I El 
  
Jirari Lampa 
  
A El Baroudi 
  
A Ammar 
  
Numerical investigation of the dynamical behavior of a fluid-filled microparticle suspended in human arteriole

The study of artificial microparticles (capsules and vesicles) has gained a growing interest with the emergence of bioengineering. One of their promoting applications is their use as therapeutic vectors for drug delivery, when capsules and vesicles release their capacity in a targeted environment. The dynamic behavior of capsules and vesicles in confined or unbounded flows was widely studied in the literature and their mechanical response was truthfully described using constitutive laws with good agreement with experiences. However, in a context of biological application, to our knowledge, none of published studies investigating the mechanical response of deformable microparticle took into account the real physiological conditions: the rheological properties of blood such as carrying fluid and the mechanical properties of blood vessels. In this paper, we consider a hyperelastic microparticle suspended in human arteriole. We investigate the deformation of the microparticle resulting from its interaction with blood flow and the arteriolar wall using various capillary numbers and respecting physiological properties of blood and arterial wall. The influence of the blood viscosity model (Newtonian vs shear-thinning) is investigated and a comparison with a rigid microchannel and a muscle-embedded arteriole are carried out. The fluid structure interaction (FSI) problem is solved using Arbitrary Lagrangian Eulerian (ALE) method. Our simulations have revealed that the arteriolar wall distensibility deeply influences both the deformation and velocity of the microparticle: the deformation strongly increases while the velocity decreases in comparison to an infinitely rigid wall. In the context of therapeutic procedure of targeted drug-delivery, a particular attention should be addressed to these observations, in particular for their implication in the burst mechanism.

