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Love waves propagation in a viscoelastic waveguide loaded on its surface with viscoelastic fluids of finite thickness is investigated in this paper. The Maxwell and Kelvin-Voigt constitutive equations are employed in order to describe the fluid viscoelasticity. By solving the equations of motion in the different media (viscoelastic fluid, viscoelastic waveguide and elastic substrate) and imposing the suitable boundary conditions, an accurate and simple generalized complex dispersion equation is established for Love waves. Subsequently, a comparison is made with the published complex dispersion equations in the literature in some particular cases, and a very good agreement is showed. A detailed study was conducted by varying key parameters such as operating frequency, waveguide thickness and fluid thickness. The waveguide surface was subjected to various glycerol concentrations, with a wide range of dynamic viscosity, representing both Newtonian and viscoelastic behaviors. Theoretical analysis shows that to reasonably predict the characteristics responses of Love waves, the Maxwell fluid is more appropriate for low glycerol concentration and, the Kelvin-Voigt fluid is more suitable for high glycerol concentration and at high frequency. Results also evaluated the influence of layer thickness on the dispersion curves. The obtained results can be very useful in the design and optimization of Love wave fluid sensors.

Introduction

There is an increasing demand of highly sensitive analytical techniques in the fields of biotechnology [START_REF] Matatagui | Love-Wave sensors combined with Microfluidics for fast detection of biological Warfare agents[END_REF], medical diagnostics [START_REF] Zhang | A Microfluidic Love-Wave Biosensing Device for PSA Detection Based on an Aptamer Beacon Probe[END_REF] and chemistry [START_REF] Josse | Guided shear horizontal surface acoustic wave sensors for chemical and biochemical detection in liquids[END_REF]. Optical and acoustic waves sensing technologies are currently used [START_REF] Rocha | Love Wave Biosensors: A Review[END_REF]. In particular, the Love wave acoustic sensors have attracted increasing attention from the scientific community during the last two decades, due to their reported high sensitivity in liquid. Love wave is a transverse surface wave having one component of mechanical displacement, which is parallel to the surface and perpendicular to the direction of wave propagation. The Love wave sensor is a layered structure formed by a piezoelectric substrate and a guiding layer [START_REF] Mitsakakis | Parametric study of SH-SAW device response to various types of surface perturbations[END_REF][START_REF] Kielczynski | Effect of a viscous liquid loading onLove wave propagation[END_REF][START_REF] Baroudi | Influence of Poroelasticity of the Surface Layer on the Surface Love Wave Propagation[END_REF]. In addition, the condition for the existence of Love waves is that the bulk transverse wave velocity in the layer is lower than that in the substrate. The difference between the mechanical properties of the guiding layer and the substrate creates an entrapment of the acoustic energy in the guiding layer keeping the wave energy near the surface [START_REF] Kovacs | Theoretical comparison of sensitivities of acoustic shear wave modes for (bio) chemical sensing in liquids[END_REF]. The confinement of the wave in the guiding layer makes Love wave devices very sensitive towards any changes occurring on the sensor surface [START_REF] Du | A study of Love-wave acoustic sensors[END_REF].

The interaction with a viscous fluid was firstly studied in 1992. An exact solution was used to correlate the velocity and attenuation with the fluid viscosity [START_REF] Kim | The effect of a viscous fluid on Love waves in a layered medium[END_REF][START_REF] Li | Theoretical Study of Monolayer and Double-Layer Waveguide Love Wave Sensors for Achieving High Sensitivity[END_REF]. This article describes a detailed analytical study to predict the propagation of Love wave in viscoelastic waveguide loaded on its surface with a viscoelastic fluid. In this study we will determine how the characteristics of Love waves are affected by loading viscoelastic fluids with finite thickness. These characteristics are very important in a design and optimization of Love wave fluid sensors. To date, the theory of Love wave propagation has been developed for elastic waveguide loaded on the surface with the Newtonian fluid [START_REF] Kielczynski | Effect of a viscous liquid loading onLove wave propagation[END_REF][START_REF] Kielczynski | Dispersion Curves of Love Waves in Elastic Waveguides Loaded with a Newtonian Liquid Layer of Finite Thickness[END_REF], and elastic waveguide loaded on the surface with the Maxwell fluid [START_REF] Baroudi | Viscoelastic fluid effect on the surface wave propagation[END_REF]. In the present work, we investigate a more general situation, i.e. we consider a case in which the viscoelasticity of fluid and waveguide is taken into account. To this end, the coupled differential problem which describes the propagation of the Love wave in the viscoelastic waveguide structure loaded on its surface with viscoelastic fluids (see Figure 1) was formulated and solved analytically. Love wave fluid sensors can be used to determine the viscosity of various fluids processed in the plastics and chemical industries. Moreover, the obtained dispersion equation can be very useful in nondestructive investigations of composite materials in order to interpret the obtained experimental measurements.

