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Integrity Management of the Reachable Space with
Lane Grid Maps

Corentin Sanchez*, Philippe Xu*, Philippe Bonnifait*, Alexandre Armand**

Abstract—For an autonomous vehicle, reliable situation un-
derstanding is a key component of safe navigation. An incorrect
prediction of an upcoming situation means that erroneous infor-
mation may be supplied to the decision-making process, leading
to hazardous outcomes. It is therefore of great importance to
estimate the driving areas that are reachable by other interacting
road users, without introducing misleading information. This
paper presents a means of handling the integrity of prediction
information, given the imperfection of object prediction, via a
Lane Grid Map, that is to say a spatial representation of the
situation at a tactical level, based on the topological layer of a
high-definition map. We demonstrate experimentally, using real
data, how the spatial sampling step of the grid representation
can be used to manage the integrity of prediction information.
Moreover, addressing interactions during the prediction makes it
possible to handle some particular situations safely. We show how
some interactions can be utilized via the concept of neutralization.
To quantify the integrity of the prediction, we propose the use of
two metrics, namely False Negative Rate and Neutralized Time
Interval. Experiments were carried out with three vehicles to
evaluate the integrity of the prediction using these metrics.

Index Terms—Situation understanding, prediction of driving
situations, integrity of navigation information

I. INTRODUCTION

ONCE an autonomous vehicle navigating on open roads
has its own representation of the current situation, it

needs to obtain a prediction of what is going to happen
subsequently, which is the highest level of situation under-
standing. Usually, prediction is concerned with the most likely
situation that the vehicle is about to encounter, and is part of
a situation awareness strategy [1]. Prediction enables actions
to be planned via decision-making processes. A large number
of works have been undertaken in this area. Decision planning
and prediction can be done at different levels of abstraction
[2]. In the present work we focus on prediction over a period
of a few seconds at the maneuver level, also known as the
tactical level. Prediction must be done without compromising
safety, as the likelihood of unexpected behaviors increases as
time goes by.

A key issue in prediction is providing reliable information
over the relevant time horizon. A misunderstanding of the
situation can result in behaviors that are hazardous. Preventing
misunderstandings of this kind depends partly on ensuring that
the navigation information provided to the decision and control
systems is not misleading, and a considerable amount of work
in this area is to be found in the literature [3] [4]. The key
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Heudiasyc, 60200 Compiègne, France.
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Fig. 1: At the current time t0, the ego vehicle has a grid-based
representation of the situation with free (green) and occupied
(red) spaces (a). To turn right, it needs to predict the evolution
of the situation at a future time t0 + ∆t. In situation (b),
the prediction is misleading as the true position of the yellow
vehicle is outside of the bounds of the reachable orange area.

concept here is integrity, which has been extensively studied
for GNSS systems [5], and is a concept that has also been
applied to certain other problems including lane-level map-
matching [6]. In this paper, the core of our methodological
approach involves extending this concept of integrity to the
information encoded in a grid-based representation. To set the
scene, let us consider an example of misleading information.
Fig. 1.a shows a situation from the point of view of the blue
vehicle at the current time t0. This representation has been
produced by the blue vehicle itself using its own exteroceptive
sensors, a localization system and an High-Definition (HD)
map. The true position of the observed yellow vehicle is
contained within the occupied cells in red. A prediction
module computes the reachable bounds of the yellow vehicle
and the corresponding reachable cells at some future time
t0 + ∆t. In Fig. 1b, the predicted bounds are incorrect, since
the true future position of the yellow vehicle is no longer fully
within the bounds. The incorrect bounds prediction may have a
variety of causes, and in this particular case it may be caused
by an underestimation of speed. Here we have an incorrect
prediction that could potentially lead to a hazardous situation,
since the ego vehicle may consider wrongly that it has time
to turn right in front of the yellow vehicle.

Our methodology adheres to the outline shown in Fig. 2. We
use the formalism of Lane Grid Maps (LGMs), introduced in
[7]. A geometric model of this kind is well suited to formal
safe decision methods such as that presented in [8]. In addition,
the integrity of the information it contains can be managed, and
consequently the decision and control methods of the vehicle
are not at risk of being misled.
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Fig. 2: LGM computation and prediction diagram. Grey boxes are inputs. The white boxes are the different steps to build the
LGM and its prediction. The sampling step, which is a key parameter of the LGM integrity, is depicted in black.

The methodological contribution of our paper is threefold.
First, the concept of integrity is formalized within a grid-
based representation of the driving situation. More specifically,
we introduce integrity metrics in terms of spatial occupancy
and show that this integrity can be managed by tuning a
spatial sampling parameter. Second, we extend the concept of
integrity to situation prediction, where we quantify integrity in
terms of spatial reachability. Third, the representation is en-
riched by taking into account physical interactions among road
users, and we show that the same sampling step tuning process
still satisfies the integrity constraint. All the methodological
contributions were validated empirically via real experiments
in the city of Compiègne, France.

The paper is organized as follows. Section II is devoted
to related work, and we present different lane-level spatial
representations and prediction methods that have been used in
the literature. The three contributions listed in the previous
paragraph are then detailed in three distinct sections, as
follows. First, section III presents the LGM representation cov-
ering the computation of the lanes of interest, the discretization
process and the characterization of cells. The integrity of
the LGM information is formalized. Experimental results are
presented to show how LGM integrity can be managed using
the sampling step parameter. Second, in section IV, we extend
the integrity concept to the reachability analysis of predicted
LGMs. Third, section V proposes an enrichment of situation
understanding via the concept of ”Lane Neutralization”, in-
duced by physical interactions among road users. Experimental
results are presented within the different sections.

II. RELATED WORK

A. World modelling

The literature features various architectures that seek to set
up a so-called world or context model [9]–[11]. In [11], a
distinction is made between scene representation from context
modelling and situation representation from a planning point
of view (defined earlier in [12]). In [9], the environment model,
together with the situation analysis and prediction are instead
part of the perception module.

