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Abstract—The long-term objective of the paper aims to provide
decision aid support to a technical smart buildings manager
to potentially reduce the emission of data produced by sensors
inside a building and, more generally, to acquire knowledge on
the data produced in the facility. As the first step, the paper
proposes to characterize the smart-building ecosystem’s Internet-
of-things (IoT) data sets. The description and the construction
of learning models over data sets are crucial in engineering
studies to advance critical analysis and serve diverse researchers’
communities, such as architects or data scientists. We examine
two data sets deployed in one location in the Grenoble area in
France. We assume that the building is an autonomic computing
system. Thus, the underlying model we deal with is the well-
known MAPE-K methodology introduced by IBM. The paper
mainly addresses the analysis component and the adjacent
connector component of the MAPE-K model. The content of
this layer, and its organization, constitutes the methodological
point we put forward. Consequently, we automatically provide
a complete set of practices and methods to pass to the planning
component of the MAPE-K model. We also sketch a semi-
automatic way of reducing the number of measures done by
sensors. In the background of our study, we aim to reduce the
operational cost of making measures with a much more sober
approach than the current one. We also discuss in profound the
main findings of our work. Finally, we provide insights and open
questions for future outcomes based on our experience.

Index Terms—Smart Building data sets analyses, IoT data
sources characterization, Enabling technologies for the IoT,
Building Information Modelling.

I. INTRODUCTION

The definition of ”Smart Building” has evolved [1], mainly
to clarify what is meant by ”smart.” Historically, smart referred
to a building that had deployed sensors to react in real-time
to an event, for instance, lighting a hallway or controlling
the heating or the air conditioning systems when a presence
is detected. Then nowadays, the definition of smart building
switches to a building that addresses both intelligence and
sustainability issues by utilizing computer and intelligent
technologies to achieve the optimal combinations of overall
comfort level and energy consumption.

Authors in [2] introduce the vision of autonomic comput-
ing—computing systems that can manage themselves given
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Fig. 1. The MAPE-K model

high-level objectives from administrators. As noted in [3], the
term autonomic computing is symbolic of a vast and somewhat
tangled hierarchy of natural self-governing systems. Many of
which consist of myriad interacting, self-governing compo-
nents that comprise large numbers of interacting, autonomous,
self-governing components at the next level down. We propose,
in this paper, to consider a smart building (its digital manager)
as an autonomic system because the concept corresponds to
what the building manager wants. For instance, he does not
plan to allocate people for manual or semi-automatic tasks in
the building to regulate the temperature of the rooms.

From an architectural point of view, see Figure 1, an
autonomic element will typically consist of one or more
managed elements coupled with a single autonomic manager
that controls and represents them. By monitoring the managed
element and its external environment and constructing and
executing plans based on an analysis of this information, the
autonomic manager will relieve humans of the responsibility
of directly managing the managed element. This view is the
so-called IBM MAPE-K model. It corresponds to the idea that
we build knowledge over the managed element through mon-
itoring, analyzing, planning, and executing sequential steps.

The scenario we investigate in this article is as follows. A
particular actor, private or public, has the technical responsibil-
ity of managing a smart building. Moreover, he has to respect
a corporate social responsibility policy, especially concerning
the issues of digital sobriety. This actor uses a BIM-like
tool for modeling. If the building is already operating, it is
eventually controlled by a smart building manager.

A BIM (Building Information Modeling) designates the



tools for modeling the construction information implemented
by applications that allow modeling the data produced in
the building, a structure, or an engineering structure, i.e.,
construction of great importance and size. It, therefore, has
information about the locations and types of sensors deployed
in the building, for example, temperature, humidity, and CO2
sensors. The data produced by the sensors can be sent to a
cloud or kept at the edge of the network.

In this context and to go towards more digital sobriety, we
aim to provide the building manager with a methodology to
launch analysis on the sensor data and then build a smart
building model. This objective serves as the problem we tackle
in the paper. Finally, based on the previous automatic studies,
we sketch some plans to reduce data emissions from the
sensors while preserving the model. This part of the work
is not deduced automatically in this paper for simplicity. The
reader should notice that we are working on the analysis plan
of the MAPE-K model (see symbol 2 on Figure 1) and also
on the interfaces such as cleaning and planning (see symbol
1 on Figure 1) and predicting (see symbol 3 on Figure 1).

