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A posteriori error estimations and convergence criteria in FFT-based
computational homogenization

Renaud Ferrier∗, Cédric Bellis†

January 23, 2023

Abstract: A stopping criterion for FFT-based iterative schemes in computational homogenization
is proposed and investigated numerically. This criterion is based on the separate evaluation and
comparison of the discretization and iteration errors on the computed fields. Some estimators for these
errors are proposed and their performances are assessed on a set of 2D problems in the frameworks of
both the classical FFT-based methods and these that use a modified version of the featured Green’s
operator. In particular, two novel strategies for estimating the discretization error are investigated:
either using an image processing approach or transposing to the FFT-based setting the constitutive
relation error that is well-established in the context of the finite element method. It is then shown that
the resulting stopping criterion leads to a better control of the global error on the computed effective
property compared to the classical criterion based on the residual of the iterative scheme alone.

Key Words: Error estimators, Fast Fourier Transform, Image Processing, Filtering, Constitutive
Relation Error

1 Introduction

1.1 Context and motivations

Homogenization is commonly employed to model the macroscopic behavior of heterogeneous materials
so as to perform efficient numerical computations on extended domains or structures that are made
of different constituents at the microscopic scale. It revolves around the calculation or the numerical
computation of an equivalent effective homogeneous material from the knowledge of the geometry of
the microstructure and of the behavior of the different material phases. In the framework of periodic
homogenization, the computation of such an effective model can be achieved via the resolution of an
integral convolution equation commonly referred to as the periodic Lippmann-Schwinger equation.

In [20], it has been proposed to discretize the Lippmann-Schwinger equation in the space-based
Fourier domain and use a fixed-point algorithm to solve the resulting system in an efficient Fast Fourier
Transform (FFT)-based implementation. Since then, numerous variants of this approach have been
proposed, either by modifying the discretization method, see e.g. [34, 5, 30, 12], or by using more
efficient, i.e. faster, iterative algorithms, see e.g. [6, 36, 11].

Such variants of the FFT-based computational homogenization method amount in an iterative
approach associated with a Cartesian grid-based discretization of the Lippmann-Schwinger equation.
In this setting, the most commonly used indicator for quantifying the convergence of the solution is
the residual of the numerical scheme, which can be interpreted as an indicator of the iteration error.
If the question of the definition of this indicator has already been investigated in a number of studies,
see e.g. [2] and the references therein, the notion of discretization error estimation has seldom been
considered, see [21]. In this context, the present study aims at filling this gap, by proposing some
estimators of the discretization error and a framework to use them in conjonction with an iteration
error estimator in order to control the overall error on the computed fields or effective property.

The proposed procedure to estimate the discretization error is inspired by the ideas initially devel-
oped for the finite element method (FEM), see the monograph [14], as well as in the context of domain
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decomposition [24]. Noticeably, the influence of the discretization in a finite volume method and of
the incomplete resolution of the associated linear system has also been assessed in [10]. In the present
study, to obtain some estimations of the discretization error, we investigate two types of approaches,
which are classical for the FEM but still unexploited in the field of FFT-based computational ho-
mogenization. The first one draws from the so-called ZZ1 method [37] that can be assimilated, in
the setting associated with regular computational grids, to smoothing methods used in the field of
image processing, see also [19] in the present context. The second one is the so-called constitutive
relation error [13]. To the best of our knowledge, this topic has never been investigated yet, except in
a conference paper [4], and the present study constitutes a first step towards the formulation of robust
a posteriori error estimators for Fourier-based computational homogenization platforms. Note that,
the tools developed in the context of the FEM would also find a natural extension in this context if
FE discretizations on regular grids coupled with FFT solvers were used, as in [25, 16].

In the remaining of this section, the homogenization problem for the model conductivity equa-
tion is presented, along with the general idea of the proposed approach to distinguish between the
discretization and the iteration errors. In section 2, we present the numerical resolution method for
the Lippmann-Schwinger equation as well as the test-case geometries considered for the numerical
examples to come. Section 3 exposes the relationship between the residual of the discrete problem and
the iteration error, but highlights numerically that this residual is not sufficient to provide a reliable
indicator for the total error on the effective property. In section 4, three discretization error estimators
are introduced and assessed numerically. Finally, Section 5 focuses on the proposition and the numer-
ical evaluation of a stopping criterion based on the comparison between the estimated discretization
and iteration errors, in 2D conductivity and 3D elasticity as well.

1.2 Problem setting

Consider a periodic medium characterized by the representative unit cell Ω Ă Rd and a spatially-
varying isotropic conductivity field γ P L8perpΩq with γ ą 0. The latter constitutes a material parameter
prototypical of linear constitutive laws, and a placeholder for possible extensions of the present work
to anisotropic or elastic constituents. Our overall objective is to quantify the macroscopic behavior
of the medium considered, through the computation of the effective tensor γeff, which is the unique
tensor defining an effective energy Weffpeq “

1
2e ¨ γeff ¨ e for all e P Rd, which satisfies

Weffpeq “ min
e˚PE0

W pe` e˚q with W peq “
1
2
@

epxqγpxqepxq
D

, (1)

where epxq “ e` ẽpxq and using the averaging operator x¨y defined as

xfy “
1
|Ω|

ż

Ω
fpxqdx. (2)

In addition, we made use of the following functional space:

E0 “
 

e˚ P L2
perpΩq | Dw˚ P H1

perpΩq, e˚ “ ∇w˚
(

,

where L2
perpΩq is the subspace of tensor fields with components in L2

perpΩq. In general γeff is a
symmetric second-order tensor, i.e. it characterizes an anisotropic effective media. Yet, it can reduce
to an isotropic one provided that the microstructure exhibits some symmetries.

Given e P Rd and with ẽ being the minimizer of (1), the Euler-Lagrange equations for the energy
minimization problem (1) are equivalent to the following system of local equations:

$

’

&

’

%

epxq “ e` ẽpxq, ẽ “ ∇u, u periodic on BΩ,
jpxq “ γpxqepxq,

∇ ¨ jpxq “ 0, j ¨ n anti-periodic on BΩ,
(3)

with n being the unit outward normal on BΩ. Physically, e is the electric field with prescribed mean
value e and j is the electric current or flux. In addition, the periodic fluctuation ẽ is expressed as the
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gradient of a scalar potential u sought in H1
perpΩq, so that it satisfies the mean-free property xẽy “ 0.

We are interested in (1) as it is a prototypical problem in computational homogenization, which
has a broad range of applicability as in conductivity, considered here, as well as in elasticity and
electromagnetism [18]. The tensor γeff can be fully determined component-wise by solving Problem (3)
at most d times using some linearly independent loadings e and computing the scalar products of the
corresponding solutions. Therefore, to be used in the forthcoming analysis, considering α P L8perpΩq
with α ą 0 we introduce the associated energetic scalar product and norm as

pf1,f2qα “
@

f1pxq ¨ αpxqf2pxq
D

and }f}α “ pf ,fq
1{2
α , (4)

for all vectors f1,f2 P L
2
perpΩq. As a consequence of this definition, the quadratic energy functional

considered in (1) satisfies W pfq “ 1
2}f}

2
γ . Lastly, the standard scalar product and norm on L2

perpΩq
will be denoted as p¨, ¨q and } ¨ }, respectively.

1.3 Objectives

One considers approximating the solution ẽ to (1), or equivalently u to (3), based on (i) the intro-
duction of a subspace Eh0 Ă E0 constructed from a discretization of the domain using a grid size h,
suitable basis functions and an integration scheme, and (ii) a given iterative scheme whose iteration
number will be denoted by k, the combination of which yields an approximation ẽhk . In this context,
the overall objective of this study is to propose some convergence criteria for the effective property
γeff, which according to (1) amounts in quantifying the error δeff

k,h in the effective energy as

δeff
k,h

def
“

ˇ

ˇW pehkq ´W peq
ˇ

ˇ

1{2 with ehk “ e` ẽ
h
k , (5)

for a given e P Rd. Upon introducing the limit eh8 “ e ` ẽh8 of the iterative scheme considered
(provided that it converges), the error above will be related in the following to the total error δtot

k,h on
the fields, in the energetic norm, which satisfies

δtot
k,h

def
“ }ehk ´ e}γ ď }e

h
k ´ e

h
8}γ

looooomooooon

δhk

`}eh8 ´ e}γ
loooomoooon

δh

, (6)

where δhk is the iteration error expressed in terms of the converged discrete solution eh8 and δh is the
discretization error expressed in terms of the continuous (exact) solution to (1). Note that the above
errors and estimations are formulated using the continuous norm introduced in (4), an issue that we
will return to in the ensuing analysis.

As neither the effective property γeff nor the continuous solution are known a priori, the errors
introduced above are not accessible directly. Therefore, we aim at proposing some a posteriori es-
timations, denoted as ∆h

k and ∆h for the iteration and discretization errors respectively, which will
be readily accessible during computations. Moreover, we also intend to use these error estimators to
propose a stopping criterion for the iterative scheme.

Remark 1. In this study, we only consider the iteration and discretization errors, i.e. we do not
take into account a possible inaccurate representation of the geometry of the microstructure. In other
words, the discrete geometry is somehow considered to be the exact one in the ensuing analysis.