Given a module that stores a world model, a situation can
have several abstraction levels in terms of information and
comprehension mechanisms. The three levels of abstraction
identified some years ago in [13] are those also used in
[11]. Among these, the Operational Level is the lowest level,

offering a fine resolution of the space that provides a fine
metric representation of the vehicle surroundings, and this
can be used for short-term prediction. The Tactical Level is
the intermediate level. It corresponds to a lane level, and the
prediction of a situation at this level is on a longer time horizon
(e.g. maneuvers). Finally, the highest level is the Strategic
Level, having the most abstracted view of information. The
Strategic Level offers a resolution of several hundred meters,
and provides what is essentially a symbolic representation
of the environment. At this level the mission planner, for
example, plans a global trajectory over a wide space and time
horizon.

The present research focuses on the tactical level, i.e. the
lane level: the vehicle is aware of topological map information,
and prediction at this level incorporates interactions. Two
types of information can be distinguished, via object and
spatial representations respectively. However, there is a need
to combine these two different types of representation, as
highlighted in the architectures presented in [9] and [14].

B. Spatial representations

Occupancy grid maps are probably the most popular dis-
cretized representation of environments, not least because they
can be used for localization, planning, and tracking, as well as
navigation [15], [16]. In general, the state of cells is defined
by a distribution over the possible state values. Most of the
time, the state of a cell is either free or occupied [17]. For
automotive applications, cells can be characterized as drivable
and not drivable as proposed in [18], or by risk metrics as in
[19].

Parametric free space maps [20], created by combining
parametric curves and geometric primitives, have been pro-
posed to encompass the free drivable space. Uncertainties on
the system inputs can be taken into account, giving rise to
probability distributions corresponding to different parameters.
The advantage of this approach is the compactness of the
generated data. However, this approach, since it does not
explicitly deal with objects, makes prediction operations more
difficult.

C. Set-based prediction

There are several survey articles on motion prediction,
including, for example, [21] and [22]. Prediction methods may
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be separated into different categories relating to the operational
or tactical levels. These methods may or may not take into
consideration interactions at the strategic level.

A spatial representation that is able to handle occlusions
and objects is needed for tasks like decision-making, but also
for risk analysis [23] and safety evaluation [24]. In [25], set-
based prediction is used in predicting the path and intention
of a hypothetical road user that may potentially be hidden
in an occluded area. Particle filters have also been used in
determining the plausibility of a hidden road user [26].

Set-based prediction is also presented in [27] in the context
of the SPOT project, where reachable areas of independent
vehicles, known as reachable sets, are computed. For a given
time horizon, the space that may be occupied by each vehicle
during this interval is computed. In order to take into account
interactions between road users, an intersection of different
reachable sets can be performed by adding constraints, thus
refining the reachability analysis strategy. Reachable space
is bounded by the road layout as indicated by topological
information, and computations are subject to some constraints
[28]. For instance, a negative speed is not allowed, since
vehicles always go forwards. When a vehicle cannot overtake a
vehicle on a single lane, its prediction must remain consistent.
There are several articles based on reachable sets that have
given rise to further work, e.g. in trajectory planning [29].

D. Positioning of the approach

In this paper we propose a world model based on a discrete
representation of the navigable space guided by an HD map.
This approach seeks to leverage the advantages of existing
approaches while providing integrity control mechanisms at a
tactical level. Integrity is addressed both in real time and in
predicting reachable space, where some physical constraints
among road users are taken into account. Our approach makes
use of an LGM representation, as described in the next
section.

III. LANE GRID MAP: A LANE-LEVEL REPRESENTATION

An LGM is an ego-centered spatial representation at a
tactical level. It allows situation understanding in the areas
of interest of the ego vehicle. The LGM focuses attention on
areas whose relevance will be determined by the particular
road network. A localization system is used to map-match
the pose of the vehicle to a lane on a road. An Interaction
Graph (IG) structures the areas of interest using an HD
map [7]. The map is a graph structure with topological and
metrical levels. The lanes in the map are represented by their
center as a polyline with a high accuracy, and are connected
through spatial relations, e.g. crossing or merging or adjacency.
Additional information on the road infrastructure may also be
available, such as lane width, traffic law priorities, and speed
limits. Each node of the graph corresponds to a specific area.
Fig. 3 shows the application of the IG representation. The lanes
that the ego vehicle intends to follow are shown in blue. There
are nodes corresponding to areas that are of high importance,
called primary-order nodes, e.g. the red lanes that cross and
merge with the blue lane, and others that are of secondary

Fig. 3: Lanes of interest in a real experiment led in Compiègne.
The ego vehicle is represented in blue and its intended path
represented by the blue line. The red line represents lanes in
direct interaction with the ego vehicle path and the orange
lines are lanes that interact indirectly.

Fig. 4: Left: an LGM for a merging intersection. The ego
vehicle (blue) intends to turn right. Right: A Cartesian OG.

order, e.g. the orange lanes that have direct interactions with
the red lane. In Fig. 3, only indirect interactions with respect
to the merging lane in red are shown.

The ego vehicle must focus on the space where it is likely to
evolve and on the scene elements with which it may interact.
The LGM lane-level representation is built upon the IG that
focuses on areas of interest and serves as a backbone.

A. A lane-level space representation

At the lane level, the autonomous vehicle has to convert
the topological information provided by the IG into a metrical
representation. The proposed lane-level grid representation is
a spatial grid based on a discretization of the lanes of interest
along their longitudinal direction. Based on the geometric
layer of an HD map, the lanes are discretized in successive
contiguous quadrangles, i.e. cells, that cover the space of the
lanes in a continuous way. An LGM has two parameters to be
set: a cross-track cell width and an along-track cell length.

Fig. 4 shows an LGM representation of a merging inter-
section situation alongside a classical Cartesian Occupancy
Grid (OG). The cells of the LGM are only located in areas of
interest of the ego vehicle. Compared to an OG, an LGM
is more compact, scalable and easier to manipulate, since
information is encoded such that it fits the lane-level context
that the ego vehicle encounters.

As shown in Fig. 4, the same area can be characterized dif-
ferently by cells at junctions because of overlapping navigation
corridors. This highlights that the cells are contextualized by
the lanes they belong to.
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Free
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Fig. 5: Characterization process with polygons supplied by a
perception module: free in blue, occupied in red and unknown
in gray. The skeleton of the LGM is shown above, and the final
characterization below.