We aim at generating knowledge for the element (see symbol
4 on Figure 1). But again, the core of the paper is on the

analysis plan. Since a fully automatically managed building,
in the sense of the MAPE-K model, is currently out of reach,
the aim is to provide a decision aid, enabling the skilled expert
to make informed choices about data production.

The Internet of Things (IoT) domain has been one of the
fastest-growing areas in the computer industry for the last few
years. The global sensor market is large and growing fast. By
one estimate, it is projected to reach US $346 billion in sales
by 2028, up from $167 billion in 2019 [4] . Consequently, IoT
applications are becoming the dominant workload for many
end-to-end systems such as clouds, fog, or edge computing
systems.

The paper organization is as follows. In Section II, we
make some parallels between our work and related works in
the characterization of IoT data sets. Section III explains our
methodology to analyze and characterize our data sets. We
first explain the general principles, then give details about the
different attributes of our studied data sets that we consider.
We also explain the architecture of the IoT system producing
the data and some physical characteristics of the system. In
Section IV, we explore the data sets for analyzing purposes.
We draw charts and figures to ”summarize” the data sets. In
Section V, we specifically interpret the charts and numbers to
provide insights for future use regarding the data sets. Section
VI concludes the paper.

II. RELATED WORK

In [5] authors deal with a generic but straightforward way
to model the workload of typical IoT applications to obtain
a practical and reproducible method to emulate loads for
data centers. The authors combined a reference architecture
and one IoT benchmark. The IoT benchmark populated the
functional areas of the IoT reference architecture with bench-
mark components to emulate their typical behavior in terms

of computing and communication requirements. In short, the
paper’s originality is in using a category of IoT benchmark,
which is neither empirical nor mathematical. Contrary to this
work, ours does not provide a realistic load generator, but we
analyze real IoT traces. Our data could serve as a new user
story under the paper’s framework.

In [6] authors studied the electricity consumption in the
Greener data set, which is a data set related to a tertiary
building located in Grenoble, France. Authors pushed the idea
that energy disaggregation methods, i.e., the Non-Intrusive
Load Monitoring (NILM) methods [7], are powerful tools to
get feedback on energy consumption. We also use the Greener
data set but not the one related to the electricity consumption.
We focus on the global quality attributes of the building
and the CO2 metrics produced on multiple sensors located
in various rooms. We provide orthogonal and complementary
views of the building. Authors in [6] only consider the data
quality aspect of the evaluated data set.

In [8] authors focused on the use of advanced artificial
intelligence (AI) methods to optimize building energy usage
while maintaining occupant thermal comfort. One key point is
the definition of ”comfort.” The authors reviewed some known
definitions and noticed that the question is still controversial
somehow. In our work, we do not go in the direction of thermal
comfort because some data that come with the definition are
not available.

III. DATA COLLECTION AND ANALYSIS METHODOLOGIES

A. General approach

The system we consider in this work has IoT devices that
send data at irregular intervals, independent of each other. The
nature of data can be binary data, strings, timestamps, reals, or
integers. Some data sets present metadata. The methodology
we developed in this paper, and the organization of the paper,
follow the MAPE-K model for the production of knowledge
(see symbol 4 in Figure 1). Thus, we first aggregate, clean,
and filter the data (see symbol 1 in Figure 1). Then we put
in place analyses (see symbol 2 in Figure 1). At last, we
generate semi-automatic plans (see symbol 3 in Figure 1).
All of this constitutes the methodology we promote in this
paper.

In the case of time series, such as energy consumption data,
completeness, outliers, timeliness, and accuracy are among
the most critical dimensions of the problem. Completeness
measures whether some data are missing, accuracy measures
whether the samples are correct and reliable, and timeliness
measures whether the information is up to date. At the same
time, outliers are inconsistent data with the rest of the series,
e.g., a statistical outlier. After cleaning the data, this paper
mainly focuses on the outliers detection and classification
problems. Indeed, we observed some messages in the raw
data coming from the server used to query the data, hence
the cleaning action. Moreover, the completeness analysis is
complex because some data may be shifted in time and not
missing due to the drift of the sensors’ clock.



