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Abstract

The last decade has seen the explosion of the Internet of Things (IoT), which
is enabling a range of new applications based on the connection of physical ob-
jects to the Internet. The growing diversity of IoT connectivity technologies
is bringing new challenges to IoT solution designers. Indeed, it is increasingly
difficult to choose and configure the network technology for a given use-case. In
this article, we formalize and investigate the design optimization problem for
selecting and configuring the IoT connectivity technology of an application that
can evolve over time. Finding the right abstractions and the good balance be-
tween performance and evaluation complexity to compare networking options
is a key research challenge. To address this problem we propose to separate
the concerns of IoT application architects from those of network experts and to
provide a methodology, HINTS, to help designers in making customized deci-
sion. HINTS combines IoT application requirements and goals abstraction, IoT
network modeling, discrete-event network simulation and a multiple attribute
decision making method. The application of the methodology on three use-cases
highlights how it helps in (i) selecting the best network technology option, (ii)
defining an appropriate configuration and (iii) anticipating the behavior when
device density or workload intensity scales up. The main contribution of this
paper is to propose the first formal approach and associated algorithm to auto-
matically optimize the design of the IoT connectivity of an application. Results
show that it can yield up to a factor two improvement in the solution perfor-
mance.
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1. Introduction

1.1. Motivations and needs
For about fifteen years, the Internet of Things (IoT) has evolved from a

research concept to reality. Embedded in the operations of industries and or-
ganizations as well as in our homes and everyday lives, it has become vital and
transparent. IoT devices are everywhere. Examples include asset trackers that
show the location of our shipped packages and warn us of potential delays in
their delivery time; smart meters that monitor energy consumption; sensors
that detect water leaks or air pollution; remote control systems that automate
manufacturing equipment activity to name a few. They power a range of new
applications and services with real-time data and commands. This fusion of the
physical world and the virtual world can increase the operational efficiency of
organizations, but also ensure the sustainability of our world and the health of
its inhabitants.

Dozens of new connected products and pre-packaged or tailored solutions
are launched everyday. Analysts predict that by 2030, the IoT could enable
from 5.5 to 12.6 trillion dollars in value globally, including the value captured
by consumers and customers of IoT products and services [1]. For example,
shipments of asset trackers will grow by more than 50 percent annually through
2024 [2].

The technologies required to implement end-to-end IoT solutions are pro-
fusely available. From an architecture view point, the network layer, as defined
by the ISO/OSI model of the IoT communication system, interconnects the sub-
systems composing the end-to-end IoT solution. At the edge of this intercon-
nection, the physical IoT Network is the critical sub-system, which enables the
connectivity of the IoT devices to the Internet. IoT Network technologies keep
evolving to address the specific connectivity and communication requirements
of an increasing number of IoT devices and applications. Several technologies
such as Wi-Fi, BLE, Zigbee, IEEE Std 802.15.4 TSCH, Wi-Fi HaLow, 6LoW-
PAN, LPWAN (LoRaWAN, Sigfox, NB-IoT, LTE-M), mesh IoT architectures
like Wirepas or MYTHINGS as well as 5G have been proposed and are regularly
improved to tackle the heterogeneity of requirements.

However, the proliferation of candidate technologies, the inter-dependency
and specificity of their respective setting parameters and the multi-criteria na-
ture of the decision problem, make the design and configuration tasks increas-
ingly difficult. IoT is indeed a complex technology, which heavily depends on
communication performance and quality of service. For example, in Industry
4.0 or smart grid applications, communications require high reliability and low
latency, whereas smart building solutions need flexibility and scalability. The
authors of [3] have identified the most important properties that IoT-systems
can offer: Evolution and Interoperability, Availability and Resilience, Trust, Se-
curity and Privacy, Performance and Scalability. In the design phase ([4, 5]) it
is critical to select a wireless network technology that matches the performance
and cost requirements of the targeted application but also the growing ambition
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of the IoT product owner. In the deployment phase, the appropriate config-
uration of the application communication parameters as well as the network
settings have also a tremendous impact in terms of QoS and energy efficiency
of the whole solution. During the exploitation of a deployed solution, the con-
nected service can evolve and the application developer may have to increase the
traffic generated by or sent to the connected devices in a way that can heavily
affect the performance of the end-to-end application and devices battery life-
time. As many IoT network technologies and settings could fit a given use-case,
IoT solution architects would like to test and compare several of them to select
and configure the most adapted network to the targeted application.

Selecting the best network technology alongside with its topology and config-
uration is critical for the success of an IoT solution. Recent studies (e.g., [6, 7])
have shown that almost 75% of IoT projects, be it in the US, UK, or India, were
deemed failures and that 30% of IoT projects actually failed to move beyond
the proof-of-concept stage. While customers see real value in deploying IoT,
many industrial companies and projects are lagging behind – for example up
to 70 percent of industrial companies projects end up in “pilot purgatory” [8].
The skills shortage and the difficulties in navigating the technological ecosystem
are part of the barriers that explain these failures. The profusion of possibil-
ities often results in non-decision, non-optimal choices, excessive total cost of
ownership and, ultimately, project failure. For instance, the success of an IoT
project can be jeopardized due to an insufficient budget or wrong technological
decisions such as an inadequate network technology.

1.2. Complexity of IoT network technology evaluation
Undoubtedly, testing the sensing and network technologies with real and in-

context deployments is key for assessing the functional feasibility. Verifying the
compatibility of sensors with a given network technology is crucial, in addition
to the validation of the quality of collected and transported data. Understand-
ing how the connected solution impacts the current human processes is also of
great importance. In general, these are the goals of a pilot project. During
this phase, various hardware and physical parameters can be evaluated and cal-
ibrated to find the right adjustments. These benchmarks serve as ground truth.
Unfortunately, they only give a narrow and insufficient picture of the future
reality as the scope of the test is typically limited to a few devices.

Imagine that as the architect of a pre-packaged tracking solution for con-
struction vehicles, you have selected a given network technology. You have
based your choice on the experience you have on the technical specification
or on a proof-of-concept made with an early adopter. Later, in the course of
your business, one of your customer discovers that the location accuracy is far
too low for their needs due to limited bandwidth or coverage. These technical
limitations prevent the tracking of vehicles when they pass through certain ge-
ographic areas. Your product-solution is functional in some restricted contexts
but you end up by addressing a limited market, which could potentially impact
the success of your business. To make a wiser and safer decision, you would have
needed to have a large-scale vision and a long-term perspective at design time.
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However, making large and long experiments was out of your reach because the
cost, time and complexity of installation were prohibitive. Additionally, IoT
network technologies and architectures are constantly evolving – 5G, satellite
and edge settings to name a few – adding to your confusion.

For optimal and cost-efficient decision-making computer-based simulation
has been proven to be one of the most valuable aids for systems design and
evaluation. However, the use of this approach remains limited in the IoT infras-
tructure field. The main reason for this is that emerging wireless IoT networks
are increasingly complex and the user-friendly capabilities provided even by the
most advanced simulation tools are not sufficient to cope with such complexity
[9]. Furthermore, it appears that, for a specific application, the number of IoT
network settings to be explored can be very large, making simulation campaigns
complex. Most organizations do not have the talents, nor the budget to afford
such time-consuming studies.

We think that a decision-support methodology and an associated tool to
systematize the evaluation process would be of great help. This would enable
to objectively compare technology candidates and to deliver key performance
indicators (KPIs) to support decision making at the IoT solution’s design, de-
ployment or exploitation phases. The ultimate goal is to future-proof and select
the most appropriate network technology for a new application development or
an adequate configuration for a new deployment of a pre-packaged IoT solution.
However, finding the right abstractions that lead to a good balance between per-
formance accuracy and computational complexity when comparing networking
options remains an open and challenging issue.

