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Abstract

Here we describe the procedures and experimental results of the paper Towards a ”Methodology for
the Characterization of IoT Data Sets of the Smart Building Sector.” We also list an extended version
of the ”Related works” section and bibliographic references helpful in context. In short, we provide
more technical material, motivations, and context elements here than in the paper. The paper aims to
concentrate on the approach’s results and findings.

1. Introduction and problem description

Authors in (11 ) introduce the vision of autonomic
computing—computing systems that can manage
themselves given high-level objectives from admin-
istrators. As noted in (12 ), the term autonomic
computing is symbolic of a vast and somewhat tan-
gled hierarchy of natural self-governing systems.
Many of which consist of myriad interacting, self-
governing components that comprise large numbers
of interacting, autonomous, self-governing compo-
nents at the next level down. We propose, in this
paper, to consider a smart building (its digital man-
ager) as an autonomic system because the concept
corresponds to what the building manager wants.
For instance, he does not plan to allocate people
for manual or semi-automatic tasks in the building
to regulate the temperature of the rooms.

From an architectural point of view, see Fig-
ure 1, an autonomic element will typically consist
of one or more managed elements coupled with a
single autonomic manager that controls and rep-
resents them. By monitoring the managed ele-
ment and its external environment and construct-
ing and executing plans based on an analysis of
this information, the autonomic manager will re-
lieve humans of the responsibility of directly man-
aging the managed element. This view is the so-
called IBM MAPE-K model. It corresponds to the
idea that we build knowledge over the managed
element through monitoring, analyzing, planning,
and executing sequential steps.

The work of Rêve de Scènes Urbaines (RSU)
(7 ), Plaine Commune’s industrial demonstrator lo-
cated in the north of Paris, France, focuses on
building a sustainable, inclusive, but also adapt-
able city in an existing urban fabric. Regarding the
ecosystem of smart buildings, among the 47 ideas
developed by the demonstrator and already pre-
selected by the RSU community, we can cite the

Figure 1: The MAPE-K model

project of allowing the reversibility of buildings -
first Olympic housing, then family accommodation
whose size can vary over the years and, perhaps in
the future, offices-, imagining new urban forms -
such as barges on the Seine river-, fighting against
heat islands, developing a concrete capable of ac-
commodating plant species, building a 3D concrete
manufacturing plant, etc.

The scenario we investigate in this article is as
follows. A particular actor, private or public, has
the technical responsibility of managing a smart
building. Moreover, he has to respect a corporate
social responsibility policy, especially concerning
the issues of digital sobriety. This actor uses a
BIM-like tool for modeling. If the building is al-
ready operating, it is eventually controlled by a
smart building manager.

A BIM designates the tools for modeling the
construction information implemented by applica-
tions that allow modeling the data produced in the
building, a structure, or an engineering structure,
i.e., construction of great importance and size. It,
therefore, has information about the locations and
types of sensors deployed in the building, for ex-
ample, temperature, humidity, and CO2 sensors.
The data produced by the sensors can be sent to a
cloud or kept at the edge of the network.

In this context and to go towards more digital



sobriety, we provide the building manager with a
methodology to launch analysis on the sensor data
and then build a smart building model. Finally,
based on the previous automatic studies, we sketch
some plans to reduce data emissions from the sen-
sors while preserving the model. This part of the
work is not deduced automatically in this paper
for simplicity. The reader should notice that we
are working on the analysis plan of the MAPE-K

model (see symbol 2 on Figure 1) and also on the
interfaces such as cleaning and planning (see sym-

bol 1 on Figure 1) and predicting (see symbol

3 on Figure 1). We aim at generating knowledge

for the element (see symbol 4 on Figure 1). But
again, the core of the paper is on the analysis plan.

Since a fully automatically managed building,
in the sense of the MAPE-K model, is currently out
of reach, the aim is to provide a decision aid, en-
abling the skilled expert to make informed choices
about data production.