B. IoT data sets

All the two data sets we deal with in the paper come from a
building in France. The building has more than 22,000 square
meters of floor space divided over six floors and the roof. It is
a massively monitored and controlled building with more than
1,500 sensors, including about 330 electrical energy meters.
The measured data is used to monitor internal conditions and
to track consumption. We use, for our experiments, a first sub-
data set that corresponds to the monitoring of the building from
Thursday, 16 December 2021, to Friday, 7 January 2022. This
first sub-data set has 74 attributes (without the timestamp),
ranging from the current electricity consumption to the wind
direction. The second sub-data set, stored in CSV format,
contains CO2 and temperature measures as well as the room’s
name where sensors are located and the timestamps for each
measurement. The data set has 351 sensors for temperature
and 76 sensors for CO2. All CO2 sensors are located in rooms
with a temperature sensor. We found two CO2 sensors with
outliers. The sensors have been canceled for the graphics. The
date range for the data is also from Dec 16, 2021, to Jan 7,
2022. Each data set has approximately 38k lines. We can assert
the data are spatiotemporal.

These two data sets have been built, by others, by con-
catenation of data with the granularity of 1 minute, using
instant values for DS-2 and aggregated data for DS-1. We
do not master this part of the production. For instance, we
have no idea about the principle used for aggregation. At the
moment, the two data sets are not publicly available for privacy
concerns, but anyone can use a public API1 to extract data and
build his own data set.

C. Naming conventions

The data sets naming conventions are DS-1 for the dash-
board CSV file and DS-2 for the comfort CSV file collected
from the Greener opendata API.

IV. DATA SETS ANALYSIS AND OBSERVATIONS

Notice that a complete description of the data sets analyses
is available as a technical report2. This paper synthesizes
some relevant observations, and we assume the readers are
familiar with machine learning algorithms. Otherwise, they
will find more details in the technical report. We mainly use
anomaly detection algorithms (Isolation Forest, Local Outlier
Factor, and DBSCAN), clustering, or classification algorithms
(Support Vector Machine).

A. Outline

The methodology we follow in this section for the analysis
step is as follows. First, notice that we conducted different
analyses to illustrate the directions of our work, and for the
sake of conciseness, we did anomaly detection and classifica-
tion. Second, we successfully applied a series of treatments
on the CO2 and temperature attributes present in the two data

1http://mhi-srv.g2elab.grenoble-inp.fr/django/API/
2https://gricad-gitlab.univ-grenoble-alpes.fr/batpred/ieee-isc2-2022

sets to infer knowledge regarding the room with the most and
the minor issues. Third, we examine the hierarchy empirically,
given a certain amount of clusters.

B. Observations for DS-1

Our data sets are multi-dimensional; for instance, we have
ten attributes for DS-1. In this case, we used the R tsne
package for the visualization. The package implements a high-
dimensional visualizing algorithm, which is called t-SNE. t-
SNE stands for t-Distributed Stochastic Neighbor Embedding
and its main aim is that of dimensionality reduction. It maps
multi-dimensional data into 2D (or 3D) representation while
preserving the ’structure’ in the original data set space. In this
way, we can detect patterns in the data set. Stochastic Neighbor
Embedding (SNE) starts by converting the high-dimensional
Euclidean distances between data points into conditional prob-
abilities representing similarities. Then the t-SNE non-linear
dimensionality reduction algorithm finds patterns in the data
by identifying observed clusters based on the similarity of data
points with multiple features. It is a dimensionality reduction
algorithm and not a clustering algorithm.

The number of anomalies given by the LOF algorithm is 91.
The number of anomalies given by the HDBSCAN algorithm
on DS-1 is 182, and the number of anomalies given by the
iForest algorithm is 68. The main parameters of the LOF
algorithm are 2 (minPts) and 10 (minPts) for the HDBSCAN
algorithm, and 16000 (sample size), 250 (num trees), 0.65
(threshold) for the iForest algorithm. The Jaccard index, also
known as the Jaccard similarity coefficient, is a statistic used
for gauging the similarity and diversity of the sample sets. The
Jaccard coefficient measures similarity between finite sample
sets, and is defined as the size of the intersection divided by
the size of the union of the sample sets; here are the three
results of the anomaly detection algorithms.

In Figure 2, according to the t-SNE algorithm, the anoma-
lies for DS-1, with the three suggested algorithms (LOF,
HDBSCAN, and FOREST), and we also gathered all the
anomalies in one file, which allows for observing the sparsity
of anomalies. We can say that the three algorithms provide
different anomalies, which is confirmed by the measured
Jaccard index, that is equal to 0.3%. Remind that the DS-1
has eleven attributes, hence the requirement for dimensionality
reduction for the visualization.

