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DEBLUR OR DENOISE, THE ROLE OF APERTURE IN LENS AND NEURAL NETWORK CO-DESIGN

Co-design methods have been introduced to jointly optimize various optical systems along with neural network processing. In literature, the aperture is generally a fixed parameter although it controls an important trade-off between the depth of focus, the dynamic range, and the noise level in an image. In contrast, we include aperture in co-design by using a differentiable image formation pipeline that models the effect of the aperture on the image noise, dynamic, and blur. We validate this pipeline on examples of image restoration and extension of the depth of focus. These simple examples illustrate the importance of optimizing the aperture in the co-design framework.

Introduction

Imaging systems are composed of a lens made of multiple glass elements and of a processing. They are traditionally designed separately: the lens is optimized to have minimal aberrations and the processing for the desired task. In contrast, co-design methods were introduced to optimize all of these parts at once [START_REF] Cathey | New paradigm for imaging systems[END_REF]. Recently, research has shown how to co-design a neural network and an add-on placed on the aperture of an existing lens design. For instance, extension of the depth of focus (EDOF), super-resolution or depth estimation can be improved using an additional diffractive element [START_REF] Sitzmann | End-to-end optimization of optics and image processing for achromatic extended depth of field and super-resolution imaging[END_REF][START_REF] Haim | Depth estimation from a single image using deep learned phase coded mask[END_REF]. Furthermore, co-design can also be used to optimize systems made of multiple optical elements [START_REF] Halé | End-to-end sensor and neural network design using differential ray tracing[END_REF][START_REF] Tseng | Differentiable compound optics and processing pipeline optimization for end-to-end camera design[END_REF][START_REF] Li | End-to-end learned single lens design using fast differentiable ray tracing[END_REF]. The joint optimization of optical and neural network parameters relies on differentiable optical simulation methods (Fourier optics, ray-tracing). However, the aperture radius is a fixed parameter in previous co-design methods even though it has an important impact on the processing since it balances sharpness and noise level in the acquired images.

Selecting the aperture of an optical system can be tricky: closing the aperture reduces aberrations but on the flip side it diminishes the amount of light reaching the sensor leading to an increased noise level. However, the noise introduced by a smaller aperture could be handled well by the processing. Hence, including the aperture in co-design can help find the best optimum between noise, diffraction, aberrations, and depth of focus; that is between having the processing perform denoising or deblurring.

To the best of our knowledge the optimization of aperture as part of a co-design method has only been done by considering it as an hyper-parameter and performing the optimization for multiple aperture radii [START_REF] Rostami | On design of hybrid diffractive optics for achromatic extended depth-of-field (EDoF) RGB imaging[END_REF]. Besides, most co-design methods introduce noise by adding Gaussian noise of fixed variance to the images. It is not sufficient to precisely model the effect of aperture on images as shot noise depends on the signal. Following previous research works [START_REF] Tseng | Differentiable compound optics and processing pipeline optimization for end-to-end camera design[END_REF][START_REF] Mel | End-to-end learning for joint depth and image reconstruction from diffracted rotation[END_REF], we embed such a model in our image formation pipeline and propose to use radiometry elements to link it with the aperture and optimize it. Contribution. In this letter we study the role of aperture in co-design. More precisely:

• we introduce a pipeline of image simulation that models the influence of aperture on the image through noise, image dynamic, and blur. It is differentiable and compatible with co-design of a complete lens and a neural network. • we validate this model in the simple case of image restoration, with the joint optimization of a neural network and the aperture, using either paraxial optics or a ray-traced simulation. • we compare the results of such optimizations for various neural network depths.

• we extend these results with an EDOF task, with the optimization of the focus, the aperture of a conventional lens, and the neural network parameters. These simple experiments illustrate the importance of including the aperture in the co-design framework. We also observe that, for the EDOF task with a conventional lens, the co-designed systems generally have a smaller aperture and thus less defocus blur at the expense of more noise, benefiting from the ability of neural networks to denoise.

Method

Optics/neural network co-design. The joint optimization of a lens and a neural network is carried out using the gradient descent algorithm, which is standard for neural network training. To extend it for co-design it is necessary to simulate the imaging system from end to end in a differentiable way, computing the output of the imaging system and its gradients with respect to the parameters of the lens and of the neural network. Figure 1 shows a block diagram of the proposed pipeline. Optical simulation. The effect of a lens on an image is described by its Point Spread Function (PSF): the image Io formed by the lens is obtained by convolving the PSF with the sharp ground truth image Igt, Io = Igt * P SF .

