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SIMULTANEOUS CONTROL FOR THE HEAT EQUATION WITH

DIRICHLET AND NEUMANN BOUNDARY CONDITIONS

NICOLAS BURQ AND IVAN MOYANO

Abstract. It is well known that both the heat equation with Dirichlet or Neumann boundary
conditions are null controlable as soon as the control acts in a non trivial domain (i.e. a set of
positive measure, see [10, 11, 12, 1, 6]. In this article, we show that for any couple of initial data
(u0, v0) we can achieve the null control for both equations (Dirichlet and Neumann boundary
conditions respectively) simultaneously with the same control function for both equations.

1. Introduction and main results

Let us consider a smooth bounded domain Ω ⊂ R
d and let ω ⊂ Ω be a subset of positive

measure |ω| > 0 and the following internal simultaneous controlability problem

(1.1)

{
(∂t −∆)u = f1(0,T )×ω, u |∂Ω= 0, u |t=0= u0,

(∂t −∆)v = f1(0,T )×ω, ∂νv |∂Ω= 0, v |t=0= v0.

Definition 1.1. We shall say that the heat equation in Ω is simultaneously null controlable

with Dirichlet and Neumann boundary conditions if for any (u0, v0) ∈ L2(Ω) there exists f ∈
L2((0, T ) × ω) such that the solution of the system (1.1) satisfies

u |t>T= 0, v |t>T= 0.

The question of simultaneous controllability of various partial differential equations has been
raised in the literature (see for example [4, 8, 2, 7, 5] and the recent work [3] for more references
on the subject), especially when the system involves some transmission mechanisms between
the equations allowing to reduce the number of commands. The interest of our problem lies on
the fact that both heat equations in (1.1) exhibit relatively independent dynamics and yet they
can be steered to zero using exactly the same control. As no coupling exists between these two
equations, this simultaneous controlability is at first glance counter intuitive. Yet, by considering
the two new unknowns w1 = u + v,w2 = u − v, the simultaneous controlability reduces to the
controlability of (w1, w2), with a control acting only on the w1 component of the system. Notice
that the system (w1, w2) is now coupled at the boundary by the transmission conditions

∂νw1 |∂Ω= ∂νw2 |∂Ω, w1 |∂Ω= −w2 |∂Ω,

and we need to show that this coupling is sufficient. However, our strategy will follow a more
direct path (the double manifold) and will not study per se this transmission problem.
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1.1. Simultaneous controllability. Our first result is the following

Theorem 1. Let T > 0, ω ⊂ Ω of positive measure |ω| > 0. Then the heat equation in Ω is

simultaneously null controlable with Dirichlet and Neumann boundary conditions.

Remark 1.2. It is classical that both the heat equation with Dirichlet or with Neumann con-
ditions are null controlable. The novelty in Theorem 1 lies precisely on the fact that the null
controlability can be achieved for any initial data (u0, v0) ∈ L2(Ω)×L2(Ω) with the same control

for both.

Remark 1.3. The proof we give below relies on the doubling manifold approach from [6]. This
approach is very robust and allows rough domains (of class W 2,∞, for instance) and rough space-
dependent Laplace operators (Lipschitz coefficients).

∆ =
1

κ(x)

∑

i,j

∂xi
gi,j(x)κ(x)∂xj

,

where we assume that the coefficients κ, g are Lipschitz and that g is uniformly elliptic. As will
appear clearly, the proof (which is very simple once the results in [6] were established) shows
that all the control results from [6] are true with the same control functions for the Dirichlet and
Neumann heat equations.

Remark 1.4. It is an interesting question whether similar results might hold for the wave
equation. We plan to address this question in a forthcoming paper. However, in this case, the
analysis is much more involved and we do not expect to get such a general answer.

1.2. Simultaneous controllability and spectral inequalities. Let (eDλ )λ be the spectral
family associated to the Laplacian in Ω with Dirichlet conditions, i.e.,

(1.2) −∆eDλ = λ2eDλ , eDλ |∂Ω = 0

and let (eNµ )µ be the spectral family associated to the Laplacian in Ω with Neumann conditions,

(1.3) −∆eNµ = µ2eNµ , ∂νe
N
µ |∂Ω = 0.

