di-
mensions in each individual block to fewer dimensions that explain 
major sources of variation (i.e. principal components, PCs), and calcu-
lates the amount of variance explained along these new dimensions 
(Tenenhaus et al., 2017; Westerhuis et al., 1998). Moreover, RCPCA 
produces global components resulting in the so-called consensus that 
can be viewed as a compromise space that integrates all the individ-
ual blocks. This compromise space enables visualising all n individuals 
and eases the interpretation of the results. For a full description of 
RCPCA and RGCCA see Tenenhaus et al. (2017). For biological shape 
analyses, this consensus space could be used to construct a morpho-
space for multiple-part objects (i.e. a skeleton morphospace).

Exploring rates of morphological change within a clade is one 
potential application for a multiple-part morphospace. Projecting a 
phylogeny into a morphospace is now a well-established method for 
incorporating evolutionary history into analyses of morphological 
change (Sidlauskas, 2008), and a morphospace informed by multiple 

skeletal elements is a new opportunity to map changes in a limb or 
whole skeleton through evolutionary time. Hypothetical phylomorpho-
spaces for whole organisms were the basis for Simpson's famous ‘grid 
diagram’ imagery that explored the existence of adaptive zones and 
their influence on lineage evolution (McGhee, 2006; Simpson, 1944, 
1953). Here we demonstrate the utility of RCPCA for calculating a 
multiple-part phylomorphospace and discuss the potential for investi-
gating the evolutionary rate of morphological change in a body region. 
We present a workflow for constructing a multiple-part morphospace 
with RCPCA using both traditional landmarks and pseudolandmarks.

2  |  MATERIAL S AND METHODS

2.1  |  Multiple element workflow

morphoBlocks (Harmer & Thomas, 2021; https://aharm​er.github.io/
morph​oBloc​ks/) facilitates the processing, analysis and visualisation 
of variation between shape configurations from objects comprised 
of multiple parts (see Figure  1 for workflow). Most functions in 
morphoBlocks are wrappers to conveniently collate functions from a 
diverse range of other packages (e.g. ape, adephylo, geomorph, Morpho, 
phytools and rgcca; Adams & Otárola-Castillo,  2013; Jombart 
et al., 2010; Paradis & Schliep, 2019; Revell, 2012; Schlager, 2017; 
Tenenhaus & Guillemot,  2017). Although morphoBlocks provides a 
complete workflow within the r environment, some data acquisition 
steps may require additional software or other resources (Figure 1). 
The workflow begins with acquisition of shape configurations from a 
dataset of samples that each contain two or more parts.

2.1.1  |  Acquire shape data

Shape data are acquired or generated using methods that are 
often study specific. Here we describe four data acquisition modes 
that should represent most evolutionary or ecological studies of 
biological shape. Acquisition mode i—shape configurations are 
acquired by placing landmarks or semilandmarks on 3D meshes 
using, for example, Landmark Editor (IDAV, Wiley et  al.,  2005), 
3D Slicer (Kikinis et al., 2014) or geomorph::digitsurface (Adams & 
Otárola-Castillo, 2013).

Acquisition mode ii—shape configurations are acquired as au-
tomatically placed pseudolandmarks from generalised Procrustes 
surface analysis (GPSA, Pomidor et  al.,  2016). Three-dimensional 
meshes for corresponding parts across all samples are included in 
the same GPSA to produce a single homologised points file for that 
part. morphoBlocks::decMesh decimates and evenly distributes 
vertices and may be used as a preprocessing step before GPSA for 
meshes with very large vertex counts, or for datasets with highly dis-
parate vertex counts between meshes. Note that the centroid sizes 
used for configuration scaling are calculated from the pseudoland-
mark configurations and not from the original meshes before trans-
formation with GPSA.
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Acquisition mode iii—shape configurations are generated as land-
marks placed on two-dimensional images (e.g. Profico et al., 2019), 
spatial coordinates acquired using a Microscribe (e.g. Badawi-Fayad 

& Cabanis, 2007), from previously prepared matrices of shape data, 
or are acquired from other sources. These data are available for 
analysis using morphoBlocks::formatBlock. The user reads shape 

