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A generalized analytical approach for the propagation of Bleustein-Gulyaev wave in a piezoelectric material loaded on its surface with a viscoelastic fluid is established in this paper. The Bleustein-Gulyaev waveguide surface is subjected to various glycerol concentrations. The Maxwell and Kelvin-Voigt models are used to describe the viscoelasticity of this fluid. Exact dispersion equation is obtained in the cases of both electrically short circuit and open circuit by solving the equilibrium equations of piezoelectric materials and the Stokes equation of viscoelastic fluid. The effect on the phase velocity and attenuation for several frequencies is highlighted. The influence of key parameters such as substrate thickness and fluid thickness is also studied. These investigations can serve as benchmark solution in design of Bleustein-Gulyaev wave sensors.

Introduction

Surface acoustic waves sensors have been widely used for sensing applications in both gas and liquid environments. For liquid sensing applications, acoustic waves which have the particle displacement parallel to the device surface and normal to the wave propagation direction are preferred. These waves called shear horizontal waves include Love waves [START_REF] Kim | The effect of a viscous fluid on Love waves in a layered medium[END_REF][START_REF] Du | A study of Love-wave acoustic sensors[END_REF][START_REF] Kielczynski | Effect of a viscous liquid 16 loading on Love wave propagation[END_REF][START_REF] Baroudi | Influence of poroelasticity of the surface layer on the love wave propagation[END_REF][START_REF] Baroudi | Viscoelastic fluid effect on the surface wave propagation[END_REF][START_REF] Baroudi | Surface wave in a Maxwell liquidsaturated poroelastic layer[END_REF] and Bleustein-Gulyaev waves [START_REF] Tiersten | Wave Propagation in an Infinite Piezoelectric Plate[END_REF][START_REF] Bleustein | A new surface wave in piezoelectric materials[END_REF][START_REF] Royer | Elastic Waves in Solids: Free and Guided Propagation[END_REF][START_REF] Zhang | The Bleustein-Gulyaev wave for liquid sensing applications[END_REF][START_REF] Kielczynski | Measurement of the shear storage modulus and viscosity of liquids using the Bleustein-Gulyaev wave[END_REF][START_REF] Kielczynski | New ultrasonic Bleustein-Gulyaev wave method for measuring the viscosity of liquids at high pressure[END_REF][START_REF] Guo | Propagation of Bleustein-Gulyaev wave in 6 mm piezoelectric materials loaded with viscous liquid[END_REF][START_REF] Qian | Bleustein-Gulyaev waves in 6mm piezoelectric materials loaded with a viscous liquid layer of finite thickness[END_REF][START_REF] Guo | Inverse determination of liquid viscosity by means of Bleustein-Gulyaev wave[END_REF]. The Bleustein-Gulyaev waves have a single component transverse to the propagation direction. The Bleustein-Gulyaev sensor is basically formed by a piezoelectric ceramic covered with a very thin metallic layer [START_REF] Kielczynski | Measurement of the shear storage modulus and viscosity of liquids using the Bleustein-Gulyaev wave[END_REF]. This sensor does not require an aditionnal guiding layer to trap the wave energy to the surface as in the case of the Love Wave sensor [START_REF] Baroudi | Viscoelastic fluid effect on the surface wave propagation[END_REF][START_REF] Baroudi | Surface wave in a Maxwell liquidsaturated poroelastic layer[END_REF]. Consequently, the fabrication of the Bleustein-Gulyaev sensors is easier than the contruction of the Love wave sensors. The Bleustein-Gulyaev sensors are used to detect and investigate high pressure phase transitions in food products [START_REF] Kielczynski | Investigation of high-pressure phase transitions in DAG (diacylglycerol) oil using the Bleustein-Gulyaev ultrasonic wave method[END_REF][START_REF] Kielczynski | Thermophysical properties of rapeseed oil methyl esters (RME) at high pressures and various temperatures evaluated by ultrasonic methods[END_REF] and Biofuels [START_REF] Kielczynski | Investigation of high-pressure phase transitions in biofuels by means of ultrasonic methods[END_REF].