In the rest of this paper, we use only a simplified represen-
tation of the LGM, where the discretization is applied only
in the along-track direction. This simplification means that
each cell encompasses the entire track width in the lateral
direction. The LGM is therefore defined by a set of cells
LGM = {ci|∀i ∈ [0;N ]} where each cell ci is represented
as a bounded interval of curvilinear abscissa [ci; ci] along the
lanes.

B. Occupancy characterization

Once the skeleton of an LGM has been constructed using
the IG, the objective is to establish the spatial occupancy of
each cell on the basis of information provided by a perception
module, using a 3D Lidar for instance [30].

Fig. 5 is an illustration of the characterization process using
an LGM. In this work, we assume that a perception module
provides the free space characterized as a polygon [20] and
a list of detected road users also represented by polygons. In
Fig. 5 the perception module detects two road users, depicted
by the two red objects. It also computes the free space within
the range of the sensor. A cell in the LGM is considered to
be occupied if it intersects with an object, and it is considered
free if it is fully included within the free space. Otherwise the
cell is designated as unknown. [7].

C. LGM integrity

With an LGM representation, integrity is the ability to sup-
ply non-misleading information to decision-making systems.
For example, characterizing a driving space as free when it is
actually occupied may lead to a collision.

The grid’s sampling step parameter determines the level of
detail to be used for the lane. The larger the cells, the coarser
the information, calling for more cautious decision-making.
Conversely, oversampling can lead to a loss of integrity
resulting from the imperfect input coming from the perception
system, which may give rise to decisions that are hazardous.

1) Experimental methodology for evaluating LGM integrity:
To evaluate the integrity level of a given LGM we previously
developed an experimental methodology in [31]. The integrity

Fig. 6: Experimental vehicles (white car and gray truck behind
the blue car) in Compiègne (France).

TN FN TP UP UN TN FP TP UP UN
Occupied

GT 

Observation 

Free Unknown
Indicator

Fig. 7: Ground truth (above) and observed (below) LGMs.

metric on which this rests is presented below. Our method-
ology involves carrying out experiments with several vehicles
equipped with a localization ground truth. Fig. 6 shows three
vehicles that were used to carry out the experiments. The blue
car is the ego vehicle whose LGM is being evaluated. This
vehicle is equipped with a Lidar sensor (a Velodyne VLP-32C)
with a 360◦ field of view, a theoretical range of 100 meters,
and running at 10 Hz. An HD map of the city of Compiègne
was used as prior information to build the IG and the LGM.
During the evaluation experiments we ensured that only the
gray truck and white car shown in Fig. 6 were in the lanes of
interest of the blue vehicle. This allowed us to acquire datasets
without other road users for which we did not have a ground
truth.

2) LGM ground truth generation: Post-processed GNSS
PPK corrections were used to have a centimeter-level local-
ization of each vehicle at a rate of 50 Hz. To get an LGM
ground truth at each time instant, the characterization process
was performed using the ground truth position of the three
vehicles recorded in the dataset. In other words, this was
done without using the perception system. Given the accurate
pose of the vehicles on the road and their dimensions, their
occupancy was approximated by 2D bounding rectangles. Any
cell overlapped by these rectangles was considered occupied,
and the remaining cells were considered free. The cells of
the ground truth LGM are all therefore either Free (F ) or
Occupied (O).

TABLE I: Construction table for the indicators: True/False
(T/F), Positive/Negative (P/N), and Unknown (U). (red: mis-
leading and hazardous, green: non-misleading, gray: undeter-
mined, yellow: misleading but non-hazardous)

Observation
Ground Truth Occupied Free Unknown

Occupied TP FN UP
Free FP TN UN
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TABLE II: Aggregation rule for two cells. Cellres corresponds
to the result of the fusion of the cells Celli and Celli+1.

Celli+1

Celli O F U
O O O O
F O F U
U O U U

Ground truth 

LGM

LGM

LGM

×2 

÷2 

X

Fig. 8: The cells are aggregated two by two then separated
back for evaluation. The false negative cell marked with a
cross disappears after cells aggregation.

3) Integrity metric: Combining the different configurations,
for each cell of the LGM there are six possible indicators
obtained from the combination of the two characterizations as
defined in Table I. The correspondence is shown in Fig. 7.

Two indicators are of interest. FP corresponds to free cells
misclassified as occupied. This is an overcautious indicator
that does not induce a safety problem. FN is the most
important indicator in terms of integrity, as it corresponds to
occupied cells misclassified as free. It is a misleading indicator
that should occur as little as possible. If the space around the
vehicle is considered free whereas in reality it is occupied,
this may lead to a hazardous decision-making. The additional
indicators UP and UN are not considered misleading, since
here the cell state is unknown and consequently does not
provide any information (free or occupied) that potentially may
be misleading.

To evaluate the integrity, we therefore compute the fre-
quency of occurrence of the FN indicator. This measure
considers only cells that have been characterized as free or
occupied, i.e. missing information is excluded. The False
Negative Rate (FNR), also called the “miss rate”, is the
frequency of FN over all occupied cells, and is given by:

FNR = FN
FN+TP (1)

In the remainder of the paper we seek to build a mechanism
to maintain the FNR below a given threshold termed the
Target Integrity Risk (TIR), which is set beforehand in line
with a specific application’s safety requirement.

4) Sampling strategy: We show in this study that the
sampling step is able to control the integrity level of the infor-
mation provided by an LGM, according to a given operational
design domain. One of LGM’s major contributions is therefore
its ability to manage the integrity of the information, thanks
to its capacity to control the FNR via the sampling step.

In order to tune the sampling step, we propose a method-
ology as shown in Fig. 8. Typically the step is chosen to be
the one of the ground truth. To increase the sampling step,
the cells can be aggregated. For instance, to have a sampling
step twice as large, the cells are combined two by two using
the aggregation rule presented in Table II. Then, to perform

the comparison with the ground truth, the aggregated cells are
separated back into the initial sampling step, as shown by the
last row in Fig. 8. We can see that the case of FN has been
replaced by a case of TP , which is no longer misleading.

It should be noted that the aggregation rule can also be used
in real time to obtain an LGM with a desired sampling step,
depending on an application’s specific needs with respect to
situation understanding.

