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Thi Thuy Nga Nguyena,1,∗, Olivier Brunb, Balakrishna J. Prabhub

aTorus Actions SAS, Toulouse, France
bLAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France

Abstract

Resource allocation algorithms in wireless networks can require solving complex
optimization problems at every decision epoch. For large scale networks, when
decisions need to be taken on time scales of milliseconds, using standard convex
optimization solvers for computing the optimum can be a time-consuming affair
that may impair real-time decision making. In this paper, we propose to use
Data-driven and Deep Feedforward Neural Networks (DFNN) for learning the
relation between the inputs and the outputs of two such resource allocation
algorithms that were proposed in [1, 2]. On numerical examples with realistic
mobility patterns, we show that the learning algorithm yields an approximate
yet satisfactory solution with much less computation time.

Keywords: Scheduling, Deep Feedforward Neural Networks, Supervised
Learning, Data-Driven.

1. Introduction

In cellular wireless networks, a central scheduling problem is to choose one
among several concurrent users (for example, mobile phones) to which the sched-
uler (henceforth also referred to as the base station) must send data to. This
scheduling decision is taken every time-slot which is of the order of 2 ms [4] and
is based on what are called as channel conditions of the users. Roughly, the
channel condition of a user determines the data rate at which the base station
can communicate with this user. In wireless networks, these conditions can vary
randomly on short as well as on long time scales. Also called fading and shad-
owing, these random variations are a consequence of the interference patterns
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induced by the different obstacles (building, trees, etc.) in the path of the radio
waves used for wireless communications [5]. However, the decision is not as easy
as scheduling the user with the best channel condition as such a policy could
lead to unfairness between users. Imagine a user with a direct line of sight path
with the base station and another who is inside a building or an underground
metro station. Quite possibly, the former user will always have a better channel
which would starve the latter user of any communication.

To avoid these unfair allocations, a typical solution is to define a utility which
is usually a concave function of the throughput2 of the users and then compute
the scheduling decision as the one that maximizes the sum of the utilities of the
users. For example, the utility function could be the logarithm of the average
throughput of the users. These solutions fall under the umbrella of the network
utility maximization problem [6].

In an ideal scenario, the base station will solve this utility maximization
problem every 2 ms. However, there are two practical issues that make this in-
feasible. First, the throughput of a user depends upon future channel conditions
which are unknown to the scheduler. Second, the integer scheduling problem is
known to be NP-complete [4]. Solving such an optimization problem over a time
horizon of seconds (thousands of time-slots) and with hundreds of users can be
unrealistic in time-slots of 2 ms (which are actually becoming shorter as the
technology progresses). To overcome these practical issues, several heuristics
have been proposed that are based on an estimation of the future data rates
[4, 1, 2]. The heuristics (called STO1 and STO2) in [1, 2] use the estimated fu-
ture data rates as an input to a relaxed version of the original problem restricted
to a shorter time horizon thereby reducing the dimensionality of the problem.
These heuristics are thus much faster to solve than the original problem but they
still require solving rather frequently a large-scale convex optimization problem
which can be time consuming. It was shown numerically in [1, 2] that STO1 and
STO2 performed better than the one in [4] as well as the popular PF algorithm
[7] that does not use future estimated rates. Therefore, in this paper, we shall
address the problem of improving the speed of these heuristics without compro-
mising on their superior total utility. It is worth mentioning that although we
only focus on STO1, our approach could probably be extended to other channel
allocation algorithms as well.

1.1. Contributions

We propose a machine learning based solution to speed up the operations of
STO13. The key idea is to use a Deep Feedforward Neural Network (DFNN) to
approximate the output of the relaxed optimization problem in the heuristics.

2We use data rate and throughput to denote two different but related quantities. The
throughput only takes into account the data rate of the time-slots in which a user is served.
It is thus no more than the total data rate of this user.

3STO2 is similar to STO1 but solves the optimization problem less frequently. In this
paper we shall focus on STO1 but the ideas developed here can be applied to STO2 as well.
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It is well-known that any continuous function can be approximated arbitrary
well by a DFNN. However, discontinuous functions are much more difficult to
learn. Unfortunately, as we show with a simple example, the input-output
mapping realized by the STO1 algorithm is discontinuous. This makes the
model slower to learn due to oscillations at discontinuity points. We characterize
the discontinuity points of STO1 by explicitly indicating the set where they
reside when the dimension is equal to 2. In order to reduce the impact of
discontinuities, we propose several user ordering schemes. We also propose
an alternative approach which amounts to learning the dual values, which are
proven mathematically to be continuous.

It will be shown on numerical examples that once the DFNN is trained, it
takes much less time to generate a reasonable accurate solution compared to
using the specialized Python package CVXPY [8] that uses the solver Mosek [9]
for solving of a convex optimization problem. We prune and compare different
DFNN architectures and different loss functions to find the most appropriate
ones for our problem. We then compare the behavior of the learning algorithm
with STO1 and with other existing algorithms as well. The comparison shall be
done on scenarios created with SUMO [10] which can generate realistic mobility
patterns of vehicles on road networks. Based on numerical results, the learning
algorithm is shown to perform close to STO1 with much less computation time.
Numerical results in section 5.6 show that, for larger scaling systems, only learn-
ing dual values could scale well in comparison with learning the primal values
(either with or without ordering scheme).

Preliminary results from this paper mainly containing the numerical exam-
ples appeared in [3].

1.2. Related works

The theory of approximation for DFNNs has been studied in many papers.
Motivated by Kolmogorov’s superposition theorem [11] in 1957, many approxi-
mation results have proven the approximation capabilities of feedforward neural
networks for the class of continuous functions, see, e.g., [12],[13],[14]. In his the-
orem, Kolmogorov proved that any continuous function can be represented as a
superposition of continuous functions of one variable. In 1989, Cybenko proved
that any multivariate continuous function with support in a hypercube can be
uniformly approximated by a linear finite combinations of compositions of a sig-
moidal functions and a set of affine functions [12]. This representation is in fact
a feedforward neural networks with sigmoidal activation functions. Indepen-
dently with the work of Cybenko, Hornik [13] also proved a similar result. Two
years later, Hornik [15] showed that multi-layer feedforward neural networks
with arbitrary bounded and non-constant activation function can approximate
arbitrary well real-valued continuous functions on compact subsets of Rn as
long as sufficiently many hidden layers are available. The adjective ”deep” in
”deep learning” thus simply means many layers.

Learning an algorithm to produce an approximate algorithm in order to
reduce computation time has been proposed in several recent research papers
[16], [17]. In [16], the authors consider a Sparse Coding problem which is used
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for extracting features from raw data. The problem is that Sparse Coding is
often too slow for real-time processing in several applications such as pattern
recognition. The authors propose a method using a non linear, feedforward
function to learn Sparse Coding to produce an approximate algorithm with 10
times less computation.

Learning an algorithm for wireless resource management has been proposed
in [17]. In that work, the authors used a DFNN to learn an algorithm for the
interference channel power control problem. They obtain an almost real time
algorithm, since passing the input through a DFNN to get the output only
requires a small number of simple operations as compared to an iterative opti-
mization algorithm. They show that, by choosing an appropriate initialization,
the initial power control algorithm performs a continuous mapping which can
be efficiently learnt.

In this paper, we use DFNNs for learning a channel allocation algorithm
maximizing the proportional fairness between vehicular users. The proposed
method is however potentially applicable to other convex optimization problems.

1.3. Organization

In Section 2, we present the resource allocation problems considered in this
paper in the case of a single Base Station (BS). We also briefly describe the STO1
algorithm for allocating the channel to vehicular users. Section 3 provides an
overview of the learning-based approach and formally defines the input-output
relationship for the DFNN model. We discuss about the continuity of this input-
output mapping in Section 4 and then propose several user ordering schemes
for reducing the discontinuity of the original mapping, as well as an alternative
approach which amounts to learning the dual values instead of the allocation.
Numerical results are presented in Section 5. Finally, in Section 6 we discuss
several research directions that can be followed in future work.

2. Wireless Scheduling Problems and Channel Allocation Heuristics

We first present the wireless scheduling problems considered in this paper
in Section 2.1, and then briefly describe the channel allocation heuristics that
were proposed in [1, 2] in Section 2.2.

2.1. Problem Formulation

Consider the following downlink discrete-time channel allocation problem for
a single Base Station (BS) (see [7] and references therein):
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

max
α

O(α) =

K∑
i=1

log

 T∑
j=1

αijrij


subject to

K∑
i=1

αij ≤ 1, j = 1, . . . , T ;

αij ∈ {0, 1}, j = 1, . . . , T, i = 1, . . . ,K.

