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Abstract: Anaerobic digestion (AD) is a promising way to produce renewable energy. The solid-
state anaerobic digestion (SSAD) with a dry matter content more than 15% in the reactors is seeing 
its increasing potential in biogas plant deployment. The relevant processes involve multiple of 
evolving chemical and physical phenomena that are not crucial to conventional liquid-state anaer-
obic digestion processes (LSAD). A good simulation of SSAD is of great importance to better control 
and operate the reactors. The modeling of SSAD reactors could be realized either by theoretical or 
statistical approaches. Both have been studied to a certain extent but are still not sound. This paper 
introduces the existing mathematical tools for SSAD simulation using theoretical, empirical and ad-
vanced statistical approaches and gives a critical review on each type of model. The issues of pa-
rameter identifiability, preference of modeling approaches, multiscale simulations, sensibility anal-
ysis, particularity of SSAD operations and global lack of knowledge in SSAD media evolution were 
discussed. The authors call for a stronger collaboration of multidisciplinary research in order to 
further developing the numeric simulation tools for SSAD. 

Keywords: biogas; modeling; CFD; diffusion; degradation kinetics; empirical models; machine 
learning 
 

1. Introduction 
1.1. Anaerobic Digestion for Biogas Production 

Anaerobic digestion (AD) is one of the promising solutions for recovering the energy 
contained in various organic wastes. Inputs to anaerobic digestion can be agricultural by-
products, industrial effluents, sludge from wastewater treatment plants (WWTP) and the 
biodegradable fraction of household waste [1]. Depending on the dry matter content (DM) 
operated in digestors, there are two other types of technology: liquid-state AD (DM < 15%) 
and solid-state AD (DM > 15%) [2]. 

Liquid-state AD (LSAD), also called wet anaerobic digestion, is the technology con-
ventionally employed by the industry. It is adapted to substrates with a relatively high 
water content (e.g., sewage sludge). On one hand, its humid character allows a more effi-
cient homogenization of the mixture. On the other hand, it dilutes substrates to keep the 
DM level relatively low and stable in the reactors. At the end of the digestion, phase sep-
aration of digestate is generally required to (1) maintain the biomass concentration in the 
reactors by recirculation of its liquid phase and (2) concentrate the digestate for further 
agricultural usage. It should be noted that LSAD technology shows a high level of 
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maturity. Around 90% of the AD reactors in France run in LSAD mode [3]. The disad-
vantage of LSAD lies on the fact of its low organic loading leading to low biogas yield rate 
and the high energy and financial costs for digestate phase separation and downstream 
treatment. 

1.2. Solid-State Anaerobic Digestion 
Although currently it does not represent a large market share, the solid-state anaer-

obic digestion (SSAD), also called dry anaerobic digestion, is being increasingly adopted 
in newly built biogas plant projects [4]. The interest of SSAD is based on the fact that it 
operates with a higher organic loading that gives rise to more robust biochemical reac-
tions. Moreover, it requires less water for the dilution of the substrates upstream and con-
sequently, less phase separation downstream. As the medium is more concentrated, solid-
state digesters require less volume and less heating compared to LSAD reactors. These 
advantage of SSAD makes possible the construction of a low-cost biogas plant. It is also 
acknowledged that SSAD reactors can tolerate a relatively higher organic loading [5]. 
Nevertheless, the disadvantages of this type of technology are also obvious. It is less suit-
able for processing liquid substrates. Its solid character makes agitation very difficult, re-
sulting in less contact between the substrates and the microorganisms. In addition, incom-
plete homogenization can lead to a local concentration of inhibiting compounds (e.g., am-
monia, volatile fatty acids—VFA) that limit or even stop the methanogenic microbial ac-
tivities [6]. Solid-state digestion, therefore, requires more sophisticated equipment 
(pumps, agitators, heat exchangers, etc.) for implementation. The maturity of solid-state 
anaerobic digestion is currently less marked than that of the LSAD process. 

SSAD can be realized by various processes. Many review papers like Fagbohungbe 
et al. (2014) [7], Kothari et al. (2014) [8], Xu et al. (2015) [9], André et al. (2018) [3] and 
Franca and Bassin (2020) [10] have given comprehensive overview of various SSAD reac-
tors available at different scales. To be general, we can find the continuous processes with 
the recirculation of liquid digestate or biogas serving as stirring methods of the solid me-
dia. Compared to continuous processes, batch reactors with discontinuous operation are 
more common in SSAD [11], like container-type and garage-type digesters. One has to 
note that the DM content is not a determining factor defining LSAD or SSAD. The solid 
behavior could be seen with DM content less than 15% for reactors charged by cereal 
straw. Media of DM content more than 15% but with sewage sludge can be pasty, an in-
termediary state between LSAD and SSAD. 

In all cases, different from LSAD reactors, three phases are generally present in SSAD 
reactors: a relatively immobilized solid phase representing the bulk of solid substrates 
pending degradation, a liquid phase resulting from the inoculum (the leachate as well as 
the percolate across the solid bulk) and finally a gas phase rich in biogas found in the 
headspace of reactors and the pores in solid bulk (due to its characteristics similar to po-
rous media). Depending on the technology used, the solid phases could be partially im-
merged in the liquid phase which is the collected at the bottom of reactors, heated through 
a heat exchanger and regularly sprayed to the top of bulk for a new round of percolation. 
This recirculation allows to maintain the operational temperature and the adequate hu-
midity in SSAD reactors. It also helps the redistribution of the intermediate products, such 
as solubilized organic matter (sugars, VFA…) and alkalinity, in the solid bulk preventing 
the local inhibition by pH or substrates in the reactors. The useful microorganisms for 
biomass degradation (i.e., hydrolytics, acidogens, acetogens, and methanogens) can also 
be redistributed throughout the digesters by the recirculation of liquid percolate. 

It has to be noted that, in reality, there exists an additional phase related to the pres-
ence of biofilm attached to the particle surface of solid phase. The microorganisms gather 
together as cooperative consortium by the production of extracellular polymeric sub-
stances (EPS) embedding them in the so-called biofilm [12]. Most of the microbial activi-
ties, especially those of acidogens, acetogens and methanogens, take place within this thin 
biofilm because only the soluble OM diffused into biofilm can be properly degraded and 
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transformed into biogas. The behaviors of this biofilm are totally different from the solid 
phase since the former evolves as a function of microbial loading. Its physico-chemical 
properties are subject to the state of various microorganisms habiting in it. Attachment, 
detachment and development of biofilm can be seen during anaerobic digestion. 

The presence of these four phases makes the understanding, the modeling, the oper-
ation and the control of the SSAD processes difficult. 

1.3. Scientific Hurdles of SSAD 
A SSAD reactor is generally fed with drier organic feedstock such as animal manures, 

silages, and green waste (fruits, vegetables, and plants), of which France has considerable 
production. However, in France, solid-state anaerobic digestion represents less than 9% 
of anaerobic digestion facilities [3]. This low presence can be explained by the lack of in-
depth knowledge of the processes and the complex industrial control, as mentioned 
above. The scientific barriers of the sector are based on various technical aspects 
[3,4,8,13,14]: 
- the solid feedstock leads to inefficient mixing and thus makes the medium heteroge-

neous in SSAD reactors; 
- the pretreatment technology of lignocellulosic waste is largely studies by the scien-

tific community but much less explored on real scale; 
- the pumping of the solid inputs into SSAD reactors is not as easy as LSAD due to the 

special rheological properties of solid substrates (non-Newtonian media); 
- the mass transfer between microorganisms and solid substrates is limited by the 

weak liquid/solid contact (i.e., inoculum/substrate); 
- the management of local inhibitions requires hydrodynamic information in reactors, 
- few robust monitoring tools are available for real-time monitoring of physico-chem-

ical and operational parameters for accurate control; 
- there is a lack of dynamic modeling tools considering different transfer phenomena 

and the biodegradation of OM more adapted to SSAD reactors. 

1.4. Modeling of SSAD Processes 
The SSAD processes are usually designed and operated in an empirical way [9], 

which is not necessarily optimized and adapted to the variation of the biomass and the 
change of the operational parameters. Resolving this issue calls for an efficient and accu-
rate simulation of the biogas production kinetics from the biomass, considering numerous 
operational parameters as input variables. It would be one of the keys to help the deploy-
ment of SSAD technology for biomass valorization. 

A large number of models were reported in the literature based on either theoretical 
or statistical approaches. 

The theoretical approaches rely more on a predefined theory ready to explain differ-
ent physics in the reactors like biokinetics of OM, mass and heat transfer, hydrodynamics 
and media properties. These models can be coupled so that different phenomena could be 
considered. Figure 1 illustrates an example of various phenomena to be modeled in a 
leach-bed reactor. With experimental data one can identify the values of key parameters 
of these theories and then realize a simulation of the anaerobic digestion process. Inter-
mediate results such as the evolution of physico-chemical properties (DM, VS…), VFA, 
pH and COD could usually be obtained and further analyzed. 
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Figure 1. Multiscale simulation of a SSAD leach-bed reactor. 

The statistical approaches are based more on the black box (sometimes grey box) 
phenomena. We can either use empirical (or semi-theoretical) equations to describe the 
production kinetics, or employ more advanced statistical methods like machine learning 
method to simulate the biogas yield. Empirical or semi-theoretical equations (like the first-
order kinetics and the modified Gompertz equation) are based on certain simplified the-
ories explaining predominant physics during SSAD. Its modeling is often carried out us-
ing linear or non-linear regression of gas production curves. The statistical approaches are 
mostly not interested in the obtention of the intermediate results of AD. Like black box, 
they depend on the input parameters and accordingly return the final simulation results. 