Introduction

Microencapsulation is the industrial process by which a droplet or a solid is enclosed by a thin elastic membrane, resulting in structures called microparticles. The membrane of a microparticle bursts under predetermined conditions allowing a controlled and targeted release of the inner contain. The application field of microparticles as delivery system includes cosmetics, pharmaceutics and food. Microparticles are used as pharmaceutical vehicle in targeted drug delivery process for noninvasive cancer treatments [START_REF] Chumakova | Composition of PLGA and PEI/DNA nanoparticles improves ultrasound-mediated gene delivery in solid tumors in vivo[END_REF][START_REF] Shao | Biointerfacing polymeric microcapsules for in vivo near infrared lighttriggered drug release[END_REF][START_REF] Ma | Drug-loaded nano-microcapsules delivery system mediated by ultrasound-targeted microbubble destruction: A promising therapy method[END_REF], diabetes [START_REF] Soon-Shiong | Treatment of type I diabetes using encapsulated islet[END_REF] and heart attack [START_REF] Mihalko | Targeted treatment of ischemic and fibrotic complications of myocardial infarction using a dual-delivery microgel therapeutic[END_REF]. In the procedure of targeted drug delivery, microparticles are injected into arterial bloodstream (e.g the hepatic artery for transarterial chemoembolization (TACE) [START_REF] Dreher | Radiopaque Drug-Eluting Beads for Transcatheter Embolotherapy: Experimental study of Drug Penetration and Coverage in Swine[END_REF] and the coronary arteries for thrombus dissolution [START_REF] Mihalko | Targeted treatment of ischemic and fibrotic complications of myocardial infarction using a dual-delivery microgel therapeutic[END_REF]). Once the microparticle is injected, it flows in varied size and nature blood vessels till it reaches its target (e.g. tumor), a robust and reliable prediction of the mechanical behavior of microparticle (velocity, surface tensions acting on membrane, deformation, burst. . . ) and fluid kinetics (diffusion, convection, concentration of the released inner drug) in interaction with vascular wall and blood stream are essential to ensure a proper, efficient and safe functioning of the targeted drug-delivery procedure. Attention also should be addressed on local perturbation due to the presence of the microparticle (i.e. wall shear stress, pattern of blood flow...). Prediction and evaluation of drug-eluting microparticle behavior are conducted by means of in-vitro [START_REF] Hagan | Predicting pharmacokinetic behaviour of drug release from drugeluting embolization beads using in vitro elution methods[END_REF][START_REF] De Baere | An In Vitro Evaluation of Four Types of Drug-Eluting Microspheres Loaded with Doxorubicin[END_REF][START_REF] Fuchs | Drug-eluting beads loaded with antiangiogenic agents for chemoembolization: in vitro sunitinib loading and release and in vivo pharmacokinetics in an animal model[END_REF] and in-vivo [10] studies. Above-mentioned studies are conducted by physicians and focused on the pharmacokinetic behavior of the released drug without any consideration of mechanics. Interestingly, the present study proposes an alternative in-silico approach that could be complementary of in-vivo and in-vitro studies, by providing an upstream prediction of the mechanical behavior of the microparticle in its interaction with blood flow and vascular wall without tricky experimental protocols and limitations imposed by regulation related to animal experimentation. Furthermore, microparticles constitute an efficient biomimetic system to understand the mechanical properties of biological microparticles such as the red blood cell (RBC). The study of mechanical properties of RBCs and their dynamical response to applied external flow has profited from the enhancement of microfluidic devices where microchannels mime the vascular system [START_REF] Sosa | The relationship between red blood cell deformability metrics and perfusion of an artificial microvascular network[END_REF][START_REF] Burns | Artificial microvascular network: A new tool for measuring rheologic properties of stored red blood cells[END_REF]. RBC is a biological cell formed by an elastic membrane (phospholipid bilayer attached to a spectrine skeleton) enclosing hemoglobin solution. Due to its finite thickness, only the deformation of median surface is considered. RBC membrane is characterized by three elastic moduli: surface shear modulus G s = 2.5 µN/m [START_REF] Hé | A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers[END_REF], surface extension modulus K = 300 -500 mN/m [START_REF] Hochmuth | Erythrocyte Membrane Elasticity And Viscosity[END_REF][START_REF] Waugh | Thermoelasticity of red blood cell membrane[END_REF][START_REF] Evans | Elastic area compressibility modulus of red cell membrane[END_REF] and bending rigidity (also called bending energy) B = 5 -150 K b T [START_REF] Peterson | Theoretical and phase contrast microscopic eigenmode analysis of erythrocyte flicker: amplitudes[END_REF][START_REF] Sackmann | The Seventh Datta Lecture Membrane bending energy concept of vesicle-and cell-shapes and shapetransitions[END_REF]. In the microcirculation, RBCs are highly deformed from their initial biconcave shape. Depending on the blood flow strength and inner diameter of microvessel, RBCs take the shape of a bullet, a parachute or a slipper [START_REF] Noguchi | Shape transitions of fluid vesicles and red blood cells in capillary flows[END_REF][START_REF] Tomaiuolo | Microconfined flow behavior of red blood cells[END_REF][START_REF] Kaoui | Why do red blood cells have asymmetric shapes even in a symmetric flow?