F I G U R E  1  Workflow for analysing multiple-part objects using functions in morphoBlocks. Blue boxes and blue background indicate 
operations performed in r (R Core Team, 2019)
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configurations from the same part in each sample into r and organ-
ises the configurations as a matrix with each row representing a dif-
ferent sample. The user also provides additional descriptors about 
the shape configurations including an optional matrix and an op-
tional vector for describing curves and surfaces (morphoBlocks::for-
matBlock calls geomorph::gpagen; Adams & Otárola-Castillo, 2013). 
Other supplied information may include a vector of centroid sizes 
for the configurations (required for configuration scaling, e.g. Collyer 
et al., 2020), the number of dimensions for each point in the shape 
configurations and a logical statement to determine if generalised 
Procrustes analysis should be performed. The shape configurations 
and ancillary information are used by morphoBlocks::formatBlock to 
generate a block-class data block object (see Section 2.1.2).

Acquisition mode iv—shape data are simulated. morphoBlocks::do-
decBlock generates a data block of two or more dodecahedra where 
the vertices of each dodecahedron represent a landmark configuration 
with 20 points (p) in three dimensions (k) (n is user specified). morpho-
Blocks::dodecBlock allows the user to change the size, position and 
rotation of individual configurations within the data block, and to alter 
the position of one vertex, and therefore introduce a known amount 
of variation into a dataset. The data block of simulated configurations 
is transformed using generalised Procrustes analysis and formatted as 
a block-class data block object (see Section 2.1.2).

2.1.2  |  Generate data blocks

Shape configurations from the corresponding part in each sample 
are organised into a data block. For acquisition mode i, landmarks 
in .pts format from the same part in each sample are read into the 
r environment using morphoBlocks::readPts and will represent 
the data block for that part (e.g. 10 .pts files from the humerus in 
each of 10 right forelimbs). For acquisition mode ii, the homolo-
gised points file from the corresponding parts across all samples 
is read into r using morphoBlocks::readGPSA and will represent 
the data block for that part. The morphoBlocks::formatBlock and 
morphoBlocks::dodecBlock functions of acquisition modes iii and 
iv likewise produce a data block. The data block from each func-
tion is structured as a block-class object to facilitate downstream 
functions. The block-class object includes the shape configurations 
before any downstream transformations (@raw), the configurations 
after Procrustes transformation organised into 2D and 3D arrays 
(@gpa.2D and @gpa.3D respectively), the centroid sizes of the raw 
configurations (@centroid) and the number of points (@p), dimen-
sions (@k) and samples (@n) in the data block.

2.1.3  |  Combine data blocks

Each data block represents shape configurations for a different part 
in the multiple-part dataset. Two or more data blocks of shape con-
figurations (i.e. block-class objects) are assembled into a list using 
morphoBlocks::combineBlocks. The shape configurations within 

each data block are scaled using the normalised centroid size method 
described by Profico et  al.  (2019) and Collyer et  al.  (2020) and de-
scribed in the supporting information (see also geomorph::combine.
subsets; Adams & Otárola-Castillo, 2013). The scaling is summarised 
here in four steps. Step 1—the centroid size of each configuration is 
divided by the square root of p for that data block. Step 2—all rela-
tivised centroid sizes from step 1 are squared, and then the values 
from the same sample are summed (i.e. the squared relativised cen-
troid size from each data block for sample one are added together). 
Step 3—each squared relativised centroid size from each block is di-
vided by the sum of these values for all blocks from the same sam-
ple and squared, producing a normalised centroid size. Step 4—each 
shape configuration is scaled by multiplying by the normalised cen-
troid size calculated in step 3. Normalised centroid size scaling occurs 
by default in morphoBlocks::combineBlocks but can be prevented 
if the study requires data that are not scaled. Future revision of 
morphoBlocks::combineBlocks might consider introducing additional 
scaling methods (e.g. unweighted centroid scaling; Collyer et al., 2020). 
Finally, a column-wise concatenation of each block is added as a final 
‘superblock’ to the list produced by morphoBlocks::combineBlocks.

