Supporting Information:

Coordination and thermodynamic properties of aqueous protactinium(V) by first-principle

calculations

Hanna Oher, ${ }^{\dagger, \ddagger}$ Jeremy Delafoulhouze, ${ }^{〔}$ Eric Renault, ${ }^{\mathbb{\$}}$ Valérie Vallet, ${ }^{\S}$ and Rémi Maurice ${ }^{*, \uparrow, \dagger}$
\dagger SUBATECH, UMR CNRS 6457, IN2P3/IMT Atlantique/Université de Nantes, 4 rue Alfred Kastler, BP 20722, 44307 Nantes Cedex 3, France
\ddagger Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, 35000 Rennes, France
【Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
§Univ. Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers, Atomes et Molécules, F-59000 Lille, France
E-mail: remi.maurice@univ-rennes.fr

Preparatory study on molecular geometries

Not many theoretical studies have been dedicated to protactinium(V) complexes. Therefore, we have performed a preparatory study on molecular geometries, with special emphasis on the $\left[\mathrm{PaO}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$ complex, for which both an EXAFS structure and a previously optimized B3LYP one were reported. ${ }^{\text {S1 }}$ We focus on key bond distances. In particular, we have tested:

1. Three electronic structure methods: MP2, ${ }^{\mathrm{S} 2} \mathrm{DFT} / \mathrm{B} 3 \mathrm{LYP}{ }^{\mathrm{S} 3}$ and DFT/PBE0; ${ }^{\mathrm{S4}, \mathrm{~S} 5}$
2. Two schemes for introducing the scalar relativistic effects, that is via the use of the all-electron Douglas-Kroll-Hess Hamiltonian ${ }^{\text {S6-S8 }}$ or via the use of a scalar relativistic energy-consistent pseudopotential, namely ECP60MWB; ${ }^{\text {s9 }}$
3. Three basis sets, one all-electron one (SARC-DKH2 ${ }^{\mathrm{S} 10}$ for Pa and def2-TZVP ${ }^{\mathrm{S} 11}$ for the other atoms) and two that are compatible with the ECP60MWB pseudopotential (with a segmented basis set ${ }^{\mathrm{S} 9}$ for Pa and the def2-TZVP ${ }^{\mathrm{S} 11}$ or aug-cc-VTZ ${ }^{\mathrm{S} 12}$ ones for the other atoms);
4. Three different quantum chemistry codes, namely Gaussian, ${ }^{\text {S13 }}$ ORCA $4.2 .1^{\text {S14 }}$ and OpenMolcas. ${ }^{\text {S15 }}$

Not all the combinations have been tested, since a more limited number of cases was sufficient to reach the key conclusions that we needed to further proceed with the computations of ligand-exchange reaction constants. Results are presented in Tables S1 and S2.

The main objective of Table S1 was to compare results of all-electron calculations (columns 4 and 5) and of pseudopotential-based ones (columns 2 and 3). Three codes were used to perform these tests, because specific implementations that are not available in all the codes were required. We were first puzzled by the ORCA/B3LYP all-electron result, largely differing from the Gaussian/B3LYP one for which a pseudopotential was used. We have thus performed additional calculations with OpenMOLCAS. First, we have repeated the Gaussian/B3LYP calculation with the same generic setup (ECP60MWB/def2-TZVP), obtaining

Table S1: Comparison of codes and of all-electron vs. pseudopotential-based calculations for determining the structure of the $\left[\mathrm{PaO}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$ complex in the gas phase (all the distances are in \AA).