Several models have been proposed to compute the PSF of a lens and its gradient as discussed in [START_REF] Dufraisse | On the use of differentiable optical models for lens and neural network co-design[END_REF]. We use two of them hereafter. To get easily interpretable results we first consider a simple model from paraxial optics that assumes the PSF is a Gaussian of variance σ proportional to the physical aperture radius A [START_REF] Dufraisse | On the use of differentiable optical models for lens and neural network co-design[END_REF]. This model is simple and illustrates the blur/noise trade-off introduced by aperture but it doesn't take into account aberrations that are present in real lenses. Hence, in section 3.2 we use a differentiable ray-tracing (DRT) library [START_REF] Halé | End-to-end sensor and neural network design using differential ray tracing[END_REF] to simulate the PSF: we compute the energy of each pixel of the PSF by integrating, over its surface, the convolution of the spot diagram with an Airy pattern [START_REF] Li | End-to-end learned single lens design using fast differentiable ray tracing[END_REF]. This is done by sampling this convolution several time per pixel. . Closing the aperture tends to increase the depth of field but it also leads to larger diffraction effects. Convolving the spot diagram with an aperture dependent Airy pattern avoids reaching unrealistically small apertures by ensuring the PSF is not a Dirac. Image intensity. To model how aperture changes the dynamic range of Io, we multiply Io by the flux of light F going through the lens to a pixel. For a source of radiance LS and area AS, with an entrance aperture of angular radius α we have F = πLSAS sin 2 (α). For an object at distance d, the light that reaches a given pixel comes from an area AS = a pixel (x, y) during a time ∆t is

(1) E(x, y) = ∆tπLSIo(x, y) A0tpix f 2 .
Noise model. A thorough noise model includes shot noise, dark current, read noise, dynamic streak noise, and sensor gain and non linearities as described in [START_REF] Tseng | Differentiable compound optics and processing pipeline optimization for end-to-end camera design[END_REF]. As our study focuses on aperture optimization, we only model shot noise since it explicitly depends on aperture.

Due to the quantum nature of light, the number of photons reaching a given pixel (x, y) is a random variable P (x, y) which follows a Poisson law of parameter E [P (x, y)].

The expected number of photon E [P (x, y)] can be computed using Planck's equation from the received intensity E(x, y), E [P (x, y)] = λ hc E(x, y) with h the Planck constant, c the speed of light and λ the wavelength of the light source. We approximate this Poisson distribution with a Gaussian distribution of mean and variance E [P (x, y)]. The noisy image is In(x, y) = E [P (x, y)] + E [P (x, y)]N (0, 1), where N (0, 1) is a random sample from a normal distribution. In(x, y) is differentiable with respect to E [P (x, y)] and thus to the optical parameters. As such the signal to noise ratio decreases when E(x, y) or A0 decrease.

This model simulates the fact that various wavelength receive different number of photons for the same energy but here we restrict ourselves to monochromatic light. Processing. We study the importance of aperture in co-design with convolutions or convolutional networks of depth nl. We use simple residual networks (see Figure 2) with a single skip connection as we process image patches that only require local features as opposed to global descriptors. As the dynamic range of the images changes with the aperture, a first layer applies a common learned linear transformation to each pixel. Implementation and optimization details. Gradient descent is used to optimize the neural network and optical parameters and minimize the L1 loss between the ground truth image Igt and the reconstructed patch Ir. The Adam optimizer is used with a learning rate of 10 -2 for the optics and of 10 -3 for the neural network. The model is trained using 18080 patches of 64 × 64 pixels extracted from the describable textures dataset [START_REF] Cimpoi | Describing textures in the wild[END_REF].

We used 40000 rays to compute the spot diagram. Pixel integration is performed on a grid oversampled by a factor 4 with respect to pixel size.

We compare the quality of the images processed by the optimized systems Ir using the peak signal to noise ratio (PSNR) which is defined as P SN R(I) = -10 log I -Igt 2 .