2.1.4  |  Analyse list of data blocks

Variation between the multiple-part samples is calculated using 
morphoBlocks::analyseBlocks. morphoBlocks::analyseBlocks is a 
wrapper for PCA performed with stats::prcomp, and for RCPCA 
with RGCCA::rgcca (version 2.1.2; Tenenhaus & Guillemot,  2017; 
Tenenhaus et al., 2017).

‘pca’ option—a principal component analysis is performed on 
the superblock (e.g. Adams, 1999). The result from stats::prcomp is 
retained and the component scores and loadings are formatted for 
downstream analysis (see ‘morphoBlocksMethods’ vignette in mor-
phoBlocks for example).

‘rcpca’ option—RCPCA is performed on the blocks and super-
block using the default design matrix and g(x) = x2 (see supporting 
documentation for the rgcca package; Tenenhaus & Guillemot, 2017). 
Default standardisation from RGCCA::rgcca is applied: each block is 
standardised and divided by the square root of its number of vari-
ables. The complete result from RGCCA::rgcca is retained including 
(1) explained variance for each individual block and for the con-
sensus space (see rgcca package documentation by Tenenhaus & 
Guillemot, 2017 for definition), and (2) global component scores and 
loadings associated with the consensus space. (2) Global loadings 
reveal the contribution of each landmark or pseudolandmark to the 
variation explained in each principal component.

2.1.5  |  Visualise the distribution of variation

Component scores from the superblock (morphoBlocks::analyseBlocks, 
option =  ‘pca’), or global component scores from the consensus space 
(morphoBlocks::analyseBlocks, option =  ‘rcpca’), provide a morphospace 
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for multiple-part samples (visualised with morphoBlocks::scoresPlot). 
Likewise, component loadings from the superblock or global compo-
nent loadings from the consensus space reveal the contribution that 
each region of the shape configurations make to the variation explained 
by each component (visualised with morphoBlocks::loadingsPlot). If 
the multiple-part samples being analysed are represented in a phy-
logenetic tree (phylo-class) then the component scores may be pre-
sented as a phylomorphospace using morphoBlocks::phylomsPlot. 
morphoBlocks::phylomsPlot is a wrapper for phytools::phylomorphospace 
(Revell, 2012), which is in turn based on the projection of a phylogenetic 
tree into a morphospace by Sidlauskas (2008).

2.2  |  Case study

A humerus, radius and ulna from 15 extant species of penguin and also 
from five fossil species of penguin contributed to a dataset of 60 wing 
bones (Table 1). A 3D digital replica of each bone was produced using 
structured light 3D surface scanning (HP SLS-3 scanner; HP Inc.). Data 
collection and 3D model production used HP 3D Scan 5 software (ver-
sion 5.6.0.2037; HP Inc.). The minimum resolvable surface feature of 
the 3D digital replicas was approximately 0.2 mm. Right wing bones 
were selected when available. Left wing elements were 3D scanned and 
digitally mirrored in Blender 2.8.1 when right elements were not avail-
able (Blender Online Community, 2019). Two analyses are described 
to show how morphoBlocks can be used for shape configurations ac-
quired by different methods. The case study described in Section 2.2.1 
is available as the ‘penguinWings’ vignette in morphoBlocks.

2.2.1  |  Manually placed landmarks

The dataset of 60 digital bone replicas was replicated to produce three 
identical datasets. A copy of the digital bone dataset was provided to 
three authors for landmark placement. Landmark schemes were cho-
sen to emphasise muscle attachment sites, articulation and general 
proportions (see Supporting Information including Figure S1). The hu-
merus scheme featured three single point landmarks, four curves (each 
divided into 10 semilandmarks) and three patches (each divided into 25 
semilandmarks). The radius scheme featured one single point landmark, 
four curves and one patch, and the ulna scheme featured two single 
point landmarks, four curves and one patch. Landmarks were placed 
using Landmark Editor 3.0 (Institute of Data Analysis and Visualization 
IDAV, University California Davis, USA; Wiley et al., 2005).