2 Solution methods

2.1 Green’s operator and linear equation

Considering a homogeneous comparison medium with conductivity γ0 ą 0, we introduce the associated
Green’s operator Γ0 on L2

perpΩq that is defined as

Γ0 : τ ÞÑ e˚ “ Γ0τ with e˚ P E0 and s “ pγ0e
˚ ´ τ q P S, (7)
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with the functional space S being given by

S “
 

s P L2
perpΩq | ∇ ¨ spxq “ 0, s ¨ n anti-periodic on BΩ

(

.

With a slight abuse of notation, we have S “ EK0 for the standard L2
per-scalar product [18, 3]. More-

over, it is known that Γ0γ0 is an orthogonal projector (self-adjoint) onto E0 for the energetic scalar
product p¨, ¨qγ0 . Therefore, for the standard inner product, Γ0γ0 is an oblique projector (non-self-
adjoint) onto E0 and it is straightforward to show [30] that its adjoint is γ0Γ0.

Now, the local problem (3) is equivalent to the following weak formulation: find u P H1
perpΩq such

that
apu, vq “ `pvq @v P H1

perpΩq, (8)

with a and ` being respectively the bilinear and linear forms defined on H1
perpΩq as:

apu, vq “

ż

Ω
γ∇u ¨∇v dx and `pvq “ ´

ż

Ω
γ e ¨∇v dx.

The identity (8) is equivalent to
`

γpe` ẽq, e˚
˘

“ 0 @e˚ “ ∇v P E0, (9)

so that j “ γpe ` ẽq belongs to the subspace orthogonal to E0 “ ImpΓ0γ0q for the standard L2
per-

scalar product. Therefore, owing to the properties of the adjoint operator, one has j P ImpΓ0γ0q
K “

Kerpγ0Γ0q, which according to the above entails Γ0j “ 0. The latter identity can finally be recast as
the following linear equation for ẽ P E0:

Aẽ “ b, with A “ Γ0γ : E0 Ñ E0 and b “ ´Γ0γe P E0. (10)

Note that this equation can equivalently be obtained from the first-order optimality condition for the
minimization problem (1) by recognizing that the gradient of W in E0 endowed with the energetic
scalar product p¨, ¨qγ0 writes as ∇W pe˚q “ Γ0γpe` e

˚q [11, 3].

Finally, in the periodic setting considered, the Green’s operator (7) can be expressed in closed-form
using the Fourier transform F , see Appendix A, as

Γ0τ pxq “ F´1
”

Γ̂0pξq ¨F rτ spξq
ı

pxq @x P Ω, (11)

with the symmetric second-order tensor Γ̂0pξq being defined in the Fourier space by

Γ̂0p0q “ 0 and Γ̂0pξq “
ξ b ξ

γ0|ξ|2
@ξ P R˚zt0u. (12)

2.2 Discretization and numerical methods

2.2.1 Discrete problem

To transpose the continuous linear problem (10) into a discrete setting, we consider a regular grid of
size h, with the corresponding set of interpolation points being txiu where i a multi-index in dimension
d, and the approximation subspace T h Ă L2

perpΩq being generated by the trigonometric polynomials
associated with the Discrete Fourier Transform (DFT) on the grid considered. Correspondingly,
consider the discrete subspace Eh0 “ E0 X T h of mean-free gradient fields, relatively to the discrete
version x¨yh of the averaging operator (2) defined as

xfyh “
ÿ

i

hdfpxiq, (13)
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a quadrature scheme that coincides with the trapezoidal rule [2]. The definition (13) also yields a
discrete version p¨, ¨qh,α of the scalar product (4), as

pf1,f2qh,α “
ÿ

i

hdf1pxiq ¨ αpxiqf2pxiq

whose associated norm } ¨ }h,α defines the discrete energy functional

Whpfq “
1
2}f}

2
h,γ . (14)

Remark 2. In the ensuing analysis, we will have to deal with the continuous norms of some discrete
fields. To do so, given a discrete field, say fh in a discrete subspace such as T h, then in the evaluation
of its continuous norm } ¨ }α we consider that fh is extended as a piecewise-constant field on each
element or pixel of the grid considered. By doing so it holds

}fh}α “ }f
h}h,α.

This convention will allow us to evaluate quantities such as }fh ´ f}α, where f is a continuous field.
Note that we do not interpolate fh in the associated basis of continuous functions, which in the case of
the Fourier interpolation would give continuous fields oscillating between sampling points that would
in turn yield an artificially high value of }fh ´ f}α.

In addition, a DFT-based version Γh0 of the Green’s operator in (10) is commonly defined by the
straightforward transposition of (11–12) to the DFT setting. Let us underline that it has also been
proposed [32, 5, 34, 33, 26] to modify the definition of the discrete Green’s operator Γh0 by making use
of staggered grids or introducing in (12) a filtering of the set of discrete spatial frequencies tξiu. The
latter strategy is equivalent to approximating the continuous problem (3) using a finite-differences
scheme, whose degree of approximation can be directly related to the chosen frequency filter [7]. In
the present study, the considered modification of the Green’s operator corresponds to the first degree
central finite-differences scheme.

In this setting, one considers the corresponding discrete counterpart of the weak formulation (9)
with the inexact integration scheme (13), which leads to the following equation for the sought discrete
solution ẽh P Eh0 :

`

γhpe` ẽhq, e˚h
˘

h
“ 0 @e˚h P Eh0 , (15)

where γh denotes the constitutive conductivity field evaluated at the DFT interpolation points, i.e.
γh “ tγpxiqu.

Remark 3. As a consequence, the discrete conductivity γh is considered to be equal to the exact one
γ at all the discretization points.

Now, the equation (15) implies that jh “ γhpe ` ẽhq belongs to the orthogonal subspace of Eh0
for the (standard) discrete scalar product on T h. Upon noting that the Helmholtz decomposition of
L2

perpΩq (as the direct sum of the mutually orthogonal subspaces of uniform, mean-free gradient and
mean-free divergence-free fields) can be prolonged to T h, it has been shown [28, 30] that Γh0γ0 defines
a projector onto Eh0 . Again, this operator is non-orthogonal for the standard scalar product while it is
self-adjoint for the induced energetic one p¨, ¨qh,γ0 . Therefore, (15) leads to the following linear system:

Ahẽh “ bh, with Ah “ Γh0γh : Eh0 Ñ Eh0 and bh “ ´Γh0γhe P Eh0 . (16)

This is the system under investigation and it should be noted that it will be handled as is, even if a
modified version of the Green’s operator is used.

Remark 4. In the computational treatment of composite materials, it can be expected that the geometry
of the microstructure cannot be represented exactly on a regular grid. The associated error on the
geometry is not explicitly taken into account in this study. However, this error appears implicitly in the
difference between the continuous and discrete integral forms, such as

`

¨, ¨
˘

γ
and

`

¨, ¨
˘

h,γ
respectively.
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2.2.2 Iterative schemes

To solve the linear system (16) numerically, we intend to use an iterative scheme that will yield an
approximation ẽhk “ ∇uhk of the discrete solution ẽh at a given iterate k. Provided that the scheme
considered converges, we formally get

ẽhk Ñ
k8
ẽh8 ” ẽ

h. (17)

Here, two of the main approaches used in practice are adopted, namely a fixed-point scheme and
the conjugate gradient method:

(i) Owing to the orthogonal decomposition of the discrete approximation space T h and using again
the interpretation of Γh0γ0 as a projector, we have Γh0γ0pe` ẽ

hq “ ẽh so that (16) can be recast
as

pI ` Γh0δγhqeh “ e, with eh “ e` ẽh

and where δγh “ γh´γ0. The equation above is a Lippmann-Schwinger integral equation for the
total field eh, which can be inverted through a Neumann series expansion. This coincides with
the fixed-point algorithm originally proposed [20]. The corresponding results shown hereafter
will be labeled as FP or FPm provided that the Green’s operator is used in its original or a
modified version (as described in Section 2.2.1), respectively.

(ii) Alternatively, the linear system (16) can be solved using a conjugate gradient solver [36]. Note
that, in general, care must be taken to use an energetic scalar product for which the operator
Ah to be inverted is symmetric. Note that in the case of isotropic conductivity considered here
some simplifications occurs. Accordingly, for any discrete field ěh P Eh0 , one introduces the
corresponding residual:

řhpěhq “ Ahěh ´ bh, (18)

which is minimized in a norm weighted by pAhq´1. Indeed, the quadratic minimization problem
associated with the linear system (16) satisfies

ẽh “ arg min
ěhPEh

0

´

1
2pě

h,Ahěhqh ´ pě
h, bhqh

¯

“ arg min
ěhPEh

0

}řhpěhq}2h,pAhq´1 .

The associated results below will be labelled as CG or CGm depending on the version (original
or modified) of the Green’s operator employed.

Remark 5. In both approaches, the computed iterates ẽhk are compatible fields in the sense of the
Fourier-based discretization considered, i.e. ẽhk P Eh0 “ E0 X T h, with E0 being the subspace of mean-
free gradient fields and T h the approximation subspace generated by trigonometric polynomials. The
schemes are initialized by setting ẽh0 “ 0.

2.3 Test-cases

In this study, two distinct piecewise-homogeneous 2D material distributions are considered to illustrate
the proposed approaches, see Figure 1. Different conductivity ratio ρ will be considered, with the
definition ρ “ γi{γm where γi is the conductivity of the inclusion (or the set thereof) in red and γm
this of of the matrix phase in blue.

