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A Decentralized Trust Management Based
Blockchain Protocol for Internet of Everything

Djamel Eddine Kouicem, Youcef Imine, Abdelmadjid Bouabdallah, Hicham Lakhlef

Abstract—Internet of Everything (IoE) is a network that integrates a variety of heterogeneous nodes, such as connected devices
(sensors, robots, smart phones ...), connected cars, smart home appliances, etc. These smart objects communicate and collaborate
between each other in a distributed and dynamic environments which are facing several security challenges. Trust management is one
of the most important challenges in such environments. Existing trust management solutions do not fit with the new requirements
introduced in IoE such as heterogeneity, mobility and scalability. In this paper, we propose a hierarchical and scalable blockchain based
trust management protocol with mobility support in massively distributed IoE systems. In our protocol, smart objects disseminate trust
information about service providers to the blockchain. Thus, all the objects will have a global view on each service provider in the
architecture which speeds up the trust decision making. In addition, our system is resilient against the known malicious attacks such as
bad-mouthing, ballot-stuffing and cooperative attacks. We confirm the efficiency of our proposal through theoretical analysis and
extensive simulations. Finally, we show that our protocol outperforms existing solutions especially in terms of scalability, mobility
support, communication and computation.

Index Terms—Trust management; Internet of Everything; Blockchain; Fog computing; Distributed IoE systems
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1 INTRODUCTION

THESE last years, we are witnessing a real digital revolu-
tion of Internet that is becoming an Internet of Things

(IoT) where huge number of physical objects are being
connected to Internet. By 2020, the Gartner Institute expects
more than 50 billion connected objects on the market, which
will radically change our lifestyles through many applica-
tions [1]. Recently, a new paradigm called Internet of Ev-
erything (IoE) has been introduced by Cisco as an extension
of IoT. This technology introduces a new heterogeneous and
massively distributed network of people, smart objects, data
and processes, which makes Internet smarter [25].

In order to efficiently manage the huge number of IoT
objects and data in IoE environments, a new architecture
called fog computing has been introduced recently. This
architecture aims to extend cloud-computing services to the
edge of the network. This extension is realized by using
a large number of edge components such as routers, base
stations, gateways, etc. Therefore, computation, communi-
cation, storage and control operations are performed closer
to end users by pooling edge network’s local resources.

IoE can be viewed as service centric architecture where
each device, or thing in general, can request services from
other devices and it may also provide services for other
devices (service provider). Service centric based IoE ap-
plications face several security challenges such as trust
management. Indeed, IoT service providers may behave
dishonestly and maliciously for the purpose of promoting
IoT devices (service requesters) to select them for one or
many services on behalf of other trusted service providers.
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Furthermore, dishonest IoT service providers may perform
discriminatory, bad-mouthing and ballot-stuffing attacks to
disrupt the network and monopolize many provided ser-
vices. Therefore, it is clear that a trust management protocol
to evaluate the trustworthiness of IoT service providers, in
a scalable and efficient way, is more than necessary.

To date, there is a large number of trust management
protocols that have been developed for Wireless Sensor
Networks, Social networks and P2P systems in general (eg.
[3], [4], [6], [9], [20], [22], [24]). In these protocols, trust com-
putation is often based on some information that includes:
1) the direct observations of each node regarding the others
(which is gathered whenever the node encounters the IoT
service providers) and 2) the indirect recommendations re-
ceived from other nodes against the service providers. These
solutions are still not scalable when it comes to massively
distributed systems such as IoE. Indeed, in most solutions,
a node needs to communicate with a large number of IoT
devices so it would be able to accurately compute trust
levels of IoT service providers. Moreover, other questions
still arise on how trust information (direct observations
and indirect recommendations) is disseminated and shared
in a scalable way among different IoT objects in order to
speed up the process of trust computation and make it more
accurate. In addition, each node has to store this whole trust
information about every encountered service provider.

Besides, in some cases an IoT device Oi needs to assess
the trust level of a new encountering service provider Spj

in a fast way, without necessarily performing a lot of ex-
changes. Thus, these solutions seem to be non convenient
with such scenarios since without any previous exchange, a
new encountering node Spj is assumed to have a trust value
equal to 0 .5 , whereas it could be malicious.

Other clustering and centralized based trust manage-
ment approaches have been investigated in several works
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(eg. [11], [13], [21]) in order to enhance the process of
trust computation and optimization of IoT resources. Albeit
these approaches allow for constrained IoT devices to assess
trustworthiness of each other efficiently, devices have access
only on trust data in their own cluster (no global view
of trustworthiness). Furthermore, these protocols usually
assume that cluster heads are pre-trusted nodes in terms
of either provided trust information or behaviors. However,
such assumption is not practical in most IoT applications.

Hence, this brings us back to an important question:
how we can ensure a fully distributed and scalable trust
management protocol, in which IoT devices can evaluate
trustworthiness of any service provider in Internet, without
the presence of any pre-trusted entity ?

2 RELATED WORK

In this section, we review some trust management protocols
for IoT which are closely related to our work.

Very recently, Guo et al. [14] provided a comprehensive
survey about the most recent works in the trust manage-
ments and computational trust models in IoT. They focused
basically on service management in IoT dealing with the
choice of IoT devices as service providers according to
their trustworthiness. They discussed the five fundamental
components of each trust management system, namely:
trust composition, trust propagation, trust aggregation, trust
update and trust formation.

Chen et al. [5] proposed a trust management model
based on fuzzy reputation concept for IoT. However, they
considered only some specific Wireless Sensor Networks
(WSN) applications where nodes can establish limited trust
relationships with other nodes. Actually, compared to WSN
nodes, IoT devices are internet-enabled and can establish
complex relationships with other IoT devices and owners.

Saied et al. [19] proposed a multi-service and context-
aware trust management protocol for IoT systems, which
deals efficiently with different malicious attacks. However,
their protocol is based on centralized trusted servers that
collect trustworthiness from IoT devices which is not viable
in IoT. Similarly, Guo et al. [13] proposed a 3-tier hierarchical
architecture based on cloudlets to disseminate trust informa-
tion to a central cloud. Their architecture allows IoT devices
to report trust information and also query trustworthiness
of other devices directly from the local cloudlets. However,
the proposed architecture refers always to the central cloud
which is responsible to disseminate the trustworthiness in-
formation gathered from one cloudlet to the other cloudlets
which can involve latency issues. Moreover, their trust
model is still limited in the context of IoT, since distributed
cloudlets are assumed to be honest in their architecture and
they maintain only trust data in their geographical area.

The concept of social Internet of Things has been de-
veloped recently in many works. This concept consists on
extending the world of IoT in such away, IoT devices will be
able to establish autonomously social relationships between
other devices and users. Many works have investigated the
trust management problem in the context of social IoT [7],
[15], [16], [18]. Chen et al. [7] proposed an adaptive trust
management protocol for social and dynamic IoT systems.
The main idea consists on distributing the computation of

trust information among IoT devices. In their computational
model, each device maintains its own trust assessment
toward other users and devices. The trust assessment is
based on the recommendations of the other devices, the
direct observations and also the history of the interactions.
The authors considered different classes of trust properties
such as QoS, honesty and cooperativeness depending on
the social relationships between IoT devices. However, their
protocol is not scalable enough since each device must save
all the trust pieces of information (that include its history
and the recommendations of the other devices, etc.) related
to its social friends (IoT devices and owners) in a lookup
table. In [18], the authors proposed two trustworthiness
computational models. 1) A subjective model which basi-
cally consists on the combination of the local trust param-
eters (direct observations) and also the received indirect
recommendations. And 2) An objective model, where they
proposed to disseminate trust assessments in a distributed
Hash table maintained by a subset of trusted IoT devices.
However, this last assumption is not actually practical in
IoT environments. Moreover, their solution is still limited
and it is applicable only in social based IoT applications.
Other similar and recent works [2], [8], [12] have investi-
gated the same problem by considering the same subjective
trust management model as [7] which suffers from some
scalability issues.