Physical model description

To describe the waveguide structure that guides Love waves, we consider a three-layer system consisting of a viscoelastic fluid (index f ), a viscoelastic elastic surface layer (i.e. waveguide, index v) and an elastic solid substrate (index e), see Figure 1. The waveguide is designed to support shear horizontal surface waves of the Love type. The waveguide structure consists of a viscoelastic layer (0 < x 2 < h v ), which is rigidly bonded to a semi-infinite elastic substrate occupying the lower half-space (x 2 > h v ). In addition, top of the surface layer of the waveguide (x 2 = 0) is loaded with a viscoelastic fluid (-h f < x 2 < 0) of finite thickness h f . All material parameters of the waveguide structure change only along the x 2 axis. Love surface waves have only one non zero shear horizontal component of the mechanical displacement u 3 , which is directed along the x 3 axis, parallel to the surface (x 2 = 0) of the waveguide and perpendicular to the direction of the Love wave propagation along the x 1 axis. Note that the Love waves exhibit a multimode character, the fundamental mode plays an important role in many application such as non destructive testing and sensors [START_REF] Li | Theoretical Study of Monolayer and Double-Layer Waveguide Love Wave Sensors for Achieving High Sensitivity[END_REF]. Accordingly, in this work, the attention is focused on the properties of the fundamental mode of Love waves. In addition, losses in the viscoelastic waveguide are considered.

From the experimental point of view, phase and amplitude characteristics of Love surface waves can be measured in a closed loop configuration by placing Love wave delay line in a feedback circuit of an electrical oscillator. Another possibility is to use a network analyzer. This apparatus provides phase shift and insertion loss of the Love wave sensor due to the load of the sensor with a measured viscoelastic fluid. The typical frequency range used by Love wave sensors is from 50 MHz to 500 MHz [START_REF] Kielczynski | Surface Waves -New Trends and Developments, Properties and Applications of Love Surface Waves in Seismology and Biosensors[END_REF].

Viscoelastic waveguide

In this section, we derive the differential equations describing wave propagation in terms of the displacements of the material using continuum mechanics. The conservation of linear momentum in the absence of the body forces implies [START_REF] Auld | Acoustic Fields and Waves in Solids[END_REF] 

ρ v ∂ 2 u (v) ∂t 2 = ∇ • σ (v) (1) 
where u (v) is the displacement vector, ρ v is the density and σ (v) is the total stress tensor. A viscoelastic model commonly used to describe anelastic effects is the Kelvin-Voigt stress-strain relation, which consists of a spring and a dashpot connected in parallel. Therefore, the total stress is composed of an elastic stress and a viscous stress as follow [START_REF] Carcione | Wave Fields in Real Media[END_REF] 

σ (v) = 2µ v ε (v) + 2η v ∂ε (v) ∂t (2) 
where µ v is the storage shear modulus (spring constant), η v is the viscosity of the viscoelastic layer (dashpot constant), and

ε (v) = ∇u (v) + ∇u (v) T /2
is the total strain of the system. The Love wave is taken to propagate in the x 1 -direction, with shear displacement in the x 3 -direction. A plane wave in the x 1 -direction is considered, with displacement in x 3 -direction only, u (v) = 0, 0, u (v) 3

. Owing to symmetry, the mechanical displacement should be independent of x 3 , u

(v) 3 = u (v) 3 (x 1 , x 2 )
. Applying the divergence operator to both sidesof Eq. ( 2) and taking into account Eq. (1), we get the following viscoelastic waveguide equation expressed in terms of the component of the displacement along the x 3 axis

µ v ∇ 2 u (v) 3 + η v ∂ ∂t ∇ 2 u (v) 3 -ρ v ∂ 2 u (v) 3 ∂t 2 = 0 (3)
where ∇ 2 is the Laplacian operator in Cartesian coordinates.

Elastic substrate

In this work the substrate is considered to be a semi-infinite medium [START_REF] Baroudi | Viscoelastic fluid effect on the surface wave propagation[END_REF][START_REF] Baroudi | Surface wave in a Maxwell liquid-saturated poroelastic layer[END_REF], and mechanical displacement u (e) 3 is governed, using the elastodynamic theory by the Navier's equation [START_REF] Auld | Acoustic Fields and Waves in Solids[END_REF] 

µ e ∇ 2 u (e) 3 -ρ e ∂ 2 u (e) 3 ∂t 2 = 0 (4)
where µ e is the storage shear modulus and ρ e the density. Note that Eq. ( 4) can easily be obtained by setting η v = 0 in Eq. (3).