Since the anomalies for DS-1 are different from one al-
gorithm to another, we decided to classify DS-1 in two ways
through the SVM algorithm. First, we used the SVM algorithm
on the whole set of initial data. Second, we eliminated the
union of anomalies from the initial data set; then, we used the
SVM algorithm. The idea is to check if anomalies will or will
not change the classification. We also decided to consider the
union of the anomalies because they are pretty different. In
the case of similarities in the anomalies, we suggest using the
intersect of the anomalies, and those intersects will be removed
from the initial data set.

As cross-validation, Tables I and II report the results for
the inter-cluster analysis. Computing these indicators requires

http://mhi-srv.g2elab.grenoble-inp.fr/django/API/
https://gricad-gitlab.univ-grenoble-alpes.fr/batpred/ieee-isc2-2022
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Fig. 2. Anomaly detection for DS-1

TABLE I
COMPLETE DIAMETER (INTRA-CLUSTER METRIC) WITH DIFFERENT DISTANCE METRICS AND INTRA-CLUSTER DIAMETERS

– DS-1’ = DS-1 WITHOUT ANOMALIES –

Data set Distance c1 c2 c3 c4 c5 c6 c7

DS-1 Euclidean 586.4 201.7 399.1 768.2 408.4 226.8 81.1
DS-1’ Euclidean 161.6 41.0 174.0 226.5 129.9 51.6 36.9
DS-1 Manhattan 840.9 326.9 746.1 1526.0 900.4 481.9 189.9
DS-1’ Manhattan 585.4 200.9 388.5 664.7 406.6 219.9 80.9
DS-1 Correlation 0.2607 0.0157 0.2759 1.8792 1.3916 0.1086 0.0101
DS-1’ Correlation 0.2586 0.0152 0.2494 1.8863 1.4070 0.1105 0.0101

the cls.scatt.data function from the R clv package. In-
deed, this function finds the most popular intercluster distances
and intracluster diameters, i.e., it computes six intercluster
distances and three intracluster diameters. For the sake of
brevity, we present the complete diameter that represents the
distance between the two most remote objects belonging to the
same cluster, in Table I), and the centroid linkage distance (in
Table II) that reflects the distance between the centers of two
clusters (v(i), v(j) clusters centers). The number of clusters
was 7.

C. Observations for DS-2

The second dataset is relevant as the first one only provides
aggregates. We lose spatial information, which is a critical
feature in building management. As shown in Figure 3,
information from DS-1 is not rich enough to explain such
a wide distribution. Maxima, minima, and mean values are
plotted with thick lines. However, outliers may only result
from specific uses and cannot be considered abnormal at
this point. The technical report provides the hierarchization
made by the scipy.cluster.hierarchy.linkage al-
gorithm [9] from the Python library scipy, with the linkage
method ward, over CO2 sensors and weather data. Sensors
indexes follow rooms’ alphabetical and numerical ordering,
so nearby sensors are consecutive. Similar spaces are clustered
soon at the bottom of the graph, and very different behaviors
lead to clusters being aggregated late at the top. We show
that all weather data is clustered together and has little impact
on CO2 clustering, even outdoor wind, while early clusters

often aggregate pairs of consecutive rooms. We also provide
a similar dendrogram resulting from temperature and weather
data clustering. We identify four main clusters through data,
showing how behaviors change from one floor to another. One
smaller cluster links sunlight received to the temperatures in
rooms. Our knowledge about the building makes us aware
these rooms face the South-est and South directions.

V. FINDINGS AND COMING WORK

A. Analysis concerns - Findings for DS-1
General conclusions from the initial observations and analy-

ses over DS-1 include anomalies, classification, model fitting,
and the potential for fewer measurements than are currently
made. We noticed in Figure 2 that the different anomaly de-
tection algorithms returned anomalies that were distinct from
each other. We observed the phenomenon because the dots
on the four sub-figures in Figure 2 appear in separate dials.
The techniques used for the detection explain the different
detections. For instance, the DBSCAN Algorithm is a density-
based clustering non-parametric algorithm. In contrast, the
iForest algorithm isolates abnormal points in the data set
instead of a typical instance model. Thus, the result regarding
the different outputs of the three algorithms was expected.
However, we are faced with the question of exploiting the
anomalies. In our case, we suggested taking the union of the
sets of anomalies because the Jaccard index was tiny (about
0.3%).