Both families of modeling are useful for the simulation of SSAD processes. The 
choose of the modeling methods is highly dependent on its purpose: developing a model 
for comprehension or a model for direct industrial applications. Many review papers on 
either AD or SSAD technology have contributed to a state of the art of various aspects of 
SSAD, from technology to its simulation [3–5,8,10,13]. However, since the modeling issue, 
especially when the complexity related to SSAD is concerned, is not the key subject of 
these papers, details and critical comments are not systematically given. 

Wade (2020) structured the modeling methods and focused on the contribution of 
mathematical modeling to AD in a general way [15]. Emebu et al. (2022) studies the clas-
sification and the elaboration of various AD models. This recent and comprehensive re-
view describes the models according to the biochemical stages and the phenomena like 
mass and heat in LSAD systems [16]. The work of Xu et al. (2015) [9] is among the rare 
reviews commenting on the mere research advance of SSAD modeling but dated in 2015. 
To authors’ knowledge, no comprehensive reviews since are available discussing about 
the SSAD numerical simulation. 

In the present paper, an up-to-date overview of the published work will be realized 
in order to get a state of the art of current research. According to the bibliographic analysis 
authors will give a critical opinion to each type of the models and open the horizon for 
the future work. This work will help the acquirement of the knowledge about the numer-
ical simulation of SSAD in a bid to improve the operation and, ultimately, the deployment 
of solid-state AD processes in biogas plant. 
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1.5. Objectives of the Paper 
The present paper gives an overview of the research into the modeling of solid-state 

anaerobic digestion. The objectives are to (1) obtain the state of the art of the previous 
work related to modeling issue of SSAD processes including theoretical and statistical ap-
proaches, (2) discuss the limitation and difficulties in realizing the modeling and (3) give 
the perspectives for future work. 

2. Theoretical Approaches Considering Different Phenomena 
2.1. Different Phenomena Involved in SSAD 
2.1.1. Biokinetics of Anaerobic Digestion 

The first biochemical process of anaerobic digestion is hydrolysis. During this stage, 
the macromolecules contained in the substrate (mainly lipids, proteins and carbohy-
drates) are hydrolyzed into water-soluble monomers and oligomers with the help of en-
zymes secreted by hydrolytic microorganisms [17–19]. Depending on the substrate 
treated, the monomers obtained can vary (long chain fatty acids, amino acids, monosac-
charides …). This first step is often considered the limiting step in AD for lignocellulosic 
substrates [20–22]. The second stage of the anaerobic digestion process is acidogenesis. 
The bacteria responsible for this step are the acidogenic bacteria. During this step, the 
products of hydrolysis are transformed into volatile fatty acids (VFA), alcohols (ethanol 
and propanol), carbon dioxide and partially into hydrogen. The acetogenesis step is the 
third step which consists of acetate formation from the products of the previous two steps. 
The final step in the anaerobic digestion process is methanogenesis. The microorganisms 
responsible for the methanogenesis stage are the archaea. They are microorganisms with 
metabolic characteristics and a membrane structure different from prokaryotic bacteria. 
Archaea are characterized by slow development and high sensitivity to pH. An ideal pH 
is between 6.5 and 8.5 for this step to avoid inhibition. All of these steps are schematically 
shown in Figure 2. 

 
Figure 2. Four major steps of anaerobic digestion. 
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The modeling of the anaerobic digestion phenomenon represents here the methods 
allowing representing the temporal and spatial evolution of the compounds intervening 
in the anaerobic digestion process. There are different methods of approach to model this 
process and the objective of this part is to describe the models used. The kinetics of these 
reactions can take several forms depending on the experimental assumptions made and 
the complexity of the model. The reaction kinetics most used in the literature are detailed 
in Appendix A. 

2.1.2. Phenomena of Transfer (Mass and Heat) 
In addition to biological kinetics, various matters and heat transfer phenomena are 

also involved during anaerobic digestion. Mass transfer phenomena can be broadly di-
vided into two categories: interactions between the different phases and hydrodynamic 
transfers. Although the latter always take place, they are only considered in modeling for 
solid anaerobic digestion, which, unlike liquid anaerobic digestion, is assumed to be 
highly heterogeneous. 
• Physico-chemical balances 

Several physico-chemical balances exist within the anaerobic digestion process. 
There are balances between the phases throughout the degradation process, as well as 
chemical balances between the different species present. To understand the principle of 
physico-chemical equilibrium, it is necessary to review some notions of thermochemistry. 
The chemical transfers being independent, the equilibrium between two phases A and B 
is thus expressed by the equality of the chemical potential which comes back to the equal-
ity of the fugacity. Depending on the approach used (γ-ϕ or ϕ-ϕ), it is then possible to 
determine the equilibrium equations between phases according to the assumptions made. 
However, the use of thermochemistry in the field of anaerobic digestion is often limited 
to simplified phase exchanges and is only applied to liquid-gas equilibria, with the hy-
drolysis step producing monomers directly in their soluble form. 

Equilibrium phenomena between liquid and gas phases are present within the an-
aerobic digestion process, especially during the CO2 and CH4 production steps. By per-
forming a γ-ϕ approach on the chemical equilibrium between the liquid phase considered 
ideal solution and the gas phase and considering liquid mixture as an ideal mixture with 
low concentration of species in the liquid phase and pressure below ten bars, Henry’s law 
is obtained. Henry’s law is the most common liquid-gas equilibrium law used in SSAD 
modeling and is expressed in Equation (1) below: 𝑃 , = 𝑃𝑆 = 𝐾 𝑆  (1) 

where KH is Henry’s constant (mol·m−3·Pa−1), Pgas,i is the partial pressure of species i in the 
gas phase (Pa) and 𝑆  the concentration of species i in the liquid phase (mol·m−3). Henry’s 
law thus represents the equilibrium between the liquid and gas phases in a stationary 
state. To describe the transfer phenomena between the liquid and gas phases, the double 
film theory of Whitman (1924) is the most commonly used. The assumptions made are to 
consider only the phenomenon of molecular diffusion in a stationary regime and when 
the contact time between the phases is greater than the time necessary to reach a stationary 
concentration profile. The expression of the transfer rate is then written in Equation (2): 𝑣 , = 𝑘 𝑎 𝑆 − 𝐾 𝑃 ,  (2) 

with 𝑣 ,  as the velocity of the liquid-gas transfer (mol·m−3·s−1); 𝑘  as the transfer coeffi-
cient (m·s−1); a as the specific surface (m2·m−3); 𝑆  as the concentration of species I in the 
liquid phase (mol·m−3); and Pgas,i as the partial pressure of compound i in the gas phase (Pa). 
Generally, the coefficient kL a is considered as a single constant because of the difficulties 
in determining the specific surface a and dissociating the two constants. Indeed, many pa-
rameters are to be considered such as the geometry of the reactor and the physical proper-
ties of the phases [20,23]. These phenomena play a very important role in anaerobic 
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digestion because methane and carbon dioxide are first produced in the liquid phase be-
fore going into the gas phase [20]: 
- The liquid-gas material transfer directly influences the CO2 concentration in the liquid 

medium and thus the pH of the medium through the buffering capacity related to 
bicarbonates [24,25]. 

- It also influences poorly soluble compounds (like CH4 and H2) can reach a concentra-
tion of 80 times that of thermodynamic equilibrium [26]. 
However, studies have shown that overpressure can be beneficial to the anaerobic 

digestion process, especially to overcome ammonia toxicity: the CO2 concentration in the 
liquid phase can decrease the pH by buffering effect [27]. 

Liquid-solid interactions are numerous in the AD process and are divided into two 
categories: sorption and precipitation. Hydrolysis is not considered since we consider the 
production of monomers from hydrolysis directly as solutes and not as solids. Adsorption 
is the process by which gas or liquid molecules attach themselves chemically or physically 
to solid surfaces. The causes of this attachment are surface reactions of a physical (capil-
lary or hydrophobic repulsion), chemical (surface chemical reaction) or electrical (electro-
static or polarization interactions) nature [28–30]. The opposite phenomenon is desorption 
and can also occur in the AD process. There are links between the decrease in the concen-
tration of certain aromatic components such as humic acid with the organic content of the 
solid phase, but the multitude of substances involved makes characterization of these phe-
nomena difficult [29,30]. In anaerobic digestion processes, the lignocellulosic substrate 
content gives an indication of the adsorption of hydrophobic organic molecules due to the 
polar character of lignin [31]. This means that lignin contributes to the isolation of poten-
tially toxic compounds for the anaerobic digestion process. Few studies have been con-
ducted on this subject [32] in contrast to biosorption, which is the phenomenon represent-
ing the formation of bonds between dead biomass and heavy metals present in the diges-
tion medium [31]. These mechanisms are related to the extracellular polymers produced 
by the bacteria and studies have been conducted on the biosorption of various heavy met-
als [33,34]. These sorption phenomena are therefore of interest for anaerobic digestion be-
cause, in the right proportions, they avoid inhibition by heavy metal concentrations [35]. 
Precipitation is a phenomenon arising from the complexation of ions in neutral inorganic 
form [32]: calcium carbonates, calcium phosphate, sulfato-metallic precipitates and phos-
pho-magnesium complexes are the most commonly encountered in the methanization 
process [36]. Precipitation leads to various problems: it reduces the useful volume of the 
digesters, reduces microbial activity by cementing the biomass and impacts the produc-
tion rate of biogas and digestate [37,38]. Precipitate formation is related to pH, soluble 
mineral concentration and process temperature, so it is necessary to control these param-
eters to avoid negative impacts of the precipitation phenomenon [20]. Physico-chemical 
studies could allow a better control of these phenomena. 
• Mass balances and hydrodynamics behaviors 

The creation of a mathematical model requires the construction of equations repre-
sentative of the studied phenomenon. For partial differential equation models, some con-
siderations, mass balances for each solute have to respect a global mass balance (Equation (3)): 𝐼𝑛𝑝𝑢𝑡 + 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑂𝑢𝑡𝑝𝑢𝑡 + 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (3) 

Being adapted to each chemical and biological species, the mass balances make it 
possible to build mathematical models representative of anaerobic digestion in the solid 
process. In these models, two main types of hydrodynamics phenomena could be consid-
ered: diffusion and convection phenomena. These phenomena are represented by local 
variations of a solute C and expressed by the following Equations (4) and (5): 𝜕𝐶𝜕𝑡 = 𝑞 𝜕𝐶𝜕𝑧  (4) 
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𝜕𝐶𝜕𝑡 = −𝐷 𝜕 𝐶𝜕𝑧  (5) 

where C represents the solute concentration (kg·m−3), q the Darcian velocity (m·s−1), and D 
the diffusion coefficient (m2·s−1). These equations are present in heterogeneous modeling 
representing spatial variation of each solute. 