The study of the Bleustein-Gulyaev wave interaction with a viscous fluid was conducted [START_REF] Guo | Propagation of Bleustein-Gulyaev wave in 6 mm piezoelectric materials loaded with viscous liquid[END_REF][START_REF] Guo | Inverse determination of liquid viscosity by means of Bleustein-Gulyaev wave[END_REF] by employing the exact theory of continuum mechanics. Nevertheless the exact solution for viscoelastic fluid is still missing. A novel analytical approach of the propagation of Bleustein-Gulaev wave in a piezoelectric material loaded on its surface with a viscoelastic fluid is considered in this paper. The effect of fluid viscoelasticity on the phase attenuation is investigated for several frequencies. The explicit dispersion equations for both open circuit and metallized surface boundary conditions are given. This paper is intended to provide essential data for liquid sensors design and development.

Theoretical analysis

Bleustein-Gulyaev wave

Consider a finite-thickness piezoelectric substrate (ceramic) covered with a finite-thickness layer of viscoelastic fluid, as shown in Figure 1. The Bleustein-Gulyaev wave may exist in piezoelectric materials. It is an electromechanical coupled shear type surface wave, in which the direction of particle motion is perpendicular to the propagating direction and parallel to the surface of piezoelectric substrate. If there is no piezoelectric effect, Bleustein-Gulyaev wave degenerates to the shear bulk wave. The ceramic material is poled in the x 3 direction determined by the right-hand rule from the x 1 and x 2 axes. The structure allows the following anti-plane motion [START_REF] Bleustein | A new surface wave in piezoelectric materials[END_REF] 

u 1 = u 2 = 0 , u 3 = u 3 (x 1 , x 2 , t) , φ = φ (x 1 , x 2 , t)
where u 1 , u 2 and u 3 are the mechanical displacement components and φ the electric potential. The constitutive relations of 6 mm piezoelectric materials that relate the stress components σ ij and the electric displacement D i to the mechanical displacement u 3 are given by Royer and Dieulesaint [START_REF] Royer | Elastic Waves in Solids: Free and Guided Propagation[END_REF] 

σ 13 = c 55 ∂u 3 ∂x 1 + e 15 ∂φ ∂x 1 , σ 23 = c 44 ∂u 3 ∂x 2 + e 24 ∂φ ∂x 2 (1) 
D 1 = e 15 ∂u 3 ∂x 1 -ε 11 ∂φ ∂x 1 , D 2 = e 24 ∂u 3 ∂x 2 -ε 22 ∂φ ∂x 2 (2) 
where (c 44 , c 55 ), (e 24 , e 15 ) and (ε 11 , ε 22 ) are elastic, piezoelectric, and dielectric constants, respectively. Furthermore, the equation of motion and Gauss equation of piezoelectric materials without body force and free charge are

∂σ 31 ∂x 1 + ∂σ 32 ∂x 2 = ρ s ∂ 2 u 3 ∂t 2 , ∂D 1 ∂x 1 + ∂D 2 ∂x 2 = 0 (3)
where ρ s is the mass density. By substituting Eq. ( 1) and Eq. ( 2) into Eq.

(3), and using the macroscopic symmetry, the governing equations can be obtain by letting c 55 = c 44 , e 24 = e 15 , and ε 22 = ε 11 in Eq. ( 3), i.e.

c 44 ∇ 2 u 3 + e 24 ∇ 2 φ = ρ s ∂ 2 u 3 ∂t 2 (4) 
e 24 ∇ 2 u 3 -ε 11 ∇ 2 φ = 0 ( 5 
)
where

∇ 2 = ∂ 2 ∂x 2 1 + ∂ 2 ∂x 2 2
is the two dimensional Laplace operator. 