1.3. Contributions and Outcomes
In this article, we focus on the properties Performance and Scalability ([3])

of the IoT network which critically impact the ability of the IoT solution to
predictably execute within its mandated performance profile and to handle in-
creased processing volumes in the future if required. We formalize and inves-
tigate the design optimization problem for selecting and configuring the IoT
connectivity technology of an application that can evolve over time. To address
the abstraction complexity problem, we propose to separate the concerns of IoT
designers from those of network experts. We leverage a fine balance between
performance accuracy and computational complexity to provide a methodology,
HINTS, that combines IoT application requirements, goals formulation, IoT
network modeling, discrete-event network simulation, and a multiple attribute
decision-making method. The main contribution of this paper is to propose the
first formal approach and associated algorithms to automatically optimize the
design of the IoT connectivity for a given application. Our numerical results
show that HINTS can lead up to a factor of two improvements in the solution
performance. HINTS can prevent designers and architects from wasting time
and money on complex experimentation and taking important risks.

The novel contributions of the paper are as follows:
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• A comprehensive modeling approach to abstract the communication
requirements of any IoT application and to capture the specificity of any
IoT network technology.

• A pre-selection method to filter network candidates meeting the com-
munication requirements of a given application.

• A systematic evaluation method to estimate the performance but also
to predict long-term behavior (scalability) of a set of selected network
candidates.

• A multi-criteria decision method to customize and assist the final
decision process.

The main contribution of this paper is to propose the first formal approach
and associated algorithm to automatically optimize the design of the IoT con-
nectivity of an application. Section 2 discusses the related work. In Section 3
we formulate the problem of IoT network technology design and configuration.
In Section 4, we present our solution to the problem. Section 5 is devoted to
the illustration of the implementation of the methodology on three use-cases.
Finally, Section 6 concludes this paper.

2. Related Work

The problem of network selection, taken in its broadest sense, has attracted
much attention since the rapid deployment of wireless networks.

When the choice for the most adequate network technology must be made
for a forthcoming IoT solution, IoT surveys are a valuable source of informa-
tion regarding the modulations in use, the channel bandwidth, the maximum
payload sizes, and the authentication and encryption support. Surveys cover
IoT communication in general (e.g., [10, 9]), or are more specifically devoted to
Low-Power Wide Area Networks (LPWAN) technologies (e.g., [11, 12, 13, 14]).
Either way, these surveys have limitations: they provide coarse-grained infor-
mation for Key Performance Indicators (KPIs), representing networking perfor-
mance metrics, often limited to best and worst-case values, independent of the
targeted IoT applications. Yet, in IoT, the choice of the right network technol-
ogy is strongly tied to the specific requirements of the application, the network
topology, the environment as well as the resources embedded within end-devices.
For instance, the theoretical capacity of network technologies can be misleading
as in practice, this value will often not be reached because of (i) the channel
errors and/or interference, and (ii) the contention resulting from end-devices
attempting to access the radio channel at the same time.

A number of works have conducted performance studies in a bid to compare
the efficiency of two or more network technologies at supporting an IoT appli-
cation. Typically, they consider a specific scenario and evaluate the associated
performance using simulations or real experiments (e.g., [15, 16]). In [16] the
authors assess the relative merits of NB-IoT, SigFox, and LoRaWAN in covering
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the needs of smart water grids using the simulator ns-3. While they conclude
own the superiority of NB-IoT, their study does not take into account major
KPIs such as latency, cost, range, and energy consumption. [17] compares be-
tween Wi-Fi HaLow, LoRaWAN and NB-IoT for smart city applications, using
simulation. In [15], the authors use simulations to compare the coverage and
capacity of SigFox, LoRaWAN, GPRS, and NB-IoT at meeting the needs of
a large-scale IoT deployment. While all technologies were found able to cover
most of the needs in terms of coverage for outdoor communications, their re-
sults show that NB-IoT, and to a lesser extent SigFox, outperform the others
for indoor communication. However, their results do not consider energy- and
delay-related KPIs. All these works do not provide any generic tool for the
selection and the configuration of network technologies. To fulfill this gap, we
think that additional steps are required, such as the modeling of the targeted
IoT application and the network alternatives, the application of an evaluation
framework to evaluate the KPI values obtained with the network alternatives,
and the use of a comparison method to rank the different network alternatives
and to identify the best one. In [18], a framework for the IoT network technol-
ogy evaluation is proposed. It gives special attention to the energy consumption
efficiency, but does not provide any comparison and decision support. In [19],
the authors propose a 2-step methodology to guide IoT users to choose the ap-
propriate network technology for their needs. First, they use a questionnaire to
eliminate network technologies based on the mismatch between the application
requirements and the network technology characteristics. Then, they propose
an evaluation of the main cost components to find the most economical net-
work technology. Overall, their solution can be viewed as a solid step towards
an automatic selection method for the choice of an IoT network technology.
However, the considered values for KPIs are constant (when they should vary
with the scenario under consideration) and the relative merits of IoT network
technologies are compared only through their financial cost.

IoT testbeds are leveraging real IoT devices and thus represent great options
to evaluate IoT applications under real-world conditions. They often come with
API facilitating the design of the experiments and the processing of the collected
data. Examples of open research testbeds include FIT loT-LAB [20], Smart-
Santander [21], COPELABS IoT [22], FIESTA-IoT [23]. However, open IoT
testbeds have their own limitations. Their instrumentation may be incomplete
when, for instance, measurements of the delay and energy consumption are re-
quired. The use of an IoT testbed also implies constraints on the considered
topology and scale. This may pertain to the distance between end-devices and
their gateway, the maximum number of available IoT devices, and the environ-
ment which is typically indoors and not under the control of the researchers
performing experiments.

In terms of decision support, studies have mostly focused on the dynamic
interface selection (aka vertical handoff - VHO) with the goal of favoring the
performance of end-users [24, 25, 26]. These studies naturally lead to dynamic
multi-criteria decision problems where a utility function must be cautiously
devised using algorithms such as Simple Additive Weighting (SAW), Weighted
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Product Methods (WPM), and Technique for Order Preference Similarity to
Ideal Solution (TOPSIS) [27]. To handle the exploration-exploitation dilemma
inherent to the dynamic selection of interfaces, researchers have resorted to
various mathematical approaches such as combinatorial optimization [28, 29],
fuzzy logic [30, 31], Markov Decision Processes [32, 33], game theory [34, 35], and
machine learning technique such as the multi-armed bandit framework [36, 37].
All these works suppose that a heterogeneous wireless network has been put in
place and configured so that probing tests can be performed before selecting the
most adequate network interface for each end-device. This is in contrast with
our study for the static selection of the network technology, which we assume
has not been yet deployed, nullifying the possibility of collecting performance
probing.

Overall, a general IoT network technology decision method, for the design,
configuration, and exploitation phases of an end-to-end IoT solution that takes
into account both the key aspects of the application and of the network with
regard to KPIs, is still missing. The goal of this paper is to fill this gap. Table 1
provides a summary of the related works, and how HINTS differs from the
existing works. Note that we use “N/A” to denote papers in which the authors
do not disclose the method used to evaluate the different network technologies.
The column named “Application-driven” specifies whether the authors consider
or not the specificity of the IoT application. Finally, the column named “Decision
support” states if the authors introduce an algorithm to compare and select the
network technology and selection (for instance, using MADM methods) of the
network technologies. Table 1 shows that HINTS stands out from the other
methods by being an application-aware method and by providing an automatic
selection mechanism at the same time. As for the KPIs, HINTS deals with the
same set as many other existing works. This set includes the most important
KPIs in the IoT networking field. Regarding the evaluation method to obtain
the KPIs, most existing works ([10, 11, 12, 13, 14, 19, 24, 25, 26]) do not detail
their way of evaluating the different network technologies. A number of works
([15, 16, 17, 18]) refer to discrete-event simulation, as HINTS does.
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3. Problem formulation

3.1. General description
In general, systems stakeholders have non-functional requirements such as

performance, security, or scalability [38] which have to be taken into account
and implemented as properties when designing systems. Here, we focus on the
Performance and Scalability of the physical IoT network, which denotes the
ability of the system to predictably execute within its mandated performance
profile and to handle increased processing volumes in the future if required.