The first geometry presents a regular pattern of square inclusions, with a surface fraction of 1{4,
see Fig. 1a. In [22], the corresponding effective conductivity has been calculated analytically, which
allows a reliable computation of the corresponding error by (5). The effective conductivity γsquare

eff is
found to be isotropic and writes as

γsquare
eff “ γm

c

γm ` 3γi
3γm ` γi

.

This test-case presents the further advantage that the discretized geometry conforms strictly to the
exact geometry. In addition, the continuous solution of the conductivity problem exhibits integrable

6



(a) Square inclusion. (b) Random circular inclusions.

Figure 1: Geometries defining the test-cases considered.

singularities at the corners [22], which poses some difficulties in the computation of an approximation.
Such singularities are typical of geometries with corners, which makes this problem interesting in the
study of errors estimators.

The second geometry consists in a random pattern of circular inclusions, see Fig. 1b. The inclu-
sions have a random radius satisfying 0.14 ď r ď 0.15, the minimal distance between two inclusions
is 0.01, and the phase fraction of the inclusions is equal to 1{4. The geometry in this case is not
exactly rendered by the discretization, but the solution is regular (provided, as it is ensured here, a
minimal exclusion distance is imposed between two inclusions). A reference numerical solution for
this problem is computed using the finite element method on a mesh with P1 triangular elements and
approximately 28 nodes on one side of the unit square. The mesh has 88337 nodes in total. The
associated conductivity will be considered as the reference value.

To refer to the different configurations, we adopt a compact notation that indicates, in that order:
the shape of the geometry (squ or cir), the phase ratio ρ, the number of pixels, and the solver used.
For example, a computation labeled [squ;rho=1E3;npix=2**6;FP] is done on the square inclusion
case, with a conductivity ratio equal to 103, a discretization of 26 ˆ 26 pixels, and the fixed point
method applied to the non-modified operator.

Finally, while the computation of the complete anisotropic effective conductivity γeff requires to
solve Problem (3) twice with e describing an orthonormal basis of R2, in the numerical experiments
shown hereafter, only the loading e “ p1, 0q is considered. Accordingly, Figure 2 presents the maps
of the components of the field ẽhk “ ∇uhk computed for the two test-cases considered and obtained at
convergence with the CG variant of the FFT-based method on a discretization of 210 ˆ 210 pixels.

(a) [squ;rho=1E1;npix=2**10;CG] (b) [cir;rho=1E1;npix=2**10;CG]

Figure 2: Components of the numerical solution ẽhk “ ∇uhk for the two geometries considered and
e “ p1, 0q.
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3 Towards a convergence criterion

3.1 Estimation of the iteration error

3.1.1 Relationship between the residual and the iteration error

As announced, since the converged solution ẽh8 is not accessible a priori, an estimator ∆h
k of the exact

iteration error δhk is needed. In the case of a gradient descent algorithm, such as the conjugate gradient
(CG) considered here, it makes sense to directly use a norm of the residual rhk in (18) as a measure of
convergence. Here, we consider the following energetic norm:

∆h
k “ }r

h
k}h,γ “ }Γh0γhpe` ẽhkq}h,γ . (19)

This proposition is slightly different from the one in [3], where the norm }rhk}h,γ0 “ }∇Whpẽ
h
kq}h,γ0

is considered, with the featured gradient of Wh being computed in the approximation subspace Eh0
endowed with the energetic scalar product p¨, ¨qh,γ0 . Yet, it should be noted that, provided that
min γh ď γ0 ď max γh as it will be ensured later on, then the different energetic norms considered are
equivalent as it holds

min γh

γ0
}f}2h,γ0 ď }f}

2
h,γ ď

max γh

γ0
}f}2h,γ0 .

Here, (19) is introduced to be consistent with the approximation of the discretization error in Section 4,
and we generalize its use to all of the numerical schemes considered in the present study.

Considering the definitions (18) of the residual rhk and (17) of the discrete solution ẽh obtained at
convergence when k Ñ8, it holds

rhk “ Γh0γhpẽhk ´ ẽhq “ Ahpẽhk ´ ẽ
hq.

Now, the featured discrete operator Ah is symmetric, and hence diagonalizable, in the energetic norm
p¨, ¨qh,γ . Indeed, for all f1,f2, it holds

pAhf1,f2qh,γ “ pΓh0γhf1, γ
hf2qh “ pγ

hf1,Γh0γhf2qh “ pf1,A
hf2qh,γ ,

where the second equality makes use of the reciprocity identity satisfied by Γh0 [3, Lemma 3]. As a
consequence, upon introducing the lowest and largest eigenvalues of Ah, denoted as λmin and λmax
respectively, one gets

λmin}ẽ
h
k ´ ẽ

h}h,γ ď }A
hpẽhk ´ ẽ

hq}h,γ ď λmax}ẽ
h
k ´ ẽ

h}h,γ ,

which, owing to (19) and Remark 2, can be rewritten as

λminδ
h
k ď ∆h

k ď λmaxδ
h
k .

Finally, as is well known [17], the eigenvalues considered are bounded as

min γh

γ0
ď λmin and λmax ď

max γh

γ0
, (20)

and, a common choice for the reference medium that ensures convergence of the fixed-point scheme
described in Section 2.2.2 is γ0 “

1
2pmin γh ` max γhq. Therefore, upon introducing the contrast

c “ max γh{min γh ě 1 then one arrives at the following bounds:

2
1` cδ

h
k ď ∆h

k ď
2c

1` cδ
h
k . (21)

As a consequence, for very large contrasts then the estimated iteration error ∆h
k can only be bounded

as
0 ď ∆h

k ď 2δhk when c " 1,

whereas, conversely, for very small contrasts one has

∆h
k „ δhk when c „ 1.
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3.1.2 Numerical examples

In this section, we consider the case of random circular inclusions, for different values of the con-
ductivity ratio, and a spacial discretization of 26 ˆ 26 pixels. We illustrate numerically the obtained
estimates (21) by considering the scaled ratio p1` cq∆h

k{δ
h
k .

This quantity is plotted against iterations k in Figure 3, for the different schemes considered and
for various contrasts with ρ “ c. Note that the contrast is inverted in the case of voids with the
conductivity ratio between phases being set in this particular case as ρ “ 10´6 “ c´1. To help
distinguish between the different cases considered, the multiplying factor p1` cq has been introduced
in the representation of the ratio ∆h

k{δ
h
k . On the downside, this choice artificially and excessively

amplifies the relative variations of these quantities. In addition, both axes are in log-scale. Owing to
(21), the lower bound is 2 independently of the contrast while the upper bound is equal to 2c. Yet,
on most of the numerical examples reported in Fig. 3 one observes that the quantity p1 ` cq∆h

k{δ
h
k

considered is about of the order of the contrast, i.e. the error ratio satisfies ∆h
k{δ

h
k “ Op1q. Note that

deviations from this behavior can be observed in some high-contrast cases. In addition, an asymptotic
regime is met in all cases, i.e. the residual ∆h

k stabilizes around a value proportional to the exact
iteration error δhk , typically in a few dozen iterations, as will be considered in the ensuing numerical
experiments.

Clearly, the residual ∆h
k is a reliable estimate of the exact iteration error δhk when the contrast is

low. This appears to also hold in the high contrast cases in examples considered, with the residual
and error being of the same order of magnitude despite the loose bound (21). The residual will
consequently be used as an estimate of the iteration error in the remainder of this article.
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Iteration k

Figure 3: Ratio of the residual ∆h
k by the exact iteration error δhk , scaled by the contrast, in the

random circular inclusions case for various contrasts and for the different schemes considered. The
green line indicates the lower bound equal to 2 and the red lines corresponds to the upper bound 2c
in (21).

In Equation (21), the lower bound for ∆h
k would be attained if the residual pẽhk ´ ẽhq were only

spanned by the eigenvectors of Ah associated with its lowest eigenvalue λmin. In order to visualize the
projection of this residual onto the eigenvectors of Ah, we build the matrix M that represents Ah in
an energy-orthogonal basis ttiui“1,...,N of Eh0 “ E0 X T h, i.e. we have:

$

&

%

pti, tjqh,γ “ δij

Mij “

´

ti,A
htj

¯

h,γ

@i, j P t1, . . . , Nu.
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In this setting, we display on Figure 4 the numerically-computed eigenvalues λi of M in the case of
a conductivity ratio ρ “ 103. The vector χ is superposed on the same figure; it corresponds to the
decomposition on the eigenbasis considered of the residual pẽh30´ ẽ

hq at the 30th fixed-point iteration,
i.e. for all i “ 1, . . . , n we have

χi “
n
ÿ

j“1
Uji

´

tj , ẽ
h
30 ´ ẽ

h
¯

h,γ
with

#

UTMU “ Λ,
UTU “ I.

where I is the identity matrix and Λ “ diag pλiqi“1,...,n. This is illustrated on Figure 4 for the
fixed-point method using the standard or the modified operator, FP and FPm respectively. One can

<latexit sha1_base64="ertp5uww1YAWXfyJvhWeFE12gEg="></latexit> �
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(b) [cir;rho=1E3;npix=2**6;FPm]

Figure 4: Decomposition of the residual pẽh30 ´ ẽ
hq at the 30th fixed-point iteration on the discrete

eigenvectors of Ah.

observe a behavior that has already been highlighted [2]: there are two massively multiple eigenvalues
(corresponding the bounds (20) and associated to the two distinct values of the local conductivity γ),
that fill the majority of the spectrum, and on which the projection of the residual, and in fact of the
solution itself, is zero. Rather, the solution can be decomposed on a smaller number of eigenvectors
corresponding to intermediate eigenvalues. For both the non-modified and the modified operator,
the overall contribution of each term χi to the residual are rather equally distributed among these
eigenvalues. Accordingly, the ratio ∆h

k{δ
h
k is expected to be weighted in between λmin and λmax.