3 OUR CONTRIBUTIONS

In this paper, we present a solution to the aforementioned
limitations and address the above questions. We propose a
new scalable trust management solution named BC-Trust.
Our solution is based on blockchain technology and fog
computing paradigm, and allows IoT devices to accurately
assess and share trust recommendations about other devices
in a scalable way without referring to any pre-trusted entity.
The blockchain is maintained by powerful fog nodes which
offload lightweight IoT devices from trust information stor-
age and heavy computations and save their bandwidth oc-
cupations. Indeed, fog nodes (router, base stations, etc.) are
responsible for the management of trust information. Thus,
IoT devices do not need to neither perform computation nor
to communicate trust information with each other. More-
over, in our solution, some fog nodes could act maliciously
without affecting trust management process, since the whole
blockchain is trusted. We note that our protocol is far from
being a simple implementation of existing blockchain-based
solutions. Indeed, we introduce a new transactional system
to fit with trust management settings. Moreover, contrary to
cryptocurency based blockchains, our blockchain is private
and permissioned where only powerful fog nodes and cloud
are allowed to validate new blocks. In addition, we adopt
a consensus algorithm that combines both proof-of-work
(PoW) and proof-of-Stack (PoS) mechanisms, as used by
ethereum [23]. This allows to substantially enhance the
performance of our solution in terms of computing.

In summary, our trust management protocol offers the
following advantages:
• The scalability: our architecture scales very well and

deals efficiently with tremendous number of IoT devices.
Indeed, IoT devices do not need to manage and exchange
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trust information with each other, instead the whole
process is devoted to fog nodes in a distributed way.

• A global view of trust data: in our architecture, trust
data is disseminated and duplicated into the Blockchain,
maintained by decentralized and powerful fog nodes
that make it accessible from anywhere.

• The mobility support: given the nature of our architec-
ture which is geographically distributed as well as the
ubiquitous nature to access to trust data, mobile devices
could assess trustworthiness of service providers in real
time after few exchanges with fog nodes and service
providers.

• The optimization of IoT devices resources: in our archi-
tecture, data storage and trust computation are offloaded
to powerful fog nodes. Therefore, IoT devices optimize
their storage and computation resources.

• Fine-grained based service protocol: IoT objects get
recommendations about service providers not just ac-
cording to the service they want, but also according to
a set of requirements that these providers are able to
satisfy.

• Resiliency against cooperative attacks: our proposed ap-
proach deals efficiently with cooperative bad-mouthing
and ballot-stuffing attacks thanks to the history of the
recommendations maintained in the blockchain.
To the best of our knowledge, there is no solution that

tackles the problem of trust management for IoE using
blockchain technology in fog computing architecture.

The remainder of the paper is organized as follows. We
present in the following section some backgrounds about
blockchain technology. In Section 5, we describe our security
model. We discuss our trust management protocol named
BC-Trust in Section 6. In Section 7, we present some theo-
retical analysis about the convergence of our protocol and its
resiliency against trust-related attacks. Section 8 contains the
performance evaluation of our protocol. Section 9 concludes
the paper and outlines the future works.

4 BACKGROUND ON BLOCKCHAIN

Blockchain is a new promising technology that revolution-
ized the world of cryptocurrency these last years. This
technology was introduced first in 2009 with bitcoin by a
group of anonymous called Satoshi Nakamoto in [17]. The
main aim of this technology is to allow heterogeneous nodes
to communicate and exchange assets (coins in the case of bit-
coin and similar cryptocurrencies) between them in a com-
pletely distributed and secure way without relying to any
trusted central entity. Basically, each node in the blockchain
does not trust any other node however it trusts the whole
blockchain network. Actually, blockchain is a distributed
data base where data is replicated and maintained between
several nodes that participate in the blockchain. These nodes
communicate between each other over a highly distributed
and scalable peer to peer network. In the blockchain, each
node holds a pair of cryptographic keys (public and private
keys) that allows it to generate transactions and interact
with the other nodes in the network while preserving the
privacy of users. The key advantage of blockchain technol-
ogy is the transactions’ immutability. Indeed it is hard to
falsify any transaction once added to the blockchain.

In the distributed P2P blockchain netwrok, it’s manda-
tory that the whole nodes reach a consensus state to validate
each transaction. We note that, before adding a transaction
to the blockchain, it must be verified and validated by the
majority of the nodes. The process of validation is done by
a subset of powerful nodes called the miners that must do
heavy computations (Proof of Work in the case of bitcoin)
in order to solve a mathematical buzzle associated to the
block containing a set of transactions to be validated. Once
the block is validated, it is simple for each node in the
blockchain to verify whether the validation of the block is
done correctly. This process allows all the nodes to establish
a consensus about the validity of each block before being
added to the blockchain. It is impossible in practice to falsify
or update one block yet validated without redoing the same
heavy validation process for this block and all its subsequent
blocks in the blockchain.

5 SECURITY MODEL

In this Section, we define our security model by highlighting
the main security attacks that may occur in our system. In
our model, we assume that every IoT device may provide
services for other devices and it may simply behave as
service requester. Moreover, we consider dishonest service
providers that act for their own benefits in order to be
selected as service providers by other IoT service requesters.
Thus, each malicious service provider can perform the fol-
lowing trust-related malicious attacks [14]:
• Self-promotion attacks: a malicious service provider can

promote its importance and trustworthiness to other
service requesters by sending good recommendations
about itself, and then it may act maliciously by providing
bad services.

• Bad-mouthing attacks: a malicious service provider can
distrust the trustworthiness of other trusted service
providers by providing bad and wrong recommenda-
tions about them to service requesters and therefore
decrease their chances to be selected as service providers.
These attacks could be performed in a collaborative way
by a set of malicious service providers to ruin well-
behaved nodes.

• Ballot-stuffing attacks: a malicious service provider can
consolidate other malicious service providers and boost
their trustworthiness by providing good recommenda-
tions. Therefore, this may increase their chances to be
selected as service providers. Similarly to Bad-mouthing
attacks, this attack could be performed in collaborative
way by malicious nodes to recommend each other.

• Opportunistic service attacks: a malicious service provider
can decide to provide opportunistically a good service
to attract the service requesters and enhance its reputa-
tion regarding them. This malicious node could exploit
this good opportunistic reputation to perform successful
Ballot-stuffing and Bad-mouthing attacks.

• On-off attacks: in this kind of attacks, one node can decide
to provide good and bad services in a random way
to avoid the risk of not being selected as a SP. Once
again, with good reputation, this malicious node can
perform Ballot-stuffing and Bad-mouthing attacks with
the collaboration of other malicious nodes.
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Fig. 1: Our system architecture

6 OUR TRUST MANAGEMENT SOLUTION

In this Section, we introduce our architecture, then we define
the main steps of our protocol which allows any entity in
our architecture to measure the trustworthiness of any SP.

6.1 Our architecture
In our solution, we consider a trust management architec-
ture, composed of the following components:
• IoT devices which communicate with any other compo-

nent in the architecture, via Internet or other network
protocols. Each device can offer services to other devices
and therefore it is considered as a SP, or it can request
services (service requester). We note the set of service
providers by Sp = {Sp1, Sp2, ..., SpM} and the set of
service requesters by D = {O1, O2, ..., ON}.