5) Results: Here we report experimental results showing
that it is possible to set a sampling step for a given TIR.
A dataset containing sensor data was recorded using three
vehicles in real road conditions. The ego vehicle was following
the two others along a 2.1km trajectory. The polygons of the
perceived vehicles were used to compute the LGM results [32].
A simple geometric ground fitting based on the Principal
Component Analysis algorithm and a clustering algorithm was
used on point-cloud data to extract object clusters surrounding
the ego vehicle [33]. The geometric layer of the HD map was
used to retain only clusters that were completely or partially
on the road. At each Lidar scan, a free space polygon was
generated over a radial grid using the shortest distance between
the points of the clusters. The clusters were then tracked in
order to compute estimates of their heading and speed, in order
to be able to represent road users as objects in the form of
polygons. To simulate different levels of imprecision in the
detection of the road users, we added random Gaussian noise
with different standard deviations to the detected polygons.

Fig. 9 shows that FNR falls as the sampling step increases.
As the number of cells classified as occupied grows, these
occupied cells cover a larger area, encompassing nearby cells
that were incorrectly classified as free because of the localiza-
tion error. Conversely, oversampling the LGM produces more
misleading information, since FNR increases as the sampling
step gets closer to zero.

As the standard deviation of the noise increases, FNR
decreases, but at a higher level. This shows that it is possible
to control FNR under a given integrity risk by increasing the
sampling step. For example, if a maximum integrity risk of
0.3 %, i.e. typically the risk associated with a 3σ Gaussian
confidence interval, is specified for FNR, the integrity re-
quirement can be met by setting the sampling step to the value
shown by the red dots in Fig. 9.a. To compute these red dots,
the different curves were interpolated in a logarithmic scale
(dashed curves) and intersected with the required TIR. For a
localization error with a 0.5 m standard deviation, a sampling
step of 3.0 m is needed, while for a standard deviation smaller
than 0.2, a sampling step lower than 1 m is enough. In other
words, this graph shows that if the system is not able to
properly model the localization uncertainty, a correctly chosen
sampling stem can ensure the level of integrity as defined
by the functional domain. For a given TIR, the greater the
uncertainty, the larger the sampling step.

Note that even without adding noise (red curve), the min-
imal sampling step needs to be increased to at least 20 cm,
in order to cover various unmodeled residual errors from the
perception and the localization ground truth.
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Fig. 9: FNR of the LGM with respect to the spatial sampling
with different levels of noise on the positions of the detected
vehicles.

IV. LGM PREDICTION

Once the autonomous vehicle has built an LGM at a given
time t0 using its own sensors, the next step is to predict the
evolution of this representation over time. We use the notation
LGM(t|t0) for any time t in a time horizon [t0; t0 + ∆t].
Prediction allows the decision-making module to plan actions
over a given time horizon.

In order to avoid dangerous decisions, prediction needs to
remain consistent without introducing misleading information.
This section shows how the same spatial sampling step strategy
can be extended such that a given required integrity level can
be reached, regardless of the accuracy of a given object-level
prediction module.

Reachable sets are easy to represent in a predicted LGM,
since they can be seen as a list of polygons. As a consequence,
the same characterization process can be applied. The higher
the sampling rate, the finer the representation. Reachable sets
can therefore be seen as a finer representation of an LGM.
Where the cross-track and along-track sampling steps of an
LGM tend to zero, this representation tends to be continuous
and thus leads to the classical the reachable sets formalism.
As sampling steps increase in size, outer approximations are
made and the discrete LGM representation encompasses the
continuous case.

A. Prediction characterization
In the static LGM presented in the previous section,

the characterization space was separated into three classes,
namely: Free, Occupied and Unknown. In the prediction space,
on the other hand, the two relevant classes are Reachable and
Non-Reachable. A cell characterized as Reachable at a given
time t means that a road user could potentially reach the cell at
that time t. In particular, a cell with an Unknown state will be
considered as Reachable because a potential hidden road user
could be located in the cell. Conversely, a cell characterized
as Non-Reachable means that no road user, visible or hidden,
can reach it, which is equivalent to the Free state. In the rest of
the paper, Free and Non-Reachable are considered equivalent.

B. Reachability for prediction

The prediction stage first initializes every cell in the pre-
dicted LGM(t|t0) as free (F ). The reachability of road users
and hidden space is then addressed.

1) Road users: In this paper we are not interested in
building a novel object predictor, but we take as input a given
module and integrate it into the LGM prediction framework.
Therefore, for a given road user, we assume that an object
predictor first computes the bounds along the center line of
the road lane as an along-track curvilinear abscissa interval

s(t) = [s(t); s(t)] , (2)

which can be seen as a simplified one-dimensional reachable
set.

The lateral prediction of a road user is handled along its
taken path. It is assumed that a road user prediction may extend
along several paths, as long as these paths belong to the LGM.
The ability of a vehicle to drive on a path outside the LGM has
no relevance for the ego vehicle, since being outside the LGM
implies that there is no further interaction with this vehicle.

2) Hidden space: The same principles are applied in
handling the hidden space. The hidden space may contain
road users. If there are hidden vehicles, their lengths are
unknown. Therefore, in the worst case, every cell may contain
a potential road user whose speed is unknown. Equivalently,
a single virtual road user can be considered, aggregating
several contiguous hidden cells such that the interval s(t0)
corresponds to the bounds of a virtual road user. The bounds
are predicted as the worst case scenarios, corresponding to a
constant velocity equal to zero or to the maximum allowed
velocity vlim:{

s(t0 + ∆t) = s(t0)
s(t0 + ∆t) = s(t0) + vlim ×∆t

(3)

C. LGM update

Once bounds of road users and hidden cells have been
computed, the predicted LGM(t|t0) is updated with this
new information. For this purpose, we define the reachability
function as follows.
Definition 4.1 Reachability function

The reachability function R defines the cells c of the pre-
dicted LGM(t|t0) that are reachable. For each predicted
entity (real or virtual road user) that at time t is contained
within an interval s(t) = [s(t); s(t)], the set of reachable
cells R(s(t)) in the predicted LGM(t|t0) is defined as
all the cells c that intersect s(t).