We formulate this design optimization problem for IoT network performance
and scalability that we are addressing as follows. Let us consider:

• An IoT application A, with its set R of characteristics and communication
requirements.

• A set T of network technologies candidates.

• For each network technology Ti in T , a set Ci of possible network config-
urations.

• A set K of key performance metrics or KPIs that characterize the behavior
of an application A on a network technology Ti with Ci.

• A set G of performance goals, defined as thresholds targeted by the appli-
cation designer for each KPI.

The decision problem consists in finding the network technology Td in T
and the associated network configuration Ck

d (k-th configuration of the net-
work technology Td) that fit the application requirements R and best match the
performance goals G of the application A, in terms of KPIs K.

The first step is to abstract and formalize the communication requirements
of the targeted application and the characteristics of any network technology.
Then, the good match of a network technology and its configuration to this
context has to be evaluated. For this, a systematic analysis of the behavior of
the application A on network technologies candidates is needed. Inappropriate
candidates should be dismissed and the remaining ones compared to provide the
insights required to make the final choice.

To explore the various parameters that mostly affect the application per-
formance, the key characteristics of an IoT application as well as those of an
IoT network technology must be defined. This abstraction drastically reduces
the complexity of an IoT scenario evaluation. The potential evolutions of the
application and of its load on the network have to be taken into account, as well
as the scalability of the deployment in terms of number of connected devices.
Certain other aspects considered to be of secondary importance for the purposes
of this decision process can be overlooked.

In the following, we detail the application abstraction, the KPIs definition
and the network technology modeling. Table B.16 lists all the notations used in
the HINTS solution.
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3.2. Application abstraction
First, let us model an IoT application. The principle of the application

abstraction consists in characterizing the load imposed on the network by the
application scenario over the time. This load is a function of the number of
end-devices and the individual traffic they are going to send. We only consider
static scenarios here. To study the evolutivity and scalability of the solution,
the minimal and maximal values expected for the different selected parameters
have to be specified. Then the factors that characterize the environmental
conditions which also impact wireless communications performance are added.
The specific communication requirements of an IoT application are defined by
the end-devices that are communicating, by the workload they impose on the
network and their physical environment as defined below. Concerning the end-
devices, we focus on:

(i) The minimal number of end-devices that will be connected.

(ii) The maximal numbers of end-devices that could be ultimately connected.

(iii) The battery capacity of the end-devices.

For the workload we have:

(iv) The traffic direction (downstream and/or upstream traffic).

(v) The message size.

(vi) The minimal message frequency.

(vii) The maximal message frequency, that could be ultimately submitted.

The type of physical environment and deployment characteristics as follows:

(viii) The deployment scope, which is represented by the maximum distance
expected between two end-devices.

(ix) The environment, which defines the radio conditions in which the IoT
application is deployed.

(x) The expected lifetime of the deployed IoT solution must also be defined.

For the environment, we consider two cases: Indoor or outdoor, where the
latter can be either (a) rural, (b) suburban or (c) urban. Inspired by [39],
we propose to associate a loss propagation model to each environment type to
characterize this environment as shown in Table 2.

We consider that the knowledge of the ten parameters (i) to (x) is sufficient
to characterize the targeted application scenario in the case of static end-devices
for the network decision process. In the case of mobile end-devices, the mobility
model will have to be specified. We do not consider this type of scenario in this
paper. Figure 1 illustrates the set of parameters considered by HINTS to model
and capture the main characteristics of an IoT application deployed in a rural
environment.
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Environment Type Propagation Model [39]
Indoor HybridBuildings
Outdoor Rural OkumuraHata
Outdoor Urban COSTHata
Outdoor Suburban LogDistance

Table 2: Environments and their propagation model.

Figure 1: Abstraction of IoT Application whose characterizing parameters are: (i) Min. num-
ber of end-devices, (ii) Max. number of end-devices, (iii) End-device battery capacity, (iv)
Traffic direction, (v) Message size, (vi) Min. message frequency, (vii) Max. message frequency,
(viii) Deployment scope, (ix) Radio environment and (x) Expected lifetime.

3.3. KPIs definition
A lot of metrics can reflect the performance of a communication solution

within an IoT context. The five major KPIs we suggest are:

• Message delivery rate, which represents the ratio of successfully re-
ceived messages over all sent messages.

• Energy consumption, which is the total amount of energy consumed
by end-devices to exchange messages for the lifetime of the project. In
this work, we do not consider the energy consumption due to the sens-
ing/actuating, since it is often much lower than the transmission costs in
IoT systems [40]. In case they cannot be neglected, HINTS can easily be
adapted to account for these sensing/actuating costs.

• Battery lifetime, which is the amount of time that the end-devices bat-
teries can last before their energy get depleted (note that we consider the
first energy depletion time at an end-device as the battery lifetime of the
whole system).

• Message latency, which is the average time that a message takes to
travel from the source to the destination.
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• Cost, which represents the financial cost for deploying and maintaining
the considered network technology given a selected number of gateways
and network configuration for the lifetime of the project.

Note that other KPIs such as security, deployment complexity or environ-
mental impact can also be included if the case study of interest requires it.

We categorize these KPIs in two classes: (i) Without threshold and (ii) with
threshold. The former class comprises KPIs for which the goal is defined as
"the more (or the less), the better". This can be the case of the cost KPI for
example. The second class includes KPIs for which a goal can be quantified as
a threshold. This means that there is no need to go beyond (or below) a given
threshold, as further discussed in Section 4.6.

3.4. Network technology modeling
Finally, we need a model for describing, exploring and comparing a large set

of network technologies. For each network technology, we identify generic and
specific parameters. Generic parameters, such as the maximum data rate (or
bandwidth), the frequency band, the topology type characterize any network
technology. Specific parameters are dependent on each network technology.
For instance, in the case of LoRaWAN, the specific parameters include the
spreading factor (SF), the coding rate and the type of traffic (unconfirmed or
confirmed). We note that some parameters are easily configurable by architects
or by software (e.g., SF for LoRaWAN) while others tend to be less tunable or
simply out of reach for the architects (e.g., transmission power for LoRaWAN
or MCS in Wi-Fi). Table 3 represents an example with the generic and the
specific parameters of the LoRaWAN network technology.

Network technology LoRaWAN
List of generic parameters • Data rate

• Frequency band
• Topology type

List of specific parameters • SF
• Coding Rate
• CRC
• Type of Traffic

Table 3: Network technology modeling for LoRaWAN.

The application abstraction, the KPIs and the network technology models
enable us to formulate the decision problems in detail as follows:
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Algorithm 1 Problem formulation for the IoT network technology
selection problem
1: Inputs:

• Application:
R = [R1, . . . , Rk]; Application requirements (e.g., min and max num-
ber of devices, size and frequency of messages, etc.).

• KPIs:
K = [K1, . . . , Kn], KPIs (e.g., Message delivery rate, Battery lifetime,
Message latency, Cost, etc.).

• KPIs performance goals:
G = [G1, . . . , Gn], Gi ∈ R+; KPIs performance goals (or KPI thresh-
olds) (Gi < 0 means that the i-th KPI is without threshold).

• KPIs weights:
W = [W1, . . . , Wn], Wi ∈ R+,

∑n
i=1 Wi = 1; Weights attributed to

each selected KPI.

• Set of network technologies candidates:
T = [T1, . . . , Tm]; IoT network technologies (e.g., LoRaWAN, LTE-M,
Wi-Fi, etc.).

• Network configuration parameters:
C = [C1, . . . , Cm]; Network configurations per network technol-
ogy (e.g., Spreading Factor for LoRaWAN, Modulation and Coding
Scheme for Wi-Fi, etc.).

2: Outputs:

• Decision D1: Select the network technology Td that best matches
the KPIs goals.

• Decision D2: Select the network configuration Ck
d for the chosen

network technology Td which best matches the KPIs goals.