(I)

Here rij ≥ 0 is the data rate of user i in time-slot j, and αij is the corre-
sponding allocation in this slot. The constraints impose that the BS can choose
at most one user in each time-slot. The objective of the BS is to maximize the
sum of the individual user utilities which are defined as the logarithm of the to-
tal throughput of the user over a time horizon of T . As mentioned in Section 1,
solving this problem is not practical because the data rates ri,j become known
to the scheduler only in slot j. Further, users arrive and leave and it is not
possible to know in advance which users will be present in the network in the
future. Hence, the algorithms proposed use either no information on the future
rate (see [7] and references therein) or an estimation of the future rates [4, 1].
The latter works assume that the mean future rates of users can be predicted
from their positions using Signal-to-Noise Ratio (SNR) maps.

A more fine-grained scheduling problem on the downlink involves joint power
control and channel allocation which allows the BS to vary the transmit power
in addition to choosing how much of the channel (or bandwidth) it can allocate
to the users [18], and is defined as:

max
x,p

K∑
i=1

log

 T∑
j=1

xij log

(
1 +

pijγij
xij

)
subject to

K∑
i=1

xij ≤ 1, ∀j; xij ≥ 0,∀i, j

1

T

∑
j

∑
i

pij ≤ P̄ ;
∑
i

pij ≤ Pmax, ∀j.

(II)

Here pij (resp. xij) is the power (resp. fraction of bandwidth) allocated by
the BS to user i in slot j. The parameter γij represents the channel condition of

the user i in slot j and xij log
(
1 +

pijγij

xij

)
is the Shannon rate obtained by this

user when it is allocated power pij and fraction of bandwidth xij . The utility
of the user is again the logarithm of its total throughput and the objective of
the BS is to maximize the sum utility. Note that there are constraints on the
power allocation which involve both the maximum power that can be expended
in a time slot as well as the average power spend over the whole horizon. For
this joint power and channel allocation problem, an adapted version of STO1
was proposed in [2].
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Figure 1: The different types of time slots in the STO1 algorithm.

Remark 1 (Joint power control and channel allocation). For brevity, we
shall explain the STO1 algorithm and its associated machine learning solution
only for the channel allocation problem (I). A remark shall be made wherever
the treatment of this problem differs from that of the joint power control and
channel allocation problem (II).

2.2. The STO1 algorithm

STO1 is a sequential algorithm which computes the allocation on time-slot
j based on the current and the past data rates, and the estimated future data
rates. It operates on two time-scales (shown in Figure 1) in order to reduce its
complexity. Define big-slots as a certain number (order of hundreds) of time-
slots (or small-slots) that reflect the duration over which the distance of each
user to the BS does not change much. It follows from the law of large numbers
that, although the data rate of each user in each time-slot can vary randomly,
the expected sum of its data rate over big-slots does not vary too much. For
example, while the scheduling time-slots are 2 ms in length, one big slot can be
equal to 100 time-slots, and one user can move at most by a few meters in a big
slot. Big slots are defined to reduce the dimension of the original optimization
problem as explained below. It shall be assumed that estimations are available
for users’ future positions at the granularity of big-slots, and that the mean of
future rates based on the future positions are estimated using SNR maps.

Before giving a formal definition of the STO1 algorithm, we give an intuitive
explanation. In each small-slot j, STO1 does two steps. In the first step, it solves
the problem (I) but with several restrictions: (i) the horizon is shortened to J
big-slots; (ii) the future allocations are computed only on the aggregated level
of big-slots; and (iii) the integer constraints on αij are relaxed. In the second
step, the fractional allocation for the current small-slot is projected onto the
set of the feasible integral allocations. The first step reduces the number of
variables and hence the dimensionality of the problem as the future allocations
are computed only for big-slots. Note that the second step is optional and is
relevant only to problems with integral constraints.

A more formal definition is as follows. Denote by δ the length of a time slot.
Let ∆ be the size of the big-slot in absolute time units and let m = ∆/δ be the
number of small slots in a big-slot (see Figure 1). Denote by r̄ij the mean rate
in slot j for user i. At each small-slot t, with a slight abuse of notation, we shall

denote by ρ̄i,0 =
∑(m−(t mod m))+t

j=t+1 r̄ij the total rate for user i in the remaining
channel allocation slots of the current big-slot τ = 0, where t mod m denotes
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the remainder when dividing t by m. We also define ᾱi,0 as the corresponding
allocation for the current big-slot τ = 0.

Denote by ρ̄iτ =
∑τm+A

j=(τ−1)m+A+1 r̄ij where A =
(
⌊ t
m⌋+ 1

)
m, is the total

average data rate that user i will get in the future big-slot τ (τ = 1, 2, ..., J−1),
where big slot τ starts after the current big-slot, and J is the short time horizon
in term of big slots over which we can estimate the mean future rate. We also
define ᾱiτ as the corresponding allocation for user i in future big slot τ . These
allocations ᾱiτ can be interpreted as the fraction of small slots that user i will
be allocated in the big-slot τ .

Note that this definition is slightly different from the definition in [1]. The
differences are as follows: in [1], there is no current big slot and the future big-
slot starts just after the current small slots. This change in definition does not
change much the overall performance of the algorithms. The above definition
of two time slot types corresponds in fact to the ones introduced in [2].

Denote by ai(t) =
∑t

j=1 αijrij the total throughput allocated to user i up
to time slot t, and let K(t) be the number of users inside the coverage range of
the BS at time t.

The algorithm STO1 contains two steps which are as follows:

• Step 1– solve the following optimization problem over a short-term hori-
zon of J big-slots:

maximize

K(t)∑
i=1

log

(
ai(t− 1) + αitrit +

J∑
τ=1

ᾱiτ ρ̄iτ

)
subject to ∑K(t)

i=1 αit = 1,∑K(t)
i=1 ᾱiτ = 1, τ = 0, . . . , J − 1,

αit, ᾱiτ ∈ [0, 1], τ = 0, . . . , J − 1, i = 1, . . . ,K(t).
(STO1-Opt)

The decision variables in Problem (STO1-Opt) are the channel allocations
in the current small slot, αit, and the channel allocations in the current
and future big-slots, ᾱiτ . Since the future allocations are only computed
on the time-scale of big-slots, there is a reduction by factor m in the
number of variables in (STO1-Opt).

• Step 2 – obtain a feasible integral allocation from the fractional one. For
example, set αi∗j = 1 with i∗ = argmaxi αij and set it to 0 for the other
users.

Remark 2. (STO1-Opt) is solved thanks to the python package CVXPY [8]
and the solver Mosek [9]. In [1], this optimization problem was solved using a
projected gradient algorithm, since it allows to iteratively solve a convex opti-
mization problem when the feasible set is a simplex or a Cartesian product of
simplices, no matter how complex the objective function is as long as it is smooth
and convex. The advantage of CVXPY [8] is that it can be used to generalize this
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idea to other convex optimization problems, with more complex constraints such
as power control constraints or others QoS constraints (e.g. delay constraints).

Remark 3. STO1 leans on the information about the number of users and
users’ channels to make decisions. In this paper, we assumed that the average
channel gains in big slots with less error could be provided as input of STO1,
this assumption is quite reasonable because of the law of large numbers; the
number of users in the near future is not assumed to be known for the BS
because that information might be more difficult to get. However, if we can get
that information as input for STO1, then the variables for the new users just
need to be added into the optimization problem (their channel gains are assigned
to 0 before their arrival instant). This information can be updated in every small
slot (every 2 ms) when STO1 computes a new allocation.

3. Learning Algorithm

As presented in [1] and [2], STO1 performs better than existing algorithms.
However it has to solve an optimization problem with a large number of variables
and constraints frequently, and may not be able to run in real time for some
complex scenarios. The main idea proposed in this paper is to train a DFNN to
predict an approximate solution to (STO1-Opt) instead of using a specialized
convex optimization package. We provide an overview of the approach in Section
3.1. We then formulate the learning problem in Section 3.2, where we define
the input state, the target and the architecture of the neural network.