3.2 Examples of convergence behaviors in terms of error and residual

3.2.1 Error on the energy

Now that we have assessed the use of the residual ∆h
k in (19) as a reliable indicator of the iteration

error, one investigates numerically here its correlation with the error δeff
k,h in the effective energy (5)

or with the total error δtot
k,h on the fields (6). It should be noted that the theoretical errors in (5)

and (6) are defined relatively to the continuous energetic norm } ¨ }γ . In this context, since ẽ P E0
is the solution of the weak formulation (9) of the problem, and introducing the solution ẽh‹ to (9)
in the approximation subspace Eh0 Ă E0 and with exact integration, we have the following Galerkin
orthogonality relations:

`

γpe` ẽq, ẽ
˘

“ 0 and
`

γpe` ẽq, ẽh‹
˘

“ 0, (22)

which could formally be rewritten using the energetic scalar product p¨, ¨qγ . Moreover, considering the
following identity

}ẽ´ ẽh‹}
2
γ “ }e` ẽ}

2
γ ` }e` ẽ

h
‹}

2
γ ´ 2pe` ẽ, e` ẽh‹qγ ,

then the last right-hand side term simplifies as pe` ẽ, e` ẽh‹qγ “ }e` ẽ}2γ according to (22). Therefore,
we finally get:

1
2}ẽ´ ẽ

h
‹}

2
γ “W peh‹q ´W pe

hq ě 0, (23)

10



0 10 20 30 40 50
10´10

10´8

10´6

10´4

10´2

100

Iteration k

R
es

id
ua

l
[cir;rho=1E1;npix=2**6;FP]

[cir;rho=1E1;npix=2**6;FPm]

[cir;rho=1E1;npix=2**6;CG]

[cir;rho=1E1;npix=2**6;CGm]

(a) Residual ∆h
k and threshold at 10´5 (black dashed

line)

0 10 20 30 40 50
10´0.6

10´0.4

10´0.2

Iteration k

Er
ro

r

[cir;rho=1E1;npix=2**6;FP]

[cir;rho=1E1;npix=2**6;FPm]

[cir;rho=1E1;npix=2**6;CG]

[cir;rho=1E1;npix=2**6;CGm]

(b) Error deff
k,h

Figure 5: Residual and error for the four methods considered.

where we defined eh‹ “ e` ẽh‹ and used that W peh‹q “ 1
2}e` ẽ

h
‹}

2
γ and W pehq “ 1

2}e` ẽ
h}2γ . In other

words, the square error on the fields in energetic norm is equal to the error on the energy. Note that
this result has already been discussed extensively [28, 30, 31, 29], in particular to construct guaranteed
numerical bounds on the effective properties, but the argument is reproduced here for the reader’s
convenience.

Noticeably, the above developments are relative to the solution ẽh‹ that satisfies the weak for-
mulation (9) in the approximation subspace Eh0 and with the integration being performed exactly,
which is a crucial argument in the previous developments. The approximate solution ẽh P Eh0 we deal
with however, is solution of the weak formulation (15) where the integration is performed numerically
according to the inexact trapezoidal rule (13). As a consequence, an inequality such as (23) is not
guaranteed anymore for the numerical solution ẽh considered, so that according to (14):

the inequality Whpe
hq ěW peq cannot be ensured. (24)

Note that in the previous expression, the discrete and exact solutions are each associated with the
corresponding definition of the energy. Owing to (24), the effective property estimated using the
numerical schemes considered can become smaller than the exact one along iterations, which has
already been observed in numerous studies. The impact on the development of error estimators is the
impossibility to guarantee strict bounds in such a setting, as discussed later on.

In addition, we show in the remainder of this section that the iteration error estimate ∆h
k is not

sufficient in itself and that a reliable discretization error estimate is also needed. To illustrate this and
based on (24), we consider next a numerically consistent version deff

k,h of δeff
k,h in (5) as

deff
k,h “

ˇ

ˇWhpe
h
kq ´W peq

ˇ

ˇ

1{2
. (25)

Therefore, the convergence of the four variants of the iterative FFT-based homogenization method
are investigated numerically next on the set of test-cases considered and with the reference energy
term W peq in (25) being either known analytically or computed using the finite elements method on
a reference fine grid, see Section 2.3.

3.2.2 Numerical examples

Let us first consider a discretization of 26 ˆ 26 pixels and a conductivity ratio ρ “ 10. The error and
residual convergence history for the random circular inclusions case are displayed on Figure 5. One
observes that, for such a moderate contrast, the modified Green operator leads to a slightly faster
convergence of the residual ∆h

k , but to a higher asymptotic error deff
k,h. This was already noticed in
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[21]. As expected, the Conjugate Gradient, when associated with the modified operator or not, leads
to a faster convergence, a fact that does not affect in the end the asymptotic error compared to the
fixed-point scheme. This last result is due to the fact that the underlying discrete linear problem, and
thus its solution, does not depend on the resolution method. With these results at hand, one considers
the convergence criterion ∆h

k ď 10´β∆h
0 , with β “ 5 being chosen here as a typical value, and report

the iteration number and the error reached when the threshold is met. These values are then reported
on Figure 6. The same is done for the four schemes considered, on the two test-cases as well as for a
high conductivity ratio ρ “ 103.

At all points displayed on the plot, the residual ∆h
k is the same (except for the non-converged

points). However, the error deff
k,h is different for each of them. This shows that the accuracy of the

current iterate cannot be deduced from the residual alone.
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Figure 6: Error deff
k,h on the energy vs iteration number when the criterion ∆h

k ď 10´5∆h
0 is met, for

the different schemes and test cases considered.

Remark 6. One finds here a result compatible with what was obtained in [34] with a slightly different
modification. The convergence of the residual is much faster when using the modified operator. The
asymptotic error is better with the modified operator in the case of circular inclusions and high contrast,
and worse in the square inclusion cases. This can be explained because the modification tends to filter
out the singularities, which is favorable in the circular case, and not in the square case.

3.3 Principle of a stopping criterion

Based on the previous discussion, we now expose the principle of a stopping criterion that would be
based on estimations of both the iteration and the convergence errors. Considering (6), the triangle
inequality entails δh ´ δhk ď δtot

k,h ď δhk ` δ
h, which in turn implies:

|δtot
k,h ´ δ

h| ď δhk . (26)

As a consequence, if the iteration error δhk becomes much smaller than the discretization error δh then
the total error δtot

k,h cannot be expected to decrease noticeably any more. The bound (26) actually
traduces our implicit assumption that, since the numerical schemes considered are expected to con-
verge, the total error would tend to be mostly governed by the discretization error. This invites us
to consider a stopping criterion relying on a comparison of δhk and δh (or rather their estimations ∆h

k

and ∆h). Note that a similar idea has been used in the context of domain decomposition [24] .
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Let us introduce a parameter β ą 0 such that the iterations are to be stopped when

δhk ď 10´βδh. (27)

Let us now suppose that the error estimators ∆h
k and ∆h are such that there exist some positive

parameters mh
d, Mh

d , mh
i and Mh

i such that the following bounds hold:

mh
i ∆h

k ď δhk ďMh
i ∆h

k and mh
d∆h ď δh ďMh

d ∆h.

Note that, owing to (21), one could choose mh
i “ p1 ` cq{2c and Mh

i “ p1 ` cq{2. In this context, a
sufficient condition ensuring (27) writes as the following uniform bound on k:

Mh
i ∆h

k ď 10´βmh
d∆h,

which readily provides a convergence criterion that will be discussed and illustrated numerically in
Section 5.

4 Estimation of the discretization error

4.1 Preliminaries

At convergence when k Ñ 8 the obtained solution ẽh “ ∇uh, see (17), satisfies the discrete weak
formulation (15) and our objective is now to compute an estimation ∆h to the corresponding dis-
cretization error δh in (6) relatively to the exact solution ẽ “ ∇u. As δh involves both a discrete
quantity and a continuous one, the evaluation of the featured continuous norm has to be consistent.
As already discussed in Remark 2, computing this norm from the interpolation of ẽh as a continuous
Fourier series would yield an exaggeratedly high error due to the spurious oscillations of the former
between sampling points. Therefore, we consider a piecewise-constant extension of the sampled version
of ẽh when appropriate, while keeping the same notation for simplicity.

The discretization error estimators developed in this section are inspired by methods that have
proven their reliability in the framework of the Finite Element (FE) method. In this context and
focusing on 2D problems without loss of generality, the cornerstone of the proposed approach is
the interpretation of the DFT grid as a periodic and structured mesh of square Q1-Lagrange finite
elements with reduced integration [9], i.e. elements having 4 nodes and 1 Gauss point at the center,
see Figure 7a. In addition, we consider that the DFT interpolation points are at the centre of the
pixels, which is only a display convention (note for example that it is not the one used by default
in Matlab), and we identify these interpolation points as the Gauss points of the periodic FE mesh.
The nodes of the FE mesh are thus at the corners of the pixels. This will allow a relatively simple
transport of the discrete flux jh “ γhpe` ẽhq computed at the Gauss points, and piecewise-constant
over each Q1 element, to a FE version jh available at the nodes.