• Fog nodes which are responsible for a reliable man-
agement of trustworthiness in the system. Indeed, the
set of fog nodes FN = {FN1, FN2, ..., FNP } main-
tain a Blockchain which stores the various trust values
related to the IoT service providers. In addition, fog
nodes provide to service requesters a global view on the
trustworthiness of each SP. Note that these fog nodes are
not assumed to be trusted. Indeed, since our solution is
based on blockchain there is no need to trust any node as
far as the whole blockchain is trusted.

• Cloud provider which is responsible for the identity
management of IoT devices and fog nodes.
We illustrate in Figure 1 our architecture on which we

base to propose our trust management protocol.

6.2 Our Trust model
In our trust model, we usually use the following appella-
tions that we define as:
• Trust value TS

ij (t): is a real number in the range [0 , 1 ]
which expresses the trust level of IoT device Oi toward
IoT service provider Spj with respect to the service S
at instant t . The max value 1 means that the node Spj

(trustee) is full trusted with respect to the node Oi

(trustor) and 0 indicates that service provider Spj is a
bad or malicious node.

Recommendation

Provide service S1

Request service S1

Direct observation 
based on interactions

Provided services

Trust value

Fig. 2: Our trust model

• Recommendation RS
ij (t): is a real number in the range

[0 , 1 ] computed by a fog node based on the trust values,
which concern service provider Spj , reported by IoT
devices. This value is sent to IoT device Oi .

• Direct Observation DS
ij (t): is a real number in the range

[0 , 1 ]. It represents the mean of satisfactions against the
service S during the interactions between device Oi and
service provider Spj .
Figure 2 illustrates our trust model, in which we define

trust parameters used in our protocol. In addition, Table 1
summarizes the main notations used in this paper.

Notation Description
Oi The IoT device i

PKi The public key of IoT device Oi

SKi The private key of IoT device Oi

Sk The service k

T
Sk
ij (t) Trust of Oi toward Spj w.r.t. service Sk at time t

D
Sk
ij (t) Direct observation of Oi toward Spj w.r.t. service

Sk at time t

R
Sk
rj (t) Recommendation of Or toward Spj w.r.t. service

Sk at time t

Sij Satisfaction level of Oi toward Spj

αij Accumulated satisfaction level of Oi toward Spj

βij Accumulated dissatisfaction level of Oi toward Spj

α Weight on previous experiences
β Weight on direct observation
γ Weight on indirect recommendations

∆tR The period of time that separates two transactions

TABLE 1: Table of notations

6.3 The protocol BC-Trust for trust management

Our trust management protocol, is a real time, evolutionary
and encounter-based assessment process, which provides
trust information about any service provider. Indeed, in our
protocol, “honest” IoT devices continuously evaluate and
update trust information about the encountering IoT service
providers whenever they request a service. In what follows,
we explain the different steps of our protocol called BC-
Trust.

6.3.1 Setup phase
Our setup phase is composed of two main steps which are :
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1) Identification step: in a massively distributed system
of a very large number of heterogeneous IoT devices,
the identification of IoT devices is one of the major
challenges that must be addressed before developing
a trust management protocol [14]. In our system, we
assume that there is a public key infrastructure set up
in the cloud which is responsible for cryptographic key
generation. Therefore, PKI authority generates a public
and private key pair for each IoT device and fog node in
the architecture. The public keys are maintained in the
blockchain by the fog nodes. Thus, once PKI authority
generates the pair (PKA,SKA) for each entity A (IoT
device or fog node, ie A ∈ D ∪ FN ∪ Sp), it sends
a transaction containing PKA to the blockchain. PKA

serves as an identifier of the entity A. Hence, at the end
of identification step, all IoT devices and fog nodes are
able to identify each other via the blockchain.

2) Service indexing step: in order to allow IoT devices
to discover available services, service providers register
their proposed services into their closest fog nodes. Thus,
we propose to use a distributed hash table (DHT) to
store the different services provided by different service
providers. This DHT table, maintained by the fog nodes,
is synchronized and updated via a distributed protocol
similar to structured P2P networks [10].

6.3.2 Trust Dissemination Phase

In our solution, each “honest” IoT device Oi should period-
ically report its recommendations toward the encountered
service providers every ∆TR time units (∆TR is a system
parameter). Device Oi ’s recommendations are reported to
the closest fog node. For sake of optimization, each device
Oi reports only the most fresh recommendations that have
been updated during the last ∆TR. Therefore, at the end
of ∆TR, the reported trust values are structured in sepa-
rate transactions, where each transaction TxR(Oi ,Spj ,Sk )
contains the following pieces of information:

• The trustor node identifier: which is the public key PKOi

of device Oi .
• The trustee node identifier: which is the public key PKSpj

of service providerSpj .
• The service Sk that has been provided by node Spj to

device Oi during the last ∆TR.
• A set of criteria C

′ ⊂ C = {C1 ,C2 , ...,CN }: that repre-
sents the criteria on which Oi has based its evaluation of
service Sk.

• The trust value TSk
ij that refers to the level of trustwor-

thiness of the service provider Spj assessed by the device
Oi with respect to the service Sk and criteria C

′
.

• The timestamp tspSk
ij of the last updated trust value TSk

ij .
• The previous {Rij ,∆T = [t1 , t2 ]}SKFNl

signed by FNl

and computed based on trust values reported by IoT
devices regarding service provider Spj . The computation
of Rij takes in consideration only the reported trust
values in the interval ∆T = [t1 , t2 ]. Further explanations
about the computation of Rij are provided in phase 6.3.3.

• The approval of service Sk signed by the service provider
Spj as: {approval ,Sk , timestamp}SKSpj

. This information
is used as a proof that the service Sk has been accom-
plished and provided by Spj and thus it prohibits that

service requester Oi can report a recommendation about
the service provider Spj without requesting any service
from it.
The device Oi signs the transaction TxR(Oi ,Spj ,Sk ) by

its private key SKOi
and sends it to the closest fog node.

Upon receiving the transactions, the fog node periodically
performs the following steps:
• It first verifies these transactions by verifying the signa-

ture of both service provider Spj (the approval signature)
and service requester Oi (the transaction signature).

• It gathers only the valid transactions in one single block.
• It broadcasts the block to be validated to the whole

fog nodes that maintain the blockchain as explained
previously in section 4.

• One fog node FNl validates the block using the
Ethereum’s Proof of Stack algorithm (PoS). Beside, the
validation of the block, FNl checks out if the com-
putation of the previous Rij (∆t) has been well done
by the fog nodes which signed these values. For more
efficiency, these computations should be done offline by
FNl (and not at this step). In case of any incoherence in
the computation of one Rij (∆t), the fog node that was
responsible of this computation will be reported by FNl

in the blockchain as a malicious node.
• Finally, once the validation is done, the block will be

added to the blockchain by all fog nodes.

6.3.3 Trust assessment process
Whenever, the node Oi requests the service Sk from service
provider Spj at time t , it first queries for the available
services from the distributed hash table (maintained by the
fog nodes) to identify the potential IoT service providers
it should interact with them. The choice of one service
provider Spj among others is based on the trustworthiness
level of each service provider at time t . The trustor IoT
device Oi assesses or updates the trustworthiness of service
provider Spj (trustee) as follows:

TSk
ij (t) =

{
αTSk

ij (t−∆t) + βDSk
ij (t) + γRSk

ij (∆t), if P (i, j)

RSk
ij (∆t), otherwise

(1)
Where 0 ≤ α, β, γ ≤ 1 and α+ β + γ = 1 , are used to
weigh the importance of each trust parameter. These weighs
are adjusted dynamically by the trustor in order to maxi-
mize the accuracy of trust assessment as well as make the
protocol more resilient to bad-mouthing and ballot-stuffing
attacks. In equation 1, P(i , j ) is a predicate that is equal
to true if the device Oi has interacted previously with the
service provider Spj . Otherwise, P(i , j ) = false.