• Decision D3: Select the minimal number of gateways gd for the
chosen network technology Td which best matches the KPIs goals.

Note that in this work, the focus is on network technologies based on a
star topology. Mesh networks as well as hierarchical network interconnections
leveraging routing protocols such as RPL [41], represent alternative architectures
for IoT connectivity. They raise interesting additional decision questions such
as determining the most power-efficient routing and load balancing strategies
that will be examined in future works.

13



4. Proposed Methodology

4.1. Overview of the methodology
The HINTS methodology targets simplicity, efficiency and risk limitation

to address the IoT network decision problem formulated in Algorithm 1. To
attain these objectives, the HINTS methodology is divided into two parts: (i)
the network modeling part, which addresses the concern related to network
experts and (ii) the application-driven decision part, which addresses the needs
of application architects.

The network technology modeling part consists in abstracting and quanti-
fying the relevant parameters of network technologies. This can be done by
network experts, on the basis of the technical specification documentation and
experimental evaluation. Table 4 gives the network technology models, consid-
ered by HINTS, for LoRaWAN, 5G mmWave, Wi-Fi HaLow, Wi-Fi and 6LoW-
PAN. These models can then be shared by the community and exploited by
application architects to make data-driven decisions.

The application-driven decision part of HINTS, illustrated by Figure 2, is
divided into 5 steps as follows:

1. Application modeling, where the value of the application requirements,
listed in Section 3.2, KPIs performance goals and weights are defined.

2. Pre-selection, where network technologies candidates are filtered based
on their technical specifications and on the application requirements.

3. Scenario design, where what-if scenarios, integrating the application
with remaining network technologies, are designed.

4. Evaluation, where the what-if scenarios are instantiated and executed
on an evaluation environment and the KPIs of each what-if scenario are
obtained.

5. Decision, where what-if scenarios are ranked and the best network tech-
nology and its associated configuration are identified via a multi-criteria
decision-making approach.

4.2. Application modeling
The application modeling step aims at:

• Quantifying the application requirements (an example for a smart building
use-case is given in Table 5).

• Specifying the targeted KPIs and defining their performance goals.

• Attributing weights to KPIs.

An example of the KPIs, thresholds and weights for a smart building use-case
is provided in Table 6. Recall that Gi < 0 means that the i-th KPI is without
threshold.
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Network technology List of specific parameters

LoRaWAN

• SF ∈ [7; 12]
• Coding rate ∈ [1; 4]
• CRC ∈ {0, 1}
• Type of traffic ∈ {unconfirmed, confirmed}

5G mmWave
• Numerology ∈ [1; 5]
• Hybrid Automatic Request ∈ {0, 1}
• Acknowledged mode (RLC-AM) ∈ {0, 1}

Wi-Fi HaLow • MCS ∈ [0; 9]
• Spatial streams ∈ [1; 3]

Wi-Fi
• MCS ∈ [0; 9]
• Spatial streams ∈ [1; 3]
• Packet aggregation ∈ {0, 1}

6LoWPAN

• Min. Backoff exponent ∈ [0; 7]
• Min. Backoff exponent ∈ [3; 8]
• Max. CSMA backoff ∈ [0; 5]
• Max. frame retries ∈ [0; 7]

Table 4: Specific parameters of some network technology models.

Application Parameters Value
abstraction
parts

End-devices
Minimal number 50
Maximal number 100
Battery capacity (Amperes.hour) 2.4

Workload

Traffic direction Upstream
Message size (bytes) 100
Minimal frequency (packets/second) 1
Maximal frequency (packets/second) 1

Environment
Type Indoor
Scope (meters) 100
Expected lifetime (days) 730

Table 5: Example of a smart building application requirements.
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Figure 2: Overview of the HINTS steps.

4.3. Pre-selection
The goal of the pre-selection step is to dismiss network technologies that

are obviously not meeting the application requirements. For example a network
technology can be dismissed because its maximum data rate does not support
the expected workload, derived from the message frequency and the message
size. To do this, HINTS applies a filtering process, which can be implemented
as a decision tree. The application requirements are compared to the maximum
values of the message size and data rate that a network technology can provide.
For instance, an application scenario with a traffic workload over 1 Mbps can
never be satisfied with LoRaWAN. Then, there is no need for further analysis.
The inappropriate network technologies are simply dismissed for the following
steps.
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KPI name Unit Goal Weight
Message delivery rate Percentage (%) 90 0.2
Battery lifetime Days (d) 60 0.2
Energy consumption Joules (J) 1 0.2
Message latency Miliseconds (ms) 10 0.2
Network cost Dollars ($) -1 0.2

Table 6: Example of KPIs goals and weights.

4.4. Scenario design
After the pre-selection step, there is a need to explore in depth the net-

work technologies candidates with various network configurations in order to
compare them. The scenario design step consists in identifying the different
network settings for the network technology candidates. Each setting represents
a network technology candidate associated with network configuration parame-
ters to be evaluated and compared to the others. This means that for a single
network technology, there can be various network configurations where each one
represents a what-if scenario (for instance, LoRaWAN with SF7 will be consid-
ered differently than LoRaWAN with SF12). Note that most of the considered
network configuration parameters are naturally bounded (e.g., SF, from 7 to
12).

Scalability and evolutivity assessment
Most IoT deployments are expected to evolve over time, for instance in

terms of network density (number of end-devices) or in terms of traffic work-
load (message frequency and message size). The future behavior of a network
technology under these conditions must also be evaluated. HINTS recommends
to design scenarios with the maximum number of end-devices and the heaviest
traffic workloads. To this end, every what-if scenario is composed of a min-
imal deployment (with the minimal number of end-devices and the minimal
message frequency), and a maximal deployment (with the maximal number of
end-devices and the maximal message frequency). Recall that these parameters
have been defined in Section 3.2. This will provide insights about the scalability
and evolutivity of the different what-if scenarios.

4.5. Evaluation
The evaluation step consists in instantiating the what-if scenarios defined

at the scenario design step described above for calculating their respective
KPI values, for both the minimal and the maximal deployments. For the evalu-
ation, real experimentation or simulation tools can be used. If experimentation
is used, end-devices and monitoring tools must be set up and activated to cap-
ture the traces. Then the traces have to be analyzed and the KPIs computed.
For small scale projects and a limited number of technologies and scenarios, this
can be done in labs and within reasonable time. If the number of scenarios or
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end-devices is important, the experimentation may be impossible to perform.
Moreover, experimenting the variety of technologies requires rare talents in all
these networks technologies. Simulation can be considered as a better approach
to get decent evaluation of the KPIs. Even if simulation can be viewed as provid-
ing approximate results, it allows relative scalability and configurability, which
are required to explore different configurations for each network technology.

Topological considerations
For a given network technology with its configuration, the number of gate-

ways deployed, g, referred to as the topology throughout this paper, can greatly
impact the application performance. Increasing the parameter g may have three
main implications on the network behavior and the communications perfor-
mance:

1. Reducing the workload per gateway: We assume that each gateway has a
dedicated channel so that the workload at each gateway decreases propor-
tionally with the total number of gateways. This assumption is realistic
for many technologies that have multiple orthogonal channels (e.g., 64 in
868 MHz for LoRaWAN, 24 in 5 GHz for Wi-Fi, etc.).

2. Reducing the maximum distance between end-devices and their associ-
ated gateway: In our application model, we consider that the maximum
distance between an end-device and its associated gateway is:

d = D/(2 ∗ g) (1)

where D is the deployment scope (the maximum distance between two
end-devices, see Sec. 3.2). This simple relation reflects that, in general,
the more gateways, the closer the end-devices are from their gateway.

3. Increasing the cost of the solution: It can incur additional costs in the
purchase, but also in the deployment and the maintenance of the gateways.