Landmark configurations were separated by author and block into 
nine directories (i.e. 20 humerus .pts files from author DBT in one 
directory, 20 humerus configurations from author EJH in a separate 
directory, etc.) before processing with functions from morphoBlocks. 
morphoBlocks::readPts—.pts files in each directory were separately 
read into r version 4.0.2 (R Core Team, 2019) with gpa = FALSE (i.e. 
generalised Procrustes transformation not performed). Landmark con-
figurations from each block replicate were extracted from the @raw 
term of their respective block-class objects and averaged to control for 

variation in landmark placement. morphoBlocks::formatBlock—the av-
eraged landmarks were formatted into a data block using the @curves 
term from one of the replicates and with gpa  = TRUE. Generalised 
Procrustes transformation was performed using geomorph::gpagen 
(version 3.0.6; Adams & Otárola-Castillo, 2013), which is called by mor-
phoBlocks::formatBlock. morphoBlocks::combineBlocks—the three 
data blocks of Procrustes-transformed configurations (humerus, radius 
and ulna) were organised into a list of data blocks and scaled using the 
normalised weighted centroid size method from Collyer et al. (2020). 
morphoBlocks::analyseBlocks—scaled data blocks were analysed with 
RCPCA using RGCCA:rgcca (Tenenhaus & Guillemot, 2017), which is 
called by morphoBlocks::analyseBlocks when option = ‘rcpca’.

2.2.2  |  Automatically placed pseudolandmarks

The dataset of 60 digital bone replicas was separated into three blocks 
of 20 bones according to bone type (i.e. humerus, radius and ulna) 
and the following process was applied to each block independently. 
Pseudolandmark positions and correspondences were determined 
for bones in each block using GPSA version 20160308a (Pomidor 
et al., 2016). Here each humerus, radius and ulna was represented by 
404,513, 198,947 and 306,841 pseudolandmarks respectively. For full 
GPSA method details see Pomidor et al. (2016). Briefly, one 3D digital 
bone replica is chosen as a reference target for setting the Cartesian 
origin of all other digitised bones in the same block. Each digital replica is 
scaled and superimposed on the reference model using an iterative clos-
est point process. Vertices in each aligned digital replica are paired with 
the nearest vertex in the reference bone replica. Vertices in the aligned 
digital replicas and the reference replica are then remapped using the 
averaged position of the vertex pairings. The remapped vertices are used 
to determine correspondences between vertices in each aligned replica 
and the reference model. Remapped vertices are stored as a homolo-
gised points file (.dat) and are here treated as pseudolandmarks that cor-
respond between digital bone replicas. morphoblocks::readGPSA—the 
homologised points files from the humeri, radii and ulnae were separately 
read into r. morphoBlocks::combineBlocks—blocks of pseudolandmarks 
(humeri, radii and ulnae) were organised into a list of data blocks and 
scaled using the normalised weighted centroid size method from Collyer 
et al. (2020). morphoBlocks::analyseBlocks—scaled data blocks were an-
alysed with RCPCA using RGCCA::rgcca (Tenenhaus & Guillemot, 2017) 
called by morphoBlocks::analyseBlocks option = ‘rcpca’.

3  |  C A SE STUDY RESULTS

3.1  |  Consensus space

Regularised consensus principal component analysis applied to data-
sets of manually placed landmarks and automatically placed pseu-
dolandmarks produced broadly similar results (Figures  2 and 3). 
Approximately a quarter or more of the variation in the dataset was 
explained along component one (C1) of the individual blocks, and 
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along global component one (GC1) of the consensus (Table  2). The 
radius accounted for the most variation of the three individual blocks 
(0.37 and 0.56 average variance explained along C1 for landmarks and 
pseudolandmarks respectively). The relative positions of scores along 
C1 and C2 in each individual block and GC1 and GC2 in the consensus 
were similar where specimens tended to cluster by age (Figures 2 and 
3). The oldest specimens in the analyses (Palaeocene) were separated 
from all other specimens along C1 for all three individual blocks and 
GC1 of the consensus space, and this separation was greatest for the 
radius block and for the consensus space (Figures 2 and 3).