2.2. Theoretical Models 
Theoretically, an AD reactor involves enormous physical, chemical and biological 

phenomena. The complexity of modeling increases when it comes to the SSAD system. 
The heterogeneity in solid media and the interactions between different phases are to be 
taken into account. This leads to the use of partial differential equations (PDE) in the 
model in order to characterize the dependence of various variables not only on the time 
(t) but also on the space (coordinates). Since the modeling of AD was developed at first 
according to LSAD system where heterogeneity in reactors is less concerned, it is usual 
that the spatial variation of the variables is neglected supposing a (quasi-)homogeneous 
system or a perfect mixed one, which simplifies PDE to ordinary differential equations 
(ODE). This reduces the complexity of the model and the time for the calculation. 

When modeling techniques are adapted from LSAD to SSAD, the hypothesis is at 
first established that the system is mixed so that the complexity of modeling could be 
reduced when a multiple of phenomena are considered. Afterwards, the spatial effect is 
specified and introduced into the system to represent better the reality of a SSAD system 
with heterogeneity of materials in the reactors. There also exist some special models in 
which a non-conventional theory is given to describe the reactions or the physics in the 
SSAD reactors. 

This chapter is dedicated to a literature review about the modeling of SSAD in perfect 
mixed systems (with time-depending ODE), heterogeneous systems (with time- and spa-
tial-depending PDE). The use of non-conventional theories for modeling is also intro-
duced in this part. 

2.2.1. Perfect Mixed Systems 
Table 1 gives a summary of the literature review of the simulation studies on SSAD 

supposing a perfect mixed system. Generally, these studies can be categorized into the 
conventional biochemical modeling using ADM-1 type models or the non-conventional 
models proposing new theories explaining the phenomena. Various effects such as TS 
content, gas/liquid equilibrium and mass transfer could be considered in the modeling. 
• Biochemical dynamic modeling (ADM1 and its derivatives) 

The ADM1 model is the most-known AD biochemical model [20]. It allows a good 
simulation of the LSAD reactors but requires the identification of a large number of kinetic 
and physico-chemical parameters. ADM1 has many variants and simplifications for LSAD 
system [39–41]. AM2 proposed by Arzate et al. (2016) [42] is one of the simplified ADM1 
with only two microbial populations involved and listed as follows: acidogenesis and 
methanogenesis. Hydrolysis step could be added prior to AM2 model to complete a full 
degradation chain of substrate. Sari (2022) looked into the simplified one stage or two-
stage models capturing the major behaviors of full ADM1 model [43]. ADM1 and its ex-
tensions have also been adapted to the SSAD simulation since long. 

Bollon et al. (2011) [44] simulated the SSAD processes of organic fraction of municipal 
solid waste (OFMSW) by developing a ADM1-type kinetic model considering acetate deg-
radation and moisture content of the medium. This model modified ADM1 by putting 
hydrolysis and acidogenesis stages in one first-order kinetic equation. The innovation of 
the study was found in the 3-liquid-gas dynamic equilibrium of CH4, CO2 and H2. The 
batch methane production of acetate was simulated (Figure 4 of [44]). Results showed that 
the methane yield was limited by the mass diffusion of soluble matter. They also 
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concluded that the kinetic parameters of ADM1 in conventional LSAD were not adequate 
to describe SSAD reactions. 

Abbassi-Guendouz et al. (2012) [45] studied the effect of Total Solids (or dry matter) 
on the SSAD of cardboard. The modeling using ADM1 model was also carried out. They 
mentioned that the default value of first-order hydrolysis rate (10 d−1) was not sufficient 
to simulate SSAD and a very low hydrolysis kinetics (0.1 d−1) according to Qu et al. (2009) 
[46] was considered. 

The model developed by Liotta et al. (2015) [47] was based on the ADM1 modified 
by Esposito et al. (2008) [48]. There were 28 sets of mass balance equations. One particular 
parameter characterizing disintegration of complex OM (Ksbk) as well as two kinetic pa-
rameters for acetate and propionate (Kac and Kpro) were reckoned to be a linear function of 
the Total solids content (TS) of the media. This helps the adjustment of the kinetic param-
eters according to the feedstock of digesters (food waste, straw …). 

A modified AM2 model suggested by Attar and Haugen (2019) [49] took into account 
the difference of inflow and outflow rates, the effect of temperature on the specific growth 
rate and a mass and charge balance for inorganic carbon content estimation. Faced up 
with the real-scale experimental data, the modified AM2 was proved sufficient to accu-
rately predict the biogas production behaviors of sewage sludge. A sensitive analysis was 
also accordingly performed to examine the dominant parameters impacting the variables. 
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Table 1. Summary of simulation studies on SSAD processes supposing a perfect mixed system. 

Authors Substrates Reactor Mode Hydrolysis Kinetics Major Biokinetics Special Consideration Mass Transfer 
Kalyuzhnyi et al. (2000) [50] / N.A. First-order kinetic Equilibrium-based kinetics pH, gas/liquid equilibrium Diffusion 

Martin (2000) [51] / N.A. Expansion of reaction shells Rate proportional to volume of shells / / 

Martin et al. (2003) [52] / N.A. 
Taking place in acetogenic 

zone 
Reaction front mechanism 7 mobile zones Diffusion 

Bollon et al. (2011) [44] 
OFMSW  
Acetate 

Batch First-order kinetics Modified ADM1 
gas/liquid equilibrium of CH4, CO2 

and H2 
/ 

Namuli et al. (2011) [53] Dairy farm waste N.A. Stoichiometric model ADM1 
Density, CHNSO, VS, ash, N, P and 

K contents 
/ 

Fdez-Güelfo et al. (2011, 
2012) [54,55] 

OFMSW Semi-continuous / Modified Monod-type equation 
Non-biodegradable substrate con-

centration 
/ 

Abbassi-Guendouz et al. 
(2012) [45] 

Cardboard Batch First-order kinetics Modified ADM1 Kinetic parameters adjusted by TS / 

Xu et al. (2014) [56] Corn stover Batch 
First-order kinetic with in-

hibition 
Modified Gompertz Adjustment of Gompertz parameter Diffusion 

Liotta et al. (2015) [47] 
Food waste 
Rice straw 

Batch First-order kinetic Modified ADM1 Kinetic parameters adjusted by TS / 

Poggio et al. (2016) [57] 
Green waste 
Food waste 

Batch and semi-con-
tinuous  

First-order kinetic ADM1 CHNSO contents, Nitrogen, COD / 

Attar and Haugen (2019) [49] Sewage sludge / / Modified AM2 Liquid level change, temperature / 

Lafratta et al. (2021) [58] 
Sewage sludge 

Dog food 
Continuous First-order kinetic First-order kinetics 

First-order kinetics for all biochemi-
cal reactions 

/ 
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• Stoichiometric model combined with ADM1 
Another tool considering the characterization of input waste was developed by Na-

muli et al. (2011) [53]. In this study, the density, the elementary fractions (CHNSO), the 
ash, phosphor, potassium and VS contents were fed into an ADM1-type model allowing 
calculating the final biogas yield through mass and charge balance (Figure 3). 

 
Figure 3. Illustration of major modeling steps of Namuli et al. (2011, under Creative Commons At-
tribution license) [53]. 

Similarly, Poggio et al. (2016) [57] combined ADM1 with a biochemical fractionation. 
The carbohydrates, proteins and lipids fractions were obtained by realizing nitrogen, 
COD and mass balances. The first two balances were realized based on the elemental char-
acterization (CHNSO contents) of the raw substrates. The batch test data of green waste 
and food waste were used for the model calibration. The model was then validated using 
a semi-continuous dataset (cf. Figure 8 of [57]). A good prediction of various variables like 
biogas production, VFA, total nitrogen and alkalinity were achieved. 
• Two-particles model 

Kalyuzhnyi et al. (2000) [50] developed a structured mathematical model of SSAD 
process by dividing the solid media into two particles as “seed” particles and “waste” 
particles. The “seed” particles had low biodegradability and relatively high methanogenic 
activity. On the contrary, the “waste” particles had relatively high biodegradability but is 
low in methanogenic activity. The organic solute could be transferred from one particle to 
another by diffusion. Diffusion was carried out by Fick’s Law-like equation. Both kinds of 
particles were supposed to be in a perfect mixed system. Stoichiometric reactions, micro-
bial development, liquid-gas equilibrium and pH issues were considered in the model. 
• Reaction front model 