For a given Gauss point g, we consider the surrounding element Eg whose associated set of nodes
is defined as N pEgq “ tngj , j “ 1, . . . , 4u, see Fig. 7b. A point a “ pa1, a2q in the square reference
unit element of Fig. 7a is mapped to a point x P Eg using translations and dilatations of the former as

xpaq “
4
ÿ

k“1
Nkpaqx

g
k with

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

N1paq “
1
4p1´ a1qp1´ a2q

N2paq “
1
4p1` a1qp1´ a2q

N3paq “
1
4p1` a1qp1` a2q

N4paq “
1
4p1´ a1qp1` a2q,

(28)

with the bilinear shape functions Nk in (28) being also used to define an isoparametric FE interpolation
of a vectorial field fh at a point x “ xpaq P Eg as

fhpxq “
4
ÿ

k“1
Nkpaqfhpxgkq. (29)
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(b) FE mesh and DFT grid

Figure 7: Nodes of the FE mesh (blue diamonds) and interpolation points of the DFT grid (red dots).
A given DFT interpolation point g at the center of a pixel is seen as the FE Gauss point of the element
Eg that coincides geometrically with that pixel.

For further use, for each node n we define the surrounding patch Pn as the set of 4 elements that share
this node. The set of Gauss points that belong to this patch is given by G pPnq “ tgjn, j “ 1, . . . , 4u,
see Fig. 7b. Moreover, for each Gauss point g, we also define Ag as the set of 9 adjacent elements (in
2D) that share at least one node with Eg (including Eg itself). Finally, the set of Gauss points that
belong to these elements are denoted by G pAgq.

The common idea for the three proposed error estimation approaches is that from the available
flux jh, that results from a Fourier-based computation of the solution to the discrete problem (16),
one constructs a suitably modified flux jh˚ and use the energetic distance ∆h “ }jh ´ jh˚}h,γ´1 as an
estimation of the discretization error δh. In all approaches we will make use of an intermediate FE
flux quantity jh computed at the nodes following some principles that are described below. Note that
the justification that makes the field jh˚ relevant is not the same for the third method and the two
others.

Remark 7. For the methods described hereafter, it has been chosen to construct the modified flux
jh˚ at a given Gauss point from the values of jh at the nearest neighbors only. In some cases, for
example for highly refined discretizations, this window can be made larger and the proposed methods
be easily extended to such configurations. Note also that periodicity must be taken into account for the
computational treatment involving the Gauss points of the pixels at the boundary of the image.

Remark 8. The mean and median filters are commonly used in image processing. These two error
estimators can be interpreted as follows: each component of the field jh is considered as a noisy image
(due to the non-physical oscillations), and this image is smoothed out to obtain jh˚ . Note that an
image-filtering based approach has also been proposed in [19] to improve FFT-based computations in
homogenization.

4.2 Weighted mean filter

In this method, we aim at constructing a modified flux jh˚ that is aimed at being closer to the exact
solution j “ γpe` ẽq in an appropriate norm. As the Fourier-based discrete solution jh may typically
exhibit unphysical oscillations, often seen as aliasing effects or Gibbs phenomena (see for example
Fig. 13), we propose here to construct jh˚ as a smooth version of jh. To do so, we draw from the
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rather simple but seminal approach proposed in [37], where an improved version of the flux jh˚ is
computed by a nodal averaging process based on the FE shape functions (28–29).

<latexit sha1_base64="IzqmfRzguO2QdU40oJdYNxwi4Ow="></latexit>

Optimal plane

(a) Patch Pn for node n and interpolation of the
flux from the associated Gauss points based on
the introduction of an optimal fitting plane.

(b) Weights αg,g1 associated with the adjacent
elements Ag surrounding a given Gauss point g.

Figure 8: Weighted mean filter process.

This method has two steps. The first one consists in computing jhpnq for each FE node n from
the field values at the neighboring Gauss points, i.e. jhpgjnq for gjn P G pPnq. In order to do this, we
define jhpnq as a point on an optimal hyper-surface that minimizes the least-squares distances to the
values at the chosen Gauss points. Here, this hyper-surface is simply defined as a plane, see Fig. 8a,
which amounts to use the interpolating bilinear Lagrange polynomials (28) with the reference square
element mapped to the Gauss points gjn P G pPnq. This polynomial is then evaluated at n, the central
point, so that we get

jhpnq “ 1
4

ÿ

gj
nPGpPnq

jhpgjnq. (30)

In the second step, the obtained values are then transported from the nodes back to the Gauss points
by evaluation of the shape functions (28). Once again, the use of square elements implies that, for
each element Eg the interpolated values at the central Gauss point g is the mean among the four nodal
values, i.e.

jh˚pgq “
1
4

ÿ

ng
jPN pEg1 q

jhpngj q. (31)

All in all, combining (30) and (31), leads to a resulting smoothed field computed at a given g from a
weighted mean over the values at the Gauss points g1 of the adjacent elements, see Fig. 8b, as

jh˚pgq “
ÿ

g1PGpAgq

αg,g1j
hpg1q (32)

where for any two Gauss point g, g1, we denote by µg,g1 the number of nodes shared by Eg and Eg1
and define

αg,g1 “
µg,g1

16 with
ÿ

g1PGpAgq

αg,g1 “ 1

4.3 Weighted median filter

Computing the weighted average (32) can be interpreted as solving for each Gauss point g, i.e. for
each pixel, the following local weighted quadratic minimization problem:

jh˚pgq “ arg min
j˚PR2

1
2

ÿ

g1PGpAgq

αg,g1}j
hpg1q ´ j˚}

2
2 (33)
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jh3 jh3 jh8 jh7 jh7 jh1 jh1 jh2 jh5 jh5 jh5 jh5 jh6 jh4 jh9 jh9

µg,g13 µg,g18 µg,g17 µg,g11 µg,g12 µg,g15 µg,g16 µg,g14 µg,g19

Figure 9: Sorting process for the computation of the weighted median filter (arbitrary example). Each
component of jh` “ jhpg1`qζ for g1` P GpAgq, with ζ “ x and y and using the notations of Fig. 8b, are
sorted in ascending order and one of the median values (greyed) is chosen as a minimizer of (34).

where the featured norm } ¨ }2 is the standard Euclidean norm. As it is known that the resulting
field jh˚ will not respect the possible discontinuities of the original flux, this process may be prone to
overestimation of the error. This has been underlined in [27], where an alternative error estimation
strategy is proposed, which however cannot be used in our context as it does not directly provides an
estimation of }ẽ´ ẽh}γ . We rather consider here an alternate weighted median filter that is meant to
allow for such possible discontinuities. As mentioned in Remark 8, this type of filtering is commonly
employed in signal processing, see for example [8, 35], but it has never been used to our knowledge
in the present context. To do so, the minimization problem (33) is modified using the L1-norm and
rewritten component-wise as

jh˚pgqζ “ arg min
j˚PR

ÿ

g1PGpAgq

αg,g1
ˇ

ˇ

ˇ
jhpg1qζ ´ j˚

ˇ

ˇ

ˇ
with ζ “ x or y. (34)

These minimization problems are then solved independently at each point g and for each sought
component (x and y in 2D) of the vector jh˚pgq. Each one can then be reformulated as two (or three
in 3D) unidimensional minimization problems, see (34), for cost functionals that are linear by parts
and whose minimum might not be unique. In that case, one of the minimizers is arbitrarily chosen.

Two methods can be used in practice to find a minimizer. The first one consists in evaluating each
cost functional in (34) for each of the jhpg1qζ , with ζ “ x and y, i.e. at the corners of such piecewise
linear functions, and storing the value for which each of them is minimal. The second one uses the
fact that the minimizer in (34) is the weighted median of the set of vector values tjhpg1qζ , g1 P GpAgqu.
To compute the latter, one can sort the elements of this set in ascending order while duplicating them
µg,g1 times, and pick the median value (here the 8th or 9th as

ř

g1 µg,g1 is even). For the sake of the
example an arbitrary sorted set is represented in Fig. 9 with reference to the notations of Fig. 8b. Note
that, in the case where the filter window is chosen to be larger, see Remark 7 then fast algorithms can
be used instead of the above sorting method [8].

4.4 Constitutive Relation Error

The third and last method that will be tested on our problem is the Constitutive Relation Error method
(CRE) [13]. This method builds an estimation of the error that, provided a few hypotheses are verified,
is proven to be higher than the true error. Its usual limitation is that it is more computationally costly
than competing methods. However, as it is shown in this section, in the case where all the elements
of the mesh are identical, the cost of the method is similar as the one of the ZZ1 method.

4.4.1 Principle of the method

Let us use the field ẽh‹ defined in Section 3.2.1 as the solution to the discrete Lippmann-Schwinger
problem with exact integration, with associated total field eh‹ “ e ` ẽh‹ . We now aim at estimating
the discretization error δh “ }ẽ´ ẽh‹}γ “ }γpe´ eh‹q}γ´1 .

For all jh˚ P S we have:

}jh˚ ´ γe
h
‹}

2
γ´1 “ }jh˚ ´ γe` γpe´ e

h
‹q}

2
γ´1

“ }jh˚ ´ γe}
2
γ´1 ` }γpe´ eh‹q}

2
γ´1 ` 2

`

jh˚ ´ γe, γpe´ e
h
‹q
˘

γ´1 .