3.1. A Learning-based Approach for Wireless Scheduling

Our goal is to approximate the input-output mapping realized by STO1 with
a DFNN (see [19] for background material on supervised learning with DFNN).
Once the approximation function (that is, the DFNN) obtained, the output can
be computed by feeding the DFNN with the input value, instead of solving an
optimization problem. This simpler method is expected to work faster than the
original algorithm. Obviously, the same idea could be used for other problems
in order to obtain an approximate method which performs almost as well as the
original algorithm but requires much less computing time.

More precisely, the STO1 algorithm can be seen as a function F that maps an
input xn ∈ X (a problem instance) to an output yn ∈ Y (a channel allocation),
where X and Y denote the input and output spaces of STO1, respectively. Given
a bunch of examples of input-output pairs (xn, yn)

N
n=1 (the training data), our

objective is to obtain another function F̂ : X → Y which is in the form of
a DFNN (an example of DFNN is illustrated in Figure 2) and minimizes the
empirical risk

Rerm(F̂ ) =
1

N

N∑
n=1

l(yn, F̂ (xn)),
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Figure 2: An example of Deep Feedforward Neural Network.

where l(·) is a loss function which measures how far yn is from F̂ (xn). Our
hope is that the learned approximation F̂ is able to determine outputs of unseen
inputs with small error.

It is known that optimizing the parameters (e.g., weight matrices, bias vec-
tors, non-linear activation functions) of a neural network and deciding its ar-
chitecture (e.g. numbers of layers and number of nodes in each layer ) is in
general not an easy task [20]. In this paper, we shall empirically compare some
architectures through experiments presented in Section 5.2. After fixing the ar-
chitecture, we have to find appropriate parameters by minimizing the empirical
risk defined above.

3.2. System Setup for learning

Recall that, in STO1, we have two types of time scales: one is the big slot ∆
and the other one is the small slot δ. In STO1, we solve problem (STO1-Opt)
with variables of size (1+J) ·K every small slot, where J is the time horizon in
terms of big slots and K is the number of users in the system. The size of the
allocation vector for each user is equal to 1 + J since it contains the allocation
for the current small slot, αit, and the average allocation ᾱiτ for the subsequent
J big slots (including the current big slot). The input of STO1 is a data rate
vector of size (1 + J) · K and the total allocated throughput for the K users.
The output of STO1 is the current allocation vector (αit)i=1,...,K which is of
size K, since we shall only use current allocation for making decision.

As it is defined at the moment, STO1 is not well suited to be modelled as a
learning problem for the two reasons stated below.

Firstly, sinceK can vary over time, the dimension of the input vector will also
vary. To circumvent this problem and to properly define STO1 as a function,
we have to fix the size of the state. To do that, we extend the real state of
the system by adding some pseudo users. Let us assume that there are at most
KM users inside the system. We will then add KM −K pseudo users, where K
is the number of real users in the system at time t. We will actually learn an
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extended version of STO1 which is STO1 when we restrict it to K users. There
are many ways to extend STO1, but here we try to define an extended version
that preserves as much as possible the continuity of STO1. When we mention
”learning STO1”, it means ”learning the extended function” of STO1.

Secondly, the output of STO1 as defined above is the solution of an opti-
mization problem. So, STO1 can be a set-valued mapping since the solution
need not be unique. However, by using the CVXPY package to solve the con-
vex optimization problem (STO1-Opt), we let it decide the way it determines
one of the solutions. This way STO1 becomes a function (instead of set-valued
mapping).

Remark 4 (Joint power control and channel allocation). For the joint power
control and channel allocation problem, the state needs to be augmented by the
remaining total power. The output of the DFNN will now give the transmit
power to each user as well as the fraction of the channel it gets allocated.

3.2.1. State

We define a state as a matrix of size (2+J)×KM , whereKM is the maximum
number of users in the system. There are thus 2 + J rows, and each row has
KM elements. The interpretation is as follows:

• The first row gives the current rates of the K users. We fill in the K
positions on the left hand side with these current rates, and the remaining
KM −K positions are filled with −1.

• The next J rows (from 2, .., J + 1) give the average rates of the users in
the next J big slots. For pseudo users (the KM −K columns on the right
hand side), we use the value (−1) · (∆/δ − (t mod ∆/δ)) for the current
big slot and the value (−1) ·∆/δ for the other big slots.

• The last row gives the total allocated throughput of the K users. For
pseudo users, we use a large enough value which is significantly greater
than the total allocated throughput of real users.

By observing how STO1 works, we remark, as expected, that STO1 gives
priority to users with a low allocated throughput and a high current rate. There-
fore, the way we define the state (that is, by using negative values for the current
and future rates of pseudo users, and extremely large values for their allocated
throughput) is intended to help the model ignore quickly the pseudo users.

Remark 5. Remark that there are K real users in the system at present time.
Therefore, the K places of the real users in the first row which give the current
rates of those users have to be strictly positive. The future rates (from the second
row to the (J + 1)-th row) can be zero.
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Figure 3: Input and output of the DFNN model.

3.2.2. Target

We remind the reader that we want to learn only the current allocation, not
the future allocation. Therefore, the target will be a vector of size KM , where
the first K positions represent the fractional allocation αit of the K users as
computed by STO1, and the last positions are filled with zero. Since in the
optimization problem, the sum of allocation should be equal to 1, when there is
no user in the system (all positions correspond to pseudo users), the allocation
vector will be set to (1/KM , ..., 1/KM ) by convention.

Figure 3 illustrates the input and output of the DFNN model as described
above.

3.2.3. Loss, DFNN architecture, initial parameters and optimizer

We will try several different loss functions and architectures and compare
them in Section 5. The initial parameters (weights) of the DFNN will be chosen
as proposed in [21], which allows the initial parameters to be not too big and
not too small. The optimizer is Adam, which was first introduced in [22] and is
a stochastic first-order gradient-based algorithm. The convergence of Adam is
proven in [23].

4. Discussion about the continuity of the STO1 function

As discussed in Section 1.2, any continuous function can be approximated
arbitrary well with a DFNN. Unfortunately, as we shall prove in Section 4.1
below, the input-output mapping F implemented by the STO1 algorithm is not
continuous, implying that it is much more difficult to learn than a continuous
mapping. We characterize the discontinuities of this mapping in Section 4.2.
This characterization is then used in Section 4.3 to devise user ordering schemes
allowing to reduce the number of discontinuities. In Section 4.4, we propose
an alternative approach which amounts to learning the dual values, which are
proven to be continuous, instead of the primal ones.

4.1. A simple counter-example proving that STO1 is a discontinuous function

As defined above, F is a mapping from
∏i=KM ,j=J+2

i=1,j=1 Ei,j to SKM
, where

SKM
is the simplex of size KM and

• For j = 1 and i = 1, . . . ,KM , Ei,1 = (0,+∞] ∪ {−1},
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0-1
current rate

Figure 4: Two connected components of Ei,1∀i.

• For j = 2, . . . , J+1 and i = 1, . . . ,KM , Ei,j = [0,+∞]∪{−1,−2, ...,−∆/δ},

• For j = J + 2 and i = 1, . . . ,KM , Ei,J+2 = [0,+∞].

We can see that the pseudo users and real users lie in different connected
components (see Figure 4), from which it follows that the continuity of its
extension depends only on STO1. We shall thus concentrate on the continuity
of the STO1 function on the connected component corresponding to the K real
users. Unfortunately, STO1 itself is not a continuous function. Let us take a
simple example illustrating the discontinuity. Assume that K = 2, J = 1, ∆ = δ
and consider the following sequence of states:

Rn =

r + (−1)n

n r − (−1)n

n

r − (−1)n

n r + (−1)n

n
0 0

 .

Then it is easy to show that Rn → R̄, where

R̄ =

r r
r r
0 0

 .

However

F (Rn) =

{
[1, 0] if n = 2k,

[0, 1] if n = 2k + 1.

This simple example shows that the STO1 function is not continuous. The
discontinuities make the learning problem much more difficult since near discon-
tinuity points, the DFNN model does not know which direction of the output its
parameters should follow. For example, as illustrated in the above 2-dimension
example, near R̄, the target (output) oscillates between [0, 1] and [1, 0]. Since
a DFNN is a composition of many continuous functions, it is also a continuous
function. Trying to fit every target near R̄ into the DFNN model can make
its parameters conflict and result in a slower convergence. Therefore in the re-
mainder this section we shall characterize the discontinuity points of the STO1
function and discuss how to derive a continuous function from STO1.