Viscoelastic fluid

The fluid occupying -h f < x 2 < 0 is assumed to be viscoelastic and nonconductive. To describe the viscoelasticity of the fluid, the Maxwell and Kelvin-Voigt models are employed (see Figure 2). The Maxwell model introduces the viscoelastic response of the fluid at high frequencies and that of Kelvin-Voigt at low frequencies. The Maxwell model consists of a spring and a damper connected in series, and for the Kelvin-Voigt model, the spring and the damper are connected in parallel. The damper represents energy losses and is characterized by the viscosity η, whereas the spring represents the energy storage and is characterized by the elastic shear modulus µ. These two quantities are related through the relaxation time δ = η/µ, which is the characteristic time for the transition between viscous and elastic behavior [START_REF] Joseph | Fluid dynamics of viscoelastic liquids[END_REF]. Thus, suppose the motion of the fluid is induced only by wave propagation in the piezoelectric material and also propagates in the form of a harmonic wave. In regard to this problem, the inertial term in the Navier-Stokes equation can be omitted. Moreover, the pressure gradient can also be ignored since only shear deformation occurs during wave propagation [START_REF] Guo | Propagation of Bleustein-Gulyaev wave in 6 mm piezoelectric materials loaded with viscous liquid[END_REF]. In other words, the total stress in fluid is equal to the shear stress. Therefore, the governing equation for the viscoelastic fluid is simplified to the following

ρ f ∂v 3 ∂t = ∂τ 13 ∂x 1 + ∂τ 23 ∂x 2 (6) 
where ρ f is the density, v 3 is the velocity and (τ 13 , τ 23 ) are the shear stress components. Thus, the constitutive equations which relate the shear stress tensor to velocity are

τ 13 + δ ∂τ 13 ∂t = η ∂v 3 ∂x 1 , τ 23 + δ ∂τ 23 ∂t = η ∂v 3 ∂x 2 (7) 
∂τ 13 ∂t = µ 2 ∂v 3 ∂x 1 + η ∂ 2 v 3 ∂t∂x 1 , ∂τ 23 ∂t = µ 2 
∂v 3 ∂x 2 + η ∂ 2 v 3 ∂t∂x 2 (8) 
The relation [START_REF] Tiersten | Wave Propagation in an Infinite Piezoelectric Plate[END_REF] is suggested by Maxwell for the characterization of viscous fluids with elastic properties, and the relation ( 8) is proposed by Kelvin-Voigt for the description of elastic solids with viscous properties. Moreover, Eqs. ( 6)-( 8) can be combined to give the following viscoelastic fluid equations

∇ 2 v 3 - ρ f η ∂v 3 ∂t + δ ∂ 2 v 3 ∂t 2 = 0 (9) 
∇ 2 v 3 + 2δ ∂ ∂t ∇ 2 v 3 - 2δρ f η ∂ 2 v 3 ∂t 2 = 0 (10)
Equation ( 9) describes the fluid motion according to the Maxwell behavior and Eq. [START_REF] Zhang | The Bleustein-Gulyaev wave for liquid sensing applications[END_REF] to that of Kelvin-Voigt behavior. The solution of these equations and those of Eqs. ( 1) and ( 2) are to be substituted in the relevant boundary conditions. 

Boundary conditions

The solution of the Bleustein-Gulyaev wave propagation must satisfy the boundary conditions on the piezoelectric substrate and fluid, and the continuity conditions along the interface between the piezoelectric substrate and the fluid. At the interface x 2 = 0, the mechanical conditions are continuity of velocity and stress components, i.e.

v 3 = ∂u 3 ∂t , τ 23 = σ 23 at x 2 = 0 ( 11 
)
The surface of the fluid is open boundary. This requires

τ 23 = 0 at x 2 = -h f (12) 
The surface of the substrate is traction free and electrically open. This requires

σ 23 = 0 , D 2 = 0 at x 2 = h s (13) 
Assume that the fluid is electrically insulated and its permittivity is much less than that of the piezoelectric substrate material. The electrical boundary conditions at the substrat-fluid interface can thus be classified into two cases (i) an electrically open circuit (no density of charges) :

D 2 (x 2 = 0) = 0.
(ii) an electrically short circuit (matching to an external electric field) : φ(x 2 = 0) = 0.

