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1/ Aims and contributions

Real life inverse problems: multiple noises, non-linear models, need for uncertainty quantification.

Bayesian inference with ¥ Mixture of noises ¥ Non-log-concave posterior (multimodal) ¥ Non-gradient-Lipschitz log-posterior # Likelihood approximation for a mixture of noises, # New kernel to efficiently sample from posterior, # Application to astrophysical data.

2/ Observation model

Forward model f : Θ ∈ R N D → Y ∈ R N L ,
strictly positive, twice differentiable, covers multiple decades.

Observation model:

y n, = max ω, (m) n, f (θ n ) + (a) n, with      ω > 0 (a) n, ∼ N 0, σ 2 a i.i.d. (m) n, ∼ log N 0, σ 2 m i.i.d. =⇒ untractable likelihood π (Y | Θ).
Literature often neglects one noise [START_REF] Nicholson | An additive Approximation to Multiplicative Noise[END_REF]. But when f covers many decades: dominant noise depends on θ n . =⇒ need to address full mixture model. Gaussian approx

1-λ a (θ n ) π (m) (y n, |θ n ) lognormal approx λ a (θ n )
with λ a ∈ [0, 1], twice differentiable, parametrized with a ∈ R 2 =⇒ negative log of this approx: easy to work with. 

1 . 2 .

 12 How to approximate the likelihood with controlled error? → See 4/ 4/ Mixture of noises: Likelihood approximation Build 2 likelihood approximations with moment matching: Gaussian approx π (a) lognormal approx π (m) y n, f (θ n ) + e n, ∼ N (m a,n, , s 2 a,n, ) e (m) n, ∼ log N (m m,n, , s 2 m,n, ) Combine approximations with weight function λ a : πa (y n, |θ n ) ∝ π (a) (y n, |θ n )

3 /

 3 Tuning a : Approx error = Kolmogorov-Smirnov-based metric ϕ(a ). ϕ minimized with Bayesian Optimization (BO). From approx error: πa better than π (a) or π (m) alone. grid eval oflog 10 ϕ BO, 25 points f (θ n ) hist. and λ a Bayesian approach & sampling Combine likelihood with informative prior π(Θ): yields Posterior distribution: π(Θ | Y ) ∝ π(Y | Θ) π(Θ) Sampling: MCMC =⇒ uncertainty quantification Model: Non-linear =⇒ multimodal distribution Preconditioned-MALA [2]: local exploration MTM [3]: jumps between minima. 5/ Astrophysics synthetic dataset Θ ∈ R 900×4 : high dimensional π(Θ): spatial (Laplacian L 2 -norm) Forward model: Meudon PDR code [4] non-linear non-gradient-Lipschitz Synthetic observations Y ∈ R 900×10 : integrated intensities of excited lines of CO Θ •1 : Scaling Θ •2 : Pressure Θ •3 : Radiative Θ •4 : Depth Mixture of noises =⇒ likelihood approx. Non-log-concave posterior =⇒ MTM kernel. Non-gradient-Lipschitz log-posterior =⇒ P-MALA kernel. Application on astrophysical inverse problem. ¥ Application to Orion-B data, James Webb Spatial Telescope, etc.