Martin (2000) [51] simulated the SSAD reactions taking place on an imagined inter-
face between the raw and digested waste. This work considered the expansion of hydrol-
ysis or acidogenic shells whose growth rate was proportional to the production rate of 
biogas. This innovative model fitted the experimental data well as compared with the 
first-order decay kinetics. This non-conventional approach was then further developed by 
the same author and named “the reaction front hypothesis” [52]. The new theory pro-
posed a leading zone where acetate was formed as well as a methanogenic buffered zone 
where acetate was diffused. These seeding zones could grow gradually until the process 
stabilization. This very novel concept of modeling opened the perspectives about using 
non-mechanistic theory for modeling of a complex multi-physical system such as SSAD. 
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• Simplified Monod model 
The studies of Fdez.-Güelfo et al. (2011, 2012) [54,55] worked on the process modeling 

of dry thermophilic AD of either simulated or real OFMSW by using a simplified Monod-
like equation (Equation (6)): 

– rs = µmax

( h – S ) ∙ ( S – SNB )
( S – SNB )  (6) 

where −rs is the substrate consumption rate (g·L–1·s–1), μmax is the specific growth rate of 
microorganisms (d–1), S is the concentration of substrate (g·L–1), h is the maximum concen-
tration of substrate that could be achieved (g·L–1). The kinetic parameters could be ob-
tained by the non-linear regression of the methane yield curves. They succeeded, by using 
their model, in obtaining the μmax and the minimal sludge retention time for a stable op-
eration of SSAD. 
• Mass diffusion model combined with empirical equation 

A mass diffusion model was developed by Xu et al. (2014) [56]. In this model, the 
hydrolysis step was assimilated to the first-order kinetic with inhibition terms. The mass 
diffusion model used Fick’s Law to simulate the diffusion flow rate of sugar into micro-
flora. A mass balance between the substrate and inoculum layers was also taking into 
consideration. The degradation of sugar inside the microbial cells followed a simplified 
Monod equation. Instead of going into complex biochemical simulation, they used the 
modified Gompertz equation to achieve the final biogas production (cf. Figure 2 of [56]). 
However, its maximum methane production rate was achieved by the following equation 
(Equation (7)) considering the hydrolysis, diffusion and inhibition phenomena: (𝑅CH4)  = 𝑘 𝑋 𝑌∆ /∆𝑘 𝑘 𝑌∆ /

µmax𝑋 + 𝑘 𝐿𝑉𝐷 𝐴 + 1 
(7) 

where (RCH4)max is the maximum methane production rate (NmL CH4·g VS−1·d−1); kh, ki and 
ks are the hydrolysis, inhibition and substrate half saturation coefficients (d–1); 𝑋  and 𝑋  
are the initial substrate and inoculum concentrations (g·L–1); 𝑌∆ /∆  and 𝑌∆ /  are the 
microbial growth yield and methane yield coefficients (−), De is the diffusivity of sugar; 
and L, A and V the thickness, surface and volume of substrate layer. The obtained (RCH4)max 
is injected into a modified Gompertz equation for methane production curve (Equation 
(8)): 

P(t) = P0 /{ 1 + exp[ (𝑅CH4)  · e · ( λ – t ) / P0 + 1 ]} (8) 

where P(t) is the cumulative methane yield at day t (NL CH4·kg VS−1), P0 is the simulated 
methane yield of the substrate (NL CH4·kg VS−1), e is Euler’s number (e = 2.71828 ...), λ is 
the lag time (d) and t is the digestion time (d). 
• First-order dynamic model 

A first-order dynamic model was developed by Lafratta et al. (2021) [58] supposing 
all of the biochemical reactions follow the first-order kinetic. They suggested that first-
order kinetics had fewer parameters to identify and thus could make the simulation less 
heavy by achieving the similar accuracy. The modeled values fit well the experimental 
data (cf. Figure 8 of [58]). 

According to the literature analysis above and the information provided by Table 1, 
it is interesting to note that most of the modeling is based on the ADM1-type model for 
biochemical simulation. The phenomenon of diffusion or convection is not systematically 
included since the hypothesis of a perfectly mixed reactor limits the role of mass transfer 
in describing the reactions inside a solid-state digester. The consideration of a heteroge-
neous system with a multidimensional approach would be more appropriate to introduce 
the mass transfer into the modeling. 
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2.2.2. Heterogeneous Systems 
It is difficult to transpose the biokinetics used for liquid anaerobic digestion to solid 

anaerobic digestion. Indeed, the low-free water content in digesters [59] and the lack of 
knowledge on the mobility of microbial species and their mode of action in this environ-
ment limits the development of models for this phenomenon [32]. Hydrodynamic-related 
phenomena influence reaction kinetics by impacting material transfers and percolation 
within the solid mass [60]. 
• Distributed model 

According to the different models presented, a one-dimensional distributed model 
has been developed considering diffusion and convection transfers within the liquid 
phase [61]. This model assumes homogeneity according to the cross-section of the reactor 
used and a variation considered only along the reactor. This model (Equations (9)–(12)) 
uses a system of partial differential equations including spatial and temporal variations 
to consider the transport phenomena and the biological kinetics of the process: 𝜕𝑋𝜕𝑡 = −𝑘 𝑋𝑓(𝑆) (9) 

𝜕𝑆𝜕𝑡 = 𝐷 𝜕 𝑆𝜕𝑧 − 𝑞 𝜕𝑆𝜕𝑧 + 𝑘 𝑋𝑓(𝑆) − 𝜌 𝑆𝐵𝐾 + 𝑆 𝑔(𝑆)  (10) 

𝜕𝐵𝜕𝑡 = 𝐷 𝜕 𝐵𝜕𝑧 − 𝑞𝛼 𝜕𝐵𝜕𝑧 + 𝑌 𝜌 𝑆𝐵𝐾 + 𝑆 𝑔(𝑆) − 𝑘 𝐵  (11) 

𝜕𝐺𝜕𝑡 = 𝛾 1 − 𝑌 𝜌 𝑆𝐵𝐾 + 𝑆 𝑔(𝑆)  (12) 

with X, S, B and G (kg·m−3) as the solid substrate, soluble substrate, microorganisms and 
gaseous products, respectively. The term γ represents the fraction of methane in the bio-
gas and α represents the fraction of biomass carried away by liquid convection. DS repre-
sents the diffusion coefficient (m²·s−1) and q the Darcian velocity (m·s−1). The terms ρmax and 
KS are the constants related to the Monod kinetics. The terms g(S) and f(S) are the inhibi-
tion functions related to acetogenesis and hydrolysis, respectively. Obviously, other stud-
ies have been carried out with the distributed model using different biological kinetics 
such as the Contois model for hydrolysis or by dividing the solid substrate into several 
species with different hydrolysis kinetics [62,63]. The consideration of transport phenom-
ena by a distributed model is thus a complete approach allowing an adaptability of the 
biological kinetics and a modification of the model according to the working assumptions. 
• Spatio-temporal model 

The space-time model was developed to take into consideration the heterogeneous 
distribution of biological kinetics and spatial distribution of substrates [64] by extending 
the use of the distributed model to 3D, this model includes the phenomena of material 
transport, and allows to show how the spatial distribution affects the degradation of the 
material, in particular for solid-state anaerobic digestion. The equations of this model 
(Equations (13)–(16)) are therefore very close to the distributed model: 𝜕𝑋𝜕𝑡 = 𝐷 ∆𝑋 − 𝑎 𝑞∇𝑋 − 𝑏 𝑋𝑓(𝑆) (13) 

𝜕𝑆𝜕𝑡 = 𝐷 ∆𝑆 − 𝑞∇𝑆 + 𝑘 𝑋𝑓(𝑆) − 𝑏 𝐵𝑔(𝑆)  (14) 

𝜕𝐵𝜕𝑡 = 𝐷 ∆𝐵 − 𝑎 𝑞∇𝐵 + 𝑏 𝑔(𝑆)𝐵 − 𝑏 𝐵  (15) 
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𝜕𝐺𝜕𝑡 = 𝐷 ∆𝐺 − 𝑞∇𝐺 + 𝑏 𝑔(𝑆)𝐵  (16) 

with a1 and a2 are the fractions of substrate and biomass carried away by liquid convection, 
and the b1–b6 are the reaction terms used here as constants to be determined to simplify 
the model [65]. There are other models developed from the presented models, such as the 
diffusion limit model [56] considering the effect of the proportion of dry matter on AD; 
but, as ADM1, the main theoretical models are those cited above. 
• Mobile-Immobile model 

The work of Coutu et al. (2022) [66] simulated the SSAD of cattle manure in a leach-
bed reactors. They proposed a novel model coupling Mobile-Immobile water interactions 
(MIM) and AM2. Another novelty was related to the consideration of the microporosity 
and macroporosity evolutions of solid bulk, found by Hernandez et al. (2021) [59], in the 
coupled model. The theoretical model was created based on a one-dimensional diffusion-
like theory in which the immobile fraction of OM is hydrolyzed and diffused into mobile 
zone for biodegradation (Equations (17) and (18)). The realization of the model in the pa-
per was conducted supposing perfect mixed system and therefore, reduced to a zero-di-
mensional model (independent of spatial effect). The fitting of the simulated data to the 
experimental values is rather satisfactory (Figure 4). 𝜃 (𝑡) 𝜕𝜕𝑡 𝐶 (𝑧, 𝑡) + 𝐶 (𝑧, 𝑡) 𝜕𝜕𝑡 𝜃 (𝑡) + 𝛼 𝐶 (𝑧, 𝑡) − 𝐶 (𝑧, 𝑡)= 𝜃 (𝑡)𝐷(𝑡) 𝜕 𝐶 (𝑧, 𝑡)𝜕𝑧 − 𝑞 𝜕 𝐶 (𝑧, 𝑡)𝜕𝑡 + 𝜃 (𝑡) 𝜎 𝑟 (𝑧, 𝑡) 

(17) 

𝜃 (𝑡) 𝜕𝜕𝑡 𝐶 (𝑧, 𝑡) + 𝐶 (𝑧, 𝑡) 𝜕𝜕𝑡 𝜃 (𝑡)= 𝛼 𝐶 (𝑧, 𝑡) − 𝐶 (𝑧, 𝑡) + 𝜃 (𝑡) 𝜎 𝑟 (𝑧, 𝑡) (18) 

where θm and θim are the mobile and immobile water fraction of the bulk (m3·m–3), Cm and 
Cim are the concentrations of soluble matter in mobile and immobile zones (kg·m–3), α is 
the coefficient of mass transfer between mobile and immobile zones, i is each soluble mat-
ter species, σj is the stoichiometric coefficient of each soluble matter considered in the re-
action j, rmj and rimj are the reaction rates for reaction j in mobile and immobile zones 
(kgCOD·m–3·d–1). 
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Figure 4. Experimental and simulated data from the Mobile-Immobile model, (A) experimental ac-
cumulated methane yield, (B) experimental methane flow, (C) experimental VFA evolution. Corre-
sponding simulated data are shown in blue curves and mean experimental data are shown in red 
symbols in (D–F). Figure reprinted from Coutu et al. (2022) [66], Copyright (2023), with permission 
from Elsevier. 