Therefore, the ideal topology (ideal number of gateways has to be determined
for each what-if scenario. The HINTS approach is to evaluate each what-if
scenario with an increasing number of gateways, g, starting at the minimal
number (typically 1). The parameter g is iteratively increased by 1 until either
KPIs goals of all the threshold-based KPIs (namely, message delivery, battery
lifetime and message latency) are reached (depending on the defined goals G), or
the improvement on these (threshold-based) KPIs is below a given value ϵ. To
include a safety margin, the upper bound on g is incremented by one. Overall,
the number of explored topologies for each what-if scenario is simply equal to
the maximal number of gateways that were iteratively tested. This process is
described in Algorithm 2. Throughout the paper, we define an alternative as a
what-if scenario associated with a topology.

HINTS proposes the following formula to compute the cost KPI, including
the deployment (network modules of the end-devices, and gateways) and the
maintenance costs (i.e., battery change):
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Cost = pgw ∗ ngw + ped ∗ ned︸ ︷︷ ︸
Deployment

+(l/b) ∗ pbr ∗ ned︸ ︷︷ ︸
Maintenance

(2)

where each parameter is defined in Table 7. The ratio of l (expected appli-
cation lifetime) on b is used to calculate the number of times the end-devices’
batteries will have to be replaced. Note that b (battery lifetime) is the only KPI
whose value is derived from the simulation and not obtained directly.

pgw Price of a gateway
ngw Number of gateways
ped Price of a network module for the end-device
ned Number of end-devices
l Expected scenario lifetime
b Battery lifetime
pbr Cost of a battery replacement

Table 7: Cost function parameters.
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Algorithm 2 Evaluation process
1: Inputs:

R = [R1, . . . , Rk]; Application requirements;
T = [T1, . . . , Tm]; Pre-selected IoT network technologies;
C = [C1, . . . , Cm]; Network configurations;
G = [G1, . . . , Gn], Gi ∈ R; The KPIs performance goals (either a KPI
threshold, or Gi < 0 means that the i-th KPI is without threshold);
ϵ ∈ R; Minimum improvement for KPIs;
Variables:
q ∈ N; Number of evaluated alternatives;
P = (pij) ∈ Rq×2n; KPI values of the alternatives;
Algorithm:

2: ind = 1;
3: for each i in [1;m] do
4: g ← 1; limit[i]←∞; search← True;

p0 ← [0, . . . , 0]︸ ︷︷ ︸
n

5: while g ≤ limit[i] do
6: for each j in [1;|Ci|] do
7: pind ← Evaluation (R, Cj

i , g) // Evaluation returns the KPI values
for the network configuration Cj

i , with g gateways.
8: if (KPIs_Satisfied (pind, G) or Improvement (pind, pind−1) ≤ ϵ and

search = True then
9: limit[i] ← g + 1

10: search ← False
11: end if
12: ind← ind+ 1;
13: end for
14: g ← g + 1
15: end while
16: end for
17: q ← ind

4.6. Decision
The goal of the decision step is to compare and rank the alternatives eval-

uated in the evaluation step. The KPI values obtained in the evaluation step
are stored in a matrix P . Depending on the class of the KPI (see Section 3.3),
its original value is kept or it is caped (or floored) by a threshold, as shown in
Algorithm 3.

For the second class (threshold-based KPIs), in the case of a minimum
threshold (e.g., for message delivery or battery lifetime), we have:

f(x, α) =

{
x if x > α
0 otherwise (3)
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Algorithm 3 Applying filters to KPIs
1: Inputs:

q ∈ N; Number of evaluated alternatives;
G = [G1, . . . , Gn], Gi ∈ R; The KPI performance goals (Gi < 0 means that
the i-th KPI is without threshold);
P = (pij) ∈ Rq×2n; KPI values of the alternatives;
Algorithm:

2: /* Applying KPI thresholds */
3: for each i in [1, q] do
4: for each j in [1, 2n] do
5: if Gj ≥ 0 then
6: pij ← f(pij , Gj) // KPI with threshold (see Eqs. 3 & 4)
7: end if
8: end for
9: end for

and for a maximum threshold (e.g., message latency), we have:

f(x, α) =

{
α if x < α
x otherwise (4)

where x denotes a KPI and α its associated threshold.
Then, the KPIs values are normalized as shown in Algorithm 4:

Algorithm 4 Normalization process
1: Inputs:

P = (pij) ∈ Rq×2n; KPI values of the alternatives;
Variables:
N = (nij) ∈ Rq×2n ; Normalized KPIs;
Algorithm:

2: /* Normalization */
3: for each i in [1, q] do
4: for each j in [1, 2n] do
5: nij ←

pij√∑q
i=1(pij)

2

6: end for
7: end for

The results are ranked according to a score, obtained through a method de-
rived from the TOPSIS MADM algorithm [27]. In HINTS, the ranking leverages
(i) KPIs weights and (ii) a scalability factor set by IoT architects, on the basis on
their knowledge of the business context. The KPIs weighting is done using a vec-
tor of preference, more commonly named weights, in form of W = [W1, . . . ,Wn]
where Wj ∈ R,

∑n
j=1 Wj = 1. The scalability factor, β ∈ {0, 1, 2}, determines

which one of the minimal or the maximal deployment has more importance for
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decision making (β = 0 or β = 2, respectively), or if they have the same impor-
tance (β = 1) according to the IoT architect. If the scalability of the solution
in terms of number of end-devices or in workload intensity (maximal number
of end-devices and maximal message frequency, respectively) is critical, the ar-
chitect will give a high value, namely 2, to the scalability factor. The weighted
KPIs will then be multiplied by this scalability factor for the "at scale" (aka
the maximal deployment) evaluation of a scenario. This process is detailed in
Algorithm 5. Note that, for simplicity purposes, we consider that the obtained
KPIs of alternatives are organized as follows: The first n KPI values correspond
to the minimal deployment, whereas the n remaining KPI values correspond to
the maximal deployment, as shown in Equation 5.

pi = [pi1, . . . , pin,︸ ︷︷ ︸
Min.deployment

pi(n+1), . . . , pi2n]︸ ︷︷ ︸
Max.deployment

(5)

Algorithm 5 Weighting process
1: Inputs:

W = [W1, . . . , Wn], Wi ∈ R+,
∑n

i=1 Wi = 1; KPIs weights;
N = (nij) ∈ Rq×2n; Normalized KPIs;
β ∈ {0, 1, 2}; Scalability factor;
Variables:
V = (vij) ∈ Rq×2n; Weighted normalized KPIs;
Algorithm:

2: /* Weighting */
3: for each i in [1, q] do
4: for each j in [1, 2n] do
5: vij ← Wj × nij

6: end for
/* Apply the scalability factor to the KPIs obtained for the maximal
deployment*/

7: for each j in [n+ 1, 2n] do
8: vij ← β × vij
9: end for

10: end for

HINTS calculates the positive ideal solution (best one) and the negative
ideal solution (worst one) based on the range of estimated KPIs values. Then, a
score is given to each alternative depending on the Euclidean distances between
the considered alternative and the positive and negative ideal solutions. The
way of calculating the positive and the negative ideal solutions as well as the
scores is described in Algorithm 6.
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Algorithm 6 Ranking process

1: Inputs: V = (vij) ∈ Rq×2n; Weighted normalized KPIs
2: Variables:

V + = [v+1 , . . . , v+2n], v+i ∈ R; Ideal positive solution;
V − = [v−1 , . . . , v−2n], v−i ∈ R; Ideal negative solution;
S+ = [s+1 , . . . , s+q ], s+i ∈ R; Positive distances;
S− = [s−1 , . . . , s−q ], s−i ∈ R; Negative distances;
Algorithm:

3: /* Ranking */
4: for each j in [1, 2n] do
5: v+j ← Argmax{vij , i = 1, . . . , q}
6: v−j ← Argmin{vij , i = 1, . . . , q}
7: end for
8: for each i in [1, q] do

9: s+i ←
√∑2n

j=1(v
+
j − v−j )

2

10: s−i ←
√∑2n

j=1(v
−
j − v−j )

2

11: end for
12: for each i in [1, q] do

13: Si ←
s−i

s−i + s+i
14: end for

Finally, the output of the decision step is the alternative that obtains the
highest score, according to this ranking.