In the equation 1 above, we distinguish two main cases
depending on the experience of the node Oi with the
encountered IoT service provider Spj :
1) Case 1: if the device Oi has previously encountered the

service provider Spj , it will assess its trustworthiness
level based on TSk

ij (t −∆t), DSk
ij (t −∆t) and RSk

ij (∆t).
TSk

ij (t −∆t) represents the last trustworthiness of ser-
vice provider Spj . DSk

ij (t −∆t) represents the direct
observation measured till instant t . The last parameter
denoted by RSk

ij (∆t) refers to the indirect recommenda-
tions of the other IoT devices toward Spj .
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2) Case 2: if the device Oi has not interacted previously
with the service provider Spj and it does not dispose
of any previous trustworthiness level TSk

ij (t −∆t) about
Spj , then it considers only the indirect recommendation
RSk

ij (∆t) as trustworthiness value TSk
ij (t).

6.3.4 Computation of DSk
ij (t)

In our protocol, when Oi requests one service Sk from Spj ,
it measures the satisfaction level of the provided service.
Let Sij (t) be the current satisfaction level, which is a real
number in the range [0 , 1 ]. The direct observation DSk

ij (t) is
defined through as follows:

DSk
ij (t) =

αij

n
=

∑
ti∈{t1,..,tn} Sij(ti)

n
(2)

Where:
• αij is the cumulative of the satisfaction levels and is

continuously updated by αij = αij + Sij (t).
• t1 < t2 < ... < tn = t represent the instants where ser-

vice Sk was requested.
• n is the number of experiences regarding the service Sk .

Algorithm 1 summarizes the different steps of trust
assessment protocol, executed by IoT devices.

Algorithm 1 BCTrust: trust assessment-IoT devices level

1: Input: Oi: IoT device, Spj : IoT service provider
2: procedure COMPUTEANDREPORTTRUST
3: Requests a recommendation about Spj from the home fog node
4: Fog node sends the recommendation RSk

ij to Oi
5: if (T

Sk
ij , D

Sk
ij ) ∈ loockup(Oi) then

6: T
Sk
ij ← α× TSk

ij + β ×DSk
ij + γ ×RSk

ij
7: else
8: T

Sk
ij ← R

Sk
ij

9: end if
10: if TSk

ij < Threshold then
11: Ignore the service provider Spj
12: return false
13: else
14: Service Sk Done
15: Evaluate the satisfaction Sij(t) ∈ [0, 1]
16: αij ← αij + Sij(t); n← n+ 1;
17: Dij ←

αij

n
18: Update the entry (Dij , Tij) in the loockup table
19: Construct and send transaction TxR(Oi, Spj , Sk)
20: return True
21: end if
22: end procedure

6.3.5 Computation of RSk
ij (∆t)

As previously explained, our trust assessment is also based
on recommendations provided by fog nodes. These recom-
mendations are computed using trust values stored in the
blockchain.

To provide indirect recommendation RSk
ij (∆t), fog node

FNl starts by filtering out the most recent transactions,
which have been occurred during the last ∆t time units,
available in the blockchain. We denote by L the list of IoT
objects which have reported the filtered transactions. Next,
from the list L, we distinguish two cases:

1) Case 1 (L 6= ∅): fog node FNl computes RSk
ij (∆t) as

follows:

RSk
ij (∆t) = sp×RsSk

ij (∆t) + (1− sp)×RoSk
ij (∆t) (3)

Where:
• sp : the rate of service providers in the list L (0 ≤ sp ≤ 1 )
• RsSk

ij (∆t): the average of the recommendations provided
by service providers.

• RoSk
ij (∆t): the weighted average of the recommendations

provided by IoT devices.
Overall, in equation 3, the computation of RSk

ij (∆t) de-
pends upon two different values RsSk

ij (∆t) and RoSk
ij (∆t).

Indeed, in our solution, service provider Spj could be rec-
ommended by both IoT devices or other service providers.

Therefore, in the list L, fog node FNl selects the subset
LO of IoT devices. Then, it computes RsSk

ij (∆t) as follows:

RoSk
ij (∆t) =

1

(1− sp)|L|
∑

k∈LO

TSk

kj (4)

Where:

LO ⊂ L : is a subset of L that contains only service requesters.

Equation 4 represents the average of all recommendations
(TSk

kj ) that were reported by all devices Ok ∈ LO and stored
in the blockchain during the last period ∆T .

Likewise, fog node FNl, selects the subset LS (LS ⊂ L)
of IoT devices. Then, it computes RSSk

ij (∆t) as follows:

RsSk
ij (∆t) =

∑
k∈Ls

TSk

ik∑
k∈Ls−{j} T

Sk

ik

× TSk

kj (5)

Equation 4 represents the weighted average of all recom-
mendations TSk

kj that were reported by all devices Spk ∈ LS .
In fact, each recommendation value TSk

kj provided by
Ok is weighted by the ratio of the trust value reported by
Oi toward Spk, to the sum of all trust values given by
Oi toward each service provider in LS . Hence, if the trust
value TSk

ik of Oi toward Spk is high, then the fog node
will attribute a high weight to the recommendation TSk

kj .
For sake of optimization, the fog node only considers the
recommendation coming from service providers that device
Oi grants them a minimum trust value. As an example,
fog node considers the recommendations provided by the
service providers if their trust value regarding Oi exceed
0.7 (i.e. TSk

ik > 0 .7 ).
Finally, fog node FNl computes the recommenda-

tion RSk
ij (∆t), it responds the device Oi by sending

{RSk
ij (∆t),∆t = [t1 , t2 ]}SKFNl

signed by its private key
SKFNl

. This information will be integrated in the next
transaction that will be sent by the device Oi as explained
previously in the Section 6.3.2. It allows the other fog nodes
to detect any misbehavior from fog node FNl during block
validation step (Section 6.3.2).

2) Case 2 (L = ∅): this case means that there have been
no device which recommended Spj during the last ∆T time
units. If service provider Spj has never been recommended
by any IoT object in the architecture, then fog node FNl

returns a recommendation RSk
ij (T ) = 0.5. Otherwise, fog

node FNl searches the most recent transaction TxR that
has been reported prior interval [t −∆T , t ]. Since TxR has
not been reported in the last ∆T , it is still considered as
an old transaction. Therefore, fog node FNl will consider
recommendation reported in transaction TxR with a small
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penalty Pnl . In our solution, we consider a constant penalty
Pnl equal to 0 .05 . Thus, let RSk

kj (t
′
) be the recommendation

reported in TxR (t
′
< t −∆T ), fog node FNl computes the

recommendation RSk
ij (∆t) as follows:

RSk
ij (∆t) = (1− Pnl)×RSk

ij (t
′
) , where t

′
< t−∆T

Algorithm 2 summarizes the different steps performed by
fog nodes while computing recommendations.