• Gradostat models 
Another way of modeling is to approximate spatialization using a set of simple in-

terconnected models. This is the case of gradostat models, considering a set of two or more 
interconnected steady-state reactors called chemostats. Each chemostat is a two-way flow 
between input and output [67]. The gradostat models appeared during 1950s as a repre-
sentation of the microbial growth in steady-state reactors [68,69]. Modeling of each reactor 
considered substrate and biomass concentration, respectively, respecting the following 
equations: 𝑑𝑠𝑑𝑠 = − 1𝑌 𝜇(𝑠)𝑥 − 𝑄𝑉 (𝑠 − 𝑠) (19) 

𝑑𝑥𝑑𝑠 = 𝜇(𝑠)𝑥 − 𝑄𝑉 𝑥 (20) 

with x and s the substrate and biomass concentrations, Q the input flow, V the effective 
volume, Y the yield conversion of substrate into biomass and µ the specific growth rate of 
micro-organisms. Many studies were led using this tool [70] to describe bioreactors with 
an easy spatial discretization allowing avoiding partial differential equations resolution. 
• Plug flow simulation 

Most of the simulation is realized in batch mode. The work of Panaro et al. (2022) [71] 
studied the modeling of SSAD process in plug flow reactors. The convective and diffusive 
phenomena were included in the one-dimensional flow. An AM2-type biochemical model 
was applied to simulate the biodegradation of organic matter and the production of bio-
gas. The simulated data were confronted with the experimental results and showed good 
accuracy. 
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3. Statistical Approaches 
3.1. Empirical Non-Linear Regression Models 

Most of the models used in solid-state anaerobic digestion propose theoretical ap-
proaches. The advantage of these methods is to increase the understanding of the phe-
nomenon and to allow a simple prediction of the degradation of the substrates. The dis-
advantages are that they present a certain complexity, which can limit the identification 
of the kinetic parameters of the model and move away from the experimental reality [72]. 
In order to predict methane production in a simpler way, some models use an empirical 
approach described in this section. 

3.1.1. Logistical Model 
The purpose of the logistic model is to propose a simplified model to reduce the num-

ber of parameters and make them more easily identifiable. This model introduces several 
assumptions which are the following: 
- Only biomass concentration induces methane production. 
- Biomass growth is limited by factors such as hydrolysis rate and substrate availability. 
- Inhibition and death of microorganisms are not taken into account. 
- The proportion of liquid adsorbed on the solid substrate and present in the capillaries 

is not accessible to microorganisms and solutes. 
The model obtained is the following Equation (21): 𝑑𝐵𝑑𝑡 = 𝜇 𝐵 1 − 𝑋 − 𝑋𝑋  (21) 

with B the biomass concentration and X the solid substrate concentration (kgCOD·m−3), µmax 
being the maximum growth rate and thus the only model parameter to be determined 
(s−1). In this model, water is assumed to be adsorbed onto the solid matrix and capillaries 
are unavailable areas for solute and microorganism transport. Two parameters are as-
sumed to correlate with the microorganism concentration: the maximum growth rate µmax 
and the initial amount of available organic matter X0. The water content ω is considered 
empirically in Equations (22) and (23): 𝜇 = 𝜏𝜇  (22) 

𝜏 = 𝜔 − 𝜔𝜔 − 𝜔  (23) 

where τ is a function in which ω0 represents the initial water content, ωR the maximum 
water content and ωmin the minimum water content to ensure bioconversion initialization. 
These equations suggest that if the water content reaches the maximum allowable water 
content, all of the substrate X0 is available for AD. Below this, methane production will 
not reach its optimum [72]. 

3.1.2. General Kinetic Model 
A model (Equation (24)) was designed by Fernández et al. (2010) [73] and developed 

by Fdez-Güelfo et al. (2012) [55]. This model, called the general kinetics model, consists of 
a simplification of the reaction rate law: 𝐵 + 𝑋 → ∆(∆> 1) (24) 

where X (kg·m−3) is the organic carbon concentration in the solid substrate, B (kg·m−3) is 
the microorganism concentration, and Δ is a stoichiometric constant. The equations spe-
cific to the evolution of the state variables are therefore (Equations (25) and (26)): 𝑑𝐵𝑑𝑡 = (∆ − 1)𝑘𝑋𝐵 (25) 
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− 𝑑𝑋𝑑𝑡 = 𝑘𝑋𝐵 (26) 

with k the reaction rate constant associated with the process (kg·m−3). Considering the in-
itial substrate concentration X0, the non-degradable substrate concentration XNB, the max-
imum growth rate µmax and h the maximum concentration of microorganisms, the last 
equation can also be written in Equation (27): − 𝑑𝑋𝑑𝑡 = 𝜇 (ℎ − 𝑋)(𝑋 − 𝑋 )𝑋 − 𝑋   (27) 

Concentrations here are expressed in kgCOD·m−3. The combination of the substrate 
degradation rate and the methane production rate gives the Equation (28): 

𝐺 = 𝑌 𝑒 − 11ℎ − 𝑋 + 𝑒𝑋 − 𝑋  with 𝜃 = ℎ − 𝑋𝑋 − 𝑋  (28) 

here G represents the total amount of methane produced and YG/X the yield of methane 
produced per unit of substrate consumed (m3CH4·kgCOD−1). This model has been used to 
study the impact of dry matter content on the solid-state AD process. Fernández et al. 
(2010) [73] found a maximum degradation rate almost twice as high at 20% dry matter 
than at 30%. These findings are similar to those in the literature on the impact of dry mat-
ter content on methane production [45,47]. The kinetics of this model were then modified 
by Fdez-Güelfo et al. (2012) [55] to adapt it to thermophilic conditions with validation on 
two types of substrates and four different types of feedings. More generally, empirical 
models are based on modifications of the Gompertz equation and the logistic equation, 
which are the two frequently used empirical models [74–76]. These two models provide 
some representative parameters such as the lag time, also called lag phase, or the maxi-
mum degradation rate. The modified Gompertz model seems to have a better match with 
experimental results than the other empirical models, but there are few comparisons on 
solid-state AD modeling [74,76,77]. 

3.1.3. Non-Linear Regression Models 
In multiple linear regression models, each studied parameter i is represented in the 

model by a variable xi and a coefficient ai. The observed response y is usually methane 
production. The value of the coefficient is used to give a tendency for the observed varia-
ble favor increasing or decreasing the response. The regression generally goes up to sec-
ond-order terms, with higher-order terms no longer making physical sense. The general 
expression for this model is in Equation (29) as follows: 

𝑦 = 𝑎 + 𝑎 𝑥 + 𝑎 𝑥 + 𝑎 𝑥 𝑥,  (29) 

The coefficients ai represent the coefficients of each variable xi, also called factor. The 
a0 represents the response value under the average conditions of the study domain of the 
different variables. The coefficient aii represents the quadratic coefficient of the quadratic 
factor xi2and aij represents the impact of the interaction of parameters i and j. These models 
are used in the design of experiments methodologies for the representation of the response 
surface. These models have been used in the context of anaerobic digestion to evaluate the 
impact of many parameters on methane production. The studies carried out on the anaer-
obic digestion process and using the design of experiments methodology have multiplied 
in recent years, allowing a better understanding of the optimal operating conditions of the 
anaerobic digestion process. The studied parameters are in particular the following: 
- Optimal pretreatment conditions on the efficiency of anaerobic digestion [78,79]. 
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- The optimal conditions for liquid phase recirculation under solid-state anaerobic di-
gestion conditions [80]. 

- The determination of the optimal values of carbon to nitrogen ratio [81]. 
- The determination of the optimal pH [82]. 
- The determination of optimal biomass inoculation conditions [83–86]. 

There are also more complex studies such as optimizing digester geometry to max-
imize methane production [87]. Factors can also be linked together by constraints such as 
the fundamental mixing constraint. This allows for optimization of process methane pro-
duction by acting on the composition of a mixture. Such work has been conducted on AD 
[88,89] considering up to three different substrates. Another possibility is to optimize both 
the substrate composition and the values of the operating parameters by mixing different 
regressions [90]. The limitation of such a design of experiments is the increasing number 
of experiments required for each additional substrate. The different parameters studied 
are shown in Table 2. Other responses can be studied, such as VFA production, or pH. 
Some studies are multi-response and subsequently optimize an objective function that 
skillfully combines these different responses [91]. Multilinear regression has been shown 
to be a very useful tool for predicting methane production from different substrates 
[92,93]. It is also an inexpensive tool to implement in terms of time and technique. It is 
then the ideal strategy to “rough out” the parameters of interest in order to determine the 
significant variables to study. 

Table 2. Parameters studied for the multiple linear regression models. 