Solution of Bleustein-Gulyaev wave equations and dispersion relation

For this plane wave propagation problem in the x 1 -direction, with displacement in x 3 -direction only, the displacement component u 3 , electric potential φ and velocity component v 3 can be assumed to take the following form

u 3 = U (x 2 ) e j(kx 1 -ωt) , φ = Φ (x 2 ) e j(kx 1 -ωt) , v 3 = V (x 2 ) e j(kx 1 -ωt) (14)
where k is the wavenumber along the propagation direction, ω is the angular frequency, and U (x 2 ) , Φ (x 2 ) and V (x 2 ) are the unknown functions of x 2 . Bleustein-Gulyaev wave propagating in the piezoelectric substrate undergoes attenuation due to viscoelastic fluid, hence, the wavenumber becomes complex k = k r + jk i , its real part k r describes the Bleustein-Gulyaev wave velocity, and its imaginary part k i , is the Bleustein-Gulyaev wave attenuation induced by the viscoelastic fluid. After substitution of the expression (14) into Eqs. ( 4), ( 5), ( 9) and ( 10), the x 2 dependence can be expressed as

U (x 2 ) = A s e -βsx 2 + B s e βsx 2 Φ (x 2 ) = e 24 ε 11 A s e -βsx 2 + B s e βsx 2 + C s e -kx 2 + D s e kx 2 V (x 2 ) = A f e -β f x 2 + B f e β f x 2 (15) 
where A s , B s , C s , D s , A f and B f are arbitrary amplitudes and the wavenumbers β s and β f are given in the following form

β 2 s = k 2 - ω 2 c 2 t , β 2 f = k 2 - jωρ f η *
Here, on the one hand we have defined the piezoelectrically stiffened elastic speed c t = c44 /ρ s , the piezoelectrically stiffened shear elastic coefficient c44 = c 44 (1 + κ 2 ) in the case of an electrically open circuit, and the electromechanical coupling factor κ = e 24 / √ c 44 ε 11 . Note that in the case of an electrically short circuit the piezoelectrically stiffened shear elastic coefficient thakes the following form c44 = c 44 (1 + κ 2 / (1 + κ 2 )). On the other hand, the complex dynamic viscosity η * present in the wavenumber β f can be defined according to the used viscoelastic fluid behavior as

η * =      η 1 -jωδ Maxwell model η - η 2jωδ Kelvin-Voigt model (16) 
The shear stress component and electric displacement that will be used in boundary conditions are given by

D 2 = kε 11 C s e -kx 2 -D s e kx 2 e j(kx 1 -ωt) σ 23 = β s c44 B s e βsx 2 -A s e -βsx 2 -ke 24 C s e -kx 2 -D s e kx 2 e j(kx 1 -ωt) τ 23 = β f η * B f e β f x 2 -A f e -β f x 2 e j(kx 1 -ωt) (17) 
Substitution of the Eqs. ( 15) and ( 17) into the boundary and continuity conditions ( 11)-( 13) yields a system of six linear algebraic equations in six undetermined amplitudes. For nontrivial solutions of the undetermined amplitudes to exist, the determinant of this system has to equal zero, which leads to the following dispersion relation of the Bleustein-Gulyaev waves in the case of an electrically short circuit :

c44 β s tanh (β s h s ) -jωη * β f tanh (β f h f ) - e 2 24 ε 11 k tanh (kh s ) = 0 (18)
and in the case of an electrically open circuit :

