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Abstract

We present some preliminary results on the integration of integro-differential equations using Deep
Learning techniques.

1 Integral equation modelling
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ÿ(t) = θy(t)

Inte
gral

Elim
inat

ion

DifferentialElimination[2]

[4, Integrate]
Algorithm

Figure 1: Modelling, elimination and [4, In-
tegrate] algorithm. From a differential system,
we can obtain an input/output equation [10] which
only involves the known function y(t), by using dif-
ferential elimination techniques [5]. From this equa-
tion, we can use the [4, Integrate] algorithm to com-
pute an integral equation. Using numerical meth-
ods (e.g. least squares), it is possible to evaluate
the value of θ from any of the two input/output
equations.

Many models (such as the SIR1 epidemiology model)
consist of non-linear differential equations, involving
unknown numerical parameters. Recent work [3, 6,
4] investigates the treatment of integro-differential
equations i.e. equations involving both derivatives
and integration operators. Considering models with
integro-differential equations is motivated by the fol-
lowing reason: on some examples, the introduction of
integral equations increases the expressiveness of the
models, improves the estimation of parameter values
from error-prone measurements, and reduces the size
of the intermediate equations.

Reducing the order of derivation of a differential
equation can sometimes be achieved by integrating it.
Algorithm [4, Integrate] was designed for that pur-
pose (see the vertical arrow of Figure 1). However,
successfully integrating integro-differential equations
is a complex problem. Unfortunately, there are still
plenty of differential equations for which algorithm [4,
Integrate] does not apply. For example, computing an
integrating factor might be required.

In this abstract, we use a hybrid approach between
computer algebra and deep learning, and present
some preliminary results.

2 Integration of equations with deep learning [12]

In 2019, Lample and Charton published an article [12] that has aroused some interest in the calculus
community, and has also inspired a number of articles [1, 13, 11, 14]. Through learning techniques used for
the translation of texts from one language to another, the authors of [12] succeed in calculating primitives
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Figure 2: Usage of the Transformer in [12]. The model takes an expression in Polish
notation as input. Here, the model generates each word/token of the output one by one
and stops when the end of line token is generated.

of mathematical expressions, and solutions of differential equations. Here, we are talking about formal
expressions given in the form of exact mathematical formulas, and not numerical calculations.

The model used is called Transformer and is widely used in natural language processing (e.g. for text
translation) since its release in 2017 [14]. It takes a list of words as input and returns the list of translated
words as output. Internally, a transformer involves several classical multilayer perceptrons (MLP) and
some attention mechanisms [14] organized to form a sequential process.

For their experiments, Lample and Charton have created a data generator to generate the train and
test datasets, composed of pairs (f ′, f). To obtain a pair (f ′, f), they generate a random f (by generating
a random tree) and compute the derivative f ′ (using SymPy). An example of how the transformer works
with those kinds of data is given in Figure 2.

3 Adaptation of [12] to integro-differential equations

The results obtained by Lample and Charton in their various works show the effectiveness of machine
learning to solve mathematical problems (integration and solving differential equations [12], properties of
differential systems [8], operations on matrices [7]).

Our objective is therefore to adapt the techniques used in [12] for integral equation modelling. As
we said previously, one way of doing so is to directly integrate the differential equation obtained after
differential elimination (Figure 1). Hence, in our work we want to study the capacity of a network to
integrate integro-differential functions. Nevertheless, the long-term goal is to successfully perform integral
elimination of a system of integro-differential equations.

Previously, we have seen how Lample and Charton generate their data. To adapt their method to
our problem, we modified the implementation of [12] (based on PyTorch) to fit our needs. For this, it is
necessary to modify the operations and operators that we want to generate in the trees. We then created
the unary operators ∂ and

∫
associated to the differentiation and integration operators. Another important

point is the addition of time-dependent functions to the leaves of the tree (x(t) for example). The trees
we manipulate are then similar to those of [12], see Figure 3.

Another modification has been made in the training and evaluation steps where we need to check the
correctness of an integral. Lample and Charton verify that a prediction f̂ is correct by checking that ∂f̂−f ′

is zero. In our case, a difficulty arises since for any expression F ,
∫
F is a primitive of F . To prevent the

network from just learning to add a
∫
symbol, we adopt the check of Figure 4.
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Figure 3: Tree of a generated integro-differential equation: ẋ(t)
x(t)2
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Figure 4: Test for checking if a predicted integral f̂ is correct.

4 Experiment and results

For our experiment, we generated equations that include the following operations/operators: +,−, ∗,÷, ∂,
∫
.

We used two functions: x(t), y(t) and a parameter, a0. The functions generated are then differentiated
in order to obtain pairs (f ′, f). The network is then trained on a training dataset containing more than
600000 pairs (f ′, f).

At the end of the training phase, we calculate the accuracy of our model using a test dataset of one
thousand equations: the accuracy is defined by the number of correct integrals (see Figure 4) predicted by
the model divided by the number of equations of the test dataset.

Table 1 compares the accuracy of our model on our test dataset with the accuracy of the Maple software
on the same test dataset. The check of Figure 4 is done using SymPy for computing our model accuracy,
and using Maple for computing the Maple one. The Maple accuracy could be enhanced by suggesting
Maple to perform integration by parts (IBP) on some parts of the equations. However, this would imply
to recognise such parts to integrate by parts, and this process is not straightforward to program. For this
reason, the Maple accuracy is obtained using the int subroutine. Some examples of functions that Maple
fails to integrate while the model succeeds are given in Table 2.

5 Discussion

Our results inherits the same problems as those of Lample and Charton [12], which are listed in [9]. We
discuss some of them.

The trained model is specialised on integrating large equations that have a small integral, due to the
generation method. As it is the fastest way of generating large datasets, we haven’t yet looked to the other
generation methods presented in [12].
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Table 1: Accuracy of the model versus the accuracy
of Maple.

Accuracy Comments

Maple 75.8% We use int(f, t). Could be
enhanced with integration by
parts, but it is difficult to

automate.

Transformer 96% Our adapted version of [12].

Table 2: Functions that the model can integrate,
but not Maple.

Equation f ′ Solution
f

1∫
x
− tx

(
∫
x)2

t∫
x

(−a0x−1)
∫
xy+ÿ(t+a0

∫
x)+a0xy

∫
x+xyt−a0ẏx−ẏ

(t+a0
∫
x)2

ẏ+
∫
xy

t+a0
∫
x

Another problem occurs during the gen-
eration of the training dataset. In order to
help the model, the generated pairs (f ′, f)
should be in a quite ”simple” form. For ex-
ample, we should avoid including terms such
as (ẋ(t), x(t)

1+x(t)−x(t)) which are correct math-
ematically but not very informative for the
model. In our process, the previous case does
not happen since we use SymPy on generated
functions before differentiating it. However,
a general simplification would be quite diffi-
cult to write, and the SymPy simplification is
clearly not powerful enough to correctly han-
dle integro-differential equations. Writing a
better simplification process should be inves-
tigated.

6 Conclusion

To summarize, we achieve a quite good ac-
curacy on the integration of a specific set
of integro-differential equations. Different
data generation methods could be investigated
(such as [12, IBP and FWD methods]). Our
next goal will be focused on the integral elimination of differential system with deep learning.
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