3.2  |  Distribution of shape variation across blocks

Shape variation was unevenly distributed across the data blocks 
as revealed by the global component loadings in both the RCPCA 
of the manually placed landmark data and the RCPCA of the au-
tomatically placed pseudolandmark data (Figures 2 and 3). For the 
manually placed landmark data, the highest variation for GC1 was 
along the anterior and posterior margins of the radius (Figure 2). 
The posterior margin of the ulna and the more distal region of the 
humerus (near the preaxial angle) were highly variable along GC1. 
Variation along GC2 was loaded on the scar for the insertion of 

the brachial muscle on the radius, the dorsal surface of the ulna 
and the head and other proximal regions of the humerus. For the 
automatically placed pseudolandmark data, the greatest varia-
tion along GC1 was again observed for the anterior and posterior 
margins of the radius, the anterior and posterior margins of the 
ulna, as well as several regions on the humerus: preaxial angle, scar 
for the origin of the brachial muscle, and the posterior trochlea 
(Figure  3). The ventral surface of the humeral diaphysis and the 
proximal surface of the humeral head were major sources of vari-
ation for GC2, as were the proximal articular surface of the radius, 
the distal articular surface of the ulna and the dorsal and ventral 
surfaces of the ulna.

3.3  |  Phylomorphospace

The first global component (GC1) from the pseudolandmark RCPCA 
was plotted against time to visualise shape evolution as a phyloge-
netic morphospace (Revell, 2012; Sidlauskas, 2008) using a phylog-
eny adapted from Thomas et al.  (2020) (see Figure 4 and Table 1). 
The phylogeny was pruned to only include taxa from Table  1. 
Archaeospheniscus lopdelli in the original phylogeny was substituted 
with Archaeospheniscus lowei, and Platydyptes novaeseelandiae was 

TA B L E  1  3D digital replicas were produced from bones of modern and fossil penguins. Institution abbreviations: CM, Canterbury 
Museum, Christchurch, New Zealand; NMNZ, Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand; OM, Otago Museum, 
Dunedin, New Zealand; UC, University of Canterbury, Christchurch, New Zealand (specimen held at OU, Geology Museum, University of 
Otago, Dunedin, New Zealand). Specimen ages from or compiled by Slack et al. (2006), Ksepka and Ando (2011) and Ksepka et al. (2012) and 
literature reviewed therein

Specimen Element

InstitutionAccession Genus Species Age Humerus Radius Ulna

AV19569 Aptenodytes forsteri Extant Right Left Right CM

2013-1-257 Aptenodytes patagonicus Extant Left Right Right CM

OR.019303 Eudyptes filholi Extant Right Right Right NMNZ

OR.017176 Eudyptes pachyrhynchus Extant Right Left Left NMNZ

OR.030196 Eudyptes robustus Extant Right Right Right NMNZ

OR.027787 Eudyptes schlegeli Extant Right Right Right NMNZ

OR.025560 Eudyptes sclateri Extant Right Right Right NMNZ

OR.018965 Eudyptula minor Extant Left Left Left NMNZ

OR.026794 Megadyptes antipodes Extant Right Right Right NMNZ

AV38751 Pygoscelis adeliae Extant Left Left Left CM

AV32995 Pygoscelis antarctica Extant Right Right Right CM

AV38694 Pygoscelis papua Extant Right Right Right CM

OR.022800 Spheniscus demersus Extant Right Right Right NMNZ

CU2138 Spheniscus humboldti Extant Right Right Right UC

OR.027329 Spheniscus magellanicus Extant Right Right Right NMNZ

OR.01451 Platydyptes novaezeelandiae 27.3–21.7 Ma Left Right Left NMNZ

GL407 Archaeospheniscus lowei 29.8–25.2 Ma Right Right Right OM

OU22065 Kairuku grebneffi 29.8–25.20 Ma Right Right Right OU

CM 2016-6-1 Sequiwaimanu rosieae 61 Ma Left Left Right CM

OU12651 Muriwaimanu tuatahi 61.3–56.0 Ma Right Left Left OU
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grafted onto the tree one node down from the most recent common 
ancestor to crown penguins. We acknowledge that this case study 
is only demonstrative and that a more robust analysis would include 
more specimens and additional bones.