Viscoelastic fluid

The fluid occupying -h f < x 2 < 0 is assumed to be viscoelastic and nonconductive. To describe the viscoelasticity of the fluid, the Maxwell and Kelvin-Voigt models are employed. The Maxwell model introduces the viscoelastic response of the fluid at high frequencies and that of Kelvin-Voigt at low frequencies. The Maxwell model consists of a spring and a damper connected in series. The damper represents energy losses and is characterized by the viscosity η, whereas the spring represents the energy storage and is characterized by the elastic shear modulus µ. These two quantities are related through the relaxation time δ = η/µ, which is the characteristic time for the transition between viscous and elastic behavior [START_REF] Joseph | Fluid Dynamics of viscoelastic liquids[END_REF]. Thus, suppose the motion of the fluid is induced only by wave propagation in the waveguide material and also propagates in the form of a harmonic wave. Therefore, the governing equation for the fluid is described by the Cauchy's equation :

ρ f ∂v ∂t + (v • ∇) v = -∇p + ∇ • τ (5)
where ρ f is the density, v is the velocity vector, p is the pressure and τ is the shear stress tensor. Therefore, the constitutive equations which relate the shear stress tensor to deformation are [START_REF] Huilgol | Fluid Mechanics of Viscoelasticity[END_REF] τ + δ ∂τ ∂t = 2ηD (6)

∂τ ∂t = 2µD + 2η ∂D ∂t (7) 
where D = ∇v + (∇v) T /2 is the strain rate tensor. The stress-strain relation ( 6) is suggested by Maxwell for the characterization of viscous fluids with elastic properties, and the stress-strain relation [START_REF] Baroudi | Influence of Poroelasticity of the Surface Layer on the Surface Love Wave Propagation[END_REF] is proposed by Kelvin-Voigt for the description of elastic solids with viscous properties. Similarly the mechanical displacement, since a plane wave in the x 1 -direction is considered, with displacement in x 3 -direction only, the velocity field can be expressed as

v = [0, 0, v 3 (x 1 , x 2 )].
Moreover, the pressure gradient can also be ignored since only shear deformation occurs during wave propagation [START_REF] Guo | Propagation of Bleustein-Gulyaev wave in 6 mm piezoelectric materials loaded with viscous liquid[END_REF].

In regard to this problem, the inertial term in the Cauchy's equation ( 5) can be neglected. Therefore, applying the divergence operator to both sides of Eqs. ( 6) and ( 7), and taking into account the Eq. ( 5), we get the following viscoelastic fluid equation expressed in terms of the axial component v 3 of the velocity field

∇ 2 v 3 - ρ f η ∂v 3 ∂t + δ ∂ 2 v 3 ∂t 2 = 0 (8) 
∇ 2 v 3 + δ ∂ ∂t ∇ 2 v 3 - δρ f η ∂ 2 v 3 ∂t 2 = 0 (9) 
Equation ( 8) describes the fluid motion according to the Maxwell behavior and Eq. ( 9) to that of Kelvin-Voigt behavior. The solution of these equations and those of equations ( 3) and ( 4) are to be substituted in the relevant boundary conditions.

Analytical solutions for the equations of motion

A general plane harmonic wave solution for the equations of motion ( 3), ( 4), ( 8) and ( 9) is sought in the following form :

   u (v) 3 u (e) 3 v 3    (x 1 , x 2 , t) =    U v (x 2 ) U e (x 2 ) V (x 2 )    e j(kx 1 -ωt) ( 10 
)
where ω represents the angular frequency. Love wave propagating in the viscoelastic layer undergoes attenuation, hence, the wavenumber k along the propagation direction of the Love wave becomes complex, k = k r + jk i , the real part k r determines the Love wave velocity, the imaginary part k i , is the Love wave attenuation. Moreover, the x 2 dependence represents the distribution of the mechanical displacement and velocity as a function of depth x 2 . Substitution of Eq. ( 10) into Eqs. ( 3), ( 4), ( 8) and ( 9) gives rise to the following differential equations of the second order :

U v (x 2 ) + β 2 v U v (x 2 ) = 0 U e (x 2 ) -β 2 e U e (x 2 ) = 0 V (x 2 ) -β 2 f V (x 2 ) = 0 (11) 
where the wavenumbers β v , β e and β f are given in the following form

β v = ω 2 c 2 v -jωηv ρv -k 2 , β e = k 2 - ω 2 c 2 e , β f = k 2 - jωρ f η * (12) 
and c v = µ v /ρ v and c e = µ e /ρ e are the shear waves velocities in the layer and substrate, respectively. The complex dynamic viscosity η * present in the fluid wavenumber β f can be defined according to the used viscoelastic fluid behavior as