	Gauss./B3LYP ECP60MWB def2-TZVP	OpenM./B3LYP ECP60MWB def2-TZVP	ORCA/B3LYP SARC-DKH2 def2-TZVP	OpenM./B3LYP SARC-DKH2 def2-TZVP
$\mathrm{Pa}-\mathrm{O}_{\text {oxo }}$	1.862	1.862	1.792	1.871
av. $\mathrm{Pa}-\mathrm{O}_{\text {ligand }}$	2.386	2.386	2.354	2.390
av. $\mathrm{Pa}-\mathrm{C}$	3.291	3.291	3.253	3.295
av. $\mathrm{Pa}-\mathrm{O}_{\text {ligand }}{ }^{\prime}$	4.477	4.447	4.440	4.481

the exact same result. Thus, both the Gaussian and OpenMOLCAS implementations for pseudopotential calculations agree.

Then, we have repeated the all-electron SARC-DKH2/def2-TZVP calculations, finding a very different outcome than what was found with ORCA. After noticing the close matching between the all-electron OpenMOLCAS result and both the pseudopotential-based ones, we have looked for potential sources of errors in the ORCA/B3LYP calculation. It appeared that an extra simplification, in particular a one-center approximation, was present in the ORCA implementation for geometry optimization with the DKH2 Hamiltonian. Consequently, the ORCA/B3LYP result can be discarded and we conclude that the molecular geometries can be safely computed with both the ECP60MWB pseudopotential or with all-electron basis sets. For the sake of efficiency, we have thus chosen to follow the pseudopotential approach.

Table S2: Comparison of the B3LYP, PBE0 and MP2 optimized structures of the $\left[\mathrm{PaO}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$ complex in the gas phase (all distances in \AA). All the calculations have been performed with Gaussian and made use of the ECP60MWB pseudopotential.

	EXAFS ${ }^{\text {S1 }}$	$\begin{aligned} & \text { B3LYP }^{\text {S1 }} \\ & 6-31+G^{*} \end{aligned}$	$\begin{gathered} \text { B3LYP PBE0 MP2 } \\ \text { def2-TZVP } \end{gathered}$			B3LYP PBE0 MP2 aug-cc-pVTZ		
$\mathrm{Pa}-\mathrm{O}_{\text {oxo }}$	75	1.8	1.86	1.843	1.855	1.863	1.845	1.862
av. $\mathrm{Pa}-\mathrm{O}_{\text {ligand }}$	2.38	2.39	2.386	2.364	2.353	2.387	2.365	2.347
av. $\mathrm{Pa}-\mathrm{C}$	3.28	3.30	3.291	3.265	3.247	3.293	3.267	3.244
av. $\mathrm{Pa}-\mathrm{O}_{\text {ligand }}{ }^{\prime}$	4.47	4.50	4.477	4.447	4.439	4.480	4.451	4.435

In Table S2, we have reported the previous EXAFS and B3LYP results, ${ }^{\text {S1 }}$ together with
new calculations with more advanced basis sets, namely the def2-TZVP and aug-cc-pVTZ ones. A few points deserve to be commented:

1. When all the B3LYP results are compared, two main behaviours are found: with the $6-31+G^{*}$ basis set, all the bond distances of interest seem overestimated, while a more consistent behaviour is observed with both the def2-TZVP and aug-cc-pVTZ basis sets, which are thus recommended;
2. For the three tested methods, the results obtained with either the def2-TZVP or aug-cc-pVTZ basis set are of equal quality; the def2-TZVP basis set, which is smaller, is thus preferable for efficiency purposes;
3. The MP2, DFT/PBE0 and DFT/B3LYP bond distances are very similar, all in good accord with the EXAFS structure, despite a remaining discrepancy on the $\mathrm{Pa}-\mathrm{O}_{\text {oxo }}$ bond;
4. The DFT/PBE0 method gives the $\mathrm{Pa}-\mathrm{O}_{\text {oxo }}$ bond distance in the closest agreement with experiment.

All in all, we have chosen to use the DFT/PBE0 method, the small-core ECP60MWB pseudopotential for Pa , and the def2-TZVP basis set for all the light atoms.