Algorithm 2 BCTrust: trust assessment-Fog nodes level

1: procedure COMPUTERECOMMENDATION
2: Init1: LS ← {}; LO ← {}
3: Init2: L← the T -th most recent recommenders

that reported transactions in [t−∆T, t]

4: if L = ∅ then RSk
ij ← 0.5

5: if ∃RSk
kj (t

′
) ∈ Blockchain && t

′
< t−∆T then

6: R
Sk
ij ← (1− Pnl)×RSk

ij (t
′
)

7: end if
8: Send the recommendation RSkij to the device Oi
9: return RSk

ij
10: end if
11: for Ok ∈ L do
12: if Ok is a service provider then
13: LS ← Sp

⋃
{Ok}

14: else
15: LO ← Sr

⋃
{Ok}

16: end if
17: end for
18: Compute RoSk

ij //recommendation of LO (equation 4)
19: Compute RsSk

ij //recommendation of LS (equation 5)
20: R

Sk
ij ← Sp×RsSk

ij + (1− Sp)×RoSk
ij

21: Send RSk
ij to the device Oi

22: return RSk
ij

23: end procedure

We illustrate in Figure 3, in a comprehensive way, the
different steps of our protocol.

6.4 Countermeasure against cooperative attacks

The most common attacks that are performed in IoE based
trust management systems are basically bad-mouthing and
ballot stuffing attacks. In these attacks, malicious nodes tend
to report bad recommendations for honest service providers
or good recommendations for malicious ones. For more
effectiveness, in general, this kind of attacks is cooperatively
performed by several attackers in order to promote each
other or target some honest service providers. Coopera-
tive bad-mouthing and ballot-stuffing attacks involve great
damages on the whole IoE system. Moreover, these attacks
are very hard to detect and overcome, at least for the
following reasons:
• Risk of false negative: When a group of nodes give bad

recommendations for one particular node A repetitively,
it is hard to say for sure whether this group of nodes is
malicious or because the node A is really malicious.

• Risk of false positive: It could be possible in some cases
that a group of nodes request periodically one particular
service from one service provider (the case for example
of data aggregation). Therefore, reporting periodically
the same recommendations for one service provider (the
aggregator node for example) does not necessarily mean

Algorithm 3 BCTrust: Countermeasure against cooperative
attacks

1: Input: Oi: IoT device, Spj : IoT service provider
2: procedure ONLINE COUNTERMEASURE
3: Init: Sp← {}; Sr ← {}; Nbocc[T ]← {0}
4: L← the most recent recommenders

that reported transactions in [t−∆T, t]

5: minj(t)← mini∈L{T
Sk
ij (t)}

6: maxj(t)← maxi∈L{T
Sk
ij (t)}

7: if maxj(t)−minj(t) < Thr then
8: History ← transactions produced during [t− n×∆T, t]
9: for Ok ∈ TopR do

10: for i := 1 to n do
11: if TSk

kj (t− i∆T ) ∈ History then
12: Nbocc[k]← Nbocc[k] + 1
13: end if
14: end for
15: end for
16: for Ok ∈ L do
17: if Nbocc[k]

n
> 0.8 then

18: L← L− {Ok}
19: end if
20: end for
21: end if
22: R

Sk
ij ← COMPUTEANDREPORTTRUST(L)

23: return RSk
ij

24: end procedure

that this group of nodes is conducting a cooperative
attack against this service provider.
In this section, we propose a countermeasure solution

to reduce the impact of cooperative attacks in the system.
Our mitigation technique takes advantage of the history of
the recommendations reported to the blockchain. The main
idea of our solution consists to: 1) Analyze the history of the
received recommendations to detect if there is a cooperative
attack. 2) Trigger a mitigation technique to eliminate the
recommendations provided by the group of malicious nodes
in the case of any eventual cooperative attack.

We propose as a countermeasure, an online algorithm,
which works in real time and is executed each time the
trust recommendations are computed by fog nodes. As
presented in algorithm 2, our mitigation algorithm works
in the following steps:
• First, the fog node selects all the recommen-

dations for one particular IoT service provider
Sk (as discussed previously in our protocol). Let
L = {O1 ,O2 , ...,Ol} ∪ {Sp1 ,Sp2 , ...,Spm} be the subset
of IoT devices and service providers that have recom-
mended Spk during the last ∆T .

• The fog node computes mink (t) = mini∈L{TSk

ik (t)} and
maxk (t) = maxi∈L{TSk

ik (t)} which are respectively the
minimum and the maximum of the recommendations
provided by the devices of the list L. If the difference
maxk (t)−mink (t) is bigger than Thr , then the sevice
provider Spk may be subject of a cooperative attack.
Indeed, having a large difference between maxk (t) and
mink (t) is a suspicious situation. In fact, there is at least
one node who did not grant a good recommendation to
Spk contrariwise to others. Thus, one of these sub-groups
is malicious (see from step 3 to step 7 in algorithm 2).

• If an anomaly has been detected, the fog node con-
sults the history of recommendations, available in the
blockchain, which concern service provider Spk in the
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Filter out the most fresh transactions 
produced during the last Dt

Fog node

Dij#Service provider Tij

(aij,n1)PK_Sp1 Ti1

(aij,n2)PK_Sp2 Ti2

...... ...

Lookup Table

device Oi

Fig. 3: work-flow of our trust management protocol BC-Trust

last n time slots ∆T . The fog node ignores the recom-
mendation of each node who frequently appears in the
history (see from step 7 to step 16 in algorithm 2).

7 THEORETICAL ANALYSIS

In this section, we will study the convergence of our pro-
tocol BC-Trust with respect to the parameters of our sys-
tem. In this theoretical analysis, we give lower and upper
bounds of trust values obtained by our protocol under
bad-mouthing and ballot stuffing attacks, showing that our
protocol is highly resilient to these attacks. We recall in Table
2 the symbols used in this section.

Notation Description
L The number of IoT devices (service providers

and service requesters)
sp The rate of service providers
λ The rate of honest devices
m The minimum satisfaction value that can be

attributed to one honest service provider Spj

by honest device Oi

T ij
n The trust value attributed to service provider

Spj by an honest IoT device Oi at time n

H ,M The subsets of honest and malicious devices
respectively

Eh(Tj ) The mean trust value of honest service
provider Spj , measured by all IoT devices

Em(Tj ) The mean trust value of malicious service
provider Spj , measured by all IoT devices

TABLE 2: Table of symbols

In our solution, trust values TSk
ij are updated at each

time that device Oi requests a service Sk from service
provider Spj . We define the set {T0 ,T1 ,T2 , ...} as an
ordered set of instants when Oi requests Sk. Hence, each
Tn refers to the nth service request. For sake of simplicity,
we consider only one service in what follows. Thus, we note
TSk

ij (Tn) by T ij
n .

Definition 1. We define the sequence S = (T ij
n )n∈N by the set

of trust values Tij (t), t ∈ [Tn ,Tn+1 ], n ∈ N.

Definition 2. We define the sequence R = (Rij
n )n∈N by the set

of recommendation values Rij (t) reported by fog nodes at each
instant t ∈ [Tn ,Tn+1 ], n ∈ N.

Definition 3. We define the sequence D = (D ij
n )n∈N by the set

of direct observations Dij (t), t ∈ [Tn ,Tn+1 ], n ∈ N.