16



Note that it is the exact conductivity γ that enters the above identities consistently with Remark 3.
As pe´ eh‹q P E0 and pjh˚ ´ γeq P S, and since these functional spaces are orthogonal in the sense of
the standard scalar product on L2

perpΩq (see Section 2.1), then one has:
`

jh˚ ´ γe, γpe´ e
h
‹q
˘

γ´1 “
`

jh˚ ´ γe, e´ e
h
‹

˘

“ 0, (35)

and then
}jh˚ ´ γe

h
‹}

2
γ´1 “ }jh˚ ´ γe}

2
γ´1 ` }γpe´ eh‹q}

2
γ´1 . (36)

As a conclusion, for any jh˚ P S, the quantity }jh˚ ´ γeh‹}γ´1 is an estimator of the discretization error
δh “ }γpe´ eh‹q}γ´1 , that is all the more accurate as }jh˚ ´ γe}γ´1 is small, i.e. when jh˚ gets close to
the exact flux j “ γe. What is more, this estimator is guaranteed to be an upper bound of the true
discretization error.

We recall however that, due to inexact integration, the orthogonality relations (35) are not satis-
fied despite the fact that the fields ehk computed are compatible, see Remark 5. In other words, the
inexact integration amounts to prolongating eh by a piecewise-constant field that will not coincide
with eh‹ (see Remark 2). As a result, we reach a conclusion similar to (24), in that the above bound on
the discretization error cannot be ensured for eh. Yet, we will make use of the derivation above as a
guideline to devise an estimator that we discuss next, i.e. we will apply the CRE procedure, designed
to estimate }ẽ ´ ẽh‹}γ , to construct an estimate of }ẽ ´ ẽh}γ . The relevance of this approach will be
assessed on a number of numerical examples.

The flux-equilibration method [15] will be used to compute a modified field jh˚ from the available
numerical solution. It consists in two steps:
– Firstly, determine an equilibrated normal flux F h˚ at the boundary of each element Eg of the F.E.
mesh from the original flux jh “ γheh available at the Gauss points.
– Secondly, compute jh˚ from a F.E. approximation on a refined mesh of the solution j˚ to the following
continuous subproblem:

$

’

&

’

%

j˚pxq “ γg∇u˚pxq x P Eg
∇ ¨ j˚pxq “ 0 x P Eg
j˚pxq ¨ νgpxq “ F h˚ pxq x P BEg

(37)

where γg is the homogeneous conductivity value sampled at the Gauss point g and νg is the unit
outward normal on BEg. The fact that the constant value γg of γh in Eg is used in (37) pertains to the
assumption that the latter constitutes the exact conductivity, see remarks 1 and 3 (the geometrical
error is not accounted for in the present work). In addition, this choice allows the factorization by
the material property, which in turn makes the resolution of (37) numerically efficient. If an exact
conductivity field γpxq, different from its discrete counterpart γh, were known then it should be used
in (37) to get a consistent non-homogeneous material distribution in the sub-discretization of Eg.
Doing so, the field jh˚ respects the discrete equilibrium equation on the whole domain, and its proximity
to γe depends on the relevance of the boundary fluxes.

4.4.2 Computation of the boundary fluxes

Given a node n, together with the associated patch Pn, let φn denote the associated global shape
function constructed from (28). Considering the inter-element interface I connecting n to another
node n1, see Fig. 10a, the objective is then to compute an equilibrated boundary flux F h˚ pxq, spatially
varying along I and which must be consistent with the available values of the flux jhpgjnq at the Gauss
points gjn P G pPnq, see Fig. 10b.

To do so, one considers the prolongation equation [13]. It amounts in equating the virtual works
associated with jh and j˚ in any element E P Pn and for all test function φm relative to a node m of
this element, i.e. we set

ż

E
jhpxq ¨∇φmpxqdx “

ż

E
j˚pxq ¨∇φmpxqdx

“

ż

BE
F h˚ pxqφmpxqdx

(38)

17



<latexit sha1_base64="ZZVoe/D2vZdt0g1RfxstiwQswV0="></latexit>

n0

<latexit sha1_base64="V1XlTVmZ9RLQZ8VW2ZhWdJTGKvY="></latexit>

�n
<latexit sha1_base64="Oc8ISWhhXuL5392ZD/OOPKx+PeM="></latexit>

�n0

<latexit sha1_base64="6ryBJbOK3rUslql3W4aAu1D9SG4="></latexit>

I
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Figure 10: Representation and computation of the boundary fluxes.

where the second equality makes use of (37). Since the set of shape functions tφnun satisfies the
property of partition of unity

ř

n φnpxq “ 1, then (38) ensures that F h˚ pxq is equilibrated over E, i.e.
it holds

ż

BE
F h˚ pxq dx “ 0.

Now, at a given boundary I of an element E, to enforce the continuity of the flux across elements
we write F h˚ pxq “ ηIE FhI pxq with the factor ηIE “ ˘1 being chosen so as to ensure that an outgoing
flux is the opposite of an entering flux on each adjacent elements. This is done consistently with the
orientation of the normal ν in Figure 10b.

In addition, consistently with the discretization (28) considered, we define FhI pxq as a linear function
of x P I, so that it can be associated with two scalar degrees of freedom denoted as FhI,n and FhI,n1 ,
and which we defined as the following projection

FhI,n “
ż

I
FhI pxqφnpxq dx, (39)

and likewise for FhI,n1 using φn1 . As a consequence for the mesh considered, introducing the set Bn of
four interfaces between the elements of Pn, there are four degrees of freedom associated to each node
n, which we gather into the following vector:

Fhn “
!

FhI,n, I P Bn
)

P R4.

Therefore, owing to (38) and upon choosing the test function relative to the node m “ n we get
ÿ

IPBn

ηIE FhI,n “
ż

E
jhpxq ¨∇φnpxq dx, (40)

Given that the available flux jh is piecewise constant in each of the four elements E P Pn (see Sec-
tion 4.1), then (40) leads to the following linear system:

A Fhn “ bn

with A “

¨

˚

˚

˝

´1 0 0 ´1
1 ´1 0 0
0 1 1 0
0 0 ´1 1

˛

‹

‹

‚

and bn “

¨

˚

˚

˝

´jhpg1
nqx ´ j

hpg1
nqy

jhpg2
nqx ´ j

hpg2
nqy

jhpg3
nqx ` j

hpg3
nqy

´jhpg4
nqx ` j

hpg4
nqy

˛

‹

‹

‚

.
(41)
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However, the matrix A is singular and its null space is of dimension 1. To overcome this, we use
its Moore-Penrose pseudo-inverse [1], denoted by A`. Moreover, as proposed in [15], the extra degree
of freedom (in the null space of A) is determined by minimizing the distance between the components
of Fhn and these of an average vector xFhny defined on each interface I from the mean value of the
projections onto the normal ν of the adjacent fluxes, i.e. 1

2
`

jhpg1
nq ` j

hpg4
nq
˘

¨ ν for example. All in
all, Fhn is computed from the available components of the flux by solving the following equation:

Fhn “
`

A`B1 ` kkTB2
˘

jhn
with jhn “

`

jhpg1
nqx jhpg1

nqy jhpg2
nqx jhpg2

nqy jhpg3
nqx jhpg3

nqy jhpg4
nqx jhpg4

nqy

˘T
,

spanpkq “ nullpAq, B1 “

¨

˚

˚

˝

´1 ´1 0 0 0 0 0 0
0 0 1 ´1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 ´1 1

˛

‹

‹

‚

, B2 “
1
2

¨

˚

˚

˝

1 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0
0 1 0 0 0 0 0 1

˛

‹

‹

‚

.

The matrices B1 and B2 build respectively bn and the components of xFhny from jhn. As the geometries
of the element patches are all the same, the matrices A, B1, B2 and vector k do not depend on the
specific node n. As a consequence, the matrix operator

`

A`B1 ` kkTB2
˘

is assembled once for all in
a pre-processing step and it is then applied to a multi-vector constituted from the set

 

jhn
(

n
, which is

indexed by the nodes n of the given mesh. The boundary fluxes
 

Fhn
(

n
are then available after such

a computation.

Remark 9. In usual applications of this approach in the context of finite elements [13, 15], one
can show that bn is orthogonal to k. As a result, one can write the problem as the minimization of
}Fhn ´ xFhny} under the constraint of Equation (41). It can be shown that the idea proposed here is
mathematically equivalent to solving this minimization problem (by remarking that (41) only imposes
the projection of Fhn in the subspace orthogonal to k), with the advantage of being also usable when
there is no solution to (41).

4.4.3 Computation of a self-equilibrated flux

For each Gauss point g, we now aim at computing a self-equilibrated flux jh˚ for the associated element
(or pixel) Eg that respects the boundary fluxes computed at the previous step. We introduce the vector
Fhg “ tpFhg qjk, j “ 1, . . . , 4, k “ 1, 2u P R8 that gathers the relevant degrees of freedom in Fh

ng
j

for all
nodes ngj P N pEgq, i.e. two associated with each element edge, see Fig. 11.
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Figure 11: Finite element-based computation of a self-equilibrated flux jh˚ on a given element Eg from
the associated boundary fluxes computed previously and using a refined mesh.