Monitoring buildings is crucial for many as-
pects, including mastering heating costs. The U.K.’s
housing stock is particularly leaky. After five hours,
the temperatures in British houses drop about 3◦

Celsius, the highest rate of countries in western
and northern Europe surveyed by thermostat com-
pany tado GmbH. In Germany, the drop was only
1◦ over the same time. Check the footnote1 for a
panorama of heating leaks in Europe. Moreover,
we know that over 17% of all carbon pollution in
the U.K. comes from buildings. The (green) heat-
ing resource would be better utilized to charge an
electric bike or a shared scooter than to escape
from a window.

The Internet of Things (IoT) domain has been
one of the fastest-growing areas in the computer
industry for the last few years (13 ). The global
sensor market is large and growing fast. By one
estimate, it is projected to reach U.S. $346 billion
in sales by 2028, up from $167 billion in 2019 (6 ).
Consequently, IoT applications are becoming the
dominant workload for many end-to-end systems
such as clouds, fog, or edge computing systems
(9 ). Knowing the nature of expected workloads
may help build efficient systems to store and ana-
lyze data and guide exploration of the data. Thus,
it is fundamental to characterize IoT workloads,
but to the best of our knowledge, only a few stud-
ies are related to that topic. Moreover, if we aim
to also learn about the data sets, we would obtain
significant insights for mastering a sober Internet.
For instance, a good motivation in this context of
sober computing is the reduction of communica-

1https://www.tado.com/gb-en/press/uk-homes-losing-
heat-up-to-three-times-faster-than-european-neighbours

tions from sensors if the sensors have learned that
data is or is not helpful for the intended applica-
tion. Throughout an empirical study, we provide
recommendations of this sort and are motivated by
an upstream analysis of our analyzed data sets.

Among the many supplementary questions in
analyzing, characterizing, and understanding the
data sets, we would like to mention the following
addressed in the paper. Are there any anomalies in
the data sets? Are they to be taken into account
for the analyses? How do we combine anomalies
detected by several algorithms? Are the two stud-
ied data sets correlated in some way? For instance,
can Spatio-temporal data identify aggregated data,
i.e., heterogeneous data? Can the data quickly be
clustered, and how many clusters can be identified?

1.1. General approach

The system we consider in this work has IoT de-
vices that send data at irregular intervals, inde-
pendent of each other. The nature of data can be
binary data, strings, timestamps, reals, or integers,
and some data sets present metadata.

The methodology we developed in this paper,
and the organization of the paper, follow the MAPE-
K model for the production of knowledge (see sym-

bol 4 in Figure 1). Thus, we first aggregate,

clean, and filter the data (see symbol 1 in Figure

1). Then we put in place analyses (see symbol 2
in Figure 1). At last, we generate semi-automatic

plans (see symbol 3 in Figure 1). All of this con-
stitutes the methodology we promote in this paper.

Our methodology for analyzing data consisted
of the following steps:

1. Eventually, the data are aggregated (see the
discussion below) from all the files that make
up the data set;

2. The possibly aggregated data set is cleaned
by removing any invalid and duplicate data;

3. The data are filtered based on information
such as days, hours, month and so on;

4. The filtered data is characterized by comput-
ing event counts and statistics. Data is com-
bined through machine learning algorithms
such as anomaly detection and classification
(clustering). This step aims to provide multi-
ple views of the data to infer expertise about
the building or knowledge about the collect-
ing system. This double aspect concerning
both the building and the information gath-
ering device is the particularity of our work
to build a piece of business knowledge and
skills;
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Let us say a word on the fusion of data. We
could merge our sources, which can lead to incon-
sistency problems. For example, is it possible to
combine Co2 data taken outdoors and Co2 data
taken indoors? To avoid explaining an axiomati-
zation of both the modeling rules of the inconsis-
tencies, how to detect inconsistencies, and finally,
how to clean up inconsistencies, we propose fusion
data in a ”natural” way. In the end, the number
of attributes of the data tables is not so high.