4.7. Summary of the methodology
Thanks to HINTS, the IoT architect will be able to leverage the network

knowledge previously encoded by network experts, and make wise decisions by:

1. Quantifying the application requirements, identifying the KPIs perfor-
mance goals and weighting them in the application modeling step.

2. Quantifying the KPIs performance goals to allow the assessment of the
network configuration to the specific application context and its poten-
tial scale in the future in terms of number of devices as well as message
frequency, still in the application modeling step.

3. Dismissing network technologies that are obviously inappropriate (do not
meet the application requirements) via the pre-selection step.

4. Specifying detailed what-if scenarios (with network configurations) for the
remaining network technologies candidates for in-depth performance and
scalability analysis with the scenario design step.
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5. Evaluating these what-if scenarios with different topologies for the minimal
and the maximal number of end-devices and message frequency, in the
evaluation step.

6. Comparing the alternatives (with network configurations and topologies)
and selecting the best one with the decision step.

5. Case studies

In this section, we illustrate the implementation of HINTS methodology
and its application on three case studies derived from real-life examples: Smart
building, event video-surveillance and precision agriculture. We illustrate how
HINTS can be leveraged to support the following decisions and context:

• Case A: Network technology and topology decision at the design phase of
a tailored smart building solution with a potentially growing number of
end-devices.

• Case B: Network technology and topology decision for the design phase of
a pre-packaged event video-surveillance solution with a potentially growing
traffic workload.

• Case C: Network configuration decision at the deployment phase of a pre-
packaged LoRaWAN-based precision agriculture solution.

The HINTS methodology implementation tool [42] provides the following set
of network technologies: (i) LoRaWAN, (ii) Wi-Fi HaLow (aka IEEE 802.11ah
on the 868 MHz frequency band), (iii) Wi-Fi (namely, IEEE 802.11ac on the 5
GHz frequency band), (iv) 6LoWPAN and (v) Private 5G (mmWave on the 28
GHz frequency band). HINTS defines their network configuration parameters
as the ones specified in Table 4.

In the HINTS implementation, the pre-selection step is based on the max-
imum data rate and the maximum message size for each considered network
technology. Table 8 enumerates the different "theoretical" values proposed by
HINTS for these parameters.

LoRaWAN Wi-Fi Wi-Fi [43] 6LoWPAN 5G [44]
[45] [46] HaLow [47] mmWave

Maximum 50 Kbps 3.4 Gbps 234 Mbps 250 Kbps 10 Gbps
data rate
Maximum 256 B 65535 B 65535 B 65535 B 65535 B
message size

Table 8: Numerical values for the maximal data rate and message size on the subset of network
technologies, considered in the HINTS implementation tool.

For the evaluation step, HINTS implementation uses the release 3.33 of
ns-3 for Wi-Fi and 6LoWPAN and resorts to code patches not integrated in the
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official version of ns-3 but widely used by the research community to evaluate
LoRaWAN [48] and Wi-Fi HaLow [49], and the module developed in [50] for
5G mmWave. The length of simulations is determined so that there are at least
200 packets sent per end-device.

The improvement value, ϵ, to determine the ideal topology is set to 5% (see
Section 4.5). The prices of end-devices (ED) and gateways (GW) used to com-
pute the cost of an alternative are reported in Table 9. The maintenance cost
corresponds to the battery replacement. In HINTS, the price of a battery re-
placement (parameter pbc in Equation 2 and Table 9) depends on the application
scenario environment. It is set to 5 USD for indoor and urban environments,
and 50 USD for rural environment (see Table 7). Since the considered network
technologies operate on unlicensed frequency bands or private environments,
there are no additional band subscription fees.

Network technology ED Price (USD) GW Price (USD)
LoRaWAN [14] 5 1000
Wi-Fi HaLow [51] 15 1000
Wi-Fi [52] 10 100
6LoWPAN 30 200
5G mmWave 20 500

Table 9: Network equipment price for some network technologies considered for our case
studies.

For all our case studies, the end-devices are expected to run on batteries.
Therefore we keep only the battery lifetime KPI as it is correlated to the energy
consumption.

In the decision step, and for the sake of simplicity, uniform weights are used
for every KPI, and a scalability factor of 1 is used as well, so that the initial
and the maximal deployments have the same importance.

5.1. Case A: Network technology and topology decision for a smart building
solution

This case study is devoted to the design of a tailored smart building solu-
tion, where sensors will collect periodical measurements (room temperature and
occupancy sensors, air quality, etc.) to maintain safety and comfort within the
facility. The structure of the building is the following: We consider 20, 10 and
50 meters for its length, width and height, respectively, with 16 floors of 6 rooms
in each floor.

In the application modeling step of HINTS, the application scenario is
defined as follows: We consider 50 and 100 sensors for the minimal and the
maximal number of end-devices, respectively, equipped with 2,400 mAh capac-
ity batteries (powered by 3 V). The sensors send 1 packet of 100 bytes every
second to their gateway. The maximal message frequency is equal to 1 message
per second as well. The environment is indoor, since the application operates
inside a building. The sensors are randomly placed inside the building around a
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gateway, with a deployment scope of 100 meters (which is approximately equal
to the maximum distance that could separate two points inside that building).
For the KPIs goals, this application scenario would require batteries to last at
least 3 months, a message latency below 100 ms and a message delivery above
90%. For the cost calculation, the parameter l (expected scenario lifetime, see
Section 4.5) is set to 2 years.

At the pre-selection step, LoRaWAN is dismissed from the list of network
technologies candidates since the message frequency required for this case study
(1 packet per second) is too high for the maximum data rate of LoRaWAN
(see Table 8). 5G mmWave is also dismissed since these frequency bands are
not expected to be used in this kind of application scenarios, due to their poor
penetration capacity [53]. Hence, the remaining network technologies are Wi-Fi,
6LoWPAN and Wi-Fi HaLow.

At the scenario design step, we consider the following network configura-
tions for the remaining network technologies: For Wi-Fi, it is a channel width
of 80 MHz, one spatial stream, a long guard interval and no frame aggregation.
For Wi-Fi HaLow, it is a channel width of 2 MHz, a long guard interval, a bea-
con interval of 51200 ms and one RAW group. For 6LoWPAN, it is a channel
width of 5 MHz, a number of frame retries of 4, a number of CSMA backoffs set
to 5 and the maximum (resp. minimum) backoff exponent set to 4 (resp. 3).
Note that these values are used as a default network configuration, and other
parameters can be considered for further study. The same remark applies to
the remaining case studies.

The simulation time is set to 200 seconds in the evaluation step. We present
the results of the evaluation step in Table 10. In this step, HINTS iterates to
determine the ideal topology. In this example, the KPIs performance goals are
met for the threshold-based KPIs with one gateway for Wi-Fi HaLow and two
gateways for 6LowPAN. For Wi-Fi, we see that the goals are attained for message
delivery, message latency and battery lifetime with 4 gateways. Therefore, an
additional study for Wi-Fi with 5 gateways is considered. We observe that the
number of alternatives to consider differs for each network technology. We notice
that, unlike 6LoWPAN and Wi-Fi, Wi-Fi HaLow manages to keep the message
delivery at 100% with one gateway, for both the minimal number of end-devices
of 50 and the maximal number of end-devices of 100. We also see that, despite
being the most performing in terms of battery lifetime and cost, Wi-Fi HaLow
is outperformed by Wi-Fi and 6LoWPAN in terms of message latency.