R(s(t)) = {c ∈ LGM(t|t0)|c ∩ s(t) 6= ∅} (4)

All the reachable cells are updated as such.
Fig. 10 shows the prediction stages with the LGM update

and the reachability function applied to two road users for
a time horizon ∆t. Fig. 10a shows an LGM(t0) that has
cells with free, occupied and unknown states at time t0. Two
vehicles V1 and Vvirtual are considered (the ego vehicle is
not represented). In Fig. 10b, the predicted bounds of the
road users are represented with dotted lines. The cells that
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V1 Vx : Road users Vvirtual

(a)
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Fig. 10: Processes for building a predicted LGM(t0 + ∆t|t)
with a virtual and a real road user. (a) LGM(t0) with free
(green), hidden (gray) and occupied (red) cells. The rear
boundary of vehicle V1 is represented by a dotted line. (b)
Upper and lower bounds of the predicted road users. (c) The
predicted LGM is updated in orange with possibly occupied
states.

TABLE III: Correspondence between the predicted states of
LGM(t|t0) with the true states of LGM(t).

True Predicted LGM(t|t0)
LGM(t) Reachable Non-reachable

Occupied Non-Misleading Hazardous
(1) (2)

Free Non-Hazardous Non-Misleading
(3) (4)

encompass the prediction bounds of each vehicle are retrieved.
In Fig. 10c, the LGM(t|t0) is updated with reachable cells
(orange). The prediction of hidden cells is similar to the
prediction of objects, with the assumption that the length of
a virtual road user corresponds to the size of the aggregated
hidden cells.

D. Integrity: FNR evaluation

The integrity of the prediction is now addressed. The
purpose is to show how the integrity of information can be
controlled regardless of the performance of the prediction
model. Let consider a road user prediction on a single lane.
Table III shows the types misleading information that can be
produced by the predicted LGM, analogously to the concept
of integrity in the static LGM. Here, it is hazardous to define
as non-reachable an area that in reality is occupied, since this
may induce wrong decision-making.

To illustrate the management of integrity management we
built a family of custom naive object predictors with constant
unknown acceleration, providing the following curvilinear
abscissa bounds:{

s(t0 + ∆t) = s(t0) + v(t0)×∆t+ 1
2a(t0)×∆t2

s(t0 + ∆t) = s(t0) + v(t0)×∆t+ 1
2a(t0)×∆t2

(5)

where s is the curvilinear abscissa, v the velocity and a
the acceleration under the hypothesis that the acceleration
remains constant in the time interval [t0, t0 + ∆t] and that
the velocity is positive and bounded by vlim, the maximum
allowed velocity. Note that this predictor could be replaced by
any other predictor from the literature.

(a) (b)

(c) (d)

Fig. 11: The road user position (blue) is modeled with an upper and
lower bound (rear and front). The reachable distance is filled by the
purple area. The lower bound of the CD model corresponds to the
black curve and the upper bound to the red curve. (a) reachable area
with a sampling step that tends to 0.0m (b) reachable area with a
sampling step of 1.0m, (c) 2.0m, (d) 5.0m.

1) Simulated results: As an initial step, to make it easier to
understand the experimental results, we did some simulations.
Given the LGM of a straight lane, we consider a single road
user traveling in accordance with a Constant Velocity (CV)
model, i.e. Eq. 5 is used with a = 0 m.s−2. Then, to highlight
the integrity management mechanism, we deliberately choose,
for the road user prediction, an inaccurate Constant Decelera-
tion model (CD), with a(t) ∈ [−1.5;−3.5 ]m.s−2. At a given
time t0, the predicted LGM(t|t0) is generated over 4.0 s. This
simulation allows us to compare directly the true evolution of a
road user (which is known) with a given evolution model. The
purpose is to show how, even with an approximate evolution
model, the sampling step parameter can ensure the integrity
of the prediction information.

Fig. 11 shows simulated results for the vehicle driving on a
straight lane at constant speed (blue line) with the CD model.
The figure shows to what extent predicted bounds encompass,
or fail to encompass, the whole body of the vehicle at each
prediction time. The vehicle’s body is modeled by its position
(the center) with an upper and lower bound (rear and front).
The predicted bounds are represented in a continuous space
dimension, which is equivalent to setting a sampling step
close to zero. From Fig. 11a it will be remarked that the
CD model does not encompass the true position as the time
horizon increases. The goal is now to show how misleading
information is managed.

Fig. 11d shows the smallest sampling step that enables the
predicted reachable bounds to encompass the vehicle position
for at least 2.0 s of prediction. Since the CD model does
not bound the road user position, a sampling step of 5.0 m
is chosen in order to overestimate the reachable area. From
Fig. 11b it can be seen that a sampling step of 1.0 m fails to
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encompass the true position over the interval. As the sampling
step increases (see Fig. 11c), the encompassing of the road user
position improves. In stark contrast to Fig. 11a, and according
to the target integrity risk, integrity is maintained for 2.0 s of
prediction by using a larger sampling step. In a similar way, the
sampling step may be increased in order to maintain integrity
over a larger ∆t horizon.

If the prediction model is reliable for a short prediction time
and then drifts, a sampling step can be set in accordance with
the relevant time horizon. As a consequence, even with an
extreme case such as the CD model, a very large sampling
step means that the whole lane can be defined as reachable.
Here, although the information has a high degree of integrity,
the decision-making process will clearly be impacted towards
considerable caution, since there are no longer any free cells.

As mentioned before, the goal here is to ensure that any
misleading information is non-hazardous. For this purpose, the
integrity of the system is defined as its ability to maintain
statistically the FNR below a given threshold that is termed
the Target Integrity Risk (TIR).

Fig. 12a shows the FNR for the same situation, but obtained
using a range of different sampling steps. Because the CD
model is an inaccurate model here, the FNR grows rapidly as
the prediction time horizon increases. It can also be observed
that for any given time horizon, increasing the sampling step
reduces the FNR. The kinks in the curves are a side effect
of the sampling step. This is because the cells defined as
reachable depend on t0. At this time, if the road user is close
to the start or to the end of a cell, there will be an impact on
the update function.