The proportion of variation explained by GC1 of the automat-
ically placed pseudolandmarks was 0.33 for the 20 specimens of 
upper wing skeletons we analysed (Table 2). Here we demonstrate a 

substantial difference in shape for the oldest stem-lineage penguins 
and comparatively less shape variation between the younger fossil 
penguins and extant penguins (Figure 4a). Our small dataset echoes 
an hypothesis by Simpson (1946) in which a theoretical phylomor-
phospace for penguins shows more rapid morphological change 
early in the history of Sphenisciformes, and then a reduced rate of 
morphological change in more recent penguins (Figure 4b).

F I G U R E  2  Shape variation in the upper wing of fossil and modern penguins as an example of a multiple-part object. Landmarks manually 
placed on three wing bones (humerus, radius and ulna) constituted three data blocks analysed with regularised consensus principal 
component analysis. Shown here are component one (C1) and C2 scores from the individual blocks, and global component one (GC1) and 
GC2 scores from the consensus space (Tenenhaus & Guillemot, 2017; Tenenhaus et al., 2017). Scores are coloured according to specimen 
age: early stem-lineage penguins from the Palaeocene (brown), stem-lineage penguins from the Oligocene (light brown), and extant penguins 
(white). Global component loadings are visualised by colouring the mean position of each landmark in the superblock. Stronger orange 
colours represent landmarks with larger loadings (i.e. greater amounts of variation), and stronger blue colours represent landmarks with 
weaker loadings. Low-opacity images of penguin bones have been placed behind the loadings for spatial context only
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4  |  DISCUSSION

Regularised consensus principal component analysis is useful for 
constructing a morphospace for objects comprised of multiple parts. 
In our three-bone case study we calculated a consensus space (i.e. 
skeleton morphospace) with variation distributed in a similar pat-
tern to the ordination spaces of each of the individual bones in those 
skeletons. This was because all three bones showed similar morpho-
logical trends through evolutionary time (see Section 4.1 below for 

further discussion). However, one could consider a different sce-
nario in which bones in a set of skeletons show different levels of 
morphological conservation, and thus produce a consensus space 
for a full skeleton that differs substantially from the morphospace 
of the most morphologically conserved bone in that skeleton. Given 
the integration of variation across the skeleton, a consensus space 
has the potential to allow for emergent patterns of inter-specimen 
variation that might not be predicted from the morphospace of any 
one bone.

F I G U R E  3  Shape variation in the upper wing of fossil and modern penguins. Pseudolandmarks automatically placed on three wing bones 
(humerus, radius and ulna) using generalised Procrustes surface analysis software from Pomidor et al. (2016) constituted three data blocks 
analysed with regularised consensus principal component analysis. Shown here are component one (C1) and C2 scores from the individual 
blocks, and global component one (GC1) and GC2 scores from the consensus space (Tenenhaus et al., 2017). See Figure 2 caption for colour 
key and loadings description
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4.1  |  Case study

Much of the shape variation in the penguin upper wing was explained by 
coeval dorsoventral flattening of all three limb bones in the early history 

of penguins, resulting in an increased distance between the leading and 
trailing edges of the wing. Simultaneous broadening of the humerus, 
radius and ulna over evolutionary time implies a common evolutionary 
driver being applied to the shape of all three bones (i.e. viscosity differ-
ence of water compared with air). Our skeleton morphospace provides 
quantitative support for the proposed mode of morphological evolution 
in penguins hypothesised by Simpson (1946): ‘… there would be very 
strong selection pressure all in one direction, the direction of great-
est aquatic adaptation, which would be toward the structure actually 
shown by the penguins. The tendency would be for a rapid shift in adap-
tive relationships and in morphology …’ (Simpson, 1946, pp. 86–87).