Studied Parameter References 
Pretreatment Jin et al., 2018 [78] 

Liquid recirculation conditions Degueurce et al., 2016 [80] 
Carbon/Nitrogen ratio Kainthola et al., 2020 [81] 

pH Mortezaei et al., 2018 [82] 
Biomass inoculation Kumar et al., 2020 [83], Lee et al., 2020 [84] 

Reactor geometry Leonzio et al., 2019 [87] 
Substrate composition Kashi et al., 2017 [88] 

Substrate composition and liquid 
recirculation conditions 

Coutu et al., 2022 [90] 

3.2. Advanced Statistical Models 
In addition to non-linear regression models, the chemical engineering industry is see-

ing its increasing interest in the use of machine learning for process modeling. It is some-
how a black-box approach, or considered as phenomenological modeling (Figure 5). These 
models do not give directly mechanistic explanation of the simulated phenomena, which, 
at least, is not the prioritized purpose of these models. 

 
Figure 5. Workflow of advanced statistical models for SSAD simulation. 
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The machine leaning approach (including artificial neural network, ANN) has been 
largely studied to predict the performance of wastewater treatment plant [94], the process 
of upflow anaerobic sludge blanket process (UASB) [95], the LSAD of sewage sludge [96], 
industrial sludge [97] and agricultural byproducts [98]. 

A few studies using machine learning are available for SSAD simulation. 
Xu et al. (2014) [99] collected 50 datasets from 10 publications as data input, including 

the physico-chemical features of the substrates and the inoculum (pH, TS, VS, TN, sugar, 
cellulose and lignin contents …) as well as the operational parameters of the SSAD pro-
cesses (temperature, C/N ratio, particle size, substrate/inoculum ratio…). Three ANN 
models were used. The first model used all of the collected parameters as input. The sec-
ond one used the crucial parameters that are found significant by the multilinear regres-
sion. The last one used the parameters that could be easily obtained or realized like VS, 
TS, C/N ratio. All three models were calibrated by one part of datasets and validated by 
another part. The authors stated that more datasets were required for a better training of 
the model. 

Seo et al. (2021) [100] tried to predict the biogas yield rate from continuous SSAD of 
food waste with the aid of the process-wise modeling or the neural network approach. 
The sludge retention time (SRT), soluble COD, total VFA, total ammonia-nitrogen (TAN) 
and free ammonia are used as model input. Compared to process-based model, the neural 
network method was more efficient in the prediction of biogas yield from food waste in 
SSAD reactor (cf. Figure 6 of [100]). 

A very recent paper of Pei et al. (2022) [101] tested extreme machine leaning (EML), 
ANN and random forest (RF) for SSAD modeling. The RF method found three critical 
parameters (butyric acid, acetic acid and pH) impacting the biogas yield. Best prediction 
accuracy was obtained by the algorithm of EML (Figure 3 of the [101]). 

The algorithm of the machine learning modeling is still undergoing fast develop-
ment. It is evidenced that theses could be a very useful tool for accurate estimation and 
thus a finer control of the process behaviors of biogas production, without entering the 
very details explaining what is happening behind. A large quantity of data input, which 
cannot be easily acquired, is indispensable for a better training of the model. A shared 
database of anaerobic digestion data on various scales would be greatly helpful for a 
larger development of the field [9]. 

4. Discussion and Perspectives 
4.1. Limitations of Current Modeling Methodology 
4.1.1. Modeling Approaches 

As discussed above, either theoretical or statistical approaches are efficient in SSAD 
modeling. Without specifying the objectives of the modeling, it would be difficult to priv-
ilege one over another. 
• Theoretical models 

The modeling can serve for a better understanding of the physico-chemical and bio-
logical phenomena taking place in the reactors. In this case, the theoretical approaches 
with a better vision on the intermediary processes or products would be preferred. This 
approach allows the interpretation of results supported by the scientific explanations. 
However, one has to note that the good outcome of theoretical models only shows the fit 
of theory to the experimental observations. It would not be reflecting the reality in the 
reactors. For the same experimental results, a multiple of theories could apply. The iden-
tifiability of parameters (to be discussed later) may also bring the difficulty in using theo-
retical models by nonacademic specialists. Furthermore, the theoretical models usually 
require some strict hypotheses. This means that the use of this model from one type of 
reactor to another, from one kind of substrate to another and from one mode of operation 
to another would vary to a great extent. It may limit the use of the modeling of this kind 
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for industrial applications facing the complexity and variability of substrates in real biogas 
plants. 

As specifically for SSAD, the development of theoretical models is therefore of great 
challenge for researchers to be able to understand a complex system with a variety of the 
physico-chemical phenomena involved. The combination of the mass transfer and bioki-
netic equations with a hydrodynamic model is difficult to put into service since for a small 
SSAD reactors there could be millions of cells to be numerically simulated, taking a con-
siderable time for the simulation. 
• Empirical and advanced statistical models 

The statistical methods provide another way to simulating SSAD processes. Which-
ever grey box or black box modeling, the statistical approach does not pay as much atten-
tion as the theoretical approach does to the intermediary products or individual phenom-
ena (i.e., CFD, mass and transfer, biokinetics). The understanding of the processes is not 
the first objective of the modeling. The SSAD is such a complex system that, as discussed 
for theoretical models, the combination of different physico-chemical phenomena in one 
model would be difficult to realize in an efficient way and within a reasonable simulation 
time. This makes the empirical and advanced statistical models stand out since these tools 
need less information about specific physics and avoid to enter the details of the reactions. 

The nonlinear fitting of empirical equations to the experimental data often shows 
good simulation of biogas production. It is an easy tool for the use and comprehension for 
non-specialists. However, the extrapolation of the models would not be simple and accu-
rate. The overfitting problem has to be noted and taken care of [102]. Besides, the empirical 
models with limited equations are always doubted to be sufficient to describe a reactor as 
complicated as SSAD. Information may be lost when using simple empirical models. 

The advanced statistical methods, such as random forest and neural network, are 
very robust and promising tools for SSAD simulation. The quality of modeling highly 
depends on the volume of training datasets. For a biogas plant with a large amount of 
data (measures in hours over several years), these tools can be efficient to predict possible 
inhibition and digestion failure so that the handling persons can react in time. 

4.1.2. Mathematical Model Implementation 
The first step of model development is the mathematical model implementation. 

Every assumption and consideration must be done in this part to determine limits and 
possibilities according to the goal of the study. Concerning solid-state anaerobic digestion, 
different physical and biological phenomena could be considered as biokinetics and hy-
drodynamics. Units must also be determined for the study. In fact, concentrations could 
be expressed in mass, moles or COD, as space and time measurement must be adapted 
considering the phenomenon scale. Different factors could be considered as the substrate 
properties in terms of possible inhibitions, the liquid phase recirculation frequency or rhe-
ology to adapt hypothesis of the study. At this point, a verification step is necessary to 
ensure a correct mass balance between solutes, substrates and biomass. This verification 
step could be done by a derivation of the global mass balance equal to zero, ensuring a 
constant mass balance [66]. 

Moreover, the complexity of the dynamic systems of the bioprocesses imposes a rigor 
on the determination of the kinetic parameters related to the developed model. Consider-
ing heterogeneous systems, the identifiability of parameters is an important issue that 
must be treated for each developed model. Identifiability question is divided into a prob-
lem of structural identifiability and practical identifiability [103]. Structural identifiability 
is the study of the mathematical identifiability of each parameter in the case of ideal meas-
urements. Different methods could be used to mathematically determined each parameter 
as transformation of the non-linear model into a linear model [104], development into se-
ries [105,106] or study of the observability of the nonlinear system [107]. 



Energies 2023, 16, 1108 21 of 33 
 

 

Most of the theoretical approaches rely on the use of ADM1-type models for the bio-
kinetic simulation. However, ADM1 is a large-scale non-linear model. The full version of 
ADM1 model deals with 19 reactions with a total 32 dynamic state variables. There are 
two types of parameters in ADM1 model: the biochemical parameters and the input or 
initial condition parameters [108]. The biochemical parameters derive from the model 
structure and can be obtained by calibration using appropriate experimental data. The 
calibration involves an optimization process through the minimization of an objective 
function, usually called “the fitting goodness” [109]. The study of Nimmegeers et al. (2017) 
[110] discussed about two identifiability, namely the structural identifiability and practi-
cal identifiability. The structural identifiability describes the availability of a unique esti-
mation of parameters from a mathematical point of view on the structural of the con-
cerned model. The practical identifiability refers to the estimation of parameters consid-
ering all identification conditions such as the quality of the input experimental data. The 
authors presented a reaction network of ADM1 and stated the complexity of the model 
with the parameters in large number makes the practical identifiability difficult to achieve. 
This nature could result in the multiple optimal outputs (i.e., non-unique set of parameter 
estimates) during the calibration. The parameters found could be intercorrelated. They 
suggested that, in order to make the parameter estimations locally and structurally iden-
tifiable, one should modify the ADM1 model by using the parameters combination in-
stead of individual parameters. A good and adapted experimental design is also required 
to increase the practical identifiability of the parameters. 

Unfortunately, in many practical cases it is not possible to identify the different ki-
netic parameters because of the poor quality and limited number of experimental data 
[111]. In these cases, it is then necessary to perform a sensitivity study on these parameters 
in order to determine the effect of a small variation of these parameters on the adequacy 
between model and experimental data [66]. This is why it is very important to implement 
a mathematical model before conducting any experiment to ensure a great identifiability 
of each calibrated parameter. 

The SSAD modeling differs greatly from the conventional LSAD. The simple use of 
literature values of parameters obtained from LSAD modeling is not representative for 
SSAD due to its multiphase and multiphysical natures. This added one more difficulty in 
the simplification of the model calibration (to be discussed later). 