We will therefore be able to analyze the data
sets separately, then consider merging these same
data sets into a new data set. With this new
augmented data set, the general idea is to check
whether we are or not in the presence of new facts.

In the case of time series, such as energy con-
sumption data, completeness, outliers, timeliness,
and accuracy are among the most critical dimen-
sions of the problem. Completeness measures whether
some data are missing, accuracy measures whether
the samples are correct and reliable, and timeliness
measures whether the information is up to date. At
the same time, outliers are inconsistent data with
the rest of the series, e.g., a statistical outlier.

After cleaning, this paper mainly focuses on the
outliers detection and classification problems. In-
deed, we observed some messages in the raw data
coming from the server used to query the data,
hence the cleaning action. Moreover, the complete-
ness analysis is complex because some data may be
shifted in time and not missing due to the drift of
the sensors’ clock.

2. Data sets, Method and Equipment

2.1. IoT data sets

All the two data sets we deal with in the paper
come from a building located in France. These two
data sets have been built, by others, by concate-
nation of data with the granularity of 1 minute,
using instant values for DS-2 and aggregated data
for DS-1. We do not master this part of the pro-
duction. For instance, we have no idea about the
principle used for the aggregation. At the moment,
the two data sets are not publicly available for pri-
vacy concerns, but anyone can use a public API2

to extract data and build his own data set. How-
ever, our codes for analysis are made publicly3, and
everyone can run them on his data set.

The building has more than 22,000 square me-
ters of floor space divided over six floors and the
roof. It is a massively monitored and controlled

2http://mhi-srv.g2elab.grenoble-inp.fr/API/
3https://gricad-gitlab.univ-grenoble-

alpes.fr/batpred/compsac2022

building with more than 1,500 sensors, including
about 330 electrical energy meters. The measured
data is used to monitor internal conditions and
to track consumption. We use, for our experi-
ments, a first sub-data set that corresponds to the
monitoring of the building from Thursday, Dec
16, 2021, to Friday, Jan 7, 2022. This first sub-
data set (greener-dashboard-20220107.csv) has
74 attributes (without the timestamp), ranging from
the current electricity consumption to the wind di-
rection.

For our analysis, we keep the following attributes
because they almost all correspond to metrics of
”fluid.” Indeed, we assume that our study makes
a focus on the fluids:

• CO2_max: maximal instantaneous value ob-
served, overall rooms, for the CO2;

• CO2_min: minimal instantaneous value ob-
served, overall rooms, for the CO2;

• CO2_mean: mean instantaneous value observed,
overall rooms, for the CO2;

• electricity_daily_current: current daily
electricity consumption;

• electricity_weekly_current: current weekly
electricity consumption;

• weather_tempCurrent: current outside tem-
perature;

• weather_tempMin: minimal temperature over
one day;

• water_daily_current: the amount of water
consumed in the last 24 hours;

• water_weekly_current: the amount of wa-
ter consumed in the last week;

• wind_peak: maximum wind speed (wind chill);

• wind_speed: current wind speed;

The second sub-data set, stored in CSV format
into the greener-comfort-20220107.csv file, con-
tains CO2 and temperatures measures as well as
the room’s name where sensors are located and
the timestamps for each measurement. The data
set has 351 sensors for the temperature and 76 sen-
sors for the CO2. All CO2 sensors are located in
rooms with a temperature sensor. We found two
CO2 sensors with outliers. The sensors have been
canceled for the graphics. The date range for the
data is also from Dec 16, 2021, to Jan 7, 2022.
Each data set has approximately 38k lines. We
can assert the data are spatio-temporal.
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For our cross-analysis, we keep the following
attributes because they all correspond to metrics
of ” weather.” Indeed, we assume the weather has
a lot of impact on inside comfort by these features:

• sun_direct: direct light received by the weather
station above the building;

• sun_diffuse: diffuse light received by the
building ;

• sun_global: total luminosity received by the
building ;

• weather_tempCurrent: current outside tem-
perature;

• weather_tempMin: minimal temperature reached
during the last 24 hours;

• weather_tempMax: maximal temperature reached
during the last 24 hours;

• wind_peak: maximum wind speed (wind chill);

• wind_speed: current wind speed;

• wind_direction: current wind direction, fol-
lowing a 360 degrees circle starting north and
increasing clockwise ;

2.2. Naming conventions

The data sets naming conventions are:

1. Data set 1, namely DS-1, stands for the
greener-dashboard-20220107.csv file;

2. Data set 2, namely DS-2, stands for the
greener-comfort-20220107.csv file;

2.3. Outline

The methodology we follow in this section for the
analysis step is as follows. First, notice that we
conducted different analyses to illustrate the di-
rections of our work, and for the sake of concise-
ness, we did anomaly detection and classification.
Second, we successfully applied a series of treat-
ments on the CO2 attributes present in the two
data sets to infer knowledge regarding the room
with the most and the minor problem with CO2
issues. Third, we examine the hierarchy empiri-
cally, given a certain amount of clusters.

The main goal of the anomaly detection anal-
ysis is to identify the observations that do not
adhere to general patterns considered normal be-
havior. In the literature, several Machine Learn-
ing (ML) algorithms have been proposed to detect
anomalies, each one returning anomalies, poten-
tially different, according to the particular mech-
anism used in the search process. Hence, it is
difficult to say that a given algorithm is better,

in general than another one in finding anomalies
for particular data sets. For the anomaly detec-
tion algorithms, the portfolio of algorithms that
we have used in the experiments is composed of
three ”orthogonal” algorithms regarding the tech-
niques for the detection, and widely used in the
literature, namely iForest (Isolation forest) (15 ),
LOF (Local Outlier Factor) (5 ), and the DBSCAN
(Density-Based Spatial Clustering of Applications
with Noise) (8 ) algorithms.

Cluster analysis is a task that concerns itself
with the creation of groups of objects, where each
group is called a cluster. Ideally, all members of
the same cluster are similar to each other. Equiv-
alently, they are as dissimilar as possible from ob-
jects in another cluster. There is no single defi-
nition of a cluster, and the characteristics of the
objects to be clustered vary. Thus, there are sev-
eral algorithms to perform clustering. Each one
defines specific ways of expressing what a cluster
is, how to measure similarities, find groups effi-
ciently, etc. To provide an overview of the behav-
iors clustered, we perform hierarchical clustering
over the time series of DS-1. According to an ag-
glomerative policy, clusters will grow and fuse un-
til one cluster contains all sensors. To processes
time series, the algorithm will compute a point-
wise metric over the whole length of the dataset,
timestamp per timestamp. It is equivalent to com-
paring the shape of curves to cluster them. We
tried two metrics. ‘single’ allows comparison
based on the Euclidean distance between values
for each timestamp.‘ward’ uses the ward variance
minimization algorithm to focus on cluster den-
sity. The Ward method strongly refers to the idea
of similarity inside clusters and creates more sep-
arable clusters, so we chose it to expose different
behaviors in-room sensors.

We adopted the Support vector machines (SVMs)
algorithm (4 ) for the classification algorithm, a set
of supervised learning methods used for classifica-
tion, regression, and outliers detection. The ad-
vantages of support vector machines are that it is
effective in high dimensional spaces and still effec-
tive in cases where the number of dimensions is
greater than the number of samples. Moreover,
SVM uses a subset of training points in the de-
cision function (called support vectors), which is
also memory efficient. At last, different Kernel
functions can be specified for the decision func-
tion. Standard kernels are provided with well-
established tools (Scikit-learn, R. . . ), but it is also
possible to define custom kernels.