4.2  |  Data source

The dataset of manually placed landmarks generated in this study 
emphasised osteological correlates to functional regions of the bones 
(e.g. muscle origins), and the dataset of automatically placed pseudo-
landmarks more-broadly described the shape of the bones. The dis-
tribution of scores in the consensus spaces from both datasets was 
generally informed by similar loadings and thus had a similar struc-
ture. The choice of using manually placed landmarks or automatically 
placed pseudolandmarks is study dependent (e.g. Pomidor et al., 2016; 
Watanabe, 2018) and here we show the utility of RCPCA for both op-
tions. Studies seeking to include more taxa or bones to expand the 
case study we present here are recommended to use automatically 
placed pseudolandmarks, at least initially, because of the dramatically 
reduced processing time compared with manually placing landmarks. 
However, care must be taken when interpreting RCPCA results from a 
dataset of automatically placed pseudolandmarks that includes dam-
aged or otherwise incomplete bones, as non-homologous shape ar-
tefacts will be introduced as a source of variation into the dataset. 
Our case study includes some damaged fossils (e.g. CM 2016-6-1 
Sequiwaimanu rosieae; see Mayr et  al.,  2017) but we note that the 
damaged regions of these fossils are not highly loaded along C1 in the 
individual blocks or GC1 in the consensus.

TA B L E  2  Average explained variance expressed as a proportion of variation in the dataset explained by components from regularised 
consensus principal component analyses of manually placed landmarks and automatically placed pseudolandmarks. Values for the first 10 
components (C1–C10) from all three blocks (humerus, radius and ulna), and values for the first 10 global components from the consensus

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Manually placed landmarks

Humerus 0.29 0.15 0.17 0.1 0.05 0.06 0.06 0.02 0.03 0.02

Radius 0.37 0.15 0.12 0.04 0.09 0.06 0.05 0.03 0.02 0.02

Ulna 0.24 0.26 0.14 0.05 0.08 0.06 0.04 0.02 0.03 0.03

Consensus 0.26 0.14 0.13 0.08 0.07 0.06 0.04 0.04 0.03 0.03

Automatically placed pseudolandmarks

Humerus 0.28 0.17 0.08 0.08 0.06 0.05 0.04 0.04 0.03 0.03

Radius 0.56 0.08 0.07 0.06 0.02 0.02 0.03 0.02 0.02 0.02

Ulna 0.34 0.13 0.08 0.07 0.05 0.05 0.04 0.04 0.02 0.02

Consensus 0.33 0.13 0.08 0.07 0.05 0.05 0.05 0.04 0.03 0.03

F I G U R E  4  Shape variation in the upper wing of penguins 
through evolutionary time. (a) Global component one scores 
from consensus principal component analysis (Tenenhaus & 
Guillemot, 2017; Tenenhaus et al., 2017) of automatically placed 
pseudolandmarks presented as a phylomorphospace (Revell, 2012; 
Sidlauskas, 2008) against specimen age (Table 1). Scores are 
coloured according to specimen age: early stem-lineage penguins 
from the Palaeocene (brown), stem-lineage penguins from the 
Oligocene (light brown), and extant penguins (white). (b) Grid 
diagram of the theory of penguin evolution from Simpson (1946). 
Figure 31 from Simpson (1946) used with permission from 
American Museum of Natural History
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5  |  CONCLUSIONS

Analyses of the biological shape from multiple-part objects can 
be achieved using RCPCA using RGCCA:rgcca (Tenenhaus & 
Guillemot,  2017), which is here accessed with the new morph-
oBlocks package. Regularised consensus principal component 
analysis can be used to analyse two- or three-dimensional (k) data-
sets with 10s of landmarks or 100s to 1,000s of semilandmarks or 
pseudolandmarks (p), from 10s to 100s of specimens (n) comprised 
of two or more parts along p. The resulting analysis is a summary 
of shape variation within each n × kp part (e.g. bone) and across 
the full set of data blocks (e.g. skeleton). The major advantage of 
RCPCA for analysing skeleton shape is that positions and orienta-
tions of each block are independent of one another. Regularised 
consensus principal component analysis can be applied to manu-
ally placed landmarks and automatically placed pseudolandmarks, 
and can be used to track shape variation through evolutionary 
time for a small three-element case study, and potentially scale 
to much larger studies involving more complex datasets like com-
plete skeletons.
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