Let ω ⊂ Ω be a non-empty subset. In the spirit of [9], one can show that the spectral families
(eDλ )λ and (eNµ )µ enjoy a concentration property on the subsets ω as long as they are not too
small. In [6] the authors shows the following: given ω with |ω| > 0, there exist constants C,D
such that all the spectral truncations

ΠD
Λu :=

∑

λ≤Λ

uλe
D
λ , u ∈ L2(Ω), Λ > 0,

satisfy the estimate (cf. [6, Theorem 1]):

(1.4) ‖ΠD
Λ u‖L∞(Ω) ≤ CeCΛ‖1ωΠ

D
Λu‖L1(Ω), ∀u ∈ L2(Ω).

The analogous estimate also holds for the spectral truncations of (eNµ )µ, defined by

ΠN
Λ u :=

∑

µ≤Λ

uµe
N
µ , u ∈ L2(Ω), Λ > 0.
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In this note we show that these spectral inequalities also hold simultaneously (i.e. we can estimate
each spectral projector by the sum on arbitrary small set of positive measures).

Theorem 2. Let ω ⊂ Ω with |ω| ≥ m. There exist C,D > 0 such that for any Λ > 0, we have

(1.5) ‖ΠD
Λu‖L∞(Ω) + ‖ΠN

Λ v‖L∞(Ω) ≤ CeCΛ‖1ω(Π
D
Λ u+ΠN

Λ v)‖L1(ω), ∀u, v ∈ L2(Ω).

2. Double manifold and spectral estimates

In this section we recall a result from [6], which allows to glue any given manifold M with a
copy of itself along its boundary, in order to produce a double manifold without boundary. This
will be a crucial point in the analysis below.

2.1. The double manifold. Let (M,g) be a compact Riemannian manifold of class C1∩W 1,∞.

Let ∆ be the Laplace-Beltrami operator on M and let (ek) be a family of eigenfunctions of
−∆, with eigenvalues λ2

k → +∞ forming a Hilbert basis of L2(M).

−∆eD;N
k = λ2

kek, eDk |∂M= 0 (Dirichlet condition) or ∂νe
N
k |∂M= 0 (Neumann condition).

Let be M̃ the double space made of two copies of M

M̃ = M × {−1, 1}/∂M,

where we identified the points on the boundary, (x,−1) and (x, 1), x ∈ ∂M . In the double

manifold M̃ we have the following result.

Theorem 3 (The double manifold, [6, Theorem 7]). Let g be given. There exists a W 2,∞

structure on the double manifold M̃ , a metric g̃ of class W 1,∞ on M̃ , and a density κ̃ of class

W 1,∞ on M̃ such that the following holds.

• The maps

i±x ∈ M → (x,±1) ∈ M̃ = M × {±1}/∂M

are isometric embeddings.

• The density induced on each copy of M is the density κ,

κ̃ |M×{±1}= κ.

• For any eigenfunction e with eigenvalue λ2 of the Laplace operator −∆ = − 1
κ
div g−1κ∇

with Dirichlet or Neumann boundary conditions, there exists an eigenfunction ẽ with the

same eigenvalue λ of the Laplace operator −∆ = − 1
κ̃
div g̃−1κ̃∇ on M̃ such that

(2.1) ẽ |M×{1}= e, ẽ |M×{−1}=

{
−e (Dirichlet boundary conditions),

e (Neumann boundary conditions).

• Conversely, there exists a Hilbert basis of L2(M̃) composed of eigenfunctions of the

Laplace operator ∆̃ which are either odd extensions of Dirichlet Laplace eigenfunctions

in M or even extensions of Neumann Laplace eigenfunctions in M .

Remark 2.1. The last property was not stated explicitely in [6, Theorem 7], but it is straight-

forward as the vector space generated by such eigenfunctions is clearly dense in L2(M̃).
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2.2. Spectral projector on the double manifold and proof of Theorem 2. Let us denote

by Π̃Λ the spectral projector on the manifold M̃ . Let u, v ∈ L2(M) and define the function

(2.2) ũ(x, 1) = (u+ v)(x), ũ(x,−1) = (−u+ v)(x).

Clearly if

u =
∑

k

uke
D
k , v =

∑

k

vke
N
k ,

we get

ũ =
∑

k

ukẽ
D
k + vkẽ

N
k .