4.2. Analysis of discontinuities

Above we showed one discontinuity point R̄ when K = 2, J = 1. Now, our
objective is to characterize the set containing all discontinuity points. Before
doing that, let us analyze the property of an optimal solution resulting from the
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KKT conditions (which are necessary and sufficient conditions in our case). To
simplify the notation, let us assume that a big slot is equal to a small slot, that
is, ∆ = δ (the proof is however still valid if a big slot is equal to multiple small
slots). With ∆ = δ, we can write (STO1-Opt) as follows:

maximize

K(t)∑
i=1

log

t+J∑
j=t

αijrij + ci


∑K(t)

i=1 αij = 1, j = t, t+ 1, ..., t+ J,
αij ∈ [0, 1], j = t, t+ 1, ..., t+ J, i = 1, . . . ,K(t).

(IR)

Let us denote by rij the rate of user i at time j, and let ci be the total throughput
allocated to user i up to present time. Consider the state R defined by

R =


r1t r2t · · · rKM t

· · · · · · · · · · · ·
r1,t+J r2,t+J · · · rKM ,t+J

c1 c2 · · · cKM

 ,

in which the ith column provides all the information available for user i. We
denote the above optimization problem by (IR) to emphasize that it depends
on R.

The Lagrange function of this convex optimization problem is L = O(α) +∑
j λj(1 −

∑
i αij) +

∑
i,j ρi,jαij where O(α) =

∑K(t)
i=1 log

(∑t+J
j=t αijrij + ci

)
.

The KKT conditions for problem (IR) are as follows:


1, Primal feasibility:

∑
i α

∗
ij = 1 ∀j, and α∗

ij ≥ 0 ∀i, j,
2, Dual feasibility: ρ∗ij ≥ 0 ∀i, j,
3, Complementary slackness: α∗

ijρ
∗
ij = 0 ∀i, j,

4, Lagrange stationary:
ri,j

ci+
∑

k α∗
ikrik

= λ∗
j − ρ∗ij ∀i, j.

(KKT)

The last condition is implied by ∇αL(α
∗) = 0.

From (KKT), it follows that if ρ∗ij > 0, then α∗
ij = 0 and

ri,j
ci+

∑
k α∗

ikrik
=

λ∗
j − ρ∗ij < λ∗

j . It implies that α∗
ij is positive only when ρ∗ij = 0 and in this case

the ratio
ri,j

ci+
∑

k α∗
ikrik

= λ∗
j represents the maximum ratio one user i can get

in slot j. Since
∑

i α
∗
ij = 1, there exists at least one user who gets a strictly

positive allocation in time slot j, i.e, there exists at least one user i for which
ρ∗ij = 0. The output that we consider is only the current allocation in time slot
t, therefore we shall discuss only the continuity of the allocation at time t. Let
denote by It(R) the set of users who have a strictly positive allocation in current
slot, i.e, It(R) = {i | ρ∗it(R) = 0}. By defining It(R), we implicitly claim that
ρ∗it is defined uniquely by R and we shall prove later this uniqueness property.
Consider the following sets

A = {R|#It(R) = 1} and B = {R|#It(R) ≥ 2} .
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Then A and B represent a partition of the whole input space since #It(R) ≥ 1
for all states R as explained above. The set A is the set of problem instances
for which there is exactly only one user having a strictly positive allocation at
time t, that user thus get full allocation and others get nothing. The set B is
the complement. Proposition 1 below states two fundamental properties of the
set A.

Proposition 1. It holds that:

• the allocation α∗
t = (α∗

it)
K
i=1 is uniquely defined by R on A,

• F : R 7→ α∗
t = (α∗

it)
K
i=1 is continuous on A, i.e, all potential discontinuities

lie in B.

Proof. See Appendix A.

Remark 6. Note that we do not claim that all points in the set B are points of
discontinuity. We just claim that any discontinuity point necessarily belongs to
the set B.

Proposition 1 shows that for all problem instances R ∈ A, there exists
a unique allocation αt, and moreover that this allocation is continuous in R.
However, the allocation is not necessarily unique for problem instances R ∈ B,
and it may even be discontinuous in this set, as shown by our simple example
in Section 4.1.

4.3. Ordering schemes reducing the number of discontinuities

The counter-example in Section 4.1 exhibits a discontinuity point of F . We
note however that if, by convention, we assume that users are numbered in
decreasing order of current rates, then this discontinuity point disappears. This
suggests that an appropriate ordering scheme could help reducing the number
of discontinuities of F . As stated in Proposition 1, F is continuous on A, so
the set of all discontinuities is a subset of B. It is difficult to provide further
information on this set for the general case. Therefore, we shall first consider
in this section a small 2-dimensional example for which the analysis is easier,
in order to understand better the behaviour of the output of F and how an
ordering scheme could make it continuous.

We restrict ourselves to the case K = 2, J = 1 and t = 1 and we further
assume that the total allocated throughput of each one of the two users is equal
to 0. It follows that the input R is of the following form:

R =

r11 r21
r12 r22
0 0


Figure 5 shows the structure of the sets A and B, which is proven in Propo-

sition 2.
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1

1

Figure 5: 2-dimension illustration for the sets A and B.

Proposition 2. With the axes shown in figure 5, we have the following claims:

• B contains the lines r22
r21

= r12
r11

and the box defined by 0 ≤ r22
r21

≤ 1 and
0 ≤ r12

r11
≤ 1.

• On A, the optimal current allocation is unique, continuous and integer.

• On the open box defined by 0 ≤ r22
r21

< 1 and 0 ≤ r12
r11

< 1, the optimal
current allocation is unique, continuous but not integer, except for the
inputs R on the line r22

r21
= r12

r11
. On the segment defined by r22

r21
= 1 and

r12
r11

< 1, and on the segment defined by r12
r11

= 1 and r22
r21

< 1, the optimal
current allocation is unique, continuous and integer.

• On the line r22
r21

= r12
r11

, the optimal current allocation is not unique and not
continuous, no matter how we choose the current allocation among the set
of optimal allocations.

Proof. See Appendix B.
Figure 6 illustrates Proposition 2 by showing the different regions and the

optimal solution in each region.
In this 2-dimensional case, the set of discontinuities (the line) is a small set

in the sense that it has Lebesgue measure equal to 0. However it makes the
model difficult to learn when the matrix input is near the line, since it oscillates
between α∗

1 = (0, 1) and α∗
1 = (1, 0) outside the box and oscillates between

α∗
1 = ( 12 − 1

2x,
1
2 + 1

2x) and α∗
1 = ( 12 + 1

2y,
1
2 − 1

2y) (x ≈ y and x, y > 0)
inside the box. In order to obtain a continuous function, we propose to choose
the optimal allocation when it is not unique as illustrated in Figure 7. Define
H(a1, a2) = (max(a1, a2),min(a1, a2)). If we choose the solution as described in
Figure 7, H ◦ F is a continuous function. It is reasonable to hope that learning
H ◦ F is easier than learning the non-continuous function F directly.
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Figure 6: The output of STO1 in 2-dimension.

In general, H is an order function, i.e., H(a1, a2, ..., aK) = (ai1 , ai2 , ..., aiK )
such that ai1 ≥ ai2 ≥ · · · ≥ aiK . Once we learn H ◦ F , we can recover F by
storing the original places of all ordered elements. In more detail, we store the
original places of all ordered elements by remembering the following function q:

k = q(ik), for all k = 1, 2, ...,K

In general, choosing an order in order to have a continuous function is not
an easy task, since to choose an order as above we actually have to solve an op-
timization problem. We instead propose several heuristic orders, that are either
based on current rate, based on the ratio between current rate and cumulative
(the PF index), or based on the (PS)2S index [4]. The numerical results of these
heuristic orders are shown in Section 5.4.

4.4. Learning the dual values

The user ordering schemes introduced in Section 4.3 provide a partial solu-
tion for reducing the negative impact of discontinuities on the learning time. In
this section, we propose an alternative approach which is based on Proposition
3 below.

Proposition 3. The optimal solution of the dual problem is such that:

1. λ∗ = (λt, λt+1, ..., λt+J) is uniquely defined by R and continuous in R.

2. ρ∗ = (ρ∗ij)
i=K,j=t+J
i=1,j=t is uniquely defined by R and continuous in R.
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Figure 7: Choosing solution in the line to obtain a continuous function in 2-dimension.