η * =      η 1 -jDe for Maxwell fluid η - η jDe
for Kelvin-Voigt fluid [START_REF] Baroudi | Viscoelastic fluid effect on the surface wave propagation[END_REF] where De = ωδ is the Deborah number. Note that when De 1 (Maxwell fluid), or De 1 (Kelvin-Voigt fluid), the fluid exhibits a purely Newtonian (viscous) behavior and the fluid wavenumber

β f becomes ξ = k 2 -jωρ f /η.
Since the amplitude of Love surface waves must tend to zero for x 2 → ∞, the solution of Eq. ( 11) can be written in the form of

U v (x 2 ) = A v cos (β v x 2 ) + B v sin (β v x 2 ) U e (x 2 ) = A e e -βex 2 V (x 2 ) = A f e -β f x 2 + B f e β f x 2 (14)
where A v , B v , A e , A f and B f are unknown arbitrary amplitudes.

Boundary conditions

The solution of the Love wave propagation must satisfy the boundary conditions on the fluid (x 2 = -h f ), the continuity conditions along the interface between the waveguide layer and the fluid (x 2 = 0), and between the substrate and the waveguide layer (x 2 = h v ). At the interface x 2 = 0, the mechanical conditions are continuity of displacement, velocity and stress components, i.e.

v 3 = ∂u (v) 3 ∂t , τ 23 = σ (v) 23 (15) 
The surface of the fluid is open boundary (x 2 = -h f ). This requires

τ 23 = 0 ( 16 
)
At the interface x 2 = h v , the mechanical conditions are continuity of displacement and stress components, i.e.

u (v) 3 = u (e) 3 , σ (v) 23 = σ (e) 23 (17) 
Furthermore, the shear stress component displacement that will be used in these boundary conditions are given by

σ (v) 23 = (µ v -jωη v ) ∂u (v) 3 ∂x 2 , σ (e) 23 = µ e ∂u (e) 3 ∂x 2 , τ 23 = η * ∂v 3 ∂x 2 (18) 
2.6. Complex dispersion equation Substitution of the Eqs. ( 10) and ( 18) into the boundary conditions ( 15)-(17) yields a system of five linear algebraic equations in five undetermined amplitudes. For nontrivial solutions of the undetermined amplitudes to exist, the determinant of this system has to equal zero, which leads to the following dispersion equation of the Love waves :

jωη * β f β v (µ v -jωη v ) tanh (β f h f ) + β v (µ v -jωη v ) tan (β v h v ) -µ e β e µ e β e tan (β v h v ) + β v (µ v -jωη v ) = 0 (19)
Since this relation contains k, ω, as well as all material and geometrical parameters of the viscoelastic fluid, viscoelastic waveguide and elastic substrate, Eq. ( 19) represents the implicit complex dispersion equation of Love waves propagating in a viscoelastic waveguide loaded with a viscoelastic fluid. Eq. ( 19) was solved using Mathematica software. Once the wavenumber is obtained, the phase velocity is calculated by v p = ω/k r . While the imaginary part of wavenumber k i represents the attenuation per unit length in the propagation direction. Furthermore, the Deborah number De present in the complex dynamic viscosity η * depends both on ω and δ. The three following regimes may be highlighted in the case of :

• Maxwell fluid: (i) For De 1 the oscillation time (= 1/ω) is greater than the relaxation time and, the fluid exhibits a purely viscous behavior. (ii) For De 1 the oscillation time is smaller than the relaxation time and, the fluid exhibits an elastic behavior. (iii) For De = 1 the transition from Newtonian to Maxwell regime takes place.

• Kelvin-Voigt fluid: (i) For De 1 the oscillation time is greater than the relaxation time and, the fluid exhibits an elastic behavior. (ii) For De 1 the oscillation time is smaller than the relaxation time and, the fluid exhibits a purely viscous behavior. (iii) For De = 1 the transition from Newtonian to Kelvin-Voigt fluid regime takes place.

Some particular cases

For the special case when h f → ∞ (semi-infinite viscoelastic fluid), the complex dispersion equation [START_REF] Guo | Propagation of Bleustein-Gulyaev wave in 6 mm piezoelectric materials loaded with viscous liquid[END_REF] becomes

jωη * β f -µ e β e + jωη * β f µ e β e β v (µ v -jωη v ) + β v (µ v -jωη v ) tan (β v h v ) = 0 (20)
Moreover, if the Maxwell fluid is considered and assuming an elastic waveguide (i.e. η v = 0), the complex dispersion equation [START_REF] Huilgol | Fluid Mechanics of Viscoelasticity[END_REF] takes the following form

µ v β v jωηβ f 1 -jDe -µ e β e + jωηβ f 1 -jDe µ e β e + µ 2 v β 2 v tan (β v h v ) = 0 (21)
which was previously obtained by [START_REF] Baroudi | Viscoelastic fluid effect on the surface wave propagation[END_REF]. In addition, for a Newtonian fluid, the complex dispersion equation ( 21) can be rearranged to give