The true statistical FNR is obtained by averaging more than
one thousand simulations varying the initial time t0. It can be
seen from Fig. 12b that whatever the given time horizon, the
FNR decreases by as the the sampling step increases. Given a
fixed TIR, this figure highlights the integrity property of the
sampling step, which is similar to the integrity of a static LGM.
The further away the predicted time, the higher the sampling
step that is required in order to remain below the TIR.

2) Experimental results: Three sequences were recorded in
a dataset for a situation where the ego vehicle was observing
another experimental vehicle entering a roundabout on its
left side. Fig. 13 shows the experimental results that are
representative of Fig. 12a with a CD model. The actual
evolution model of the human road user is unknown, and the
curves suggest that the CD model is likely to be inaccurate.

In Fig. 13a, the evolution of the FNR with the CD model
is shown for different sampling steps from 0.2 to 5 m. For
any required prediction time horizon and TIR, it is possible to
maintain the FNR below the TIR by increasing the sampling
step. When the prediction time horizon increases, the bounds
computed by the CD model are further away from the true
road user position, thus requiring a much larger sampling step
in order for the correct cell to continue to capture the road
user. In contrast, where the evolution model is closer to the
true evolution, e.g with a CV model, the bounds computed
by the model will likely contain the true road user position
(see Fig. 13b). The LGM can therefore be computed with a
much smaller sampling step. We recall that prediction model

(a)

(b)

Fig. 12: Evolution of the FNR w.r.t. the time horizon for
different sampling step using simulated data (CD model). (a)
Single simulation. (b) Average over more than one thousand
simulations. The further away from the origin, the more the
curve corresponds to a distant predicted time horizon.

performance is not being evaluated here. If the prediction
model is accurate enough to capture the road user position
within the prediction bounds, then the requirement in terms
of the sampling step will not be stringent. Conversely, if the
prediction model is far removed from reality, the sampling
step will act as a parameter for managing the integrity of the
whole system.

However, increasing the sampling step can reduce the non-
reachable space in the LGM. This results in an overestimation
of the reachable space that can impact the decision-making
towards an excess of caution. The consequence is a loss of
functional availability for the autonomous navigation of a
vehicle, which may, for example, remain stuck for a long time
at an intersection when traffic is heavy.

V. ENHANCED SPACE CHARACTERIZATION

This section shows how prediction may be improved by tak-
ing interactions into account. In order to strengthen decision-
making, including under occlusion, the available and missing
information in areas of interest needs to be quantified. With the
aim of improving situation understanding in unknown areas,
such as areas hidden by other road users, we developed a
characterization process that applies reasoning on the basis
of prior map information. Below we explain the concept of
neutralization in relation to these unknown areas.
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(a)

Sampling step: 0.2 m

(b)

Fig. 13: (a) Evolution of the FNR of prediction with ex-
perimental results obtained with the CD model. Each curve
displays the evolution for a given sampling step. (b) Evolution
of the FNR of prediction for the CV and CD model with a
sampling step of 0.2 m.

Ego vehicle
Vx : Road users 

V1

V2

Fig. 14: LGM with a characterization of the neutralized cells
on a T-intersection: Free (green), Occupied (red), Unknown
(gray), Neutralized (purple).

A. Enhanced characterization process: the neutralized frame

An important aspect of the interaction between road users
is that they impose physical constraints on each other. Once
a road user occupies a given space on the road, no other road
user can cross this space without causing an accident.

Fig. 14 presents a situation where a neutralized area is
caused by a dynamic object. The vehicle V2 is protecting the
ego vehicle from road users coming from the left, e.g. V1. It
is physically engaged and thus induces a neutralized area as
shown in purple. It must be noted that the neutralized area
may reach outside of the field of view of the ego vehicle. As
it is neutralized by a perceived road user, the ego vehicle has
the possibility to take a decision under occlusion.

(a)

(b)

V1 Vx : Road users 

Fig. 15: Illustration of prediction stages with occupancy pre-
diction at time horizon ∆t. (a) Model-based object prediction
with upper and lower bounds and with an overlap. The
footprint of the vehicle is shown at the two ends of the
reachable set. (b) Final predicted LGM(t0 + ∆t|t0) with an
additional occupied state in red.

The neutralized property is only relevant within the un-
known category. In Fig. 14, the neutralized property can be
ignored where a perceived road user is present as the occupied
knowledge is more informative.

B. Prediction with neutralization

When a neutralized area has been characterized in the
current LGM, its status can also be predicted.

Suppose that there is an initial neutralized situation at time
t0. As a consequence, during the prediction, a key point
is to estimate how long the situation will remain with a
neutralized lane, since this allows the ego vehicle to navigate
while remaining protected. The duration of this neutralization
is called Neutralized Time Interval (NTI).

In order to determine if cells are neutralized at a time
t = t0 + ∆t, we need to look for occupied cells that may
cause the lane to be neutralized. Only a cell that is fully
occupied can generate a neutralized area. It is therefore crucial
to characterize the cells that are truly occupied during the
reachability analysis.

1) Occupancy: Reachable cells can be occupied, with the
U state, or truly occupied, with a state O. A cell is considered
occupied if it is completely overlapped by the footprint of a
road user placed at the bounds of s(t) (see Fig. 15). As a
consequence, a partially occupied cell is considered only as
reachable, since it is not actually fully occupied. Road user
lengths L are supplied by the object tracker.

The footprint occupancy is defined as follows.
Definition 4.2 Footprint occupancy

For a given road user in the interval s(t), its footprint
occupancy sL(t) is defined by:

sL(t) =

{
[s(t)− L; s(t) + L] if s(t) + L > s(t)− L
∅ otherwise

(6)
The predicted LGM(t|t0) is updated with this information.

An occupation function is defined as follows.
Definition 4.3 Occupation function

The occupation function O of road users defines cells of
the predicted LGM with an occupied state O. The set of
predicted occupied cells O(sL(t)) is defined as all the
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Vx : Road users 

V1

V2

Fig. 16: Backward propagation of the neutralized constraint
on a predicted LGM at time t0 + ∆t. The purple area remains
neutralized since V2 is guaranteed to occupy at least one
cell (in red) of the crossing area during the entire prediction
horizon. The hatched area is therefore removed, since these
cells are no longer reachable.

cells c in the predicted LGM(t|t0) that are included in
sL(t):

O(sL(t)) = {c ∈ LGM(t|t0)|c ⊆ sL(t)} (7)

All the predicted occupied cells are updated with the label
Occupied.