Proof. See Appendix C.
In summary, we know that the solution α∗

t of (IR) is not continuous in
the input R, but that the dual variables λ∗ and ρ∗ are. We thus propose the
following idea. Instead of learning the allocation vector α∗

t , we could learn the
dual variable ρ∗. As mentioned above, the users who get a positive fraction
of allocation αi,t > 0 all belong to the set It(R). Therefore, after learning
the dual values (ρ∗ij), we propose to choose the current allocation as follows:
α∗
i∗(t),t = 1 and α∗

i,t = 0 for all i ̸= i∗(t), where i∗(t) is an index in It(R). If

there are more than one index in It(R) we choose arbitrarily an index in that
set. With the notations introduced in Appendix A, this is equivalent to first
learning C∗ = (C∗

1 , C
∗
2 , ..., C

∗
KM

) and then choosing arbitrarily an index in the
set argmax rit

C∗
i
.

5. Numerical Results

In this section, we do simulations to evaluate the influence of many factors on
the behaviour of the DFNN model (loss functions, architecture of the DFNN,
ordering schemes and learning dual values). We use the keras library [24] to
implement our code.

There are actually a lot of factors that can have an impact on the behavior
of the learning procedure such as the initial learning rate, the learning rate
decay, the optimizer, the initial weight, the number of parameters, the activation
functions in layers, an so on. Here we are not able to justify all our choices, but
we focus on the factors which have the most significant impact on the learning
algorithm in our opinion. The initial learning rate is chosen equal to 0.0015 and
after each epoch, this learning rate decays by a factor 0.998.
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5.1. A Unified Data Generator for Comparison

To support the comparisons in this section, the data (both for training and
validation) is generated as follows. The number of users is generated randomly
from 0 to KM = 10. The sojourn time of each user is generated in (0, 400)
seconds. This value could of course be increased, but here in order to reduce
the learning time and be able to make many comparisons, we consider only small
scenarios. Generated dataset contains separate 1501 sets, each set contains 1600
samples. Two sets are kept for validation, i.e., 3200 samples are used to evaluate
models. The remaining containing 1499 sets are used for training. At each
learning epoch, the model will go through 1600 samples (that is, input-output
pairs). The transmission rate in each small slot is generated randomly between
0 and 5δ/∆. The rate function we use for SUMO scenarios (see Section 5.5) is

r(x) = η
(
1 + κ e−d(x,BS)/σ

)
, (1)

where d(x,BS) is the distance from position x to the BS, and η represents the
noise level. For the SUMO scenarios in Section 5.5, we use κ = 3, σ = 100 and
η ∼ Uniform(0.7, 1.3). The others parameters are equal to J = 10,∆ = 1 s,
δ = 2 ms.

We remark that the rate function has an exponential decay with distance.
For other smooth decay functions such as inverse square, the fundamental na-
ture of the results (continuity, e.g.) and the conclusions (DFNN generate good
quality solutions in a much shorter time compared to optimization solvers) of
this paper will remain valid.

5.2. Comparison of different DFNN architectures

In this section, we will consider four different architectures of the DFNN
model and compare their performances. The four models are as follows:

• Model 1 - The first model used in this section contains 2 layers which are
1 hidden layer and 1 output layer. The hidden layer contains 500 units,
and in total the model has 67, 510 parameters. The architecture of this
model is illustrated in Figure 8.

• Model 2 - As the first model, the second model contains 2 layers: 1
hidden layer and 1 output layer. However, the hidden layer contains 1000
units, and in total the model has 135, 010 parameters. We take the same
number of layers as in Model 1 (but more units in hidden layers) in order
to compare whether it is better to have more parameters.

• Model 3 - As the two previous models, the third model contains 2 layers
(1 hidden layer and 1 output layer). The hidden layer contains 100 units,
and we have 13, 510 parameters in total. We take the same number of
layers as in Model 1 (but fewer units in hidden layers) to compare whether
it is better to have fewer parameters.
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Figure 8: Model 1 architecture.

• Model 4 - The last model contains 10 layers which are 9 hidden layers
and 1 output layer. Each hidden layer contains 82 units, and in total, the
model contains 67, 496 parameters. We take a model that has almost the
same number of parameters as Model 1, to compare whether it is better
to have more layers or fewer layers.

For the 4 models, the activation function used in hidden layers is the ReLU
function, whereas the output layer uses the softmax function since we want the
sum of the allocations to be equal to 1. In this comparison, we use the same loss
function for all models, this loss function is denoted by bce dice loss which is the
sum of binary cross-entropy [25] and dice loss (which equals 1− dice coefficient
[26]).

Remark 7 (Joint power control and channel allocation). For the joint power
control and channel allocation problem, we still compare the four above models
except that the output layer of each model will be modified since it includes not
only the channel allocation but also the power.

Figure 9a illustrates the loss of the 4 models on training and validation
data. Figure 9b plots loss and absolute error of the 4 models on the same axis
on validation set. The same quantities but for the problem of joint power control
and channel allocation are shown in Figure 10a and Figure 10b respectively.

From these figures, we observe that for the model without power control:

• Having almost the same number of parameters, Model 1 with fewer layers
is better than Model 4.

• Having the same layers, Model 1 and Model 2 with more parameters are
better than Model 3.
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(a) Loss on training set and validation set of each model

(b) Plot on same axis for loss and absolute error on validation set of all the four
models

Figure 9: Comparison of the 4 DFNN models.
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(a) Loss on training set and validation set of each model

(b) Plot on same axis for loss and absolute error on validation set of all the four
models

Figure 10: Comparison of the 4 DFNN models for the joint power control and channel allo-
cation problem.

21



• Model 1 and Model 2 behave similarly and have the same number of layers.
However Model 1 has less parameters than Model 2 so it is less costly from
a computational point of view. Therefore from now on we shall use Model
1 for other comparisons in the sequel.

For the model with power control:

• Having almost the same number of parameters, Model 1 with few layers is
slightly better than Model 4, but the difference is quite small in this case.

• Having the same layers, models 1, 2 and 3 are almost the same but Model
3 has fewer parameters.

5.3. Comparisons of different loss functions

To compare the quality of the learning model obtained using different loss
functions, we use the same model, that is Model 1. Figure 11 presents the
results obtained with the Huber loss [27] against those obtained with bce dice
loss. So for the next comparisons, we shall use Model 1 and bce dice loss.

5.4. Comparison of different ordering schemes

For reasons mentioned above, we shall use Model 1 and bce dice loss for
this comparison. We compare the results obtained with 4 different ordering
schemes: no order, current rate order, PF order and (PS)2S order [4]. Figure
12 presents our numerical results. The (PS)2S order seems the best one among
the 4 ordering schemes.

5.5. Comparison of learning the channel allocation against learning dual values

Next, we compare the approach which learns the dual values against the
approach which learns directly the allocation. As before, for learning the allo-
cation, we use Model 1 and bce dice loss. Since the dual values need not lie
in [0, 1], we cannot use a softmax activation function in the output layer and
bce dice loss. We shall normalize the dual values by dividing each element by
a fixed constant to reduce its magnitude before fitting it into the DFNN model
and shall use Huber loss together with relu activation. The absolute errors of
the different learning schemes are shown in Figure 13.

Since the values of the allocation and the dual are different, it is not possible
to compare the losses or absolute errors directly as before. We shall instead com-
pare three different learning schemes (learning allocation without order, learning
allocation with (PS)2S order and learning the dual values) on two different mo-
bility scenarios generated with the SUMO simulation package [10]. SUMO is an
open source software designed for simulating mobility of moving users (vehicles,
bus, truck, bicycle, pedestrian, ...) in large road traffic networks. It allows to
import maps of different cities and simulate realistic mobility traces. SUMO is
used to simulate the mobility of vehicular users in several specific regions of the
Toulouse city and to compare our learning-based approaches against existing al-
gorithms on realistic scenarios. The comparison proceeds in two steps: SUMO
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(a) Absolute error on training and validation set of the two losses

(b) Plot on same axis of the absolute error on validation of the two losses

Figure 11: Comparison of Loss functions.
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(a) Loss on training and validation set

(b) Plot on same axis of the loss and absolute error on validation set

Figure 12: Comparison of 4 different types of ordering schemes.
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Figure 13: Comparisons of Absolute Error of the Learning Allocation and Learning Dual
Value.
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Figure 14: The Carmes borough in Toulouse, with one BS (Free Mobile type LTE1800). The
actual size is 200m× 400m.

is first used for generating the mobility traces of vehicles, and then these traces
are fed to a Python script which implements the algorithms and computes the
value of the objective function for those algorithms.