7.1 Study of the convergence of S = (T ij
n )n∈N

Lemma 1. Given a network of L devices. For each honest device
Oi and honest service provider Spj , we have:

∀i, j ∈ {1, ..., L}, i 6= j,m ≤ Dij
n ≤ 1 (6)

Proof. From equation 2, we have:

Dij
n =

αij

n
=

∑n
t=1 Sij(t)

n
(7)

Since Spj is a honest service provider, the satisfaction value
Sij (t) at time t is at least equal to m and at most equal to 1 .
Therefore, we obtain from equation (7):

m ≤ Dij
n ≤ 1

Lemma 2. Given a network of L devices with a rate sp of service
providers and λ the rate of honest devices. Under bad-mouthing
attacks, for each honest device Oi and honest service provider Spj ,
we have:

∀i, j ∈ {1, ..., L}, i 6= j, Rij
n ≥ λ× Tmin

n (8)

Where Tmin
n = min{T kj

n , k ∈ {1, ..., L}, and Ok ∈ H}

Proof. From equation 3, we have:

Rij
n = sp×Rsij(n) + (1− sp)×Roij(n)

Given a set L
′

= L
′

S ∪ L
′

O composed of two subsets L
′

S

(service providers) and L
′

O (IoT devices) that have recom-
mended Spj . We distinguish two cases for each subset:
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1) For the subset L
′

O , recommendation Roij(n) is ex-
pressed as follows:

Roij(n) =
1

|L′
O|
×

∑
k∈L′

O

T kj
n−1 = RH +RM

Where:

RH =
1

|L′
O|
×

∑
k∈L′

O∩H

T kj
n−1

RM =
1

|L′
O|
×

∑
k∈L′

O∩M

T kj
n−1

In what follows, we study the lower bounds of the of (RH

and RM ).
Case 1: the sum RH

RH =
1

|L′
O|
×

∑
k∈L′

O∩H

T kj
n−1

By definition, for each n ≥ 0, we have:

∀i, j ∈ {1, ..., L}, T kj
n ≥ Tmin

n

Hence, given that λ is the rate of honest devices in L
′

O, we
can simplify RH as follows:

∀n ≥ 1, RH ≥ λ× Tmin
n−1 (9)

Case 2: the sum RM

Under bad-mouthing attacks, malicious devices report
bad recommendations T ij

n which are equal to 0 in the worst
case. Therefore:

RM =
1

|L′
O|
×

∑
k∈L′

O∩M

T kj
n−1

T ij
n ≥ 0 =⇒ RM =

1

|L′
O|
×

∑
k∈L′

O∩M

T kj
n−1 ≥ 0 (10)

From inequalities 9 and 10, we have:

Roij(n) ≥ λ× Tmin
n−1 (11)

2) For the subset L
′

S , recommendation Rsij(n) is expressed
as follows:

Rsij(n) =
∑
k∈L′

S

T ik
n−1∑

k∈L′
S
T ik
n−1
× T kj

n−1 = RX +RY

Where:

RX =
∑

k∈L′
S∩H

T ik
n−1∑

k∈L′
S
T ik
n−1
× T kj

n−1

RY =
∑

k∈L′
S∩M

T ik
n−1∑

k∈L′
S
T ik
n−1
× T kj

n−1

As previously, we develop bellow the sums RX and RY .
Case 1: the sum RX

Given λ the rate of honest service providers in L
′

S , we
have :

RX ≥
∑

k∈L′
S∩M

T ik
n−1

|L′
S | × T

ij
n−1
× Tmin

n−1 ≥ λ× Tmin
n−1 (12)

Case 2: the sum RY

Under bad-mouthing attacks, malicious service
providers report bad recommendations T ij

n which are
equal to 0 in the worst case. Therefore:

T ij
n ≥ 0 =⇒ RY ≥

∑
k∈L′

S∩M

T ik
n−1∑

k∈L′
S
T ik
n−1
× 0 ≥ 0 (13)

From inequalities (12) and (13):

Rsij(n) ≥ λ× Tmin
n−1 (14)

From inequalities (11) and (14), we find out:

Rij
n ≥ λ× Tmin

n−1

7.1.1 Resiliency against malicious attacks
Proposition 1. Given a network of L devices with sp the rate
of service providers and λ (λ ≤ 1 ) the rate of honest devices.
Under bad-mouthing attacks, for each honest device Oi and honest
service provider Spj , we have:

∀i, j ∈ {1, ..., L}, i 6= j, Th = lim
n→∞

T ij
n ≥

m× β
1− α− γ × λ

(15)

Proof. Given Oi and Spj are honest. By definition, we have:
∀n ≥ 0, T ij

n ≥ Tmin
n . Thus, we only need to study the

convergence of the sequence (Tmin
n )n∈N.

Based on the result of lemma 1 and lemma 2, we have:

Tmin
n ≥ α× Tmin

n−1 + β ×m+ γ × λ× Tmin
n−1

Hence, we get:

lim
n→∞

Tmin
n ≥ (α+ γ × λ)× lim

n→∞
Tmin
n−1 + β ×m

Therefore:
lim

n→∞
Tmin
n ≥ β ×m

1− α− γ × λ
Since ∀n ≥ 0, T ij

n ≥ Tmin
n , we have:

lim
n→∞

T ij
n ≥ lim

n→∞
Tmin

n

Therefore,

Th = lim
n→∞

T ij
n ≥

β ×m
1− α− γ × λ

Proposition 2. Given a network of L devices with sp the rate of
service providers and λ (λ ≤ 1 ) the rate of honest devices. Under
ballot-stuffing attacks, for each honest device Oi and malicious
service provider Spj , we have:

∀i, j ∈ {1, ..., L}, i 6= j, Tm = lim
n→∞

Tij(n) ≤ 1− m× β
1− α− γ × λ

(16)

Proof. The proof is similar to the proof of proposition 1.

Theorem 1. Given a network of L devices with sp the rate
of service providers and λ the rate of honest devices. Under
bad-mouthing attacks, the mean trust Eh(Tj ) of honest service
providers measured by all network devices is:

Eh(Tj) ≥ λ× Th ≥
λ× β ×m

1− α− γ × λ
(17)
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Proof. Let Spj be a honest service provider, we have:

Eh(Tj) = lim
n→∞

1

L

L∑
i=1

T ij
n

= lim
n→∞

1

L

L∑
i=1

[Pr(Oi is honest)× T ij
n +

Pr(Oi is malicious)× T ij
n ]

= lim
n→∞

λ× T ij
n + (1− λ)× a

Since a ≥ 0 , the worst value of a given by bad-mouthing
attacker is 0 . Hence, we have:

Eh(Tj) ≥ lim
n→∞

λ× T ij
n + (1− λ)× 0

≥ λ× Th ≥
λ× β ×m

1− α− γ × λ

Theorem 2. Given a network of L devices with sp the rate
of service providers and λ the rate of honest devices. Under
ballot-stuffing attacks, the mean trust Em(T ) of dishonest service
providers measured by all network devices is:

Eh(Tj) ≤ λ× Tm + 1− λ ≤ 2− λ− λ× β ×m
1− α− γ × λ

(18)

Proof. Let Spj be a dishonest service provider, we have:

Eh(Tj) = lim
n→∞

1

L

L∑
i=1

T ij
n

= lim
n→∞

1

L

L∑
i=1

[Pr(Oi is honest)× T ij
n +

Pr(Oi is malicious)× T ij
n ]

= lim
n→∞

λ× T ij
n + (1− λ)× a

Since a ≤ 1 , the best value of a given by a ballot-stuffing
attacker is 1 . Hence, we have:

Eh(Tj) ≤ lim
n→∞

λ× T ij
n + (1− λ)× 1

≤ λ× Tm + 1− λ ≤ 2− λ− λ× β ×m
1− α− γ × λ

8 PERFORMANCES EVALUATION

In this section, we evaluate the effectiveness, resiliency and
the benefits of our proposed BC-Trust approach through
different experiments. In addition, we demonstrate how our
experimental results feet with the theoretical analysis we
presented in the previous section. Basically, we performed
three initial experiments. The first one evaluates the ef-
fectiveness of our solution in terms of convergence time
with respect to different parameters (α, β, γ). The second
one evaluates the resiliency of our protocol against bad-
mouthing and ballot-stuffing attacks. Finally, we evaluate
the effectiveness of our countermeasure approach against
cooperative attacks. Table 3 summarizes the main setting
parameters related to our experiments.

parameters values
Number of IoT devices (L) 100

Rate of service providers (sp) 20%

Default values of (α, β, γ) α = β = γ = 1
3

Number of services 1

Number of criteria 5

∆t 5 seconds

TABLE 3: Test settings

8.1 Evaluation of the convergence of our protocol
The first bunch of experiments aims to measure the con-
vergence time of our protocol, and to study the impact of
parameters α, β, γ and m on both convergence value and
time. In order to get a clear view on the behavior of our
protocol, this first sequence of experiments is done in a safe
area where all the nodes are assumed to be honest.