Fig. 15 illustrates a predicted LGM update using the occupa-
tion function, given a road user V1 and a time horizon ∆t. The
footprint of V1 is placed at each end of the predicted bounds.
The cells that are within the overlapping bounds are retrieved.
Note that if the predicted interval s(t) is twice as long as
the road user length L, then there is no occupancy. It will
be remarked that hidden cells cannot generate occupancy, but
only reachability, since prediction is done only with respect
to virtual vehicles. There is no guarantee that these virtual
vehicles correspond to real physical road users.

2) Neutralization: We now focus on the prediction of an
LGM with a lane characterized initially as neutralized.

In this problem, applying a constraint on a vehicle prediction
is dependent on the prediction of another road user. Prediction
of cells located in a neutralized area is constrained if and
only if this area remains neutralized. An area can remain
neutralized only if there has been a prediction of another road
user that has given rise to this situation. At first glance it would
appear complicated to make predictions of road users that
are dependent on others, since the number of predictions can
increase dramatically in some complex driving situations. That
is why all the road users are first predicted independently w.r.t.
each other without any constraint. The physical interaction
induced by neutralization is then back-propagated onto the
reachable cells of the road users and the hidden cells located
in the neutralized areas. This prevents prediction of some cells
from reaching non-reachable areas.

For a predicted LGM(t|t0), there are two possible scenar-
ios:

a) The neutralized area remains neutralized in the predicted
LGM at time t0 + ∆t (see Fig. 16). As a consequence,
a constraint is applied on reachable cells which were
generated by road users or potential road users in the
neutralized area. This backward constraint propagation is
defined as follows.
Definition 4.4 Backward constraint propagation

Let the set {s1(t0), s2(t0), . . .} be the set of entities

TABLE IV: Correspondence between the predicted states of
LGM(t|t0) and the true states of LGM(t).

True Predicted LGM(t|t0)
LGM(t) Occupied Reach. Non-reachable

Occupied Non-Misleading Hazardous
(1) (2)

Free Hazardous Non-Hazardous Non-Misleading
(neutr.) (3) (4)

(real or virtual road users) that are in the neutralized
area N at time t0. At a given time t = t0 + ∆t, let
O(t) = R({s1(t), s2(t), . . .}) be the reachable cells of
all these entities. Assuming that N is still neutralized
in the predicted LGM(t|t0), all the cells in O(t) that
are outside the neutralized area N defined as

C = O(t)\N (8)

are actually not reachable by the entities in N .
The backward constraint propagation consists in cancel-
ing all the updates that have been applied to the cells in
C by any entity si. As a result, in Fig. 16, the backward
constraint propagation is applied on the cells that are
located outside the neutralized area. The difference can
be seen where cells are set to free instead of unknown.

b) The neutralized area is no longer neutralized in the
predicted LGM at time t0+∆t. No backward propagation
is applied.

3) Integrity: This section is concerned with managing the
integrity of the information provided by the predicted LGM,
taking into account the neutralized situation. In comparison
with the integrity study presented above (see Table III), there
is a new hazardous situation (see Table IV). Up to now,
a false positive, that is predicting a free cell as occupied
or reachable, was considered non-hazardous, given that any
resulting inappropriate behaviour is likely to be excessively
cautious rather than insufficiently so. With the introduction of
the concept of neutralization, a cell that is wrongly predicted
as occupied may lead to false neutralization constraints, which
can imply hazardous decisions.

As a consequence, the FNR metric that we have used so
far is no longer sufficient to guarantee system integrity. An
additional metric is needed to address this new hazardous
situation. For this purpose we compute the duration of the
neutralization constraints, termed NTI (Neutralized Time Inter-
val). This performance metric corresponds to the last predicted
time tNTI = t0 +NTI for which a neutralized area remains.
Computing the NTI when a neutralized area occurs means
finding the earliest time for which there is no longer any
fully occupied cell in the crossing area. The implementation
consists in predicting the LGM over a time horizon with a
given sampling time δt and simply identifying the first time
when the neutralization ends. It corresponds to a lower bound
approximation of the actual NTI.

The goal is to compute a value that is as close as possible
to, but does not exceed, the real NTI. Overestimating the
NTI may lead to hazardous situations, e.g. the ego vehicle
estimates that it has enough time to cross while in reality
it does not. Conversely, underestimating the NTI leads to
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Vx : Road users 

V1

V2

Misleading
occupied cell

(a)

V1

V2

(b)

Fig. 17: Two LGM(t|t0) computed with different sampling
steps. As the sampling step increases, the misleading infor-
mation due to a prediction error disappears. The situation is
therefore no longer considered neutralized.

Fig. 18: LGM representation at a roundabout in a real-time
experiment in Compiègne. The ego vehicle (blue) enters the
roundabout with a vehicle on its left side (red). This vehicle
located on the secondary order lane causes an occlusion. As
it is already engaged, the primary order lane is neutralized
(purple). Free cells are shown in green, and occupied cells in
red. Other cells in gray are partially or completely hidden.

overcautious decisions: the integrity of navigation information
is guaranteed, but the availability of the navigation function is
reduced.

The quality of the estimated NTI depends on the prediction
of the road users. For example, in Fig. 17, a mistakenly
neutralized area is assumed with a sampling step of 1 m. The
upper bound of the road user V2 has been underestimated. In
Fig. 17a, at some time t in the future, the LGM predicts that
a cell will be fully occupied when it is not. This generates
a neutralized area that may lead the ego vehicle to decide to
cross. This situation leads to an overestimation of the NTI.

We have already demonstrated that enlarging the sampling
step provides a means of handling system integrity in terms
of FNR. Fortunately, the same process can also be used for
controlling integrity in terms of NTI . As the sampling step
increases, for a given prediction time, the state of an occupied
cell changes to unknown, meaning that potentially a wrongly
neutralized area may disappear, once there are no remaining
occupied cells (see Fig. 17b).