[END_REF].These characteristic shapes are also observed for artificial microparticles like vesicles and capsules [START_REF] Coupier | Shape diagram of vesicles in poiseuille flow[END_REF][START_REF] Kuriakose | Deformation of an elastic capsule in a rectangular microfluidic channel[END_REF][START_REF] Hu | Characterizing the membrane properties of capsules flowing in a square-section microfluidic channel: Effects of the membrane constitutive law[END_REF][START_REF] Gubspun | Perturbations of the flow induced by a microcapsule in a capillary tube[END_REF]. Vesicle membrane is lipidic and acts like a bidimensional incompressible fluid (i.e. zero shear elasticity). In contrast, polymeric membrane of capsule is solid and shear resistant. Capsule's membrane obeys to Lagrangian elastic laws. Instead of a reference configuration, vesicle membrane is characterized by an initial curvature which means a bending resistance. Mechanical properties of microparticles are obtained by different methods among them squeezing microparticle between two parallel plates [START_REF] Gubspun | Perturbations of the flow induced by a microcapsule in a capillary tube[END_REF][START_REF] Rachik | Identification of the elastic properties of an artificial capsule membrane with the compression test: Effect of thickness[END_REF], spinning capsule experiment [START_REF] Husmann | Deformation and bursting of nonspherical polysiloxane microcapsules in a spinning-drop apparatus[END_REF] flowing in a capillary tube [START_REF] Hu | Characterizing the membrane properties of capsules flowing in a square-section microfluidic channel: Effects of the membrane constitutive law[END_REF][START_REF] Lefebvre | Flow of artificial microcapsules in microfluidic channels: A method for determining the elastic properties of the membrane[END_REF], micropipette aspiration [START_REF] Kleinberger | Systematic study of alginate-based microcapsules by micropipette aspiration and confocal fluorescence microscopy[END_REF], and compression [START_REF] Carin | Compression of biocompatible liquid-filled HSA-alginate capsules: Determination of the membrane mechanical properties[END_REF]. In literature, membrane is assumed to obey different hyperelastic constitutive laws that describe hyperelasticity in terms of a strain energy potential which defines the strain energy stored in the material per unit of reference volume: Skalak (SK) [START_REF] Wang | Motion of a spherical capsule in branched tube flow with finite inertia[END_REF][START_REF] Lefebvre | Motion of a capsule in a cylindrical tube: Effect of membrane pre-stress[END_REF][START_REF] Barthès-Biesel | Effect of constitutive laws for two-dimensional membranes on flow-induced capsule deformation[END_REF], Evans-Skalak (ES) [START_REF] Lefebvre | Motion of a capsule in a cylindrical tube: Effect of membrane pre-stress[END_REF] , Mooney-Rivlin (MR) [START_REF] Leyrat-Maurin | Motion of a Deformable Capsule Through a Hyperbolic Constriction[END_REF], Neo-Hookean (NH) [START_REF] Gong | Research on the spherical capsule motion in 3D simple shear flows[END_REF][START_REF] Hu | Flow of a spherical capsule in a pore with circular or square cross-section[END_REF][START_REF] Pranay | Pair collisions of fluid-filled elastic capsules in shear flow: Effects of membrane properties and polymer additives[END_REF] and Yeoh [START_REF] Rachik | Identification of the elastic properties of an artificial capsule membrane with the compression test: Effect of thickness[END_REF]. For small strains, all of aforementioned hyperelastic laws reduce to the elastic Hook's law [START_REF] Barthès-Biesel | The time-dependent deformation of a capsule freely suspended in a linear shear flow[END_REF]. Skalak law was first introduced to model the large deformation and area incompressibility of biological membrane [START_REF] Skalak | Strain Energy Function of Red Blood Cell Membranes[END_REF], this law adds non-linearly the area dilatation to the shear deformation. Evans law (or Evans-Skalak law) [START_REF] Evans | Mechanics and thermodynamics of biomembranes[END_REF] was introduced later to simplify SK law by adding linearly the area dilatation to the shear deformation. Due to its 3D origin, MR is strain-softening. NH law is derived from MR and Yeoh law is a higher-order extension of the NH law [START_REF] Yeoh | Some Forms of the Strain Energy Function for Rubber[END_REF]. SK law is strain-hardening, hence, for similar hydrodynamic constraints a membrane obeying SK law is less deformed than the one obeying MR law [START_REF] Barthès-Biesel | Effect of constitutive laws for two-dimensional membranes on flow-induced capsule deformation[END_REF] or NH law [START_REF] Hu | Characterizing the membrane properties of capsules flowing in a square-section microfluidic channel: Effects of the membrane constitutive law[END_REF]. Besides constitutive law, microparticle deformation depends on viscosities ratio [START_REF] Diaz | Transient response of a capsule subjected to varying flow conditions: Effect of internal fluid viscosity and membrane elasticity[END_REF], the section of the microfluidic channel [START_REF] Hu | Flow of a spherical capsule in a pore with circular or square cross-section[END_REF], membrane thickness [START_REF] Dupont | Dynamics of a spherical capsule in a planar hyperbolic flow: Influence of bending resistance[END_REF], confinement [START_REF] Coupier | Shape diagram of vesicles in poiseuille flow[END_REF][START_REF] Gubspun | Perturbations of the flow induced by a microcapsule in a capillary tube[END_REF] and bending rigidity [START_REF] Kwak | Effect of membrance bending stiffness on the axisymmetric deformation of capsules in uniaxial extensional flow[END_REF][START_REF] Pozrikidis | Effect of membrane bending stiffness on the deformation of capsules in simple shear flow[END_REF].