µ v β v (jωηξ -µ e β e ) + jωηξµ e β e + µ 2 v β 2 v tan (β v h v ) = 0 (22) 
which was previously obtained by [START_REF] Kielczynski | Effect of a viscous liquid loading onLove wave propagation[END_REF][START_REF] Baroudi | Viscoelastic fluid effect on the surface wave propagation[END_REF][START_REF] Caliendo | Love-mode MEMS devices for sensing applications in liquids[END_REF]. A last comparison can be drawn between the present generalized complex dispersion equation ( 19) and those of literature in the case of Love waves propagating in viscoelastic waveguide without any fluid on its surface. Therefore, the complex dispersion equation [START_REF] Guo | Propagation of Bleustein-Gulyaev wave in 6 mm piezoelectric materials loaded with viscous liquid[END_REF] becomes :

β v (µ v -jωη v ) sin (β v h v ) -µ e β e cos (β v h v ) = 0 ( 23 
)
which was previously obtained by [START_REF] Kielczynski | Direct Sturm-Liouville problem for surface Love waves propagating in layered viscoelastic waveguides[END_REF].

Comparison with other studies

In this paragraph, we check the accuracy and numerical robustness of the dispersion equation developed in this work in some particular cases. Firstly, a comparison study is performed for a viscoelastic waveguide without a fluid loaded on its surface. To compare the results derived from the equation [START_REF] Guo | Propagation of Bleustein-Gulyaev wave in 6 mm piezoelectric materials loaded with viscous liquid[END_REF] with other theoretical established results, the same dimensionless parameters that were used by Kielczynski [START_REF] Kielczynski | Direct Sturm-Liouville problem for surface Love waves propagating in layered viscoelastic waveguides[END_REF] are introduced. Figure 2 illustrates the dispersion curves of the Love wave attenuation as function of waveguide thickness. Figure 2 shows a non monotonic behavior of the Love wave attenuation with the waveguide thickness. Indeed, the attenuation has a pronounced maximum as a function of waveguide thickness. For increasing frequencies of the Love wave the maximum occurs for lower thicknesses of the waveguide, i.e., for frequencies f = 100, 200 and 300 MHz the maximum occurs, respectively, for h v = 2.9, 1.46 and 0.97 µm. Moreover, when the frequency increases, the Love wave attenuation is stronger. In addition, the results in the Figure 2 agree exceptionally well with those obtained by Kielczynski [START_REF] Kielczynski | Direct Sturm-Liouville problem for surface Love waves propagating in layered viscoelastic waveguides[END_REF]. A second and last comparison can be drawn between the present dispersion equation and that of Kielczynski et al. [START_REF] Kielczynski | Dispersion Curves of Love Waves in Elastic Waveguides Loaded with a Newtonian Liquid Layer of Finite Thickness[END_REF] in the case of an elastic waveguide, loaded with a Newtonian liquid layer of finite thickness. Variations of Love wave attenuation versus liquid layer thickness are investigated. If the Newtonian liquid thickness h f is finite, a strong dependence of the attenuation on the actual value of h f is observeed in the Figure 3. Initially, for the thickness h f of the loading Newtonian liquid growing from zero the attenuation increases monotonically and reaches a maximum for the thickness h f equaled approximatelly to the fluid penetration depth [START_REF] Martin | Characterization of SH acoustic plate mode liquid sensors[END_REF] defined

as d = 2η f /ρ f ω (h f ≈ d).
Increasing further the thickness h f > d, we observe that the attenuation drops monotonically and attains a local minium at h f ≈ 2d. Next, (for h f ≈ 2d) the attenuation slightly grows and enters a plateau for h f ≈ 4d. It means that if thickness of the Newtonian liquid is h f ≈ 4d, we can consider practically such a layer of Newtonian liquid as infinite (or semi-infinite). Note that a similar behavior is obtained by Kielczynski et al. [START_REF] Kielczynski | Dispersion Curves of Love Waves in Elastic Waveguides Loaded with a Newtonian Liquid Layer of Finite Thickness[END_REF]. 