To summarize, since we have no apriori knowl-
edge about the data, the methodology we propose
to observe the IoT data concerns multiple anomaly
detection algorithms, one time series clustering al-
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gorithms, and multiple classification models. We
cover various views that characterize our data, and
each view corresponds to a particular point of view
on the data. We hope that this thorough approach
offers orthogonal views to analyze the data. The
methodology is divided into two parts. The first
part aims to get quick feedback on our data re-
garding anomalies and clusters. Eventually, we can
’clean’ or focus on specific data for the second step.
The second part is dedicated to learning about the
raw or specialized data issue from the first step
through classification.

2.4. Equipement and Sotware

Technically speaking, we implemented and tested
some parts of the analyses with R (RStudio-2021.09.2)
on Ubuntu 21.10 for Linux PC or Raspberry pi,
or MacOS 12.1 Monterey. In this case, the pack-
age dependencies are dbscan, DDoutlier, solitude,
cluster, clv for the machine learning algorithms,
Rtsne, tidyverse, and rio, RColorBrewer, and knitr
for the visualization. The complementary work is
with Python 3.8.8 with Panda and Scipy.

3. Results

We recall and develop here the links enlighten by
our study between data and the environment of
the building, inside and outside.

3.1. Results of DS-2 study

General conclusions from the initial observations
and analyses over DS-2 include the feasibility of be-
haviors clustering and inducted expectations. We
separately applied clustering algorithms to CO2
and temperature features to notice rooms with sim-
ilar behaviors. Figure 2 shows the dendrogram and
the numbers of clusters along the hierarchy for the
CO2 feature alone. The exact process is applied
to cluster temperature behaviors along with the
rooms of the building, granting the Figure 3. CO2
measures lead to cluster nearby rooms more of-
ten than temperature measures, in figures 2(a) and
3(a). Temperature distribution over the building
may vary more than CO2, which explains more
temperature sensors. The pairing we notice still
questions the use of 74 CO2 sensors and shows that
information may be deducted from one sensor in-
stead of two, allowing fewer sensors.

As mentioned before, we provide intelligence
for data with little expert knowledge of the build-
ing. Using weather features allows us to produce
new dendrograms to offer insight into the depen-
dencies of indoor comfort on the weather, pro-
viding Figures 4 and 5. We emphasize that the
weather has little or no impact on indoor CO2 for

our studied building. Weather metrics evolution
is not related to indoor CO2 change and behaves
very differently, as shown in Figure 6. The clus-
tering of CO2 sensors displays tree well separable
behaviors while the temperature sensors cluster-
ing displays Four clusters, one of which is subdi-
vided into 3. On-site metadata and further ob-
servations of the building could explain them. As
figures 4(b) and 5(b) suggest, small clusters aggre-
gate fast. They are all similar, so it would be hard
to find why they are grouped. Figure 4(b) shows
irregular plateaus that may hint at separable be-
haviors on smaller clusters when they are still 5,
13, 17, or even near 30 clusters left, that new meta-
data like occupancy or architecture elements may
explain. The smoothness of the curve on Figure
5(b) only suggests that explanations would be ex-
ponentially hard to define, as we need to combine
more accurate expert knowledge and metadata.

Indoor temperature clustering highlights build-
ing architecture and weather data connections to
indoor comfort. We notice an overrepresentation
of 4th and 5th grounds rooms behaviors in the
clusters shown in Figure 7 and a clear separation
of ground floor behaviors in Figure 8. Figure 9
highlights the impact of sunlight on some rooms
temperatures. From our knowledge, this part of
the building faces the South/South-Est directions,
which is relevant to high exposure to the Sun.

4. Related work

This section relates relevant studies for the charac-
terization of IoT data sets. We assume the reader
is familiar with all the referenced classical machine
learning algorithms used in this paper.