The first scenario contains 244 users and lasts 61.7 minutes. The map of
this scenario is shown in Figure 14. The results obtained with the different
learning schemes on this scenario are shown in Figure 16, remark that by using
the term ”Learning Allocation No Order” in the figure, we means learning the
primal value of the optimization which is the original allocation, without any
order. The second scenario contains 214 users and lasts 62.4 minutes. The map
of this scenario is shown in Figure 15. The data for BS location can be found
on the website4 of the French Frequency Agency (ANFR), which manages all
radio frequencies in France. The results obtained with the different learning
schemes on this scenario are shown in Figure 17. We also simulate two existing
algorithms, (PS)2S [4] and PF [28] (which are also used in [1] for comparisons)
in order to show that the approximation algorithm performs better than the
existing algorithms. As mentioned above, for the learning algorithm, we use
Model 1 and bce dice loss.

When the number of learning epochs is large enough, the learning-based
scheme performs well compared to STO1 and other algorithms. Learning the
dual values outperforms the two other learning schemes: it is more stable, pro-
vides a better allocation and it converges faster than learning directly the allo-
cation without any ordering scheme. It costs the same time for prediction as the
two other approaches since they are using the same architecture (that is, Model
1). However learning directly allocation with a user ordering scheme requires to
compute in addition the order, which consumes more computing time than the
other two approaches.

4https://data.anfr.fr/anfr/portail
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Figure 15: Duroux, one BS type LTE1800, operator SFR. The actual size is around 350×500m.
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Figure 16: Comparisons of evaluated on Carmes scenario created by SUMO of Allocation and
Dual Value.
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Figure 17: Comparisons of evaluated on Duroux scenario created by SUMO of Allocation and
Dual Value.
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5.6. Influence of the number of vehicles

We now investigate the influence of the dimension of the input problems on
the utility as well the prediction times of the proposed DFNN approach and
compare them with that of the directly solving with Mosek.

For this, in the Carmes borough, we increase the arrival rate of users so as
to have more users in the network, which corresponds to a higher KM . Five
different arrivals rates were chosen corresponding to KM = 10, 20, 30, 40, 50.
When KM increases, the size of input, output, and the complexity of the opti-
mization problem inside STO1 also increase. That is the reason why we need
to increase the size of DFNN architecture in order to increase the quality of
approximation. In more detail, we increase the size of DFNN architecture by
increasing the number of neurons in the hidden layer while keeping the same
unique hidden layer. To explain why we do that, we refer readers to this refer-
ence [29] in which the author suggests how to prune the number of hidden layers
and the number of neurons in the hidden layer. For learning Dual value, table
1 shows the corresponding the number of neurons in the unique hidden layer,
the corresponding number of epochs at which the validation loss converges, the
corresponding training time (in seconds) for each epoch and the corresponding
whole training time (which equals the number of epochs times the training time
in each epoch) for different values of KM . The weights chosen to evaluate for
SUMO scenarios are taken at the epoch when the validation loss converges, i.e,
there is no clearly seen improvement.

KM # neurons in time training # epochs to whole
hidden layer per epoch converge training time

KM = 10 500 0.265 1400 371.0
KM = 20 700 0.282 1800 507.0
KM = 30 1000 0.297 3000 891.0
KM = 40 3000 0.301 4500 1354.5
KM = 50 10000 0.393 7000 2751.0

Table 1: Training time in second.

The average utilities obtained by the different heuristics for these values of
KM = 10 are shown in figure 18 as a function of the noise level, η. It is observed
that Learning with dual values outperforms other heuristics in terms of the
average utilities for all noise levels except level 0.0 where STO1 is marginally
better. We also observe that learning without order (that is, learning directly
the output of the solver) does not scale well when KM increases from 10 to
20. For this reason, in the experiments for KM = 40 and KM = 50, only the
Learning from dual values heuristic is presented. For KM = 30, a similar result
was observed. Its plot has been omitted for conciseness.

For learning the primal value (the original allocation) when KM is larger, we
observed that it takes very long training epochs for the loss function to converge
and the convergence might be far from the true value since the convergent loss is
still very high. For example, forKM = 20, learning dual value needs 1800 epochs
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(a) KM = 10
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(b) KM = 20
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(c) KM = 40
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(d) KM = 50

Figure 18: Comparision of the average utility with the noise level for different values of KM .

to converge as shown in table 1, but learning primal value needs more than 9000
epochs to converge, we stopped training at epoch 9000 and observed average
absolute error around 0.04, i.e, the total absolute error is around 0.04∗20 = 0.8
while the maximum absolute error is equal to 2 where the prediction vector and
the true vector (which has unique position equal to 1 and 0 everywhere else)
totally disagree. That is why the performance is bad as shown in figure 5.6.

5.7. Computing times

In this time, we use another machine to simulate the system, since the old
machine (the one we used in 2020 to have the results in the previous version
of this paper) does not work anymore. To make a consistent measurement, we
decide to redo all experiments with another machine, those measurements are
shown in the below paragraph and table 2.

The computing time of STO1 depends on the convex optimization solver
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used, whereas the learning algorithm has only to feed the DFNN model with
the input matrix. We consider the same setting as in Section 5.2, that is K = 10
(there are exactly 10 users in the system)5 and the short term horizon is J = 10
seconds. For these values, the average computing time of Mosek is around 20.61
ms, whereas the prediction with the DFNN model (1 hidden layer with 500 neu-
rons) takes only 0.92 ms on average. When adding power control, Mosek solves
the optimization problem in around 70.39 ms, while the prediction of the DFNN
model (almost the same with Model 1 but the output layer contains power vec-
tor in addition, which contains 73,020 parameters) takes 1.04 ms on average.
These computing times are averaged over 3000 samples. The experiments were
done on a a AMD 7413 24-core processor.

Note that, for STO1 (which uses Mosek to solve optimization) the com-
puting time increases when the number of users in the system increases. For
example, when K varies from 1 to 10, Mosek computing time varies from 19.94
milliseconds (K = 1) to 20.61 milliseconds (K = 10). For DFNN, the comput-
ing time changes only when we change the its architecture, that is only when
KM changes. For 5 different values of KM , Table 2 shows detailed compar-
isons between computing time (in ms) of STO1 versus DFNN. The architecture
DFNN for a given value of KM is the one presented in Sec. 5.6 and Table 1.
The entries of the table should be read as follows. For example, for KM = 10,
the computting time of STO1 varies from 19.94 ms to 20.56 ms when K varies
from 1 to 10. The inference time of the DFNN depends only on KM and hence
has only one value which is 0.92 ms.

KM 10 20 30 40 50
K [1, 10] [11, 20] [21, 30] [31, 40] [41, 50]

STO1 [19.9, 20.6] [20.6, 22] [22, 22.6] [22.5, 23.2] [23.3, 23.8]
DFNN 0.92 0.93 0.95 1.04 1.18

Table 2: Comparison of computing time (in milliseconds) between STO1 and DFNN for
different numbers of users K and KM .

From the above measurements, we can conclude that even running with
CPU, we still can see the improvement of DFNN compared to STO1.

6. Summary and Discussion

We have proposed to use a DFNN for learning the channel allocation ob-
tained with one of the heuristics (STO1) introduced in [1] and [2]. Numerical
results on SUMO scenarios show that the learning-based method yields approx-
imate yet satisfactory channel allocations with much less computation time as

5Recall that K is the number of cars that are present at a given time, whereas KM is
the maximum number of cars that are simultaneously present in the coverage range. That is
K ≤ KM .
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long as there are enough learning epochs. The state of the DFNN is defined in
such a way that the model is not restricted to a particular scenario, that is, it
can learn the channel allocation for a general network.

There are several directions of research that can be investigated to improve
the learning algorithm, such as creating a better generator of data for learning,
choosing a better loss function, choosing a better architecture of the DFNN
model in which how to prune architecture (number of hidden layers and number
of neurons for each layer) for different KM in an automatic way would be one of
the most important things, and other things such as choosing a better optimizer,
the learning rate, etc.
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Appendix A. Proof of Proposition 1

Before proving Proposition 1, we need a lemma, in which we shall consider
the following equivalent problem: maximize

K(t)∑
i=1

log (Ci)

C ∈ C
, (IIR)

where

C = {C = (C1, . . . , CK) | Ci =

t+J∑
j=t

αijrij + ci ∀i,
∑
i

αij = 1∀j, αij ≥ 0 ∀i, j}.
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Then (IIR) is equivalent to (IR), and C is a convex set. LetC∗ be the optimal
solution of (IIR).

Lemma 1. The optimal solution C∗ is uniquely defined by R and continuous
in R.