C. Real experimental results

1) Implementation: The LGM generation and its char-
acterization process were implemented on a Renault ZOE

experimental vehicle belonging to the Heudiasyc Laboratory
using ROS middleware. The computer used had an Intel i7
(7th) processor and 16 Go of RAM. For the computation of
the IG, a distance of interest of 100 m was chosen, and for
the LGM an arbitrary cell discretization step of 1 m was set
in order to achieve real-time performance. The LGM was
generated at a frequency of 10 Hz and the IG at 0.25 Hz.

2) Case study: In Fig. 18, a neutralized area is shown in
a roundabout entrance situation. The ego vehicle intends to
enter the roundabout by merging with the outer lane. Since
the vehicle on the left belongs to the lane to the left of the
ego vehicle and is crossing the merging lane, the area behind
that vehicle is therefore characterized as neutralized. This is
the situation addressed in our computation of LGM(t0).

3) Results: To compute the bounds for a given prediction
∆t horizon, Eq. 5 is used with different intervals for the
acceleration. The following three models, labeled according
to their upper bound on the acceleration, are considered in
order to evaluate their impact on the results:

1) Constant acceleration (CA): a(t) ∈ [−3.5; 4.0] m.s−2

2) Constant velocity (CV): a(t) ∈ [−3.5; 0.0] m.s−2

3) Constant deceleration (CD): a(t) ∈ [−3.5;−1.5] m.s−2

For each model, the velocity is also constrained within the
interval [0; vlim], i.e. the vehicle cannot travel backwards or
faster than the speed limit (where vlim = 50.0 km.h−1 in the
roundabout). They all have the same lower acceleration bound.
The model used for hidden cells is based on Eq. 3 where
vlim = 50.0 km.h−1. We therefore have a constant velocity
model.

In order to store the predicted LGM, each cell of the
LGM has a vector of its predicted states. When a neutralized
area is encountered, as described above, the prediction pro-
cess is launched. Given a maximum prediction time horizon
∆tmax = 2 s and a time sampling step of 0.1 s, each predicted
LGM(t|t0) is computed based on the initial LGM(t0) and the
neutralized constraint is applied depending on the situation.
The neutralized constraint is back-propagated if and only if the
neutralized area remains neutralized. This gives the predicted
NTI. Once the constraint is no longer applicable, the predicted
NTI is used for the reachability analysis of the neutralized
cells. Cells outside the neutralized area start to be reached
after the NTI has elapsed.

In order to show how integrity is handled through the
prediction process, a number of different sampling steps were
used for the predicted LGM.

The results that are presented in this section serve a twofold
purpose. First, they demonstrate the advantage of the neutral-
ized constraint. It is possible to make a prediction that remains
consistent and that is able to improve the reachability analysis,
and thus the decision-making process, throughout the NTI.
Second, they show that an appropriate tuning of the sampling
step parameter can prevent this prediction representation from
generating misleading information.

The impact of the sampling step parameter on the predicted
neutralized time interval is shown in Fig. 19. The different
curves represent the evolution of the NTI using different
prediction models for the road users: CD (blue), CV (green),
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Sampling step (m)

Misleading

Fig. 19: Evolution of the predicted NTI obtained as a function
of the sampling step. The three models CA, CV and CD are
represented respectively by the red, green and blue curves. The
NTI computed with the LGM(t) is shown as the dotted line.
Values above this line are considered misleading.

CA (red). With all three models it can be seen that that higher
the sampling step, the lower the predicted NTI.

The NTI obtained with the LGM(t) observed in replay is
shown as a horizontal gray line. A misleading situation occurs
where the estimated NTI is larger than the true NTI, as in
the case of the CD model. By increasing the sampling step,
the NTI is no longer misleading, even with an approximate
model. The CV model is able to maximize the NTI, while
the CA model is much more conservative but also more
robust. With a more pessimistic model, it becomes harder to
predict a long NTI, and the resulting situation understanding is
therefore more conservative. Results show how the sampling
step can maintain integrity by ensuring a lower estimation
of the predicted neutralized time interval. The CD prediction
model demonstrates the loss of integrity when a model does
not bound the real behavior of road users. In order to fulfill
the same requirement, the sampling step needs to be increased
up to two meters at least. It will be remarked that the maxi-
mum NTI that can be obtained is bounded by the maximum
predicted time horizon, ∆t = 2 s in this case.

VI. CONCLUSION

The Lane Grid Map is a lane-level representation that allows
the driving situation of an autonomous vehicle to be modeled
at an intermediate level by taking into account topological
information from an HD map. Since this representation is used
by a decision-making system, the integrity of the information
that it contains needs to be controlled over a time horizon
in order to avoid providing misleading information. We have
shown how an LGM can make a prediction model reliable,
even if it is inevitably an imperfect reflection of reality. This
is achieved by setting an appropriate sampling step for the
LGM, such as to maintain the integrity below a given Target
Integrity Risk. The general principle is that the False Negative
Rate can be reduced as needed by increasing the length of the
sampling step. This strategy can lead to a loss of availability
of the driving system as the vehicle becomes overcautious.
For this reason, we have proposed an improvement that
takes interactions into account interactions via the concept of
neutralization, which can improve decision-making in some

situations without compromising safety. Interactions are taken
into account with the NTI metric, and we have shown that
a similar sampling step tuning procedure is also able to
guarantee the integrity of the prediction in these situations.

Once an object predictor has been set, along with the
integrity requirement of the decision-making module in terms
of prediction time horizon and TIR, a data collection step is
required in order to tune the integrity performance and select
the optimal sampling step satisfying the integrity requirement
while maximizing the availability. Because this strategy is data
driven, finding a robust optimal sampling step requires a large
quantity of recorded driving recording data for all the target
operational domain designs.

In this paper, we have considered a simplified LGM with
a space discretization in the along-track direction and with a
single sampling step. In future works, we will consider both
the along- and cross-track directions, as well as sampling steps
that are adaptive w.r.t. to the navigation task, in order to further
increase the availability of the system.

ACKNOWLEDGMENTS

This work has been carried out within SIVALab, a shared
laboratory between Renault and Heudiasyc. Equipment from
ROBOTEX (ANR-10-EQPX-44-01) were used for the experi-
ments. The authors would like to thank Antoine Lima, Stefano
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