c44 β s tanh (β s h s ) -jωη * β f tanh (β f h f ) = 0 ( 19 
)
Since these relations contains k, ω, as well as all material and geometrical parameters of the viscoelastic fluid and piezoelectric substrate, Eqs. ( 18) and ( 19) represent the explicit complex dispersion relation of Bleustein-Gulyaev waves propagating in a piezoelectric substrate loaded with a viscoelastic fluid. Eqs. ( 18) and ( 19) were solved using Mathematica software. Once the wavenumber is obtained, the phase velocity is calculated by v p = ω/k r . While the imaginary part of wavenumber k i represents the attenuation per unit length in the propagation direction. Furthermore, the critical term δω present in the complex dynamic viscosity η * depends both on δ and ω. The three following regimes may be highlighted in the case of :

• Maxwell fluid: (i) For δω 1 the oscillation time (= 1/ω) is greater than the relaxation time and, the liquid exhibits purely Newtonian behavior. (ii) For δω 1 the oscillation time is smaller than the relaxation time and, the liquid exhibits viscoelastic behavior. (iii) For δω = 1 the transition from Newtonian to Maxwell regime takes place.

• Kelvin-Voigt fluid: (i) For δω 1 the oscillation time is greater than the relaxation time and, the liquid exhibits viscoelastic behavior. (ii) For δω 1 the oscillation time is smaller than the relaxation time and, the liquid exhibits purely Newtonian behavior. (iii) For δω = 1 the transition from Newtonian to Kelvin-Voigt fluid regime takes place.

Some particular cases

For the special case when h s → ∞ (piezoelectric substrate half-space), we can separately degenerate Eqs. ( 18) and ( 19) into the following

c44 β s -jωη * β f tanh (β f h f ) - e 2 24 ε 11 k = 0 (20) c44 β s -jωη * β f tanh (β f h f ) = 0 (21) 
In the case of a Newtonian fluid (η * = η), Eqs. ( 20) and ( 21) are exactly the same as those obtained previously by Qian et al. [START_REF] Qian | Bleustein-Gulyaev waves in 6mm piezoelectric materials loaded with a viscous liquid layer of finite thickness[END_REF]. When h f → ∞ (fluid half-space), the Eqs. ( 20) and ( 21) become

c44 β s -jωηβ f - e 2 24 ε 11 k = 0 (22) c44 β s -jωηβ f = 0 (23)
which were previously obtained by Guo and Sun [START_REF] Guo | Propagation of Bleustein-Gulyaev wave in 6 mm piezoelectric materials loaded with viscous liquid[END_REF].

Numerical results and discussion

The material properties given in Table 1 for the PZT-5H piezoelectric ceramic substrate [START_REF] Qian | Bleustein-Gulyaev waves in 6mm piezoelectric materials loaded with a viscous liquid layer of finite thickness[END_REF][START_REF] Fang | Rotation-perturbed surface acoustic waves propagating in piezoelectric crystals[END_REF], and in Table 2 for viscoelastic fluid [START_REF] Mitsakakis | Parametric study of SH-SAW device response to various types of surface perturbations[END_REF] are considered. In this work, numerical calculation is performed in the glycerol concentrations range from 15.4% to 88.0%. In addition, the Bleustein-Gulyaev wave velocities in the PZT-5H piezoelectric ceramic substrate c t are obtained from the work of Bleustein [START_REF] Bleustein | A new surface wave in piezoelectric materials[END_REF].