The benefit of using the union of anomalies is demonstrated
in Table I and Table II. The diameter of the clusters is much



TABLE II
CENTROID LINKAGE DISTANCE FOR THE EUCLIDEAN DISTANCE METRICS

DS-1

c1 c2 c3 c4 c5 c6 c7
c1 0.0000 260.2037 342.6309 660.6085 947.0606 1170.3172 1232.5043
c2 260.2037 0.0000 340.4852 743.9295 971.6063 1197.1260 1253.7312
c3 342.6309 340.4852 0.0000 407.7996 638.1946 863.6430 940.8476
c4 660.6085 743.9295 407.7996 0.0000 323.1577 527.0483 657.6421
c5 947.0606 971.6063 638.1946 323.1577 0.0000 232.9979 453.5531
c6 1170.3172 1197.1260 863.6430 527.0483 232.9979 0.0000 367.6166
c7 1232.5043 1253.7312 940.8476 657.6421 453.5531 367.6166 0.0000

DS-1’ = DS-1 without anomalies

c1 c2 c3 c4 c5 c6 c7
c1 0.0000 260.2371 340.7637 658.1367 944.5284 1167.5002 1230.9060
c2 260.2371 0.0000 340.7087 743.8000 971.0630 1196.9086 1253.7360
c3 340.7637 340.7087 0.0000 407.3638 637.0442 863.0272 940.5944
c4 658.1367 743.8000 407.3638 0.0000 323.0683 526.4675 657.6756
c5 944.5284 971.0630 637.0442 323.0683 0.0000 231.3793 453.0424
c6 1167.5002 1196.9086 863.0272 526.4675 231.3793 0.0000 367.4015
c7 1230.9060 1253.7360 940.5944 657.6756 453.0424 367.4015 0.0000

(a) Per room CO2 evolution (ppm)

(b) Per room Temperatures evolution (°C)

Fig. 3. Temperature and CO2 evolution over DS-2

better when the anomalies are removed from the data set. They
are smaller; hence the clusters are denser. Moreover, the intra-
cluster distance varies little when working with the dataset
without anomalies. We conclude that the centroids are not
impacted by removing the anomalies. We also investigated
finding the ’best’ number of clusters. It is a critical issue to
get representative subsets inside the data.

Next, we asked how the two datasets, DS-1 and DS-2, were
related to the CO2 attributes. We indeed have both aggregate
attributes (DS-1) and instantaneous data (DS-2), but we do not
know how the aggregated data were produced nor if there is a
link, for CO2, between the min, max and mean aggregated
data. For this last problem, we performed a classification
leading to regression, and we observed that we could not tell
that the mean value of the aggregated CO2 was produced via
an average computation over the aggregated min and max.

B. Analysis concerns - Findings for DS-2

General conclusions from the initial observations and anal-
yses over DS-2 include the feasibility of behaviors clustering
and inducted expectations. CO2 measures lead to clustering
nearby rooms more often than temperature measures, in Figure
4. Temperature distribution over the building may vary more
than CO2, which explains more temperature sensors. The
pairing we notice still questions the use of 74 CO2 sensors
and shows that information may be deducted from one sensor
instead of two, allowing fewer sensors. For this purpose, we
show weather data does not help and question the relevance
of metadata to provide more information about expected CO2
and rooms’ behavior.

The clustering of CO2 sensors displays 3 well separable
behaviors while the temperature sensors clustering displays 4
clusters, one subdivided into 3. On-site metadata and further
observations of the building could explain them. As figure 5
suggests, small clusters aggregate fast. They are all similar,
so it would be hard to find why they are grouped, and bigger
clusters would be even harder to explain. Figure 5(a) shows
irregular plateaus that may hint at separable behaviors on
smaller clusters when they are still 5, 13, 17, or even near 30
clusters left that new metadata as occupancy or architecture



(a) CO2 clustering denrogram

(b) Temperature clustering dendrogram

Fig. 4. Clustering dendrograms

(a) Number of clusters along CO2 clustering hierarchy (b) Number of clusters along temperature clustering hierarchy

Fig. 5. Evolution of clustering along hierarchy

elements may explain. The smoothness of the curve on Figure
5(b) only suggests that explanations would be exponentially
hard to define, as we need to combine more accurate expert
knowledge and metadata.

C. Findings regarding correlation issues

To go in the direction of planning, we have made the fol-
lowing analyses. We extracted temperature and CO2 data from
the building’s rooms and meteorological data from a station
on the roof. By type of expenditure, energy consumption data
of the building are also accessible with an hourly step. The
use of such data is described in the technical report.