In (1 ) authors deal with a generic but straight-
forward way to model the workload of typical IoT
applications to obtain a practical and reproducible
method to emulate loads for data centers. The au-
thors combined a reference architecture and one
IoT benchmark. The IoT benchmark populated
the functional areas of the IoT reference architec-
ture with benchmark components to emulate their
typical computing and communication requirements
behavior. In short, the paper’s originality is in
using a category of IoT benchmark, which is nei-
ther empirical nor mathematical. Contrary to this
work, ours does not provide a realistic load gen-
erator, but we analyze real IoT traces. Our data
could serve as a new user story under the paper’s
framework.

In (21 ) authors described a methodology to
analyze IoT traces, described and analyzed three
publicly available IoT data sets, and presented a
capacity planning study based on the characteriza-
tion of IoT traces. Contrary to this work, ours does
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(a) CO2 clustering dendrogram

(b) Number of clusters along hierarchy

Figure 2: CO2 sensors clustering

(a) Temperature clustering dendrogram

(b) Number of clusters along hierarchy

Figure 3: Temperature sensors clustering
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(a) CO2 clustering dendrogram

(b) Number of clusters along hierarchy

Figure 4: CO2 sensors clustering with weather data

(a) Temperature clustering dendrogram

(b) Number of clusters along hierarchy

Figure 5: Temperature sensors clustering with weather data
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Figure 6: Zoom on weather features clusters

Figure 7: Zoom on clusters - with temperature

Figure 8: Zoom on clusters - with temperature

Figure 9: Zoom on direct and global sunlight features
in clustering - with temperature

not utilize the workload characterization to solve
a concrete problem. We only provide some guide-
lines for choosing appropriate application contexts
where our data could be used in the future.

In (14 ) authors performed an extensive study
of medical applications that could be executed on
the Internet of Medical Things (IoMT) from an
edge computing perspective. They performed a
workload characterization of potential IoMT ap-
plications and explored the micro-architecture im-
plications of these applications. They compared
the workloads’ characteristics to an existing em-
bedded systems benchmark suite to reveal their
differences and similarities. The critical challenge
of the paper is to understand the computational
capabilities and microprocessor architectures that
satisfy IoMT applications’ execution requirements
while adhering to the devices’ resource constraints.
As one preliminary step for this intellectual chal-
lenge, one first needs to understand the execution
characteristics of the applications that will poten-
tially execute on IoMT devices. Contrary to this
work, ours does not deal with applications produc-
ing data, and we only guess that individual sensors
make independent data that we collect for analysis.

In (20 ) authors focused on Distributed Stream
Processing Systems (DSPs) are hosted in Cloud
data centers. DSPs are vital for real-time data
processing and analytics in any IoT software archi-
tecture. In this context, the authors developed RI-
oTBench, a real-time IoT benchmark suite, along
with performance metrics, to evaluate DSPS for
streaming IoT applications. One key point of the
paper is that the applications are based on com-
mon IoT patterns for data pre-processing, statisti-
cal summarization, and predictive analytics. Then,
patterns are coupled with four stream workloads
sourced from IoT observations on smart cities. Fi-
nally, the authors validated the RIoTBench suite
for the widespread Apache Storm DSPS on the
Microsoft Azure public Cloud. Contrary to this,
our work questions the nature of data, and we do
not focus on the applications producing streaming
data.

In (19 ) authors focused on a detailed charac-
terization of the servIoTicy platform, state-of-the-
art infrastructure for hosting Internet of Things
(IoT) workloads in the Cloud. ServIoTicy pro-
vides multi-tenant data stream processing capa-
bilities, a REST API, data analytics, advanced
queries, and multi-protocol support in a combi-
nation of advanced data-centric technologies. In
short, the paper focused on the characterization of
a system for IoT, not on IoT data sources. This
paper is unaware of the nature of the data, con-
trary to our work. The system is supposed to serve
any sources. If people want a dedicated service to
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merge and analyze data, it should be integrated
into the data processing pipe, a dedicated compo-
nent of the whole architecture. Contrary to this
work, ours does not focus on a system but on clas-
sifying and analyzing IoT data sources to extract
knowledge.