The Bleustein-Gulyaev surface waves are defined in plates of an infinite thickness and therefore have only one fundamental mode (n = 1). The high order plate modes (n = 2, 3, 4, ...) occur in piezoelectric plates of finite thickness. Figure 3 shows the Bleustein-Gulyaev wave (n = 1) and higher order SH plate waves versus substrate thickness. It is seen that when the substrate is very thin, the first mode velocity tends to the substrate shear wave velocity for a short circuit (c sc = c t = 2039.445, see Table 1 increasing the layer thickness, the velocity of the higher order modes assymptotically reaches the first mode velocity. Thus, in this work, the attention is focused on the properties of the fundamental mode. In addition, the first mode phase velocity in the substrate was calculated in Table 3 in the case of a short and an open circuits for both Newtonian and viscoelastic fluids. The numerical calculations are performed for three Glycerol concentrations (15.4%, 52.2%, 88%) and two frequencies (100 MHz, 200 MHz). In each case, it is shown that the velocity varies little with glycerol concentration and with frequency and remains very close to the substrate shear wave velocity. Note that similar behavior was observed by [START_REF] Guo | Propagation of Bleustein-Gulyaev wave in 6 mm piezoelectric materials loaded with viscous liquid[END_REF][START_REF] Qian | Bleustein-Gulyaev waves in 6mm piezoelectric materials loaded with a viscous liquid layer of finite thickness[END_REF]. The water glycerol mixture behaves like a viscoelastic solid for high con- centration of glycerol. Therefore, the Kelvin-Voigt model is suitable for high viscosity. Otherwise, the Maxwell model can be used to calculate the atten-uation for low glycerol concentration.

Influence of the glycerol mass fraction

In this paragraph, we investigate how the phase velocity and attenuation vary with the glycerol mass fraction (i.e., shear viscosity) for a short and for an open circuits in both Newtonian and viscoelastic fluids. In Figures 4 and5, increasing the glycerol mass fraction, Newtonian and Kelvin-Voigt models predicted a monotonically decreasing relationship between the vibrations responses and the glycerol mass fraction. However, Maxwell model highlighted a non-monotonically behavior wich manifested the intrinsic viscoelastic properties of fluid. The elastic effects are significant for glycerol concentration greater than 52% (100 MHz) and 37% (200 MHz). For glycerol concentration values less than theses critical values, the elasticity can be neglected and the behavior is Newtonian. This is due to the time constant value less than 118 ps and 62 ps corresponding to δω less than 0.0741 and 0.0779 negligible compared to 1. Otherwise, as expected, the gap between the Newtonian and Kelvin-Voigt models decreases with increasing viscosity. Thus, the convergence of these two models is stronger in the case of an open circuit at high frequencies. In conclusion, the water glycerol mixture behaves like a viscoelastic solid for high concentration of glycerol. Therefore, the Kelvin-Voigt model is suitable for high viscosity. Otherwise, the Maxwell model can be used to calculate the attenuation for low glycerol concentration.

Substrate thickness effect

Figures 6 and7 illustrate the influence of substrate thickness on the attenuation for two glycerol mixtures and different frequencies values. These figures highlight that the attenuation decresases rapidly for low substrate thickness and then reaches a plateau region. The substrate thickness allowing access to the plateau region are equal to 0.02 mm (short circuit) and 0.03 mm (open circuit). Theses values are much lower than the typical thickness (10 mm) used in design of Bleustein-Gulyaev wave sensors [START_REF] Kielczynski | Effect of a viscous liquid 16 loading on Love wave propagation[END_REF][START_REF] Kielczynski | Measurement of the shear storage modulus and viscosity of liquids using the Bleustein-Gulyaev wave[END_REF]. Figures 6 and 7 also show that the attenuation incresases with frequency and glycerol mass fraction. Moreover, the attenuation values in the case of the short circuit are stronger than those in the open circuit case. Otherwise, the numerical results obtained with the Maxwell and Newtonian models converge for low frequencies (see Figure 6). The similar phenomenon appears on the Figure 7 for Kelvin-Voigt fluid but the difference between the two models is less significant. 