In his Phd thesis [START_REF] Tahiri | Simulation de Globules Rouges modèles, et analyse analytique de modèles de suspensions très concentrées[END_REF], Tahiri introduced a local elastic law to take into account the contribution of the wall, nonetheless, without any consideration of the mechanical properties of the arterial wall. In this paper, we chose not to distinguish between a capsule and a vesicle (even if capsules are sometimes used to designate both artificial particles). Henceforth, the generic term microparticle is used to describe a Newtonian and incompressible fluid enclosed by a thin hyperplastic membrane.

In this study and in a context of medical application, we respect mechanical properties of arteriolar wall and the rheological/dynamical properties of blood flow in a human arteriole. The study is carried out using Arbitrary Lagrangian Eulerian Method implemented on Comsol Multiphysics [START_REF][END_REF].

Physical model description and modeling

The studied problem is schematically represented by a thin membrane enclosing an internal fluid, freely suspended in a confined external flow (blood). The arteriole is represented using a rectangular channel on which we distinguish the lumen and the arteriolar wall (see Figure 1). The flow is defined using an inlet velocity (at Γ i ) and a zero outlet normal stress (at Γ o ). The top-bottom right and left edges of the arterial wall are fixed. Three fluid-structure interfaces are identified: external fluid-membrane/internal fluid-membrane (Γ f m ) and external fluid-arterial wall (Γ f a ). 

Blood model

Blood is known to behave like a shear-thinning fluid in regions when shear rate γ is below 100 s -1 [START_REF] Brooks | Interactions among erythrocytes under shear[END_REF][START_REF] Chien | Shear dependence of effective cell volume as a determinant of blood viscosity[END_REF][START_REF] Berger | Flows in Stenotic Vessels[END_REF], above this value, blood viscosity tend to a constant Newtonian viscosity η = 0.0035 Pa • s. In an arteriole, the shear rate exceeds significantly 100 s -1 [START_REF] Robertson | Hemodynamical flows Oberwolfach Seminars[END_REF][START_REF] Koutsiaris | Wall shear stress quantification in the human conjunctival pre-capillary arterioles in vivo[END_REF] and blood is Newtonian. Even if non-Newtonian blood in the arteriole is physiologically implausible, we studied besides the Newtonian blood a specific case where blood is shear-thinning, the aim being to evaluate the effect of blood viscosity model on microparticle deformation. A Carreau model is used to describe the shear thinning of blood:

η = η ∞ + (η 0 -η ∞ ) 1 + (λγ) 2 n-1 2 (1) 
where the coefficients η ∞ = 0.0035 Pa • s, η 0 = 0.056 Pa • s, λ = 3.313 s and n = 0.3568 were provided from [START_REF] Young | Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: steady flows[END_REF]. Due to cardiac contractions, blood flow is pulsed, mainly in the arterial circulation. The disentisibility of arterial wall damps the pulsation of blood and transform the pulsatile flow into a continued flow (Windkessel effect). In biofluid mechanics, the importance of cyclic behavior in a pulsatile flow is quantified by Womersley number (α) [START_REF] Womersley | Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known[END_REF]. This nondimensional number can be interpreted as the ratio of the unsteady forces to the viscous forces. Blood velocity profile depends on the Womersley number: for small and medium-sized arteries (1 < α < 10) [START_REF] Caro | The Mechanics of the circulation[END_REF], flow is dominated by viscous effects and the profile is parabolic. For α > 10, the unsteadiness dominates the flow, hence, velocity profile becomes blunted [START_REF] Ku | Blood flow in arteries[END_REF]. In the arteriole the Womersley number is approximately α = 0.016, then we considered a steady Poiseuille flow described as:

v i = 6v 0 y H l 1 - y H l at (Γ i ) (2) 
where v 0 = 10 cm/s is the average velocity in the arteriole and H l = 30 µm the height of the rigid channel/arteriole. The value of H l corresponds to the inner diameter (lumen) of a human arteriole and the corresponding arterial wall thickness is H a = 20 µm [START_REF] Barrett | Ganong's Review of Medical Physiology[END_REF]. In the absence of body forces, the incompressible flow is governed by the Navier-Stokes and continuity equations as given below

ρ ∂v ∂t + (v • ∇) v = ∇ • σ σ σ ∇ • v = 0
where ρ = 1050 kg/m 3 is the fluid density, v is the velocity field, σ σ σ is the total stress in the incompressible fluid which could be expressed as :

σ σ σ = -pI + η ∇v + (∇v) T
where p is the fluid pressure, I is the identity tensor and η is the fluid dynamic viscosity.