Experiments

In this section we consider the case of image restoration in various settings. First we study the optimization of the aperture for this task using the paraxial optics model [START_REF] Dufraisse | On the use of differentiable optical models for lens and neural network co-design[END_REF] which assumes that the amount of blur is proportional to the aperture. Then we take aberrations into account and jointly optimize the sensor position, the aperture of a double Gauss lens and the network parameters for EDOF. (-29m), the sensor position (114.60mm) and the pixel size (5µm). In this case the PSF is a Gaussian of variance σ = 0.15A. We first optimize the aperture with only a simple linear intensity correction for processing, the results are displayed in Table 1. The experiments are carried out from 2 starting points (σ = 0.6pixel and σ = 1.8pixel). They both converge to a σ of 0.9pixel and a PSNR of 24.4dB. This simple example shows that the proposed method is able to find a trade-off between noise and depth of focus, even with only a simple linear dynamic correction.

When using a single convolution kernel the optimization reaches a σ value below 0.75 pixel for every kernel size. The larger kernels getting slightly better PSNR values. Compared to the previous case, σ is lower meaning the optimum aperture compromise shifted toward denoising. Yet the processing is simple and only improves the PSNR value by 1dB from the sensor image In which has a PSNR of around 24.5dB.

Modern neural networks compose several convolution layers to achieve better results. We can observe in Table 1 that the optimized aperture is smaller for larger networks: for a depth of 7, σ goes down to 0.44pixel. This is much lower than with a single convolution and it improves the PSNR by 3dB.

Our image formation pipeline can optimize the aperture and neural network jointly and converges to a solution for image restoration. Here, larger networks lead to systems with smaller aperture and more noise.

Ray-traced PSF.

In this section, we use a more realistic PSF model, based on DRT. We study the task of image restoration at a distance of 29m, then in the depth range 20m-40m. Our experiments are conducted from a Double Gauss lens of focal length 100 mm optimized with Zemax to have a focus distance of 27m. Its aperture and sensor position are 9.95mm and 133.305mm respectively, these parameters are the starting point of each of the following experiments. For the light intensity we chose ∆t = 0.02s, tpix = 5µm, λ = 530nm and set LS to get an average of 5 × 10 7 photons per pixel for an aperture of 9.95mm.

3.2.1.

Objects at a fixed distance. We start by optimizing the aperture and processing to produce sharp images of objects at a fixed distance (29m) but out of focus. Figure 3 shows the PSF shape at 29m for various aperture sizes as well as the variation of the RMS spot size. For small apertures the PSF shape is typical of a defocus blur. When opening the aperture, spherical aberration changes the PSF shape, with a weak intensity spread and a strong center due to the rays multiple focus points. In this case the energy is concentrated in this central peak and the RMS spot size is lower. This results in a non monotone variation of the RMS spot size for out of focus objects as illustrated in Figure 3.

The aperture is optimized jointly for multiple convolutions's kernel sizes: 3, 5, and 7 pixels; and for three flux values the darkest one having 100 time less light than the brightest one. Then it is optimized with neural networks of various depths.

Table 2 displays the aperture radius obtained when optimizing it and a neural network, as well as the performance of the resulting system. The aperture converges toward a Table 2. Results of aperture optimization with objects at a single distance (29m). Depth of networks is in parenthesis.

similar value for all processing networks around 8mm and a RMS spot size of 0.8 pixel. This trade-off increases noise in images but there is a small amount of blur left in the optical image. The aperture does not close more because this would increase the noise, the RMS spot size and yield harder to deconvolve PSF (see Figure 3). Note that the optimized aperture value depends on the amount of light. With less light, and thus more noise, the final system is more open. With a kernel size of 3, the aperture goes from 8.07mm to 8.37mm when the amount of light is divided by 100. These two values are close and have a similar RMS spot size as it is close to the local minima (see Figure 3) where there is less variations. However, this change lets more light into the lens and helps compensate the reduction of the light intensity. Yet the darker images loose more than 5dB in PSNR due to the increased noise level.

Using larger convolutions to process the images does not change the optimal aperture value. It only increases the PSNR by 0.5dB when going from a kernel size of 3 to 5 or 7.

Table 2 shows that the joint optimization of the aperture and neural network for an image restoration task yields small apertures slightly below 8mm. They also improve the performance of the system compared to using a single convolution: they can improve the PSNR by up to 4dB. There is no improvement when going from a depth of 5 to a depth of 7 indicating that co-designed systems can perform well with shallow neural networks.

In this experiment, the joint optimization of neural network and aperture finds a compromise between blur and noise that leans toward having a smaller aperture at the expense of more noise.