According to the reflection principle of the previous section, we can link the Dirichlet and Neu-

mann spectral projectors on M and the spectral projector on M̃ by the relation

(2.3) Π̃Λ(ũ)(·, 1) = ΠD
Λ (u(·)) + ΠN

Λ (v(·)), Π̃Λ(ũ)(·,−1) = −ΠD
Λ (u(·)) + ΠN

Λ (v(·)).

Theorem 4 ([6, Theorem 1]). Let ω̃ ⊂ M̃ with positive Lebesgue measure. Then, there exists

C > 0 such that for anu Λ > 0 and any ũ ∈ L2(M̃ ), we have

(2.4) ‖Π̃Λũ‖L∞(M̃ )
≤ CeCΛ‖1ω̃Π̃Λũ‖L1(ω̃).

We can now prove Theorem 2. Indeed, let ω ⊂ M of positive Lebesgue measure. Let ω̃ =
ω × {1}. According to Theorem 4 and (2.3), we get for any u, v ∈ L2(M),

(2.5) ‖ΠD
Λ u‖

2
L∞(M) + ‖ΠN

Λ v‖2L∞(M) = ‖ΠD
Λu+ΠN

Λ v‖2L∞(M) + ‖ΠD
Λu−ΠN

Λ v‖2L∞(M)

= ‖Π̃Λũ‖
2
L∞(M̃)

≤ CeCΛ‖1ω̃Π̃Λũ‖
2
L1(ω̃)

= CeCΛ‖1ω×{1}Π̃Λũ‖
2
L1(ω̃) = CeCΛ‖1ωΠ

D
Λu+ΠN

Λ v‖2L1(ω).

2.3. Control and the double manifold. To prove our control result, we could just apply the
spectral projector estimate we just proved and some functional analysis. Here we prefered to
prove the result directly on the double manifold. We start with

Theorem 5 ([6, Theorem 2]). Let ω̃ ⊂ M̃ be a measurable set with |ω̃| > 0. Then, for every

T > 0 and every ũ0 ∈ L2(M), there exists f̃ ∈ L2((0, T ) × ω̃) such that the solution to the heat

equation on M̃ satisfies

ũ|t≥T = 0.

We can now prove Theorem 1. For any u, v ∈ L2(M), let us define ũ by (2.2), and for any
ω ⊂ M of positive measure, let ω̃ = ω × {1}. According to Theorem 5, for every T > 0, there

exists f̃ ∈ L2((0, T ) × ω̃) such that

(2.6) (∂t − ∆̃)Ũ = f̃1(0,T )×ω, Ũ |t=0= ũ, Ũ |t≥T = 0.

Let us define next

u(t, x) = Ũ(t, x, 1) − Ũ(t, x,−1), v(t, x) = Ũ(t, x, 1) + Ũ(t, x,−1),
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where Ũ is defined by (2.6). Notice that u clearly satisfies the Dirichlet boundary condition while
v satisfies the Neumann boundary condition. This second condition is not obvious but comes
from the construction of the double manifold in [6]. Indeed, in our construction, we defined
normal coordinate system near any point in the boundary of M such that M = {xn > 0}, and
then we glued the two copies defined by M × {1} = {xn > 0}, M × {−1} = {xn < 0} by the
relation

(x, 1) = (xn, x
′, 1), (x,−1) = (−xn, x

′,−1),

which implies

∂νv = ∂xn
(Ũ (t, x, 1) + Ũ(t, x,−1)) |xn=0= ∂xn

(Ũ)(t, x, 1)) − ∂xn
(Ũ )(t, x,−1)) = 0.

Now, by definition of u and v we have

(∂t −∆)u = f̃(t, x, 1)1(0,T )×ω − f̃(t, x,−1)1(0,T )×ω̃ = f(t, x)1(0,T )×ω,

as f̃(t, x,−1)1(0,T )×ω̃ = 0 by the choice of ω̃ = ω × {1}. By the same token, we have

(∂t −∆)v = f̃(t, x, 1)1(0,T )×ω + f̃(t, x,−1)1(0,T )×Ω̃ = f(t, x)1(0,T )×ω.

As a consequence, u and v solve (1.1) with control f1(0,T )×ω. Finally, using (2.6), we get

u|t≥T = 0, v|t≥T = 0,

which ends the proof.
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