Numerical results and discussion

Having established the accuracy through the comparison study illustrated in Figures 2 and3, further numerical results are given in this section. The material properties given in Table 1 for the viscoelastic waveguide and elastic substrate [START_REF] Kielczynski | Direct Sturm-Liouville problem for surface Love waves propagating in layered viscoelastic waveguides[END_REF], and in Table 2 for viscoelastic fluids [START_REF] Mitsakakis | Parametric study of SH-SAW device response to various types of surface perturbations[END_REF], are taken to construct this numerical example. In this work,numerical calculation is performed in the glycerol concentrationsrange from 15. [START_REF] Rocha | Love Wave Biosensors: A Review[END_REF] 

Phase velocity and attenuation versus waveguide thickness

Figure 4 shows the plot of the phase velocity and attenuation of the Love wave versus the layer thickness h v (waveguide thickness), for various waveguide viscosity (η v = 0.001, 0.01, 0.1 Pa • s) and frequencies (50, 100, 150 MHz). As it is seen in Figures 4(a) and 4(b) the phase velocity v p of the Love wave begins at v p = c v for h v = 0 and decreases monotonically to the substrate shear wave velocity v p = c e . In other words, for thicker waveguide surface, properties of the Love wave are more influenced by properties of the substrate. Figures 4(a) and 4(b) show also that the viscosity of the viscoelastic waveguide has insignificant effect on the phase velocity. In contrast to the phase velocity, the attenuation of Love waves depends strongly on viscosity η v of the viscoelastic waveguide.

The influence of the waveguide thickness on the Love wave attenuation is illustrated in Figures 4(c) and4(d). These Figures show that the Love wave attenuation k i has a pronounced maximum as a function of waveguide thickness h v . For increasing frequencies the maximum occurs for lower thicknesses of the waveguide, i.e., for frequencies f = 50 and 100 MHz the maximum occurs, respectively, for h v = 5.7 and 2.84 µm. This maximum was also observed in the case of an elastic waveguide [START_REF] Baroudi | Viscoelastic fluid effect on the surface wave propagation[END_REF]. The obtained curves are similar to those of sensitivity to the mass effect obtained for a Love wave sensor [START_REF] Li | Theoretical Study of Monolayer and Double-Layer Waveguide Love Wave Sensors for Achieving High Sensitivity[END_REF]. To interpret these results, the energy confinement in the waveguide has to be taken into account. Thus, when the waveguide thickness increases, the energy of the Love wave increases while the energy present in the substrate decreases [START_REF] Kovacs | Theoretical comparison of sensitivities of acoustic shear wave modes for (bio) chemical sensing in liquids[END_REF]. This has the effect of increasing wave amplitude at the interface with the liquid. The attenuation due to the viscoelastic properties of the liquid thus becomes stronger. To conclude, the maximum of Love waves attenuation as a function of the waveguide thickness is due mainly to the energy confinement in the waveguide. Moreover, the amplitude of this maximum is amplified due to both the fluid viscosity and the viscosity of the waveguide.

χ (%) η (mPa • s) ρ f (kg/m 3 ) δ (

Influence of the glycerol concentration on the Love wave attenuation

In this paragraph, we investigate how the attenuation vary with the glycerol mass fraction (i.e., shear viscosity) in both Newtonian and viscoelastic fluids. Indeed, by considering a viscous fluid and increasing the glycerol mass fraction, a Newtonian fluid predicted a monotonically increasing relationship between the attenuation and the glycerol mass fraction [START_REF] Chakraborty | Vibration of nanoparticles in viscous fluids[END_REF]. Figure 5 is in good agreement with this Newtonian behavior. However, the Maxwell and Kelvin-Voigt fluids highlighted a non-monotonically decreasing correlation between the attenuation and glycerol mass fraction. Therefore we can conclude that the non-monotonic behavior manifested the intrinsic viscoelastic properties of fluid [START_REF] Pelton | Viscoelastic Flows in Simple Liquids Generated by Vibrating Nanostructures[END_REF][START_REF] Baroudi | A note on the spheroidal modes vibration of an elastic sphere in linear viscoelastic fluid[END_REF][START_REF] Yang | Analytical approach for predicting vibration characteristics of an embedded elastic sphere in complex fluid[END_REF]. In addition, Figure 5(a) shows the attenuation variation for a frequency equal to 50 MHz and for a waveguide thickness of 1 m. In the case of a Maxwell fluid, the elastic effects are significant for a glycerol concentration greater than 62.1%. In other words, for Deborah number values less than the critical values of 0.064, the elasticity can be neglected and the behavior is purely Newtonian. This is due to the time constant value less than 204 ps corresponding to De less than 0.064. The term De is then negligible compared to 1 and the complex dynamic viscosity η * can be assimilated to the dynamic viscosity η characterizing a Newtonian behavior. Thus, a similar results are obtained for others excitation frequen-cies and waveguide thickness (see Figure 5). These observations are in good agreement with the literature results [START_REF] Mitsakakis | Parametric study of SH-SAW device response to various types of surface perturbations[END_REF]. Therefore, to reasonably predict the characteristics responses of Love waves, the Maxwell fluid is more appropriate for low glycerol concentration and, the Kelvin-Voigt fluid is more suitable for high glycerol concentration and at high frequency.