Figure 4 illustrates the evolution of the mean trust value
of all the service providers seen by all IoT devices during
the lifetime of the simulation. We clearly notice that the
limit trust value depends on the parameter m (the minimum
satisfaction level that can be attributed to honest service
providers). Besides, this limit trust value converges to the
value m+1

2 which exactly feet with the result of proposition
1. However, we notice that the convergence time does not
depend on the parameter m . Indeed, even with two different
m values, our protocol converges to almost the same time
(convergence after about 70 time units).

Figure 5 depicts the mean trust value with respects to
the parameters: α, β, γ. As we notice, these three parameters
have an impact only on the convergence time of the mean
trust value. However, these parameters do not affect the
convergence value. Moreover, parameter β (the weight of
direct observation) enhances significantly the convergence
time compared to parameters α and γ. Indeed, with β = 2

3
and α = γ = 1

6 , the convergence time is reduced to around
40 time units, whereas with smaller value of β (i.e. β = 2

3 )
the convergence time is significant (> 80 time units).

8.2 Effectiveness of our protocol against Malicious at-
tacks
After studying the behavior of our protocol in normal
circumstances, we evaluate in what follows its effectiveness
under malicious attacks. We mainly focus on two kind of
attacks: bad-mouthing and ballot-stuffing attacks.

As illustrated in Figure 6, the robustness of our proto-
col against bad-mouthing attacks has been evaluated with
respect to the rate of honest nodes (λ). To do so, we vary
the rate of honest nodes λ and the parameter m while the
other parameters are kept constant and take their default
values as shown in Table 3. Overall, we notice that the
limit of mean trust value for honest service providers is
reduced compared the result obtained in the case where
there is no attack. As trivially expected, this limit value
decreases with respect to the rate of malicious nodes (1 − λ).
However, even with 20% of malicious nodes and m = 0 .9 ,
our protocol converges to a mean trust value which exceeds
0 .75 . This is due to our strategy of the computation of
recommendations which favors trust values coming from
honest nodes. Moreover, it is straightforward to see that
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Fig. 4: Mean trust for the different service providers Fig. 5: Mean trust for the different service providers

Fig. 6: Mean Trust under bad-mouthing attacks Fig. 7: Mean Trust under ballot-stuffing attacks

the limit mean trust value is always bigger than the lower
bound obtained in the theoretical analysis (see proposition
1) with a small gap which is up to 4 %.

On the other side, we evaluated the impact of ballot
stuffing attacks on our protocol by varying the rate of
honest nodes λ. Figure 7 illustrates the mean trust value
of malicious service providers (evaluated by honest nodes)
with respect to different values of λ and m . Despite the
presence of significant malicious nodes (1 − λ = 20%), we
notice that the limit trust value is still small and reflects
a correct reputation on these malicious nodes. Moreover,
it is worth nothing that the theoretical analysis discussed
in proposition 2 (upper bound limit of mean trust value of
malicious nodes under ballot-stuffing attacks) are confirmed
in the Figure 7.

Overall, the above results exhibit that BC-Trust shows its
effectiveness and robustness to deal against bad-mouthing
and ballot-stuffing attacks.

8.3 Effectiveness against Cooperative attacks
In order to evaluate the efficiency and robustness of our
countermeasure approach against cooperative attacks, we
performed a set of experiments, defined by the following
scenarios:
• Scenario 1: We perform a cooperative bad-mouthing

attack in which, all the malicious nodes target one service

provider Spj and periodically report bad recommenda-
tions about it. The other honest nodes behave naturally,
where they choose the service provider Spj randomly
among other service providers and report real recom-
mendations about it.

• Scenario 2: we perform a cooperative ballot-stuffing
attack in which all malicious nodes periodically report
good recommendations about a target malicious service
provider Spk , whereas honest nodes provide real recom-
mendations about Spk .

In both scenarios, we vary the rate of malicious nodes
(1 − λ) to show the resiliency of our approach.

Figure 8 shows the evolution of mean trust value of the
target honest service provider under bad-mouthing attacks.
We notice that our online countermeasure algorithm signif-
icantly reduces the effect of collaborative attacks compared
to the case where there is no countermeasure. Indeed,
despite the presence of 1 − λ = 20 % of malicious nodes
conducting bad-mouthing attacks, the mean trust value of
the target service provider reaches the limit value 0 .87 . This
last is significantly bigger than the reached limit value in the
case where there is no countermeasure (0 .59 ).

Similarly, in Figure 9, we show the results of experi-
ments conducted on BC-Trust with the presence of ballot
stuffing attacks by varying the rate λ. Our countermeasure
algorithm also mitigates the trust computation process per-
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Fig. 8: Trust under cooperative bad-mouthing attacks Fig. 9: Trust under cooperative ballot-stuffing attacks

TABLE 4: comparison in terms of trust evaluation cost

Storage Computation Communication
#Mult #Add #Exp

[7] O(L2) O(L) O(L) 0 O(L)
[18] O(F ) O(1) O(F ) 0 O(F )

Ours O(L) O(1) O(1) 0 O(1 )
In this table, we provide comparison in terms of computation, storage and
communication. Note that L is the number of devices and F is the average

number of friends in the social graph as presented in the work of Nitti et al. [18].

formed by fog nodes and it significantly reduces the impact
of cooperative ballot-stuffing attacks. Indeed, with a rate
1 − λ = 20 % of malicious nodes, the limit trust value of the
target malicious node reaches the value 0 .05 . This value is
small comparing to the limit value 0 .27 obtained in the case
where there is no countermeasure.

8.4 BC-Trust vs Existing solutions

Table 4 shows a comparison of our solution and two other
solutions (presented in related works section) in terms of
storage, computation and communication overhead. We
notice that our protocol BC-Trust reduces storage related
to trust values compared to other solutions. Indeed, in our
protocol, IoT device stores only trust data related service to
providers which are basically its own direct observations.
The amount of this data is at most equal to 8 ××L which
depends linearly on the number of IoT devices L if we
assume that trust values are encoded on 4 bytes. However,
in other approaches, the storage overhead depends quadrat-
ically on the number of IoT devices L since each device
must keep the recommendation of other nodes against each
service provider. Moreover, contrary to other approaches,
BC-trust reduces computation overhead (few additions and
multiplication) which is independent of the number of IoT
devices. Finally, the communication overhead, measured as
the amount of data exchanged during ∆T , is also reduced
in our protocol. Indeed, IoT devices need to exchange only
with fog nodes to get recommendation about one service
provider, whereas in other solutions IoT devices must ex-
change the recommendations between each others.