Proof. Indeed since (IIR) is a convex optimization problem, we have for any
C ∈ C:

∇OC(C
∗)(C−C∗)T ≤ 0. (A.1)

where O(C) =
∑

i log(Ci). Let us take R′ close to R, with |R′ − R|∞ = ϵ and
assume that C′∗ is solution corresponding to the matrix R′. By definition of
the set C, there exists α∗ and α′∗ such that:

C∗
i =

t+J∑
j=t

α∗
ijrij + ci,∀i,

C ′∗
i =

t+J∑
j=t

α′∗
ijr

′
ij + c′i,∀i.

(A.2)

It is obvious that C∗
i , C

′∗
i are strictly positive ∀i. From (A.1) we obtain

K∑
i=1

Ci

C∗
i

≤ K ∀C = (C1, C2, ...CK) ∈ C. (A.3)

It follows that∣∣∣∣∣
K∑
i=1

C ′∗
i

C∗
i

∣∣∣∣∣ =
∣∣∣∣∣
K∑
i=1

∑t+J
j=t α

′∗
ijr

′
ij + c′i∑t+J

j=t α
∗
ijrij + ci

∣∣∣∣∣
=

∣∣∣∣∣
K∑
i=1

(∑
j α

′∗
ijrij + ci

)
+
(∑t+J

j=t α
′∗
ij(r

′
ij − rij) + (c′i − ci)

)∑t+J
j=t α

∗
ijrij + ci

∣∣∣∣∣
≤

∣∣∣∣∣
K∑
i=1

Ci

C∗
i

∣∣∣∣∣+
∣∣∣∣∣
K∑
i=1

(∑t+J
j=t α

′∗
ij(r

′
ij − rij) + (c′i − ci)

)∑t+J
j=t α

∗
ijrij + ci

∣∣∣∣∣
≤

∣∣∣∣∣
K∑
i=1

Ci

C∗
i

∣∣∣∣∣+A1ϵ

≤ K +A1ϵ,

(A.4)

where Ci =
∑

j α
′∗
ijrij + ci for all i and A1 =

∑K
i=1

(J+1)+1
C∗

i
is a positive number

which does not depend on ϵ.
The fourth implication follows from |R′ −R| = ϵ and 0 ≤ α′∗

ij ≤ 1, whereas
the last implication follows from (A.3) and the fact that C = (Ci)i ∈ C. So from
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(A.4) we get
∑K

i=1
C′∗

i

C∗
i

≤ K + A1ϵ. Similarly, we have
∑K

i=1
C∗

i

C′∗
i

≤ K + A2ϵ,

where A2 is also a positive number not depending on ϵ. It implies that

K∑
i=1

(
C∗

i

C ′∗
i

+
C ′∗

i

C∗
i

)
≤ 2K + (A1 +A2)ϵ.

Combining this with the fact that for each i we have
(

C∗
i

C′∗
i

+
C′∗

i

C∗
i

)
≥ 2 (this is

implied by the AM–GM inequality which claims that a+ b ≥
√
ab for all a ≥ 0

and b ≥ 0), we obtain(
C∗

i

C ′∗
i

+
C ′∗

i

C∗
i

)
≤ 2 + (A1 +A2)ϵ, ∀ i.

Define zi =
C∗

i

C′∗
i
. Then, we have zi > 0 and zi + 1/zi ≤ 2 + (A1 + A2)ϵ. This is

a quadratic inequality, and solving it we get

1 +Dϵ−
√
(Dϵ)

2
+ 2Dϵ ≤ zi ≤ 1 +Dϵ+

√
(Dϵ)

2
+ 2Dϵ, (A.5)

for all i, where D = A1+A2

2 > 0 does not depend on ϵ.
From (A.4) and (A.5) we have that:

• From (A.4), if we take R′ = R, the last inequality becomes
∑K

i=1
C′∗

i

C∗
i
≤ K,

and also
∑K

i=1
C∗

i

C′∗
i

≤ K. Similarly to above implications, this implies

zi + 1/zi = 2 for all i. It implies that ti = 1 for all i, i.e, C∗
i = C ′∗

i for all
i, which shows the uniqueness of the solution of (IIR).

• From (A.5), we obtain that

lim
ϵ→0

C ′∗
i

C∗
i

= 1 ∀i, (A.6)

i.e., limϵ→0 C
′∗
i = Ci for all i, which proves the continuity of C∗ in R.

Proof. (proof of proposition 1) Recall that A = {R|#It(R) = 1}, i.e., given
R ∈ A, there exists an unique i0 such that ρi0t = 0 and for every i ̸= i0 we have
ρit > 0. It yields

ri0t
C∗

i0

= λ∗
t > λ∗

t − ρ∗it =
rit
C∗

i

, ∀i ̸= i0, (A.7)

and α∗
i0t

= 1, whereas α∗
it = 0 for all i ̸= i0. This means that the allocation α∗

t

is unique for every input state R in A.
Consider R ∈ A and R′ close to R: |R′ − R|∞ = ϵ. Since we consider

the continuity of the current allocation only, our objective is to prove that
α′∗
t = (α′∗

it)i is close to α∗
t = (α∗

it)i. In fact we have that α′∗
t = α∗

t if ϵ is
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small enough. Indeed, from claim (A.5) in Lemma 1, we have
C′∗

i

C∗
i
= 1+O(

√
ϵ)

(0 < limϵ→0
O(

√
ϵ)

ϵ < +∞) , where (C∗
i )i and (C ′∗

i )i are the solutions of (IIR)
corresponding to inputs R and R′, respectively. Since R ∈ A, there exists i0

such that
ri0t

C∗
i0

>
rit
C∗

i
for all i ̸= i0. It implies that

r′i0t

C′∗
i0

>
r′it
C′∗

i
for all i ̸= i0 if ϵ is

small enough. In turn, this implies that α′∗
i0t

= 1 and α′∗
it = 0 for all i ̸= i0, that

is, α∗
t = α′∗

t .

Appendix B. Proof of Proposition 2

Let us characterize the set B = {R|#I1(R) ≥ 2}. The set A will be the
complement. Since we have 2 users,

ρ∗11 = ρ∗21 = 0. (B.1)

Combining with the fourth condition in (KKT) we have:

r11
C∗

1

=
r21
C∗

2

. (B.2)

There are three possible cases:

• Case 1: α∗
12 ∈ (0, 1), which implies that α∗

22 ∈ (0, 1).

• Case 2: α∗
12 = 0, which implies that α∗

22 = 1.

• Case 3: α∗
12 = 1, which implies that α∗

22 = 0.

Case 1: α∗
12 ∈ (0, 1) and therefore α∗

22 ∈ (0, 1). From the second condition
in (KKT), it implies ρ∗12 = ρ∗22 = 0. Combining with the fourth condition in
(KKT) we have:

r12
C∗

1

=
r22
C∗

2

. (B.3)

Dividing (B.3) by (B.2) side by side we get:

r12
r11

=
r22
r21

. (B.4)

Conversely, if r12
r11

= r22
r21

, we shall prove that the solution of (IR) is of the form[
α∗
11 α∗

21

α∗
12 α∗

22

]
=

[
a 1− a

1+t
2t − a

t
t−1
2t + a

t

]
,

for any a ∈ [max(0, 1−t
2 ),min(1, 1+t

2 )], where t = r12
r11

= r22
r21

. Indeed, problem
(IR) is equivalent to the following problem:

max [log(α11 + tα12) + log(α21 + tα22)]

⇔max [log(α11 + tα12) + log((1− α11) + t(1− α12))]

⇔max [log(X) + log ((1 + t)−X)] (where X = α11 + tα12)

⇔max [X ((1 + t)−X)] .

(B.5)
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We have

X ((1 + t)−X) ≤ (X + ((1 + t)−X))2

4
=

(1 + t)2

4
,

and the equality occurs if only if X = 1+t
2 , i.e, if α12 = 1+t

2t − α11

t . So, we get

α∗ =

[
a 1− a

1+t
2t − a

t
t−1
2t + a

t

]
,

with a ∈ [max(0, 1−t
2 ),min(1, 1+t

2 )] to guarantee that every value in the matrix
is in [0, 1].
Conclusion for case 1: on the line r12

r11
= r22

r21
, the solution is not unique, the

solutions are of the above form.
Case 2: α∗

12 = 0 and therefore α∗
22 = 1. This implies

ρ∗22 = 0.