η v = 0.100 Pa • s η v = 0.010 Pa • s η v = 0.001 Pa • s (d) χ = 52.2%

Love wave attenuation versus frequency

The dependence of the attenuation on the frequency for two values of the glycerol concentration (χ = 62.1% and 88.0%) in the case of Newtonian and Maxwell fluids is depicted in Figure 6. As can be seen in this Figure, the attenuation depends strongly on the frequency and glycerol concentration. Whatever the fluid used, with an increase in the frequency and glycerol concentration causes a non monotonic behavior in the Love wave attenuation. It is seen that the attenuation values obtained with the Maxwell model converge towards those obtained with the Newtonian model for frequencies lower than 20 MHz. At about 29 MHz (χ = 62.1%) and 27 MHz (χ = 88.0%), the attenuation reaches a local maximum. In spite of the increased viscosity of fluid (increase in glycerol concentration), the attenuation is less pronounced in the case of the Maxwell model due to the elastic behavior of the fluid at high frequencies. Figure 6 also highlights a less important difference between Maxwell curves and those of Newtonian fluid for χ = 62.1%. In other words, for glycerol concentrations lower than 62.1%, the fluid behaves as Newtonian. However, this difference becomes more important for glycerol concentrations higher than 62.1% and the fluid exhibits a purely elastic behavior from a frequency of 63 MHz. In other words, for frequencies over 63 MHz the mixtures response converges towards an attenuation limit value. It corresponds to the fact that de fluid develops a purely elastic behaviour. If we want to take reference about concrete example, it shows the same behavior as fluid materials that becomes solid when we put it under stress. Note that Nagy and Nayfeh [START_REF] Nagy | Viscosity-induced attenuation of longitudinal guided waves in fluid-loaded rods[END_REF] highlight a similar behavior of longitudinal waves attenuation curves in the case of newtonian fluid, even though the vibration mechanism is fundamentally different. finite, a strong dependence of the Love wave phase velocity and attenuation on the actual value of h f is observed. For example, in the case of a frequency of 100 MHz and a glycerol concenof χ = 62.1%, Figure 7(a) shows that, initially, for the fluid thickness growing from zero the phase velocity drops monotonically and reaches a minimum for the thickness h f equaled to 0.16 µm. Increasing further the fluid thickness, we observe that the phase velocity grows monotonically and attains a local maximum at h f = 0.4 µm. Next, for h f > 0.4 µm the phase velocity slightly drops and enters a plateau for h f = 4.6d. In other words, that if the fluid thickness h f = 4.6d, we can consider practically such a fluid layer as infinitive. This is an important result in design of Love wave fluid sensors. Note that a same behavior is observed for other frequencies and glycerol concentrations. However, in the case of attenuation, Figure 7(b) illustrates an opposite behavior to that of the phase velocity. Indeed, initially, for the fluid thickness growing from zero the attenuation increases monotonically and reaches a maximum. Increasing further the thickness, we observe that the attenuation decreases monotonically and attains a local minimum. Next, the attenuation slightly increases and enters a plateau for h f equaled to the 4.6 times fluid penetration depth. Figure 7 also shows that the value of the plateau strongly depends on the excitation frequency and the used fluid model. Therefore, to accurately optimize the height of the fluid from which it can be assumed to be a semi-infinite medium, the phase velocity and the attenuation must be correctly predicted as function of the fluid model and excitaion frequency. 

Conclusion

In this paper, Love wave propagation in viscoelastic waveguide loaded on its surface with viscoelastic fluids of finite thickness is investigated using an original approach based on the exact theory. A generalized analytical form of the complex dispersion equation was developed. Therefore, the curves highlighting the behavior of attenuation and phase velocity of Love waves as function of fluid thickness, operating frequency, glycerol concentrations and waveguide thickness were obtained. Five detailed dispersion equations were established, (i) viscoelastic waveguide and viscoelastic fluid with finite thickness, (ii) viscoelastic waveguide and semi-infinite viscoelastic fluid, (iii) elastic waveguide and semi-infinite Maxwell fluid, elastic waveguide and semiinfinite Newtonian fluid, and viscoelastic waveguide without any fluid on its surface. The obtained generalized complex dispersion equation can be very useful in the design and optimization of Love wave fluid sensors.

Generally, the properties of the viscoelastic fluid can be described by a standard linear model, which predicts both the creep and stress relaxation behavior and, therefore, is applicable in the entire frequency range. An important contribution of this paper is the analysis of the impact of both waveguide viscosity η v and the viscosity of fluid loading η on the Love wave velocity and attenuation. These characteristics of the Love wave dispersion curves in viscoelastic waveguide loaded with viscoelastic fluids are original and can be particularly useful in the design of biosensors and chemosensors based on the Love waves. From the performed analysis and numerical calculations, one can conclude that :

• Attenuation dispersion curves of the Love wave exhibit a maximum as a function of the waveguid thickness h v . This is due to the energy confinement in the waveguide. For a given frequency, there exists a thickness for which the attenuation k i attains the maximum, see 4. The amplitude of this maximum is amplified due to both the fluid viscosity and the viscosity of the waveguide.