Supplemental figure

Figure S1: Representations of the $\mathrm{GP}(\mathrm{DFT} / \mathrm{PBE} 0)$ structures of the $\mathrm{Pa}(\mathrm{V})$ complexes, obtained with unsaturated first-coordination spheres (corresponding to the structures of the bare complexes used in the "GP" and "PCM" columns of Table 2). Color code: dark blue (Pa), yellow (S), red (O) and light blue (C).

References

(S1) Mendes, M.; Hamadi, S.; Le Naour, C.; Roques, J.; Jeanson, A.; Den Auwer, C.; Moisy, P.; Topin, S.; Aupiais, J.; Hennig, C., et al. Thermodynamical and structural study of protactinium(V) oxalate complexes in solution. Inorg. Chem. 2010, 49, 99629971, DOI: 10.1021/ic101189w.
(S2) Møller, C.; Plesset, M. S. Note on an approximation treatment for many-electron systems. Phys. Rev. 1934, 46, 618-622, DOI: 10.1103/PhysRev.46.618.
(S3) Becke, A. D. A new inhomogeneity parameter in density-functional theory. J. Chem. Phys. 1998, 109, 2092-2098, DOI: /10.1063/1.476722.
(S4) Perdew, J. P.; Ernzerhof, M.; Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 1996, 105, 9982-9985, DOI: 10.1063/1.472933.
(S5) Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158-6170, DOI: 10.1063/1.478522.
(S6) Douglas, M.; Kroll, N. M. Quantum electrodynamical corrections to the fine structure of helium. Ann. Phys. 1974, 82, 89-155, DOI: 10.1016/0003-4916(74) 90333-9.
(S7) Hess, B. A. Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. Phys. Rev. A 1986, 33, 3742-3748, DOI: 10.1103/PhysRevA.33.3742.
(S8) Jansen, G.; Hess, B. A. Revision of the Douglas-Kroll transformation. Phys. Rev. A 1989, 39, 6016-6017, DOI: 10.1103/PhysRevA.39.6016.
(S9) Cao, X.; Dolg, M. Segmented contraction scheme for small-core actinide pseudopotential basis sets. J. Mol. Struct. THEOCHEM 2004, 673, 203-209, DOI: 10.1016/j.theochem. 2003.12.015.
(S10) Pantazis, D. A.; Neese, F. All-electron scalar relativistic basis sets for the actinides. J. Chem. Theory Comput. 2011, 7, 677-684, DOI: 10.1021/ct100736b.
(S11) Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297-3305, DOI: 10.1039/B508541A.
(S12) Kendall, R. A.; Dunning, T. H.; Harrison, R. J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992, 96, 6796-6806, DOI: 10.1063/1.462569.
(S13) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; WilliamsYoung, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 Revision B.01. 2016; Gaussian Inc. Wallingford CT.
(S14) Neese, F. Software update: The ORCA program system-Version 4.0. WIREs Comput. Mol. Sci. 2017, 8, e1327, DOI: 10.1002/wcms. 1327.
(S15) Aquilante, F.; Autschbach, J.; Baiardi, A.; Battaglia, S.; Borin, V. A.; Chibotaru, L. F.; Conti, I.; De Vico, L.; Delcey, M.; Fdez. Galván, I.; Ferré, N.; Freitag, L.; Garavelli, M.; Gong, X.; Knecht, S.; Larsson, E. D.; Lindh, R.; Lundberg, M.; Malmqvist, P. Å.; Nenov, A.; Norell, J.; Odelius, M.; Olivucci, M.; Pedersen, T. B.; Pedraza-González, L.; Phung, Q. M.; Pierloot, K.; Reiher, M.; Schapiro, I.; Segarra-Martí, J.; Segatta, F.; Seijo, L.; Sen, S.; Sergentu, D.-C.; Stein, C. J.; Ungur, L.; Vacher, M.; Valentini, A.; Veryazov, V. Modern quantum chemistry with [Open]Molcas. J. Chem. Phys. 2020, 152, 214117, DOI: 10.1063/5.0004835.