Arterial wall model

The arterial wall consists of collagen, elastin and smooth muscle cells distributed and oriented differently on three distinct layers: the intima, the media and the adventice [START_REF] Taki | Chapter 4 -Overview of Different Medical Imaging Techniques for the Identification of Coronary Atherosclerotic Plaques, Computing and Visualization for Intravascular Imaging and Computer-Assisted Stenting 1st ed[END_REF]. Layer-specific mechanical properties of human coronary artery include nonlinearity, inelasticity and anisotropy [START_REF] Holzapfel | Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling[END_REF]. In their work on in vitro determination of layer-specific mechanical properties of human coronary arteries [START_REF] Holzapfel | Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling[END_REF], Holzapfel and co-workers observed that the intima showed a significant thickening, a load-bearing capacity and a mechanical strength compared to the media and the adventitia. Moreover, the inclusion of the three layers in blood vessel modeling has a insignificant contribution on the shear stress [START_REF] Gholipour | Three-dimensional biomechanics of coronary arteries[END_REF]. Furthermore, frontiers between the three layers are blurred in the arteriole [START_REF] Martinez-Lemus | The Dynamic Structure of Arterioles[END_REF]. For aforementioned reasons, we chose to restrict arterial wall model to the intima. In this work, the thickness of the arteriolar wall is assigned to 20 µm [START_REF] Barrett | Ganong's Review of Medical Physiology[END_REF]. For reasons related to computational cost, we consider a section of a human arteriole (L =300 µm). The arterial wall is assumed to be hyperelastic, homogenous and incompressible, the equation describing the motion is governed by

ρ a ∂ 2 u (a) ∂t 2 = ∇ • σ σ σ (a) (3) 
where ρ a is the arterial wall density, u (a) the displacement vector and σ σ σ (a) the Cauchy stress tensor. In addition, the constitutive relation can be written readily in terms of Cauchy stress tensor and strain-energy density function

σ σ σ (a) = J -1 F ∂W (a) ∂E (a) F T
where J is the dilatation ratio, F the deformation gradient tensor, E (a) the Green-Lagrange strain tensor and W (a) the strainenergy density function which is related to the strain invariants by the following relation :

W (a) = C 10 ( Ī1 -3) +C 01 ( Ī2 -3) +C 20 ( Ī1 -3) 2 +C 02 ( Ī2 -3) 2 +C 11 ( Ī1 -3) ( Ī2 -3) + κ 2 (J el -1) 2 (4) 
where C 10 ,C 01 ,C 20 ,C 02 and C 11 denotes material parameters extracted by curve fitting from in vitro study [START_REF] Holzapfel | Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling[END_REF] and adapted from [START_REF] Gholipour | Three-dimensional biomechanics of coronary arteries[END_REF] (see Table 1), Ī1 and Ī2 respectively denotes the first and the second invariant of the isochoric right Cauchy-Green deformation tensor, κ is the initial bulk modulus and J el the elastic volume ratio. The Money-Rivlin constitutive law is based on the assumption of isotropic behavior throughout the deformation history. Note that the numerical values of C i j parameters are provided from a study on human coronary arterial wall, in the lack of such study on human arteriole, we used the same values of C i j . This extrapolation nevertheless remains acceptable since both vessels are of the same nature. Regarding 

Microparticle model

The studied microparticle consists of a disk-shaped thin membrane (a thickness of 0.27 µm) enclosing an incompressible Newtonian fluid (η i = 0.00345 Pa • s and ρ i = 1000 kg/m 3 ). The membrane is treated as hyperelastic, isotropic and nearly incompressible surface in which the strain-energy density function for a Neo-Hookean material is given by :

W (m) = G 2 ( Ī1 -3) + κ 2 (J el -1) 2 (5) 
where the parameter G (N/m 2 ) corresponds to the initial shear modulus. The initial bulk modulus κ and initial shear modulus G are calculated from the surface shear modulus G s (N/m). In this framework the surface shear modulus is varied from the range of 10 -2 to 10 -3 N/m which is in the same range as experimental extracted modulus [START_REF] Lefebvre | Flow of artificial microcapsules in microfluidic channels: A method for determining the elastic properties of the membrane[END_REF][START_REF] De Loubens | Mechanical characterization of cross-linked serum albumin microcapsules[END_REF]. A comprehensive and detailed review of constitutive relations can be found in [START_REF] Taber | Nonlinear Theory of Elasticity: Applications in Biomechanics[END_REF].