Considering the continuous interpolation operator M that yields piecewise linear normal fluxes
F h˚ pxq from its projected components Fhg , see (39), we consider the solution j˚ to (37) with the
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boundary condition
j˚pxq ¨ νgpxq “ M

`

Fhg
˘

pxq @x P BEg.

The Neumann problem (37) is then discretized and solved using the finite element method on a mesh
that is refined compared to the original pixel-based discretization, and using a primal formulation.
Noticeably, a p-refinement strategy could be used at this step but h-refinement is simple and efficient
here since one only needs to build a single mesh as all the elements we are dealing with are identical.
In addition, h-refinement is preferred here as it would allow a direct mapping to refined FFT grids
if a multi-grid approach were used to improve the computations. This leads to an approximated
flux that is considered to be sufficiently self-equilibrated provided the mesh of this subproblem is fine
enough [15]. Given h1 ă h the associated mesh size, we denote by Kh1 the corresponding stiffness
matrix and by Mh1 the discretized version of the operator M and define uh1˚ as the solution to

Kh1uh1˚ “ Mh1Fhg . (42)

Due to the absence of Dirichlet boundary conditions, the matrix Kh1 is singular and its null space
corresponds to the fields that are uniform in Eg. Therefore, we make use of its Moore-Penrose pseudo-
inverse Kh1`. At this stage a self-equilibrated flux is available on a refined mesh.

Finally, in order to compute the energy of the difference between jh˚ and the original field jh, we
consider a discrete operator G that computes a final modified flux jh˚ at the original Gauss point g
from the refined finite element solution uh1˚ , i.e. jh˚pgq “ G uh1˚ . Different strategies can be adopted to
do so and the operator chosen here simply amounts in averaging locally the fluxes computed at the
Gauss points of the finite elements of Eg that are adjacent to g.

As the number of degrees of freedom involved in (42) is relatively small and since all pixels can
be discretized using the same refined mesh, then the finite element system (42) can be inverted in a
pre-processing step and its inverse stored in matrix form. Therefore, the operator that gives the value
jh˚pgq at the Gauss point from the components of the boundary flux Fhg reads

jh˚pgq “ G Kh1`Mh1 Fhg .

Again, the key-point of the proposed approach is that, all pixels having the same geometry, the
matrices G and Kh1 only depend on g through a pre-factor γg. Therefore,

´

G Kh1`
¯

and Mh1 do not
depend on g and the computation above can be directly performed on a multi-vector

 

Fhg
(

g
that is a

mere reordering of the nodal degrees of freedom
 

Fhn
(

n
of the boundary fluxes. This is slightly different

in the case of elasticity, see Remark 12.

4.5 Error maps

The three proposed smoothing methods are now illustrated numerically on the two test cases. First,
the Obnosov square inclusion geometry with a conductivity ratio ρ “ 10 is considered and a numerical
solution jh is computed on a coarse discretization of 26 ˆ 26 pixels using k “ 40 iterations of the
method FP. Then we show on Figure 12 the different modified fields jh˚ computed using the mean,
median and CRE methods, which can thus be compared to the field computed originally and to a
reference field. The latter corresponds to a computation on a finer grid of 210ˆ210 pixels and averaged
locally to be shown on the coarse grid.

One can observe that the mean smoothing method does not respect the discontinuities of the flux
at the top and bottom boundaries of the inclusion. The CRE and the median methods seem to allow
for these discontinuities. In addition the median smoothing does not preserve the corner singularities
on the square inclusion. Figure 14a presents the corresponding maps of the local estimated error
pjh ´ jh˚q{

?
γ. It appears that the over-smoothing done by the mean method leads to a large over-

estimation of the error in the discontinuity regions. The median method over-estimates the error
nearby the singularities while, on this test-case, the CRE method performs at best. On Figure 13, we
present the reconstructed fluxes for the random circles test-case with the local errors being displayed
on Figure 14b.
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Figure 12: [squ;rho=1E1;npix=2**6;FP]: Discrete flux jhx , reference flux jx and reconstructed fluxes
jh˚,x with the different methods.

4.6 Performance of the global error estimate

In this section, we investigate the accuracy of the three different error estimators on 16 different
settings. They are tested on both the square and random circles inclusions geometries, with both
26 ˆ 26 and 28 ˆ 28 pixels, with both the modified and original operators, and with both ρ “ 10 and
ρ “ 103. The fixed-point algorithm was used but the specific choice of solver does not matter here as
only the error at convergence is studied (a number k “ 40 of iterations were used when ρ “ 10, and
k “ 500 when ρ “ 103). The results are displayed on Figure 15 for all combinations of the numerical
parameter that lead to a true error δh ď 1. Therefore, in these figures we have discarded the points
for which the true error is above 1, which are here obtained in some of the high-contrast cases. In
such cases our estimations are not relevant.

The mean filter based error estimator gives mostly always the worst estimation. It must be noticed
however that this estimator is the easiest to develop, and is marginally less CPU costly than the CRE
one. When the original Green’s operator is used (Figure 15a), the CRE method appears to lead
to the most reliable estimator in the cases of low contrast (although not a guaranteed bound, see
Section 4.4.1). However, in the cases of high contrast, this estimator does not perform much better
than the mean filter. Finally, the median filter-based method appears to lead to the best estimator in
the high contrasts cases, while being acceptable in the low contrast cases considered.

When the modified operator is used (Figure 15b), the median filter and CRE-based error estimators
turn out to have quite equivalent accuracies, and perform reasonably well on the test cases considered.
It must be noticed that, for the investigated configurations, these estimators tend to yield values
lower than the exact one, which is often considered to be undesirable in error estimation. Yet, the
theoretical bound of Section 4.4.1 has no reason to be satisfied when using the modified operator. In
addition and as previously discussed, because of inexact integration, the schemes considered violate
the identity (36), which conventionally yields a guaranteed upper bound with the CRE method. This
explains that we can get estimated errors below the true ones even with this method. The use of exact
numerical integration would allow to recover guaranteed bounds.

5 Convergence criterion: numerical results

In this section, we assess the relevance of a stopping criterion based on the comparison between the
estimations of the iteration error and of the discretization one, as discussed in Section 3.3. Here the
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Figure 13: [cir;rho=1E1;npix=2**6;FP]: Discrete flux jhx , reference flux jx and reconstructed fluxes
jh˚,x with the different methods.

discretization is considered to be given and fixed.
Two convergence criteria, denoted by Rβ and Emethod

β are considered:

(i) Rβ consists in stopping the algorithm at the first iteration for which ∆h
k ď 10´β ∆h

0 where ∆h
0

is the initial residual. This criterion corresponds to the one most employed in the literature.

(ii) Emethod
β consists in stopping the algorithm at the first iteration for which ∆h

k ď 10´β ∆h. In
other words, it consists in waiting until the estimated iteration error has no more significant
effect on the global error by being a threshold lower than the estimated discretization error.
This is similar to the criterion employed in [10], which couples estimations of the discretization
error and of the algebraic error associated with an inexact solution of the linear system in a finite
volume method. Here, criterion Emed

β uses the median filter to estimate ∆h, while Ecre
β uses the

CRE method. Noticeably, we will here make use of the approaches described in Section 4 to
compute some estimations ∆h of the discretization error, not in the limit eh “ lim

kÑ8
ehk but for

the specific values of k considered. In practice, it was noticed that at the very first iterations,
the estimator ∆h was much smaller than the residual ∆h

k , which prevented the stopping criterion
to be met accidentally due to the use of ehk instead of eh in the computation of ∆h.

Once the chosen stopping criterion is met then the computation is simply stopped. At this point, the
numerical results could be further improved by performing a new computation on a refined grid and
using the last computation as an initial guess, see e.g. [6]. This is however beyond the scope of this
work.

5.1 2D conductivity test-cases

In the case of the square inclusion, Figure 16 plots the true error δeff
k,h on the effective conductivity

and the associated number of iterations. Here, δeff
k,h is computed from the knowledge of the analytical

effective conductivity [22]. The conductivity ratio is ρ “ 103, and we use the variant of the method
denoted by CG because of its faster convergence. Different discretizations are investigated.

On this test-case, the criteria Emed
2 and Ecre

2 yields similar numbers of iterations. However, as
for a high contrast the CRE method over-estimated the discretization error (see Section 4.6), the
corresponding stopping criterion requires less iterations in that case. The proposed criteria give errors
that are relatively close to the standard criterion R5 but they require different numbers of iterations.
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(a) [squ;rho=1E1;npix=2**6;FP] (b) [cir;rho=1E1;npix=2**6;FP]

Figure 14: Reference and error estimators (logarithmic plot with scaling by the conductivity).

As a consequence, we introduce a new indicator, that we will refer to as indicator of improvement,
in order to understand which stopping criterion is the most efficient. This indicator, denoted by
Ihk , aims at measuring how much the error on the effective property could have been reduced if the
iterative procedure had not been stopped. It is defined as the ratio between the iteration error and
discretization error but uses the reference effective property and a numerical solution eh8 obtained
after a sufficiently large number of iterations as

Ihk “
|Whpe

h
kq ´Whpe

h
8q|

1{2

|W peq ´Whpeh8q|
1{2 .