Therefore:
r22
C∗

2

= λ∗
2 ≥ λ∗

2 − ρ∗12 =
r12
C∗

1

. (B.6)

Combining with (B.2), we get

r22
r21

≥ r12
r11

. (B.7)

On the other hand, in this case Problem (IR) amounts to finding the maxi-
mum of

[log(r11α11) + log(r21(1− α11) + r22)] := f(α11).

f ′(α11) = 0 ⇔ α11 =
1

2

(
1 +

r22
r21

)
. (B.8)

Let us check whether the optimal α∗
11 is on the boundary or is the above sta-

tionary point. On the boundary we have:

f(0) = −∞,

f(1) = log(r11) + log(r22) > f(0).

For the stationary point, we have two cases:

• If α11 = 1
2

(
1 + r22

r21

)
∈ [0, 1], i.e r22 ≤ r21, then we have:

f

(
1

2

(
1 +

r22
r21

))
= log

(
r11

r21 + r22
2r21

)
+ log

(
r21 + r22

2

)
(B.9)

≥ log(r11) + log(r22)(since r22 ≤ r21) (B.10)

= f(1) (B.11)

So in this case the optimal solution is given by α11 = 1
2

(
1 + r22

r21

)
and the

matrix input has to satisfy r22
r21

≤ 1.
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• If α11 = 1
2

(
1 + r22

r21

)
> 1 then we get r22

r21
> 1 and f attains its maximum

at α11 = 1 (and therefore α21 = 0). But it can not happens in the set B
with ρ∗11 = ρ∗21 = 0. Indeed, in this case, C∗

1 = r11, C
∗
2 = r22, and

λ∗
1 = max

(
r11
C∗

1

,
r21
C∗

2

)
= max

(
1,

r21
r22

)
= 1. (B.12)

Combining with the fourth condition of (KKT), we get

ρ∗21 = λ∗
1 −

r21
C∗

2

= 1− r21
r22

> 0. (B.13)

That is a contradiction.

Conversely, if r22
r21

> r12
r11

(here we consider only the strict inequality since
the equality has been already considered in case 1) and 0 ≤ r22

r21
≤ 1. Then the

solution of (IR) is this form:[
α∗
11 α∗

21

α∗
12 α∗

22

]
=

[
1
2

(
1 + r22

r21

)
1
2

(
1− r22

r21

)
0 1

]
.

Indeed, from r22
r21

> r12
r11

and (B.2) we obtain that

r22
C∗

2

>
r12
C∗

1

=⇒ ρ∗12 = λ∗
2 −

r12
C∗

1

> λ∗
2 −

r22
C∗

2

= ρ∗22 ≥ 0. (B.14)

So ρ∗12 > 0
KKT
====⇒ α∗

12 = 0 and therefore α∗
22 = 1. Therefore, (IR) becomes

an optimization problem of one variable α11, and by solving it we get α∗
11 =

1
2

(
1 + r22

r21

)
∈ ( 12 , 1] and therefore α∗

21 = 1
2

(
1− r22

r21

)
∈ [0, 1

2 ). From these values

we can compute the dual value:

r11
C∗

1

=
r21
C∗

2

=
2r21

r21 + r22
( therefore = λ∗

1) =⇒ ρ∗11 = ρ∗21 = 0. (B.15)

Conclusion for case 2: The region in this case is equal to the region defined
by r22

r21
≥ r12

r11
and 0 ≤ r22

r21
≤ 1. On the triangle defined by r22

r21
> r12

r11
(strictly

inequality here) and 0 ≤ r22
r21

≤ 1, the solution is unique, and is given by

α11 =
1

2

(
1 +

r22
r21

)
.

The formula shows the continuity on the interior of the triangle. In this region,
except on the segment defined by r22

r21
= 1 ≥ r12

r11
, the solution is not integer.

Case 3: Similar to case 2, if α∗
12 = 1, then R has to satisfy: 0 ≤ r12

r11
≤ 1

and r12
r11

≥ r22
r21

. When 0 ≤ r12
r11

≤ 1 and r12
r11

> r22
r21

, the solution is unique and
given by [

α∗
11 α∗

21

α∗
12 α∗

22

]
=

[
1
2

(
1− r12

r11

)
1
2

(
1 + r12

r11

)
1 0

]
.
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Conclusion for case 3: The region in this case is equal to the region defined
by r22

r21
≤ r12

r11
and 0 ≤ r12

r11
≤ 1. On the triangle defined by r22

r21
< r12

r11
and

0 ≤ r12
r11

≤ 1, the solution is unique, and is given by

α11 =
1

2

(
1− r12

r11

)
. (B.16)

The formula shows the continuity on the interior of the triangle. In this region,
except on the segment r12

r11
= 1 ≥ r22

r21
, the solution is not integer.

The above analysis characterizes the structure of the set B. Since A is the
complement of B, it contains two connected components: one defined by r12

r11
> 1

and r12
r11

> r22
r21

; and the other one defined by r22
r21

> 1 and r12
r11

< r22
r21

.
Recall that on A we have: #I1(R) = 1, i.e at time slot 1 only one user

gets a full allocation while the other one gets nothing. There are thus only two
options: either (α∗

11, α
∗
21) = (0, 1) or (α∗

11, α
∗
21) = (1, 0). As stated in Proposition

1, (α∗
11, α

∗
21) is continuous on A. Together with the fact that there are only two

possible options for the output which is of discrete type, this implies that F must
be equal to a constant (either (0, 1) or (1, 0)) in each connected component.
Therefore, to know which value of the output corresponds to each connected
component, we just need to choose one point in that connected component of
A and solve the optimization problem for that point.

Let use consider the first connected component of A which is defined by
r12
r11

> 1 and r12
r11

> r22
r21

. In this region, (α∗
11, α

∗
21) = (0, 1). Indeed, let us choose

one input point in this connected component such that it satisfies r11 > 1.
Since either α∗

11 = 0 or α∗
11 = 1, we just need to compare maxO|α11=1(α12) and

maxO|α11=0(α12). We have

O|α11=1 = log(r11 + α12r12) + log((1− α12)r22) := g(α12). (B.17)

This is a function of one variable α12, we have:

g′(α12) = 0 ⇐⇒ α12 =
1− r11
1 + r12

. (B.18)

We have α12 = 1−r11
1+r12

< 0 since r11 > 1. Therefore the optimal α∗
12 is stay in

the boundary, i.e,

maxO|α11=1 = max
(
O|α11=1,α12=1, O|α11=1,α12=0

)
(B.19)

= max (log(r11) + log(r22),−∞) (B.20)

= log(r11) + log(r22). (B.21)

On the other hand,

O|α11=0 = log(α12r12) + log(r21 + (1− α12)r22). (B.22)

Combining with the condition r12
r11

> r22
r21

we obtain

O|α11=0,α12=1 = log(r12) + log(r21) (B.23)

> log(r11) + log(r22) (B.24)

= maxO|α11=1. (B.25)
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This implies α∗
11 = 0 in this case.

Similarly, for the connected component defined by r22
r21

> 1 and r12
r11

< r22
r21

we
have α∗

11 = 1.

Conclusion:

• B contains the box restricted by 0 ≤ r12
r11

≤ 1 and 0 ≤ r22
r21

≤ 1 and the line
r22
r21

= r12
r11

. A is the remaining region.

• As proven in Proposition 1, the allocation is continuous on A, and more-
over

– on the region defined by r12
r11

> 1 and r12
r11

> r22
r21

, α∗
11 = 0,

– on the region defined by r22
r21

> 1 and r12
r11

< r22
r21

, α∗
11 = 1.

Combining with the formulas obtained in the three above cases for the set
B, we can see that the set of all discontinuities is the line r12

r11
= r22

r21
.

• (α∗
11, α

∗
21) is uniquely defined except on the line r22

r21
= r12

r11
.

Appendix C. Proof of Proposition 3

We first prove the first assertion. From the third condition of (KKT), for
each time slot j, there exists at least one i0 such that ρ∗i0j = 0. Combining

with the fourth condition of (KKT) we obtain that λ∗
j = maxi

rij
C∗

i
, that is, the

maximum is attained because of the existence of i0. Since C∗ is unique and
continuous in R, it implies the uniqueness and continuity of λ∗.

Regarding the second assertion, it follows from the fourth condition of (KKT)
that

ρ∗ij = λ∗
j −

rij
C∗

i

. (C.1)

Since C∗ and λ∗ are unique and continuous in R, it implies the uniqueness
and continuity of ρ∗.
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