In the membrane model, the stresses are integrated across the wall thickness and replaced by tensions, i.e., forces per unit length of the median deformed surface. The deformation of the microparticle is quantified by the Taylor parameter defined as:

D = |L 1 -L 2 | L 1 + L 2 (6)
where L 1 and L 2 respectively designate the axial and the radial length of the capsule (i.e. D = 0 for a disk-shaped microparticle). For the initial shape L 1 = L 2 = 18 µm. The Taylor parameter strongly depends on the nondimensional capillary number Ca. The latter measures the ratio between the viscous forces applied by the flow and elastic resistance of the membrane:

Ca = ηγL 1 2G s (7)

Fluid-structure interaction

In this paragraph, the dynamic behavior of the suspended microparticle shall be obtained of the judicious interface conditions. Dynamic and kinematic continuity must be satisfied. Hence, the fluid-structure interaction pertaining the fluids is of non-homogeneous Dirichlet condition

v (i) = ∂u (m) ∂t at (Γ f m ) (inside microparticle) v (o) = ∂u (m) ∂t at (Γ f m ) (outside microparticle) v (e) = ∂u (a) ∂t at (Γ f a )
representing mass conservation throughout the interface, and the fluid-structure interaction for the solids is of non-homogeneous Neumann

σ σ σ (i) • n = σ σ σ (m) • n at (Γ f m ) (inside microparticle) σ σ σ (o) • n = σ σ σ (m) • n at (Γ f m ) (outside microparticle) σ σ σ (o) • n = σ σ σ (a) • n at (Γ f a )
describing the equivalence of fluids stresses and solids stresses.

Numerical method

In the ALE description, the mesh is arbitrary connected to the coordinate system or to the material allowing large deformation state without a mesh distortion. In addition to material configuration R X and spatial configuration R x , a third referential configuration R χ where reference coordinates χ identify the grid points is introduced. The computational gird is allowed to move independently on material motion with a given mesh velocity v m = ∂x/∂t where x is the physical coordinates of χ. The difference between both velocities refers to convective velocity c = vv m (Note that Eulerian description and Lagrangian description corresponds to c = v and c = 0, respectively). At fluid-structure interface, in addition to "classical" conditions given in 2.4, mesh velocity satisfies: v m • n = v • n where n is the unit outward normal. In the moving referential mesh frame R χ , the material time derivative of a scalar physical quantity f for a given particle X with respect to the moving mesh gird is described by the fundamental equation of ALE :

∂ f ∂t | X = ∂ f ∂t | χ + ∂ f ∂x • c (8) 
Regarding time-integration scheme, we used the implicit Backward Differentiation Formula (BDF) scheme ( 9) derived from the multistep Adams-Moulton scheme

k ∑ i=0 α i u n-i = β 0 h f (t n , u n ) ( 9 
)
where h is the time-step, the order of accuracy k is varied from (10) :

k = 1 : α 0 = 1 , α 1 = -1 , β 0 = 1 → u n = u n-1 + h f (t n , u n ) k = 2 : α 0 = 1 , α 1 = - 4 3 , β 0 = 1 , α 2 = 1 3 → u n = 4 3 u n-1 - 1 3 u n-2 + 2 3 h f (t n , u n ) (10) 
The variables are updated at each time-step using a damped Newton nonlinear method [START_REF] Deuflhard | A modified Newton method for the solution of ill-conditioned systems of nonlinear equations with alication to multiple shooting[END_REF]. This method is based on a damping reduction algorithm where the key parameter is the error E : For a new iteration u 1 = u 0 +λδu (where u 0 is the initial guess, 10 -5 ≤ λ ≤ 1 the damping factor and δu the Newton time-step), the solver computes D f (x)E =f (u 1 ) where D f (x) is the Jacobian matrix and f (u 1 ) the residual vector of the solution vector u 1 . If E is smaller than the relative error E r , u 1 is recomputed till the condition E > E r is satisfied. The nonlinear failures are dealt with the nonlinear controller (STAB) [START_REF] Moore | A Stepsize Control Strategy for Stiff Systems of Ordinary Differential Equations[END_REF] that enables an efficient time-step control in the BDF method and ensures that the accuracy time-step h acc remains smaller than the stability time-step h stab . Mesh deformation is computed using Winslow smoothing nonlinear technique [START_REF] Winslow | Numerical solution of the quasilinear poisson equation in a nonuniform triangle mesh[END_REF], the equations to solve are:

∂ 2 X ∂x 2 + ∂ 2 X ∂y 2 = 0 , ∂ 2 Y ∂x 2 + ∂ 2 Y ∂y 2 = 0 (11) 
x and y are deformed mesh positions and, X and Y the reference coordinates of the material frame. An automatic remeshing procedure enables more extreme deformation states and prevents mesh reversing and tangling that lead to the deterioration of the results. The remeshing is automatically activated beyond a pre-determined cell quality threshold based on the criterion of equiangular skew: min 1max θ-θ e 180-θ e , θ e -θ θ e < 0.01 where θ is the angle over a vertex in the element and θ e the angle of the corresponding vertex in an ideal element (zero skewness). The discretization of fluid domain is done with P2/P1 element that gives a quadratic basis for velocity and linear pressure. This element satifyes the LBB (Ladyzhenskaya-Babuska-Brezzi) stability condition. Solving Navier-Stokes equations using finite element method is known to cause (as well as other convection driven problem) numerical instabilities. Therefore, a stabilization is required to circumvent numerical instabilities and solution oscillations. We use two methods of consistant stabilization: streamline diffusion and crosswind diffusion. The first adds artificial diffusion in the streamline direction whereas the second adds diffusion in the cross direction. The added diffusion is a not physical but helps to avoid the mesh refinement and then a huge computational cost.

4 Results and discussion:

Validation of the numerical model

In this section, we report the validation of the present numerical model against the work of Barthes and co-workers on the dynamical behavior of a freely suspended spherical capsule in an unbounded shear flow [START_REF] Lac | Spherical capsules in three-dimensional unbounded Stokes flows: Effect of the membrane constitutive law and onset of buckling[END_REF]. In this work, the membrane of the microparticle is neo-Hookean. The external and internal fluids are similar, thus excluding buoyancy effect. The velocity and the pressure of both fluids are governed by Stokes equations (Re 1). The FSI problem is solved by the ALE method. We performed a parametric calculation (Ca = 0.075 -0.6) using the commercially available FEM package COMSOL Multiphysics. The evolution of Taylor parameter D is monitored till reaching an asymptotic deformation D ∞ (see Figure 2). Moreover, this evolution is similar to those reported in [START_REF] Pranay | Pair collisions of fluid-filled elastic capsules in shear flow: Effects of membrane properties and polymer additives[END_REF][START_REF] Lac | Spherical capsules in three-dimensional unbounded Stokes flows: Effect of the membrane constitutive law and onset of buckling[END_REF], where the FSI problem is respectively solved using the boundary element method and the immersed boundary method. Note that the steady deformed shapes shown in Fig. 2 are identical to those illustrated in [START_REF] Lac | Spherical capsules in three-dimensional unbounded Stokes flows: Effect of the membrane constitutive law and onset of buckling[END_REF]. Black color corresponds to the initial shape (right).

Microparticle confined in human arteriole

The dynamical response of the microparticle is investigated for Ca = 0.01, 0.02, 0.03, 0.04 and 0.05. As shown in Figure 3(a), when the microparticle is flowing along the arteriole, the Taylor parameter becomes higher as the capillary number is increasing. In response to the sudden start of blood flow, microparticle becomes pebble-shaped: the initial rear end positive curvature (convexity) is decreased till a flattened state and the maximum radial length is significantly more important than the axial one (t = 0.364 ms in Figure 8(b)). As the microparticle moves from its initial position and starts flowing along the arteriole, it undergoes an axial extension while its radial dimension progressively decreases to compensate axial elongation. The obtained morphology referred to as bullet shape. In the immediate vicinity of the arteriole extremity (t = 1.540 ms), a concavity is observed at the rear of the microparticle (see Figure 8(b)).