We present in Table 5 a qualitative comparison of our
proposal with some previously presented related works.
Our solution is very convenient with high mobility scenarios

Scalability Mobility Node-
failure

QoS Convergence
time

Global
view

[7] - - + - - -
[18] + + - - + +
[15] - - + - + -
[5] - - - - + -
[19] - - + + + -
[2] - - - - + -
[8] - + - - + -
[9] + - - + + -
[6] + - - + + -

Ours + + + + + +

TABLE 5: Comparison between trust management protocols

and resists against node failures. Furthermore, our solution
is QoS-aware protocol which reduces the latency during
the computation of trust values and allows IoT devices to
filter out service providers with respect to some QoS metrics
thanks to fine-grained based service property. Contrary to
other approaches, BC-Trust introduces other original prop-
erties such as global view of trustworthiness information
and scalability support which are very important in IoE.

9 CONCLUSION AND FUTURE WORK

In this paper, we proposed a new decentralized trust man-
agement protocol for Internet of Everything in fog comput-
ing architecture. Our protocol is distributed and each IoT
object can assess trustworthiness of service providers and
share it among IoT devices in a scalable way. Based on
blockchain technology, our protocol offers a global view on
the trustworthiness of each service provider in the architec-
ture. In addition, our solution introduces the fine grained
concept in trustworthiness computation.

Moreover, contrary to most existing works, our proposal
deals efficiently with high mobility scenarios thanks to
blockchain technology. Besides, we demonstrated through
experiments the resiliency and robustness of our solution
in front of malicious attacks. Then, we showed that our
solution outperforms the existing ones, especially in terms
of saving computation and storage resources. In addition,
we confirmed our experimental result through an advanced
theoretical analysis about the convergence of trust values
under different malicious attacks. Furthermore, we shed the
light on cooperative attacks where we proposed an efficient
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countermeasure based on the analysis of recommendations’
history reported by IoT devices to the blockchain.

For future work, we plan to extend our proposed miti-
gation approach by developing more efficient offline algo-
rithms for malicious nodes detection using machine learn-
ing techniques.

10 ACKNOWLEDGMENTS

This work was carried out and funded in the framework
of the Labex MS2T. It was supported by the French Gov-
ernment, through the program ”Investments for the future”
managed by the National Agency for Research (Reference
ANR-11-IDEX-0004-02).

REFERENCES

[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash. Internet of things: A survey on enabling technologies,
protocols, and applications. IEEE Communications Surveys Tutorials,
17(4):2347–2376, Fourthquarter 2015.

[2] H. Al-Hamadi and R. Chen. Trust-based decision making for
health iot systems. IEEE Internet of Things Journal, 4(5):1408–1419,
2017.

[3] F. Bao, R. Chen, M. Chang, and J.-H. Cho. Hierarchical trust
management for wireless sensor networks and its applications to
trust-based routing and intrusion detection. IEEE Trans. on network
and service management, 9(2):169–183, 2012.

[4] B. Carminati, E. Ferrari, and M. Viviani. Security and trust in
online social networks. Synthesis Lectures on Information Security,
Privacy, & Trust, 4(3):1–120, 2013.

[5] D. Chen, G. Chang, D. Sun, J. Li, J. Jia, and X. Wang. Trm-iot:
A trust management model based on fuzzy reputation for internet
of things. Computer Science and Information Systems, 8(4):1207–1228,
2011.

[6] I. R. Chen, F. Bao, M. Chang, and J. H. Cho. Trust management
for encounter-based routing in delay tolerant networks. In IEEE
Global Telecommunications Conf. GLOBECOM, pages 1–6, Dec 2010.

[7] I. R. Chen, F. Bao, and J. Guo. Trust-based service management
for social internet of things systems. IEEE Trans. on Dependable and
Secure Computing, 13(6):684–696, Nov 2016.

[8] R. Chen, J. Guo, and F. Bao. Trust management for soa-based iot
and its application to service composition. IEEE Trans. on Services
Computing, 9(3):482–495, 2016.

[9] J.-H. Cho, A. Swami, and R. Chen. Modeling and analysis of trust
management for cognitive mission-driven group communication
systems in mobile ad hoc networks. In Int. Conf. on Computational
Science and Engineering, volume 2, pages 641–650. IEEE, 2009.

[10] B. Cohen. Incentives build robustness in bittorrent. In Workshop
on Economics of Peer-to-Peer systems, volume 6, pages 68–72, 2003.

[11] X. Fan, L. Liu, M. Li, and Z. Su. Grouptrust: Dependable trust man-
agement. IEEE Trans. on Parallel Distributed Systems, 28(4):1076–
1090, April 2017.

[12] F. Gai, J. Zhang, P. Zhu, and X. Jiang. Multidimensional trust-
based anomaly detection system in internet of things. In Int. Conf.
on Wireless Algorithms, Systems, and Applications, pages 302–313.
Springer, 2017.

[13] J. Guo, I. R. Chen, and J. J. P. Tsai. A mobile cloud hierarchical
trust management protocol for iot systems. In 5th IEEE Int. Conf.
on Mobile Cloud Computing, Services, and Engineering, pages 125–
130, April 2017.

[14] J. Guo, R. Chen, and J. J. Tsai. A survey of trust computation
models for service management in internet of things systems.
Computer Communications, 97:1–14, 2017.

[15] U. Jayasinghe, N. B. Truong, G. M. Lee, and T. W. Um. Rpr: A
trust computation model for social internet of things. In in Int.
IEEE Conf. on Smart World Congress, pages 930–937, July 2016.

[16] Z. Lin and L. Dong. Clarifying trust in social internet of things.
arXiv preprint arXiv:1704.03554, 2017.

[17] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.
[18] M. Nitti, R. Girau, and L. Atzori. Trustworthiness management

in the social internet of things. IEEE Trans. on Knowledge and Data
Engineering, 26(5):1253–1266, May 2014.

[19] Y. B. Saied, A. Olivereau, D. Zeghlache, and M. Laurent. Trust
management system design for the internet of things: A context-
aware and multi-service approach. Computers & Security, 39:351–
365, 2013.

[20] A. A. Selcuk, E. Uzun, and M. R. Pariente. A reputation-based trust
management system for p2p networks. In IEEE Int. Symposium on
Cluster Computing and the Grid, pages 251–258. IEEE, 2004.

[21] R. A. Shaikh, H. Jameel, B. J. d’Auriol, H. Lee, S. Lee, and Y.-
J. Song. Group-based trust management scheme for clustered
wireless sensor networks. IEEE Trans. on parallel and distributed
systems, 20(11):1698–1712, 2009.

[22] Z. Su, L. Liu, M. Li, X. Fan, and Y. Zhou. Servicetrust: Trust
management in service provision networks. In IEEE Int. Conf. on
Services Computing, pages 272–279, June 2013.

[23] G. Wood. Ethereum: A secure decentralised generalised transac-
tion ledger. Ethereum Project Yellow Paper, 151:1–32, 2014.

[24] L. Xiong and L. Liu. Peertrust: Supporting reputation-based trust
for peer-to-peer electronic communities. IEEE Trans. on Knowledge
and Data Engineering, 16(7):843–857, 2004.

[25] L. T. Yang, B. Di Martino, and Q. Zhang. Internet of everything.
Mobile Information Systems, 2017, 2017.

Djamel Eddine Kouicem is a PhD student at the
University of Technology of Compiegne (UMR
CNRS 7253) since October 2016. In Septem-
ber 2016, he gained a MSC diploma in Com-
puter Science from Pierre Marie Curie Univer-
sity (Paris 6) in France. In July 2015, he received
Engineer Diploma in computer science from the
High National School of Computer Science in
Algiers. His research interests are in security
and privacy in internet of things and Networking.

Youcef Imine is a PhD. student at the Univer-
sity of Technology of Compiègne (France) un-
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