3.2.2.

Extended depth of field. In this section we tackle a problem that is closer to a real application. We co-design a lens and neural network system for improved image quality with objects between 20 and 40m. Two optical parameters are considered : the aperture and the sensor position. In this experiment, aperture controls a balance between the defocus blur and the amount of noise while sensor position controls the focus distance. Neural network having the ability to perform either denoising or deblurring, good performance could a priori be obtained with either a small or a large aperture. We co-design systems with a neural network of depth 7 which gave the best results in the previous section. Table 3 displays the results obtained when jointly optimizing a neural network with the aperture, or the sensor position, or both, from our starting point.

With a fixed sensor position, the optimized aperture value is close to the starting one and larger than in the previous section. As a result the noise level is low, P SN R(In) is only 0.1dB below P SN R(Io), and the network has to perform deconvolution (see Figure 4). In this case the optimization does not lower the aperture radius because it has the side effect of shifting the focus distance and would actually increase the average RMS spot size (see Figure 5). With a fixed aperture, the optimized sensor position reduces the focus distance to 24.6m slightly improving the PSNR of the system to 27.0dB.

When optimizing both parameters, the aperture is reduced to 3.25mm and the sensor position is adjusted so that the focus distance remains near the center of the object range at 26.6m. This yields a smaller RMS spot size for all distances at the expense of more noise: P SN R(In) is 2.6dB lower than P SN R(Io); As such sensor images are noisier for this system (see Figure 4) and are then denoised by the neural network which improves the PSNR by almost 2dB. The resulting PSNR is better than when optimizing only one parameter: the additional degree of freedom allows the optimization to correct the focus distance while reducing the aperture (see Figure 5).

We also observed that when optimizing only the sensor position with a fixed aperture of 3.25mm, corresponding to the best solution, the resulting system has a focus distance of 33.3m and a PSNR of 26.5dB which is worst than the solution found when optimizing both parameters: the optimization process reaches a local minima and does not converge to the best minimum at 28.3dB. This suggests that it is better to optimize parameters jointly rather than independently.

Conclusion

We propose to include aperture in optics/neural networks co-design with an image generation pipeline that models the effects of all the optical parameters on the aberrations and also on the noise level of the simulated image. Sources of noise that are independent from the aperture will be included in further work to improve ther proposed model. We validate this pipeline on simple examples of image restoration or EDOF using a conventional lens. We show that our method converges to a compromise between noise, defocus blur, and aberrations. In the case studied in this paper, there is a trend toward systems with a reduced aperture, benefiting from the ability of neural networks to denoise. This preliminary result will be more deeply investigated in further works, including for instance unconventional lens for EDOF. Overall, these experiments illustrate the importance of incorporating aperture into co-design as it affects image formation in several intertwined ways.
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Figure 1 .

 1 Figure 1. Image generation pipeline: the ground truth image Igt is convolved with the PSF to get the optical image Io, then the actual sensor image In has a different dynamic (depending on the entrance pupil radius A0) and is sampled randomly.

Figure 2 .

 2 Figure 2. Network used for processing, it has a single hyper-parameter: the number of layer nl.

3. 1 .

 1 Paraxial optics model. This section presents the results obtained with a simple optical model introduced to validate our image generation pipeline. The paraxial model only has a few parameters chosen arbitrarily: the focal length (100mm), the object position

5 AFigure 3 .

 53 Figure 3. RMS spot size with respect to the aperture for the Gauss doublet used in our experiments (focus distance : 27m, object distance : 29m). PSF are shown for some aperture values (the grid displays 5µm pixels).

Figure 4 .

 4 Figure 4. Patches at 30m obtained after optimizing only the aperture or the aperture and the sensor position. The profiles shows the pixels values on the red line.

Figure 5 .

 5 Figure 5. RMS spot size for three aperture values and for the system with optimized aperture and focus values.

Table 1 .

 1 Optimization results with the paraxial optic model at a single object distance. Depth of networks is in parenthesis.

	Processing	Optimized σ (pixel) PSNR (dB)
	Dynamic adjustment	0.91	24.4
	Conv. 3 × 3	0.73	25.4
	Conv. 7 × 7	0.75	25.7
	Network (3)	0.98	26.0
	Network (5)	0.84	26.9
	Network (7)	0.44	28.5

Table 3 .

 3 Ablation results for EDOF. indicate the optimized parameters.
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