A comprehensive database of anaerobic digestion of all kinds shared within the sci-
entific and industrial communities would be of great help in enriching the available and 
adapted data for model training. 

4.1.3. Calibration, Validation and Outcomes of Models 
Two different datasets must be used to calibration and validation step to ensure a 

representative and reproducible model of the observed phenomenon. Different strategies 
could be used to minimize the number of experiments: dividing a dataset into two set of 
data, or create a dataset from existing database with numerical methods as bootstrapping [90]. 
Once mathematical model was implemented, kinetics identifiability was studied and da-
tasets were identified, experiments could be realized. 

Calibration step of kinetics parameters aims to obtain the best fitting with experi-
mental data. Different methods could be used to calibrate kinetics on a dataset as mathe-
matical regression for linear equations or a minimization of an objective function for com-
plex linear equations system [90]. In this last case, initialization of kinetics could be very 
influential on calibration results. This is why initialization step is a critical point to ensure 
a great kinetics calibration. 

Validation step is used to validate the calibration results previously obtained. A tol-
erance on the uncertainties obtained between calibration results and validation results 
must be determined before practicing validation step to ensure a robust correlation. This 
tolerance depends on the studied phenomenon. Future research should take into account 
this aspect when one designs the experimental variables and parameters to be determined. 
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The quality of modeling outcomes depends on the type of models used and the suit-
ability of the training data for the model calibration. It is highly possible that the modeling 
results are only valid for the conditions with which the models are fitted and calibrated. 
The outcomes from model extrapolation would be highly uncertain and unreliable, mak-
ing the modeling not ready for industrial ends. A big data volume and a good data repre-
sentability are of great significance for the quality of the model, especially for the ad-
vanced statistical models like neural network. 

4.1.4. Difficulty in Multiscale Modeling 
The multiscale modeling concerns more the theoretical models. On one hand, the 

mass transfer and biokinetics occur on microscopic scale. The thickness of biofilm is less 
than 200 µm [12]. The relevant modeling is accordingly designed on this level (in microm-
eters or millimeters). However, when simulating the biogas production of real-scale reac-
tors, usually in liters or in cubic meters, the microscopic model seems to be too small to 
take into consideration the heterogeneity of the digesting bulk [112,113]. Other models, 
like CFD [114–118], are usually based on real-scale modeling, suggesting the elements not 
going to the millimetric scale. The number of elements would be too many and the simu-
lation is practically not possible if the mesh of real scale simulation consists of microscopic 
scale mesh. On the other hand, the temporal scale is varying depending on models. The 
CFD could be on second-wise (if possible) but the biokinetics including mass transfer, 
substrates degradation and the microbial growth are in days. These spatial and temporal 
scale differences call for further studies on multiscale transition and coupling of different 
models. 

4.2. Lack in Knowledge of SSAD Reactors 
4.2.1. Evolution of Media 

Different from LSAD, SSAD media (bulk) are closer to the properties of solid and can 
be characterized by the parameters like size, density, apparent and bulk density, permea-
bility and porosity. Theses parameters change as anaerobic digestion pursues [59,119]. 
This characteristic makes the development of mathematical models even more difficult 
since the parameters normally considered constant can no longer be put outside of the 
derivative terms, but turn to be a function of time (or other variables). In the reality of 
SSAD, the modification of media porosity and structural strength may give rise to the 
collapse of solid bulk, which is interpreted as the reduction in bulk height and volume. 
The consideration of these factors changes the simulation methods and amounts to the 
complexity to solve the model equations. The lack of this kind of information lead to the 
imprecision of SSAD models as compared to the reality. A more decent mathematical 
model including the physical evolution of the AD media should be elaborated. 

4.2.2. Biomass and Processes Characterization 
A good characterization of the biomass allows a better input feeding of the models. 

The biomass and substrate used in SSAD can be agricultural straw, animal manure and 
OFMSW. Each has its own characteristics. The normal methods like TS, VS, TOC, COD, 
BOD and TN are not sufficient. Their rheological properties (e.g., fluid types, viscosity) 
and the porous properties (e.g., permeability, porosity) have to be considered [59,120–
122]. As indicated in the previous section, the temporal evolution of these characteristics 
in anaerobic digestors should be considered as well. 

SSAD can be operated by many kinds of reactors like garage/container types, plug 
flow digestors. The operational mode is specific to each. For example, in a leach bed reac-
tor, the recirculation of liquid digestate is not continuous but at a frequency of several 
times per day. The CFD, mass transfer and biokinetic characteristics could be therefore 
altered. The immersion effect of liquid phase on the biogas production is not negligeable 
either [11]. How to mathematically translate these basic operational practices is of great 
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difficulty and can bring about a major challenge for the further development of the SSAD-
related technologies. All of these mentioned aspects require an interdisciplinary coopera-
tion of chemical engineering (for reactors and transfer phenomena), microbiology (for mi-
crobial activities), chemistry (for surface characterization) and mathematics (for model-
ing) to acquire sufficient knowledge about what is taking place in the reactors. The valor-
ization of modeling results for large-scale industrial application calls for an involvement 
of other disciplines like material science, mechanics and automatic control. The multidis-
ciplinarity of the topics needs to be further strengthened 

5. Conclusions 
The SSAD is of great potential for the possibility to construct and operate a low-cost 

biogas plant. The relevant processes involve a multiple of evolving chemical and physical 
that are not crucial to conventional LSAD processes. The modeling of SSAD reactors could 
be realized either by theoretical or statistical approaches. Both have been studied to certain 
extent but are still not sound. For theoretical modeling of a real solid digester, hydrody-
namics, mass transfer and biokinetics have to be taken into account, which requires robust 
mathematical interpretations and calls for efficient algorithms realizing the complex sim-
ulations. A better follow-up of biomass characteristics would be a good help to under-
stand what is occurring during anaerobic digestion. However, it would be very difficult 
to find a good characterization technique allowing the understanding of the biomass evo-
lution during AD. The regression or advanced statistical approaches prove to be promis-
ing for the prediction and the control of SSAD reactors. They call for a much bigger data-
base of good quality and variety to train and validate the models. 

The specific modeling issues such as parameters identifiability, the multiscale mod-
eling, the sensibility analysis and the lack of knowledge in biomass itself are still to be 
further investigated. A stronger collaboration of multidisciplinary researches, such as 
chemical engineering, mathematics, information technology, surface chemistry, biochem-
istry, microbiology, material science, automatic control and mechanics, turns out to be 
necessary in order to help developing the numeric simulation tools for SSAD. 
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Nomenclature 
AD Anaerobic digestion 
ADM1 Anaerobic digestion model No. 1 
ANN Artificial neural network 
BMP Biochemical methane potential 
BOD Biological oxygen demand 
COD Chemical oxygen demand 
DM Dry matter 
EML Extreme machine leaning 
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EPS Extracellular polymeric substances 
GHG Greenhouse gas 
LSAD Liquid-state anaerobic digestion 
MIM Mobile-Immobile water model 
ODE Ordinary differential equation 
OFMSW Organic fraction of municipal solid waste 
OM Organic matter 
PDE Partial differential equation 
RF Random forest 
TAN Total ammonia 
TS Total solids 
TN Total nitrogen 
SRT Sludge retention time 
SSAD Solid-state anaerobic digestion 
UASB Upflow anaerobic sludge blanket 
VFA Volatile fatty acids 
VS Volatile solids 
WWTP Wastewater treatment plant 

Appendix A 
Appendix A.1. Detailed Biokinetics of Anaerobic Digestion and the Modeling 

The first biochemical process of anaerobic digestion is hydrolysis. During this stage, 
the macromolecules contained in the substrate (mainly lipids, proteins and carbohy-
drates) are hydrolyzed into water-soluble monomers and oligomers with the help of en-
zymes secreted by hydrolytic microorganisms [17–19]. Depending on the substrate 
treated, the monomers obtained can vary. This first step is often considered the limiting 
step in AD for lignocellulosic substrates [20–22]. Proteins are converted to amino acids 
[20], polypeptides and ammonium. Lipids are converted to long chain fatty acids and 
glycerol [20]. Carbohydrates of the cellulose and hemicellulose are converted to glucose, 
galactose and fructose monosaccharides [123]. Lignin is, to a very limited extent, hydro-
lysable to different aromatic compounds that can be used by some microorganisms, but it 
is considered almost non-biodegradable under anaerobic conditions [124]. The second 
stage of the anaerobic digestion process is acidogenesis. The bacteria responsible for this 
step are the acidogenic bacteria. During this step, the products of hydrolysis are trans-
formed into volatile fatty acids (VFA), alcohols (ethanol and propanol), carbon dioxide 
and partially into hydrogen. Several degradation pathways exist during this step, such as 
the degradation of monosaccharides [20]. The fatty acids produced in this step can be elec-
tron acceptors or donors [125]. Other compounds can be produced by the degradation of 
sugars such as lactate and alcohols when the pH becomes acidic. Bacteria responsible for 
acidogenesis are fast-growing bacteria compared to those responsible for the following 
stages. They tolerate relatively low pH levels to 5 and are less substrate selective than 
methanogenic microorganisms. The growth rate of these bacteria is 30 to 40 times faster 
than methanogens. These acids will then be transformed during the acetogenesis stage. 
The acetogenesis step is the third step and consists of acetate formation from the products 
of the previous two steps. Acetogenic bacteria are pH sensitive, strict anaerobes and slow 
growing compared to the other biochemical steps. During this step, the acids from acido-
genesis require electron acceptors, a role that hydrogen fulfills [20,125]. These reactions 
are thermodynamically unfavorable and can only occur at very low hydrogen partial pres-
sure and product concentration [20,126]. Hydrogen must therefore be consumed in order 
for the VFA degradation reaction to be thermodynamically possible. The final step in the 
anaerobic digestion process is methanogenesis. Two metabolic pathways are possible to 
produce methane: acetoclastic methanogenesis and hydrogenoclastic methanogenesis. 
Acetoclastic methanogenesis produces about 70% of the total methane [126]. Two meta-
bolic pathways exist depending on the archaea involved: during acetogenesis, some 
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microorganisms consume volatile fatty acids and produce H2, this is called homoaceto-
genesis. Other archaea consume carbon dioxide and hydrogen during methanogenesis: 
this is called hydrogenoclastic methanogenesis [20]. Hydrogenoclastic methanogenesis al-
lows the pressure in H2 to be reduced, and is therefore necessary for the proper realization 
of the AD process. This ensures that acetogenesis runs smoothly because, according to Le 
Chatelier's principle, too much hydrogen pressure slows or even stops the acetogenesis 
reaction, resulting in an accumulation of VFA and a risk of inhibition by acidosis. The 
microorganisms responsible for the methanogenesis stage are the archaea. They are mi-
croorganisms with metabolic characteristics and a membrane structure different from pro-
karyotic bacteria. Archaea are characterized by slow development and high sensitivity to 
pH. An ideal pH is between 6.5 and 8.5 for this step to avoid inhibition. All of these steps 
are schematically shown in Figure 2. 