Fluid thickness effect

The wave attenuation with respect to the fluid thickness is shown in Figures 8 and9. It can be seen that the attenuation increases with fluid thickness, then reaches a maximum and keeps a constant value. The attenuation increases with frequency and glycerol concentration. Comparing these Figures, we can see that attenuation in the short ciruit condition is much larger than for open circuit. This is coherent with the fact that the metallization decreases the penetration depth in the substrate [START_REF] Qian | Bleustein-Gulyaev waves in 6mm piezoelectric materials loaded with a viscous liquid layer of finite thickness[END_REF]. Hence, in short circuit condition the wave energy is confined in the vicinity of the surface. Consequently, the velocity and attenuation are very sensitive to fluid loading. Otherwise, it is highlighted that the results obtained with the Maxwell and Newtonian models converge for low frequencies. The same phenomenon (far 

Frequency effect

The frequency effect on the attenuation is depicted in Figures 10 and 11 a negligible difference between Kelvin-Voigt and Newtonian viscosities for high glycerol concentration and high frequency. 

Conclusion

Propagation of Bleustein-Gulyaev waves in a finite-thickness piezoelectric ceramic substrate loaded with a viscoelastic fluid is investigated using a new original approach based on the exact theory. The Maxwell and Kelvin-Voigt Those equations were used to study the influence of the substrate thickness, fluid thickness, glycerol concentration and frequency on the wave propagation. It was highlighted that the electrically short circuit is more sensitive than the open circuit to surrounding disturbance. This is due to the confinement of the wave in the vicinity of the surface. It is also shown that the Maxwell and Newtonian curves converge for low frequency or low glycerol concentration. Furthermore, the gap between the Kelvin-Voigt and Newton curves decreases when frequency or glycerol concentration increases. Finally the new dispersion equations proposed in this work can be used to develop and design Bleustein-Gulyaev sensors waves loaded with a viscoelastic fluid.
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 1 Figure 1: A finite-thickness piezoelectric substrate covered with a finite-thickness layer of viscoelastic fluid.
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 2 Figure 2: Schematic of (a) Newtonian (b) Kelvin-Voigt and (c) Maxwell models.

Figure 3 :

 3 Figure 3: Phase velocity versus the piezoelectric substrate thickness in the case of "short" circuit and Maxwell model with χ = 37.3 %, h f = 0.05 mm and f = 200 MHz.
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 4 Figure 4: First mode velocity and attenuation versus the glycerol mass fraction in the case of "short" circuit with h s = 0.1 mm and h f = 0.05 mm.
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 56 Figure 5: First mode attenuation versus the glycerol mass fraction in the case of "open" circuit with h s = 0.1 mm and h f = 0.05 mm.
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 789 Figure 7: First mode attenuation versus piezoelectric substrate thickness for a glycerol mass fraction of χ = 88.0% with h f = 0.05 mm. Kelvin-Voigt fluid (solid lines); Newtonian fluid (dashed lines).

Figure 10 :

 10 Figure 10: First mode attenuation versus frequency in the case of a short circuit with h s = 0.1 mm and h f = 0.05 mm.

Figure 11 :

 11 Figure 11: First mode attenuation versus frequency in the case of an open circuit with h s = 0.1 mm and h f = 0.05 mm.

Table 1 :

 1 ). When c 44 (GPa) ρ s (kg/m 3 ) e 24 (C/m 2 ) ε 11 (F/m) c t (m/s) Material parameters used for PZT-5H piezoelectric ceramic substrate.

	Short circuit	23	7500	17	227 • 10 -10 2039.445
	Open circuit	23	7500	17	227 • 10 -10 2182.697
		χ (%) η (mPa • s) ρ f (kg/m 3 ) δ (ps)
		15.4	1.4	1017	28
		25.6	1.7	1029	38
		32.9	2.7	1038	54
		37.3	3.1	1044	62
		42.3	3.8	1050	76
		46.7	4.6	1055	92
		52.2	5.9	1062	118
		62.1	10.2	1075	204
		72.0	21.9	1087	438
		75.9	33.2	1093	664
		80.0	49.5	1098	990
		84.0	81.8	1104	1636
		88.0	128.1	1109	2562

Table 2 :

 2 Material parameters used for water-glycerol mixtures. χ is the concentration of glycerol in water and ps defines the picosecond.

Table 3 :

 3 First mode phase velocity with h s = 0.1 mm and h f = 0.05 mm.