Table 10 shows that the decision step determines Wi-Fi HaLow with two
gateways as being the best alternative among those considered. Figure 3 uses
a radio chart to reflect the resulting KPIs after the application of the function
f for the threshold-based KPIs (see Eqs. 3 and 4), the normalization and the
weighting processes. Then, each resulting KPI value is divided by the maximum
(for message delivery and battery lifetime) or minimum (for message latency or
cost) value of that KPI among all the alternatives. These values are finally
plotted in the radio chart. Note that for readability purposes, we display the
cost efficiency and latency efficiency, which are the inverse values of cost and
message latency, respectively. Also, the "Latency Efficiency" axis is displayed
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using a logarithmic scale. We see that Wi-Fi HaLow, regardless of the number
of gateways, significantly outperforms the other alternatives in terms of battery
lifetime KPI. According to the calculated scores, the decision step returns
HaLow with 2 gateways as the network technology and topology to opt for the
design phase of this application scenario.

27



N
et

w
or

k
te

ch
no

lo
gy

M
in

im
al

de
pl

oy
m

en
t

(5
0

en
d-

de
vi

ce
s)

M
ax

im
al

de
pl

oy
m

en
t

(1
00

en
d-

de
vi

ce
s)

Sc
al

ab
ili

ty
fa

ct
or

:
1

T
ec

hn
ol

og
y

N
b.

of G
W

M
es

sa
ge

de
liv

er
y

B
at

te
ry

lif
et

im
e

M
es

sa
ge

la
te

nc
y

C
os

t
M

es
sa

ge
de

liv
er

y
B

at
te

ry
lif

et
im

e
M

es
sa

ge
la

te
nc

y
C

os
t

Sc
or

e

W
ei

gh
t:

1
W

ei
gh

t:
1

W
ei

gh
t:

1
W

ei
gh

t:
1

W
ei

gh
t:

1
W

ei
gh

t:
1

W
ei

gh
t:

1
W

ei
gh

t:
1

U
ni

t:
%

U
ni

t:
d

U
ni

t:
m

s
U

ni
t:

$
U

ni
t:

%
U

ni
t:

d
U

ni
t:

m
s

U
ni

t:
$

G
oa

l:
>

90
G

oa
l:

>
80

G
oa

l:
<

10
0

G
oa

l:
>

90
G

oa
l:

>
80

G
oa

l:
<

10
0

W
i-F

i
1

42
.0

61
.7

2
0.

05
38

50
30

.0
49

.1
0.

05
91

00
0.

02
W

i-F
i

2
80

.0
66

.2
8

0.
05

37
00

86
.0

61
.2

4
0.

05
77

00
0.

07
W

i-F
i

3
87

.5
66

.4
5

0.
05

38
00

96
.9

7
85

.8
6

0.
05

58
00

0.
32

W
i-F

i
4

10
0.

0
89

.0
9

0.
05

31
50

10
0.

0
88

.3
8

0.
05

59
00

0.
46

W
i-F

i
5

10
0.

0
89

.2
7

0.
05

31
50

10
0.

0
88

.7
1

0.
05

59
00

0.
46

H
aL

ow
1

10
0.

0
36

2.
16

48
.4

1
22

50
10

0.
0

27
7.

78
57

.2
8

35
00

0.
87

H
aL

ow
2

10
0.

0
42

1.
69

48
.9

30
00

10
0.

0
33

1.
8

58
.7

2
45

00
0.

93
6L

oW
PA

N
1

54
.3

1
91

.7
6

29
.6

2
37

00
44

.6
3

71
.4

4
12

.6
1

97
00

0.
12

6L
oW

PA
N

2
94

.4
6

12
5.

07
12

.3
8

34
00

88
.2

9
85

.7
5

21
.6

7
74

00
0.

36
6L

oW
PA

N
3

98
.0

9
14

2.
95

16
.4

7
33

50
94

.1
0

11
2.

28
7.

46
71

00
0.

49

T
ab

le
10

:
C

as
e

A
:
sm

ar
t

bu
ild

in
g

re
su

lt
s.

28



Figure 3: Case A: smart building radio-chart.

5.2. Case B: Network technology and topology selection for an event video-
surveillance application

We consider the design of a pre-packaged camera-based surveillance solution
for events gathering large crowds (e.g., trade fair, concert, etc.). Short instal-
lation time and stringent logistic constraints impose wireless connectivity with
self-powered cameras placed at specific locations.

In the application modeling step, the application scenario is defined as fol-
lows: This solution is sold for an minimal (and maximal) number of 30 cameras,
each one equipped with 2,400 mAh capacity batteries (powered by 3 V). The
cameras typically send 200 packets of 1500 bytes per second to their gateway
(leading to a workload of 2 Mbps). The application developers of the solution
want to be able to improve the precision of the images. At maximal traffic
workload, the cameras will be sending 300 packets every second to the gateway.
This will result in a higher bandwidth requirement: A workload of 3 Mbps.
The cameras are randomly placed around a gateway and the deployment scope
is about 60 meters, in an outdoor urban environment. For the KPIs threshold,
the architect specifies a message delivery above 95%, batteries to last at least a
week, and a message latency under 10 ms. The parameter l (expected lifetime)
is set to two months, including installation and exploitation phases.

Due to the large expected workload (2 and 3 Mbps), the pre-selection step
dismisses LoRaWAN, Wi-Fi HaLow and 6LoWPAN from the possible network
technologies candidates. Thus, only Wi-Fi and 5G mmWave remain.
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Regarding the scenario design step, the existing Wi-Fi configuration is
the same as for case A, whereas 5G mmWave uses a 5G NR numerology of 2,
disabled HARQ and RLC-AM.

At the evaluation step, the traffic workload defined in the application
modeling step leads to a simulation time of around 2.5 seconds. HINTS iterates
on the number of gateways. In this example, two gateways are enough for Wi-
Fi to reach the KPIs goals of the threshold-based KPIs. Thus, we consider
three alternatives for Wi-Fi with a number of gateways ranging from one to
three. Regarding 5G mmWave, the improvement obtained when augmenting
the number of gateways from 1 to 2 does not exceed ϵ, therefore three gateways
are sufficient for the study (taking into account the safety margin). We present
the results of the evaluation step in Table 11. First, we see that the message
delivery attains 100.0% starting from Wi-Fi with two gateways, while its value
is around 55% for one gateway, which means that one gateway is not enough
to support the whole traffic workload. It attains practically 100 % with one
gateway for 5G mmWave. Also, we notice a slight increase in battery lifetime
when the number of gateways is increased. Indeed, the more gateways, the less
contention, resulting in end-devices spending more time in an idle state, which
consumes less energy. The same remark cannot be made for 5G mmWave: The
battery lifetime is not impacted by the number of gateways. Moreover, the
obtained battery lifetime does not even last 1 day, while it manages to go up
to 13 days for Wi-Fi with two gateways. The high energy consumption in 5G
mmWave seems in line with the work [54] in which the authors showed that
the 5G mmWave has substantial energy and computing power. In the same
way, message latency slightly decreases for the same reason (less contention)
for both network technologies. Regarding the cost, it tends to get lower with
the number of gateways for Wi-Fi, which is due to the associated decreasing
number of battery replacements, contrarily to 5G mmWave, where the cost
seems to increase.

Overall, Table 11 shows that the Wi-Fi alternative with 3 gateways obtains
the best score and outperforms the others. The trade-offs between the different
KPIs are captured in Figure 4 (computed as in Section 5.2) for the two best
alternatives of each network technology. Figure 4 clearly shows that the Wi-
Fi alternative with 3 gateways outperforms the other alternatives in terms of
battery lifetime and cost efficiency.
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Figure 4: Case B: event video-surveillance radio-chart.

5.3. Case C: Network configuration decision for a precision agriculture applica-
tion

In this case study, we consider the deployment of a pre-packaged precision
agriculture solution in a given farm, using LoRaWAN. The solution architect
needs to adjust the network configuration parameters of this solution taking
into account the specificity of the deployment. The precision agriculture system
comprises humidity, temperature and PH sensors, which measure these met-
rics before sending them to a LoRaWAN gateway for further transmission and
processing.