The modeling of the anaerobic digestion phenomenon represents here the methods 
allowing representing the temporal and spatial evolution of the compounds intervening 
in the anaerobic digestion process. There are different methods of approach to model this 
process and the objective of this part is to describe the models used. The kinetics of these 
reactions can take several forms depending on the experimental assumptions made and 
the complexity of the model. The reaction kinetics most used in the literature are detailed 
in this section. 

Appendix A.2. First Order Kinetics 
This is the simplest kinetic to implement. It allows to represent the evolution of one 

or several substrates in a homogeneous medium from the following relation (Equation 
(A1)): 𝑣 = 𝜗 𝑑𝐶𝑑𝑡 = 𝜗𝑘 𝐶  (A1) 

with v (kg·m−3·s−1) the degradation rate of species i at concentration Ci (kg·m−3), bi is the 
partial order of the reaction with respect to species i, 𝜗 is the stoichiometric coefficient 
associated with species i, and k is a constant related to the reaction rate (s−1). In the case 
where only one consumed species is considered, solving the ordinary differential equation 
gives the form of the evolution of the concentration of species i as a function of time (Equa-
tion (A2)): 𝐶(𝑡) = 𝐶 𝑒  (A2) 

where C(t) (kg·m−3) is the concentration of the species considered, C0 (kg·m−3) the initial 
concentration of the species at time t = 0 s. In this case, the constant 1/k can be defined with 
respect to the reaction time to get 36.8% of C0. The concentration of species i is described 
here as an exponential decay. If we consider that the species under consideration is a sub-
strate degraded to methane, then this formula is applicable to anaerobic digestion: the 
production of methane is directly given by the following Equation (A3). 𝑉 = 𝜌𝑆 (1 − 𝑒 ) (A3) 

with VCH4 the cumulative volume of methane produced (m−3), S0 the initial organic matter 
concentration (kg·m−3) and 𝜌 the final yield. These simplified models are widely used for 
modeling the AD process, especially for quickly predicting methane production [127–
130], or for modeling the hydrolysis step. These are easy to implement models, possessing 
few kinetic parameters to determine. They are applied during biochemical methane po-
tential tests (BMP) to quickly determine the kinetics of methane production. However, 
these models do not consider the physics of bacterial degradation or other physicochem-
ical factors of the process. The models from the literature are summarized in Table A1. 
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Table A1. Existing empirical models for SSAD modeling. 

Kinetic Model Mathematical Expression References 
First order model 𝑉 = 𝜌𝑆 (1 − 𝑒 ) Dennehy et al. (2016) [128] 

Gompertz model 𝑉 = 𝑒 ,  Velázquez-Marti et al. (2019) [131] 

Dual pooled model 𝑉 = 𝑉 , 1 − 𝛼𝑒 − (1 − 𝛼)𝑒  Dennehy et al. (2016) [128] 
VCH4,𝑚𝑎𝑥 (m3) represents the potential for methane production, vmax represents the maximum rate of 
methane production (m3·s−1), and tlag represents the acclimation time (lag time) of the microorgan-
isms to biomass (s). However, some authors have shown that it is possible to refine the modeling of 
hydrolysis by considering the concentration of hydrolytic bacteria [132]. For the other biochemical 
stages of anaerobic digestion, it is emphasized in the literature that these stages are biological be-
cause they include metabolization pathways. It is therefore necessary to account for biological 
growth in the reaction kinetics. The first-order models do not consider the variation of the reaction 
kinetics with substrate saturation. It is therefore necessary to consider other models presented be-
low. 

During Hydrolysis step, microorganisms are not directly involved and therefore, 
first-order kinetics are suitable for modeling this step [20,133,134]. Extracellular enzymes 
are assumed to be in large excess of the hydrolysable substrate. The form that the hydrol-
ysis kinetics take is therefore order-1 (Equation (A4)): 𝑑𝑆𝑑𝑡 = −𝐾 𝑆 (A4) 

with the hydrolysable substrate concentration (kg·m−3) and 𝑘ℎ the hydrolysis constant (s−1). 
Thus, the hydrolysis rate depends only on the amount of remaining hydrolysable sub-
strate. Obviously, each substrate has a different hydrolysis constant. The hydrolysis con-
stants present in the literature are very variable, but are globally between 2 × 10−5 and 2.88 
d−1 [20,133,135]. More elaborate first-order models exist in the literature such as the Gom-
pertz model and the dual pooled first order kinetic model, allowing for more fine-grained 
modeling, especially for experiments with multiple substrates or high VFA content 
[128,136]. The Gompertz model is a model that considers the time of biomass acclimation 
and biomass growth rate [131]. It was designed to represent the evolution of the concen-
tration of microorganisms in a fermentation process and therefore can be used for all 
stages of the anaerobic digestion process. However, it is necessary to determine three con-
stants to use it and this model does not consider a maximum substrate degradation rate, 
unlike the Monod kinetics presented later. A comparison of these models showed that the 
use of the first-order kinetics for the hydrolysis step did not induce a too great loss of 
information compared to the other models, but may be inaccurate for the modeling of the 
degradation of some substrates [137]. 

Appendix A.3. Biokinetics Modeling without Inhibition 
Apart from hydrolysis, the biochemical steps of anaerobic digestion are metabolic 

processes in which substrates are consumed by microorganisms. These biokinetics are 
represented by three steps: consumption by the microorganisms, growth and decay (or 
bacterial death). The Monod model allows considering a growth rate of the biomass ac-
cording to the substrate concentration while considering the substrate as a limiting spe-
cies. The model is composed of a maximum growth rate and a saturation constant char-
acteristic of the microorganisms concerned, as shown in Equation (A5): 𝜇 = 𝜇 𝑆𝐾 + 𝑆 (A5) 

where µ represents the growth rate (kg·m−3·s−1), µmax (kg·m−3·s−1) represents the maximum 
growth rate, and Ks represents the half-saturation constant (kg·m−3·s−1). This is the model 
classically used for the different stages of the anaerobic digestion process when inhibition 
phenomena are not apparent. Applied to the whole process, this equation makes it 
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possible to describe all the degradations carried out by the microorganisms and to know 
the evolution of the concentration of substrates, microorganisms and products. There is 
also a model derived from Monod’s model and considering explicitly the concentration of 
biomass: the Contois model. The work of Carrera-Chapela et al. (2016) suggests it for the 
hydrolysis step [138] because it allows a better match to the experimental data, which is 
consistent because it has more parameters to be determined and leads to more flexibility 
but a more complete identification. Contois’ model is shown in Equation (A6) as follows: 𝜇 = 𝜇 𝑆𝐾 𝑋 + 𝑆 (A6) 

where X is the biomass concentration (kg·m−3) and KC is the Contois kinetic constant [139]. 

Appendix A.4. Biokinetics Modeling with Inhibition 
It is possible to refine the modeling of the various stages of the process by considering 

the inhibition phenomena. Three methods exist to consider these inhibitions: Monod type 
laws with adjustment of the kinetics, use of inhibition coefficients [125] and empirical 
laws. The inhibition coefficients are generally the method used, although some inhibitions 
are also studied with the other methods. We also distinguish three expressions of inhibi-
tion phenomena: competitive, non-competitive and incompetent inhibitions. For non-
competitive inhibitions, the substrate binding sites are distinct from those of the inhibitor. 
Thus, the inhibitors do not have a homologous structure with the substrate. This is the 
most commonly used inhibition to model the AD process [20] because it allows for easy 
consideration of several different inhibitions simultaneously by multiplying the reaction 
rate by dimensionless inhibition functions. For pH value-induced inhibitions, empirical 
functions are often used to account for inhibitions by too low and too high pH. For un-
competitive inhibitions, a complex is formed between the enzyme and the substrate and 
the inhibitor binds to this complex. Inhibition phenomena are generally considered in the 
methanogenesis step but some works have also considered these phenomena in the hy-
drolysis step [46]. The most common kinetic model with kinetic adjustment considering 
inhibitions is the Haldane model (Equation (A7)), which considers an inhibition term by 
the reactants: 𝜇 = 𝜇 𝑆𝐾 + 𝑆 + 𝑆𝐾  (A7) 

with KI the associated inhibition constant (kg·m−3). Different variants of this model exist 
such as the models of Andrews and Noak and Webb [131], allowing the inhibition phe-
nomenon to be considered by a slightly different mathematical expression. Inhibition phe-
nomena have also been introduced into first-order models such as the Aiba or Teissier 
models [131] by injecting an inhibition constant. 
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