Regarding the problem of data fusion, papers
(2 , 3 ) are seminal papers. Both of them proposed
a rigorous axiomatization of the data fusion pro-
cess. Contrary to these important works, we de-
cided not to investigate the axiomatization issues
because they are not the core of our concerns. We
prefer to do a fusion on our data sources in a ”nat-
ural” way, meaning that we do not automate the
fusion process since the number of sources is kept
low.

In (16 ) authors studied the electricity consump-
tion in the Greener data set, a data set related
to a tertiary building in Grenoble, France. Au-
thors pushed the idea that energy disaggregation
methods, i.e., the Non-Intrusive Load Monitoring
(NILM) methods (10 ), are powerful tools for feed-
back on energy consumption. We also use the
Greener data set but not the one related to the
electricity consumption. We focus on the global
quality attributes of the building and the CO2 met-
rics produced on multiple sensors located in vari-
ous rooms. We provide orthogonal and comple-
mentary views of the building. Authors in (16 )
only consider the data quality aspect of the evalu-
ated data set.

In (18 ) authors focused on using advanced ar-
tificial intelligence (AI) methods to optimize build-
ing energy usage while maintaining occupant ther-
mal comfort. One key point is the definition of
”comfort.” The authors reviewed some known def-
initions and noticed that the question is still con-
troversial. In our work, we do not go in the di-
rection of thermal comfort because some data that
come with the definition are unavailable.

In (17 ) authors noticed that Lack of spatiotem-
poral awareness could lead to excessive sensors or
non-optimal distribution of sensors across a build-
ing. We extend the optimal sensor placement prob-
lem to find the minimal sensor group that can ro-
bustly approximate the rest of the sensor values.
The solution uses a distributed learning step to
parallelize the predictive capability of candidate
groups generated by evolutionary computing tech-
niques. They experiment on 24 zones from a seven-
floor building in Thailand to establish a trade-off
between virtualization accuracy, energy footprint,
and installation cost. The work exploits the con-
cept of ”less is more” to bring down the capital and
recurring expense for a smart building solution.

In (18 ) authors focused on using advanced ar-
tificial intelligence (AI) methods to optimize build-

ing energy usage while maintaining occupant ther-
mal comfort. One key point is the definition of
”comfort.” The authors reviewed some known def-
initions and noticed that the question is still con-
troversial. In our work, we do not go in the di-
rection of thermal comfort because some data that
come with the definition are unavailable.

5. Conclusion

Experiments with massive deployment of smart sen-
sors are becoming increasingly numerous, not only
in research laboratories but also in cities. The
COVID pandemic, for example, pushed the de-
ployment of CO2 sensors in schools. Even if it is
regrettable, this is a fact that a sober deployment
and a reasonable a priori on the use of the data
produced and the objective to be reached have not
always been used to guide the deployments.

Our work proposes a series of tests to charac-
terize, before deployment, the data produced at
the building level. The issues that we feel are im-
portant to address are related to the nature of the
data, for example, the absence or presence of out-
liers and their management as they may impact the
clustering, and thus the nature of the data models
resulting from the analysis.

We propose in the article to build different views
of the data. This process is a step forward so that
the various stakeholders working on designing in-
telligent buildings can now rely on new business
knowledge. We have proposed different analyses
and observations on real data to illustrate the ap-
proach. We also discussed the conclusions we can
make from the observations. Some of them are gen-
eral, others less so, but all call us to question our-
selves more on what should be a deployment that
simultaneously considers data exploitation and ex-
ploration. Finally, based again on our actual data
and as an illustration of our concern, we have pro-
posed research issues to go further in the analyses,
and their crossings, for reasoned and sober deploy-
ments of sensors from the IoT.
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