At the application modeling step, the application scenario is defined as
follows: The minimal number of sensors is 200, whereas the maximal number
of sensors is 300, each one equipped with the same batteries as for Case A and
B (2,400 mAh powered by 3 V). The sensors send one packet of 30 bytes every
3 minutes to their gateway, in an outdoor rural environment. The sensors are
placed around the gateway and the deployment scope is 3,000 meters. Regarding
the KPIs, this solution deployment typically requires a battery lifetime of 1 year,
a message latency lower than 1 second and a message delivery of at most 90%.
The value of l is set to 10 years.

Since the network technology to be used has already been decided (Lo-
RaWAN), the pre-selection step is skipped.

In the scenario design step, the goal is to explore the various network
configurations for the LoRaWAN settings within the end-devices. The goal
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is to determine which SF to select as well as which coding rate and type of
traffic (confirmed or unconfirmed) to use. Several network configurations are
generated accordingly. We consider the minimal and the maximal values for
each parameter.

In the evaluation step, the traffic workload leads to 36,000 seconds of sim-
ulation time to ensure a minimum of 200 packets sent by each sensor. This
pre-packaged solution supports a single gateway. Table 12 presents the KPI
values of the various LoRaWAN alternatives. First, we see that the SF has a
tremendous impact on the KPIs, where the less the better: SF7 allows to amelio-
rate the performances almost by a factor of 2. Then, the type of traffic strongly
influences the battery lifetime: In case the traffic is unconfirmed, it is around 8
times higher than with unconfirmed traffic. This is due to the re-transmissions
triggered following up the loss of a packed when the traffic is confirmed.

In Table 12, the decision step elects LoRaWAN with a SF7, a 1 coding rate,
with an unconfirmed traffic as the best alternative. The differences between the
best alternatives’ performances are shown in Figure 5 (computed as in Section
5.2).
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Figure 5: Case C: precision agriculture radio-chart.

Table 13 provides a summary of the application modeling for the case
studies A, B and C. An outline of the rest of the steps is given in Table 14.

Application Parameters Cases
modeling A B C

End-devices
• Minimal number 50 30 200
• Maximal number 100 30 300
• Battery capacity 2.4 2.4 2.4
(Amperes.hour)

Workload

• Traffic direction Upstream Upstream Upstream
• Message size (bytes) 100 1500 30
• Minimal frequency 1 200 0.005
(packets/second)
• Maximal frequency 1 300 0.005
(packets/second)

Environment
• Type Indoor Urban Rural
• Scope (meters) 50 30 1500
• Expected lifetime 730 60 3650
(days)

Table 13: Application modeling of cases A, B and C.
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5.4. Discussion
The computational complexity of HINTS implementation mostly resides in

the evaluation step, because running simulations (for example in ns-3) can
be time-consuming depending on the density of the simulated network and the
simulation time. The decision step includes some relatively lightweight com-
putations relating to the normalization, the weighting and the computing of the
Euclidean distances (which results in a complexity of O(n × q), with q being
the number of evaluated alternatives and n the number of KPIs). Overall, the
decision step time is considered negligible in comparison to the evaluation time.

The availability of the simulator of a given network technology is a non-
negligible constraint. In this paper, we demonstrate that such comparative
simulations can bring a lot of insights rapidly and at a low cost to encourage
network experts and researchers to contribute to the effort by coding open-source
simulators and their HINTS models.

A current limitation of HINTS is the fact that it only considers star topolo-
gies for networks. HINTS could be further extended to include mesh topologies.
A user-friendly interface may also help disseminate HINTS among IoT archi-
tects.

As for the issue of ranking reversal that may emerge in MADM methods,
it does not apply in our case. Indeed, this classical problem refers to a change
in the ordering among the alternatives, after the addition or the removal of
an alternative from the group previously defined. For example, in the case of
dynamic selection of a wireless interface, this alteration can affect the routing of
packets [55]. Since HINTS targets static selection and gives recommendations
prior to the effective network deployment, it is not subject to the ranking reversal
problem. However, if we extend HINTS to address the emerging problem of
dynamic reconfiguration of end-devices with multiple IoT networks, then we
will have to deal with this issue.

To end this discussion, we compare HINTS with the work of [19] which is
the closest to our solution. Both methodologies help in modeling the network
technologies and the IoT application. [19] provides questionnaires to help IoT
architects eliminate technology candidates based on deployment constraints and
on the evaluation of a single KPI, namely financial cost, for decision making.
On the other hand, HINTS relies on technical specification to eliminate net-
work technology candidates, but then resorts to an automated evaluation of
KPIs (including the financial cost and network performance metrics) resulting
from discrete-event simulation and decision algorithms to select the “right” net-
work technology, its configuration and topology. We believe these two solutions
(HINTS and [19]) are complementary and could be nicely combined in future
works.

6. Conclusion

In this paper, we have presented HINTS, a methodology for supporting IoT
network technologies selection and configuration. HINTS relies on the model-
ing of IoT network technologies on one side and a five steps decision process
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on the other side. We have described the different steps of this process, which
includes: (i) Application modeling, to abstract the IoT application speci-
ficity, its requirements on a set of KPIs; (ii) pre-selection, which dismisses
the inappropriate network technologies; (iii) scenario design, to configure the
application with the appropriate network technologies candidates, (iv) evalua-
tion where the best suited topology is iteratively found and an instrument such
as simulation is used to estimate the KPIs on the targeted application scenario
for each alternative and (v) decision, which assigns scores to each alternative
using a MADM method, derived from TOPSIS. We have presented three case
studies inspired by real-life deployments to illustrate the application of HINTS.
The results have shown that HINTS enables a fair and insightful comparison of
IoT network technologies for a given application scenario. Moreover, it permits
to explore and determine network configuration parameters and the number of
gateways to deploy. This work highlights the importance of the application
context, of the environment, and of the scaling factor in the network selection
process and expected performance. For the sake of reproducibility, we made the
source code available at [42].

In future works, we plan to extend HINTS to include IoT networks operat-
ing on mesh topology as well as the potential mobility of end-devices so that
HINTS can handle connected vehicle applications or drone-based use-cases. We
also aim at enriching the simulation models with real measurements derived
from experiments conducted on testbeds such as FIT-IoT lab [20] and SLICES
[56]. Adding more network technologies (NB-IoT, LTE-M, etc.) in HINTS and
specially in the simulator (viz ns-3) is another item on our agenda. Finally, we
plan to make the methodology available as an online service to assist IoT archi-
tects and network specialists in their everyday life, through an online no-code
tool that we have initiated in [57].
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Appendix A. Energy consumption models

Table A.15 indicates the numericals values we used throughout this paper to
compute the energy consumption of the Wi-Fi, LoRaWAN, Wi-Fi HaLow and
6LoWPAN network interface cards (NICs). The values for Wi-Fi were selected
calibrating the state machine against the measurements provided by Serrano
et al. in [58]. The values for LoRaWAN are those given by default in the ns-3
module for the LoRaWAN consumption by Magrin et al. [48]. For 5G mmWave,
the values are derived from [59].
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State LoRaWAN 5G Wi-Fi 6LoWPAN Wi-Fi
mmWave HaLow

Tx 77 350 7.2 7 107
Rx 28 350 4.4 1.5 40
Idle 1 / 1 / 1
Sleep 0.015 45 / / /
CCA Busy / 1 / / /
Switch / / / 0.5 /

Table A.15: Drawn current values for each state of the machine state used in ns-3 simulations
to evaluate the power consumption of LoRaWAN, 5G mmWave, Wi-Fi HaLow, Wi-Fi and
6LoWPAN communications.

Appendix B. Notation Table

Table B.16 details the used symbols used throughout the paper.

Symbol Meaning
R Application requirements
K KPIs
G KPIs performance goals
W KPIs weights
T Network technologies candidates
C Network configuration parameters
P KPIs values of the alternatives
N Normalized KPIs
W KPIs weights
V Weighted normalized KPIs
V + Ideal positive solutions
V − Ideal negative solutions
S+ Positive distances
S− Negative distances
q Number of evaluated alternatives
ϵ Minimum improvement for the KPIs
n Number of KPIs
β Scalability factor

Table B.16: Table of notation.
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