A good criterion would stop at an iteration k that ensures that the error on the effective property (ie.
on the energy) cannot be decreased noticeably anymore, disregarding the discretization, geometry or
conductivity ratio. This can be ensured when Ihk “ α, with α ! 1 being a parameter that tunes how
small Ihk is wanted to be, and that does not vary with the discretization, geometry nor conductivity
ratio. Typically, we choose α “ 0.1

Remark 10. Criterion Emethod
β is based on the discretization error estimators developped in Section 4,

that estimate the energetic error on the field e, defined in Equation (6), rather than the error on the
effective property, or equivalently on the energy which is used to evaluate Ihk . According to (23), if
exact integration were used, both errors would be equal.

On Figure 17a, we plot the evolution of the indicator of improvement Ihk for the different stopping
criteria considered, as functions of the discretization. One can notice that the criteria of type Emethod

β ,
which are based on the proposed error estimators, tend to make Ihk independent to the discretization,
while the conventional residual-based criterion R5 makes it increase with the discretization. This
means that, for a coarse grid, the latter requires too many iterations, while for a finer grid, it does
not allow to benefit from the full precision offered by the discretization.

In the case of random circular inclusions, the trends on the error and number of iterations are
similar to the case of a square inclusion (see Figure 16) but they are not shown here. However, on
Figure 17b, we display the evolution of the indicator of improvement Ihk with the discretization for
the former test-case. One notices once again that this quantity is stable when the stopping criteria
Emethod
β are used, while it increases with the number of degrees of freedom with the conventional

criterion R5. In addition, the comparison between Figures 17a and 17b shows that the levels of Ihk
have the same magnitude for both test-cases, and according to our computations on the test-cases
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Figure 15: Estimated error ∆h vs true error δh for different configurations and choice of numerical
parameters.

considered, this magnitude seems to be correlated with β. This implies that the latter parameter can
be used to control the significance of the discretization in the total error on the effective property.

Figure 18 displays the evolution of the indicator Ihk against the number of pixels and for the same
two geometries but at a lower conductivity ratio ρ “ 10. For the criteria Emethod

β , the behavior of this
indicator in the case of random circular inclusions is satisfactory, with all stopping criteria leading
to rather stable values of Ihk , while the criterion R5 leads to an unstable indicator, which increases
with the number of pixels. The square inclusion test-case leads to slightly different behaviors: the
residual-based stopping criterion R5 makes Ihk increase for more than two orders of magnitude when
the number of pixels increases; the proposed criteria Emethod

β also lead to an increase of Ihk but it is
however smaller. This shows that, even when the proposed stopping criteria do not exhibit an optimal
behavior, they however lead to a less unstable Ihk .

Remark 11. The relatively sub-optimal behavior of the proposed stopping criteria on the test-case
[squ;rho=1E1;npix=*;CG] of Figure 18a can be explained as follows: the discretization error estima-
tors do not match the error on the effective property (see Remark 10) and the discrepancy seems to
slightly increase with the discretization. In addition, on this test-case, all stopping criteria require only
a few iterations to be met (typically 8 or 9), so that a variation of a few iterations leads to potentially
significantly different values of Ihk .

5.2 3D elasticity test-cases

The proposed procedure can be applied to the case of 3D linear elasticity. Adapting the proposed
errors estimators is straightforward although more demanding both in terms of implementation and
hardware. We consider a periodic microstructure of hard ellipsoids (Young modulus E “ 200 GPa)
in a soft matrix (E “ 20 GPa for ρ “ 10 or E “ 200 MPa for ρ “ 103). The ellipsoids are allowed
to interpenetrate. The Poisson coefficient is homogeneous and set to ν “ 0.3. The geometry of the
inclusions is displayed on Figure 19a for an example discretization with

`

26˘3
“ 262 144 voxels. The

number of voxels used in the computations will vary between
`

24˘3
“ 4 096 and

`

29˘3
“ 134 217 728.

For this computation, no Finite Element solution was computed, and the reference solution is obtained
with an overkill FFT computation with

`

210˘3
“ 1 073 741 824 voxels. Note that the use of this overkill

solution as a reference for the finest computation being evaluated is arguable. The stress σhxx at
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Figure 16: Error and required number of iterations for different convergence criteria as functions of
the discretization and for the different stopping criteria. [squ;rho=1E3;npix=*;CG]

convergence (with k “ 40 iterations) and its transformed versions with the median and CRE methods
are displayed on Figures 19b, 19c and 19d.

Remark 12. For the CRE estimator, a heterogeneous Poisson coefficient would require to invert
several rigidity matrices Kh1ν at the step of Section 4.4.3 (one for each different value of ν), and to
apply the operator Gν Kh1`ν Mh1 independently to the voxels of each inclusion. However, this should have
only a limited impact on the computational cost and implementation difficulty of the method provided
there is only a small number of different homogeneous inclusions.

We display on Figure 20 the evolution of the improvement indicator Ihk (ratio between the iteration
and total errors on the energy) with the number of voxels for the different stopping criteria. The results
obtained for these numerical experiments in 3D elasticity are similar to those of Section 5.1 in that
both stopping criteria Emed

β and Ecre
β lead to a ratio between iteration error and total error that is

more stable than Rβ and thus are more reliable.

6 Conclusion

The present study addresses the issue of the computation of a global convergence criterion for iterative
solvers in the FFT-based computational homogenization of periodic materials. The main idea is to
separate and estimate the contributions to the error of the iterative scheme and of the discretization.
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Figure 17: Indicator of improvement Ihk as a function of the discretization and for the different stopping
criteria.

Some associated estimators have been proposed and their performances have been assessed on two
prototypical 2D conductivity test-cases. From this study, we can conclude that:

– The residual of the discrete problem is not sufficient for a reliable estimation of the total error
on the effective property.

– Provided that the conductivity ratio is not too high (up to 103 for the configurations considered),
this residual is nonetheless a suitable estimator of the iteration error.

– Two methods have proven to be useful for estimating the discretization error. The first one
is the median filter, which works best with rather high conductivity ratios („ 103), while the
second one, the constitutive relation error, appears in our computations to be the best choice
for moderate conductivity ratios („10).

– A parameter-controlled stopping criterion has been introduced and tested: it consists in in-
terrupting the iterative scheme when the estimated iteration error is much smaller than the
estimated discretization error, the sense of much being given by the featured parameter.

Finally, we based the evaluation of the stopping criteria on an improvement indicator that measures
how much the error on the effective property could have been reduced if the iterative scheme had not
been stopped. In the test cases considered, the proposed stopping criteria appear to be superior in
several ways to the conventional criterion solely based on the residual:
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Figure 18: Indicator of improvement Ihk as a function of the discretization for the different stopping
criteria.

– The residual-based criterion tends to require less iterations when the discretization becomes
finer. As a consequence, the improvement indicator increases with the number of pixels. On the
contrary, our stopping criteria tends to require more iterations when the discretization is finer,
which leads to a more stable improvement indicator so that full advantage can be taken of the
discretization.

– The proposed stopping criteria involve a parameter β, which value seems to control the improve-
ment indicator associated with the computations. If confirmed, this would mean that, when
choosing the value of this parameter, one could adjust the share of the iteration error in the
total error on the effective property.

At this stage, a number of perspectives emerge for this work:

– The estimation of the discretization error has a non-negligible cost in the computation (despite
the fact that the regular grid allows for significant speedups). For this reason, it will be essential
to compute it only when necessary, i.e. possibly not at every iterations, which calls for an
adapted strategy.

– The constitutive relation method appears to be well suited in the cases of small contrast. It could
be interesting to improve it in cases of strong contrast, in particular by using a more accurate
method of flux reconstruction. One could for example use the approach proposed in [23].

– There are three valuable theoretical results that do not hold due to the fact that the discretization
methods we work with are inexactly integrated Galerkin methods. These results are (i) the

27



(a) Ellipsoidal inclusions with
`

26˘3 voxels

(b) σh
xx (c) σh

xx median (d) σh
xx CRE

Figure 19: Geometry and stress field σhxx after k “ 40 iterations.

equality between the energy error on the field and the error on the effective property, (ii) the
bound between the computed and the exact effective properties and (iii) the bound between
the exact error and the estimator provided by the CRE method. As a consequence, it would
be of great interest to extend the methods proposed in the present paper to exactly integrated
Galerkin schemes [30, 5] or FEM-based discretizations coupled with FFT solvers [25, 16].

A Fourier transforms

Consider the unit cell Ω filling the space Rd by translation along d vectors Y1, . . . ,Yd. The lattice R
generated by these vectors is defined as

R “

"

Y | Y “

d
ÿ

j“1
njYj , nj P Z

*

.

Let R˚ denote the reciprocal lattice of R generated by the vectors

Y ˚i “
2π
|Ω|Yj ^ Yk,

where pi, j, kq is a direct circular permutation. The Fourier transform f of f is defined on R˚ as:

f̂pξq “ F rf spξq “
1
|Ω|

ż

Ω
fpxqe´iξ¨x dx, where i “

?
´1.

The periodic function f in L2
perpΩq can be reconstructed from its Fourier transform by

fpxq “ F´1rf̂ spxq “
ÿ

ξPR˚
f̂pξqeiξ¨x.
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Figure 20: Indicator of improvement Ihk as a function of the discretization and for the different stopping
criteria considering the 3D elasticity test-cases.
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[29] J. Vondřejc. Improved guaranteed computable bounds on homogenized properties of periodic me-
dia by the Fourier–Galerkin method with exact integration. International Journal for Numerical
Methods in Engineering, 107(13):1106–1135, 2016.
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