• The change of the Love wave velocity and attenuation as a function of fluid thickness h f of the loading fluid has the character of a damped sinusoid, for small initial values of the thickness h f , see Figure 7. Overall it seems that taking in account the viscoelastic behaviour of the fluid amplifies its response in regard of its viscous behaviour.

• Dispersion curves of the phase velocity as a function of fluid thickness h f , for frequencies 100 and 150 MHz, see Figure 7, show that the limiting thickness beyond which a Newtonian liquid can be treated as a semi-infinite can be safely assumed as 4.9d (4.9 times penetration depths into the liquid) for Maxwell model and 6d for Kelvin-Voigt model.

• To reasonably predict the characteristics responses of Love waves, the Maxwell fluid is more appropriate for low glycerol concentration and, the Kelvin-Voigt fluid is more suitable for high glycerol concentration and at high frequency. We can also observe that for low frequencies and

Figure 1 :

 1 Figure 1: The model geometry. The surface layer (index v) is viscoelastic medium and the substrate (index e) is elastic medium. ρ v , µ v and η v correspond to the density, shear modulus and viscosity of the viscoelastic layer. ρ e and µ e the density and shear modulus of the elastic substrate. The viscoelastic surface layer is loaded by a viscoelastic fluid. Love wave propagates in the x 1 -direction and displacement in the x 3 -direction. For viscoelastic fluid, ρ f , η and δ are, respectively, density, dynamic viscosity and relaxation time.

Figure 2 :

 2 Figure 2: Love wave attenuation versus the layer thickness without fluid loading in the case of a viscoelastic waveguide (η v = 10 -3 Pa • s). This Figure is identical to that of Ref. [22].

Figure 3 :

 3 Figure 3: Love wave attenuation versus the fluid thickness in the case of Newtonian fluid (η = 10 Pa • s) and elastic waveguide (i.e. η v = 0) with h v = 0.1 mm.

  /cm) η v = 0.100 Pa • s η v = 0.010 Pa • s η v = 0.001 Pa • s

Figure 4 :

 4 Figure 4: Love phase velocity and attenuation versus the layer thickness in the case of Newtonian fluid (χ = 15.4%) with h f = 20 µm. In Figures (c) and (d) : dashed lines f = 50 MHz and solid lines f = 100 MHz.

4. 4 .

 4 Phase velocity and attenuation versus fluid thickness Figure 7 exhibits the plot of Love wave phase velocity and attenuation as a function of fluid thickness, for frequencies f = 100 and 150 MHz and two glycerol concentrations χ = 62.1 and 88%. When the fluid thickness h f is

Figure 5 :

 5 Figure 5: Love wave attenuation versus the glycerol mass fraction with η v = 1 × 10 -3 Pa • s and h f = 20 µm.

Figure 6 :

 6 Figure 6: Love wave attenuation versus frequency with η v = 1 × 10 -3 Pa • s, h v = 10 µm and h f = 20 µm.

Figure 7 :

 7 Figure 7: Phase velocity and attenuation versus fluid thickness with η v = 1 × 10 -3 Pa • s and h v = 10 µm. Dashed lines f = 100 MHz and solid lines f = 150 MHz. (a) and (b) χ = 62.1%; (c) and (d) χ = 88%. v 0 corresponds to the Love wave velocity without the fluid loading.

Table 1 :

 1 to 88.0% and for three values of frequency 50, 100 and 150 MHz. Material parameters used for waveguide and substrate.

		Waveguide	Substrate
	Shear waves velocity	c v = 1100.85 (m/s)	c e = 5060.02 (m/s)
	Storage shear modulus µ v = 1.43 (GPa)	µ e = 67.85 (GPa)
	Density	ρ v = 1180 (kg/m 3 )	ρ e = 2650 (kg/m 3 )

Table 2 :

 2 Material parameters used for water-glycerol mixtures. χ is the concentration of glycerol in water.

	ps)

a low concentration of glycerol, we can approximate a material with a Maxwell's law of behavior as a Newtonian fluid and conversely for a high concentration of glycerol and high frequencies a Kelvin-Voigt fluid as a Newtonian fluid. Taking that in count modelling Newtonian behaviour will be less demanding in terms of calculation than viscoelastic models and it can be useful if we want to carry out a rapid simulation or to have sensors with a rapid response time.

This work is original contribution to the state of the art. Since it covers Love waves properties at both high (Kelvin-Voigt fluid) and low frequency (Maxwell fluid), the results obtained can be used in many fields of science and technology, such as: geophysics, non-destructive testing and in the design of viscosity sensors.