The correlations obtained by comparing different parameters
provide intelligence for decision support and planning. For
example, they allow us to establish a clear link between the
temperature of the rooms on the southeast façade and the
exposure to the sun. We also find a relation between the outside
temperature and the corridors. We observe a clear link between
the energy dedicated to lighting and the power committed to
ventilation, signifying that ventilation depends on presence.

Groupings based on temperature data alone also allow us to
identify classrooms and offices.

Based on these findings, we may next advise strategies to
stop data production by sensors located in classrooms and
offices with the same behavior regarding the temperature.
Analyzing data from a regulated smart building is a complex
problem because unknown algorithms already try to control
rooms’ behavior. Even more potential will lie in buildings
without such fine control.

D. Future works
Based on the synthesis of our observations and analyses, ex-

plained in the two previous paragraphs, we propose exploring
the following avenues. On the DS-2 data set, we have noticed
similar rooms in the sense of clustering. We could undoubtedly
forget some sensors or make them produce data less frequently
than currently. We conducted, in parallel, an empirical study
from the DS-1 data set, which, by varying the number of
analyzed data, tried to preserve the clustering resulting from
the complete raw data set. Regardless of the clusters’ structural
properties, random deletion does not allow us to conclude that



the approach is still valid. The properties of some clusters
are preserved, but not for all. We propose understanding what
maintains the properties of ”same centroids” and the number
of elements with the data forgetting rate.

We also measured that the number of anomalies and their
management impacted the clustering and, thus, the data models
resulting from the clustering. We propose observing the dis-
tribution of anomalies for the data set and interpreting them.
For example, is attribute A abnormally high/constant/variable
compared to the average behavior? Anomaly management and
detection were done on the DS-1 data set, which does not
contain a timestamp attribute. We propose to conduct a similar
analysis on the DS-2 data set to observe whether the removal
of temporal anomalies (marked on the heterogeneous data
or not) affects the spatial clustering performed on only two
attributes as we did. Perhaps it is appropriate to merge the DS-
1 and DS-2 data sets, apply an anomaly detection algorithm
on the flat spatial data set, and then apply spatial clustering.
It seems to us that the general problem is to couple two
algorithms on the same spatial data set.

On the other hand, perhaps we have too many approaches
and algorithms to characterize smart building data, and the
process should be refined to update a methodology with fewer
tools. Finally, we can also imagine that the analysis and
characterization are not done on a fixed data set but that the
data set evolves. So, instead of investigating a massive data
set in the Cloud, we could try to do it as close to the data
as possible, for energy efficiency purposes, in the framework
of Edge Computing. We can also imagine sharing the work
between the Edge and the Cloud. In this case, the granularity
of the calculations and data to be distributed in the Edge rather
than in the Cloud arises. It also raises the question of designing
online algorithms on low-cost devices or sensors performing
online clustering and anomaly detection on time series.

The previous study exploits only the historical data, and
the lack of contextual information hampers this approach.
It is, therefore, necessary to add relevant data such as a
room usage calendar, a building plan, or very short-term
weather forecasts. Predicting a room’s living conditions is
possible based on those around it, and it will eventually
compromise the distribution of sensors between rooms and the
performance of the projection. Linking data from sensors and
other easily accessible knowledge opens the way to automatic
classification techniques that can be used without particular
expertise. To obtain personalized management, they will allow
adapting prediction algorithms to each building, regardless of
the diversity of architectures, occupants, or the number of
sensors installed.

VI. CONCLUSION

Experiments with massive deployment of smart sensors
are becoming increasingly numerous, not only in research
laboratories but also in cities. The COVID pandemic, for
example, pushed the deployment of CO2 sensors in schools.
Even if it is regrettable, this is a fact that a sober deployment
and a reasonable a priori on the use of the data produced

and the objective to be reached have not always been used to
guide the deployments. Our work proposes a series of tests to
characterize the data produced at the building level. The issues
that we feel are important to address are related to the nature
of the data, for example, the absence or presence of outliers
and their management as they may impact the clustering and,
thus, the nature of the data models resulting from the analysis.
We propose in the article to build different views of the data.
This process is a step forward so that the various stakeholders
working on designing intelligent buildings can now rely on
new business knowledge. We have proposed analyses and
observations on actual data to illustrate the approach. We
showed a profound potential reduction in data production due
to specific sensors’ ”same” behavior. We conclude that we can
indubitably go to a more sober smart building management.
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