The rear shape transition from the convexity to the flatness and then to the concavity and the increasing of front tapering (see Figure 8(b)) is a consequence of the wall displacement that changes the confinement and then the capillary number. As shown on Figure 4, at t = 1 ms, the rear end is convex for Ca = 0.01 while it is flattened for Ca = 0.05. Regarding the front, it is more pointed for Ca = 0.05. The decreasing of the initial rear convexity till the concavity and the increasing front tapering with increasing capillary number is observed in this work by varying "directly" the capillary number (via changing the membrane shear modulus) and "indirectly" (change induced by wall displacement). This behavior is reported in [START_REF] Coupier | Shape diagram of vesicles in poiseuille flow[END_REF][START_REF] Kuriakose | Deformation of an elastic capsule in a rectangular microfluidic channel[END_REF] where the shape transition dependence on the capillary number is well described. For all Ca, the variations of Taylor parameter versus time are parabolic with decreasing amplitudes. Indeed, the amplitude of the first lobe of the curve is nearly two time greater than the second one. For all curves, the ascending slope of the straight path is similar till roughly 0.15 ms. Above this point, curves deviate from their initial ascending straight path and different amplitudes are observed. Since the curves reached the maximum and starts to decrease, the minimum Taylor parameter is reached firstly for the less important amplitude. Shortly thereafter, curves start to rise with the same slope from the lowest to the highest Ca, reason why in a certain zone, the trend is reversed and the deformation heightens from the lowest to the highest capillary number. Regarding the axial length L 1 and the radial length L 2 time-evolution (see Figure 3(b)), a symmetry with respect to the microparticle centerline is observed due to the surface-area conservation (a radial elongation is systematically compensated by an axial shrinking). The localized axial length tangle is the consequence of the edge effect. For the purpose of assessing the influence of shear-thinning of blood, we performed a comparison between the Newtonian blood model (so far used) and the Carreau model describing the shear-thinning. Obtained results for Ca = 0.05 have shown that deformation overtime is notably similar when the blood is considered as Newtonian or shear-thinning (see Figure 5). The slight discrepancies are due to the differences in the velocity profile and the wall shear stress. When the fluid is shear-thinning, the velocity profile is "flattened" and its slope near the wall is more important comparing to the Newtonian model, thus, the shear stress near the wall is more important. In order to display the parachute shape (a strongly concave rear end and a highly pointed front), the capillary number is increased until Ca = 0.1. Real time-snapshots: t = 0.206, 1 and 1.393 ms show respectively: pebble-shape (Figure 6(a)), bullet shape (Figure 6(b)) and parachute shape (Figure 6(c)). The observation reported above (the increasing concavity with respect to capillary number) is confirmed by the last calculation. Indeed, at t = 1 ms, we note the transition from the convex rear end (Ca = 0.01 in Figure 6(a)), to the flattened rear end (Ca = 0.05 in Figure 6(b)) and then to the concave rear end (Ca = 0.10 in Figure 6(c)). The increasing front sharpness is also confirmed. Local zoomed mesh illustrated in (Figure 6(d)) affirms the absence of mesh tangling /distortion. All of reported shapes for all capillary numbers are observed for artificial microparticles flowing in rectangular microchannel [START_REF] Coupier | Shape diagram of vesicles in poiseuille flow[END_REF][START_REF] Kuriakose | Deformation of an elastic capsule in a rectangular microfluidic channel[END_REF][START_REF] Hu | Characterizing the membrane properties of capsules flowing in a square-section microfluidic channel: Effects of the membrane constitutive law[END_REF][START_REF] Gubspun | Perturbations of the flow induced by a microcapsule in a capillary tube[END_REF], RBCs [START_REF] Noguchi | Shape transitions of fluid vesicles and red blood cells in capillary flows[END_REF][START_REF] Tomaiuolo | Microconfined flow behavior of red blood cells[END_REF][START_REF] Kaoui | Why do red blood cells have asymmetric shapes even in a symmetric flow?[END_REF] and a cancerous cell (except for the parachute shape) [START_REF] Dabagh | Role of deformable cancer cells on wall shear stress-associated-VEGF secretion by endothelium in microvasculature[END_REF].

The effect of increasing arteriole length is evaluated for L = 900 and 1800 µm. As for the initial length L = 300 µm, the time-evolution of Taylor parameter is concavity sign changing (Figure 7). One can remarks that for L = 1800 µm, the shape of the curve is identical to that of L = 900 µm but "stretched". Even if the vascular resistance increases with length, we believe that the unsteadyness of Taylor parameter time-evolution will persists due to the mechanism of expansion-constriction that varies the viscous stresses acting on the microparticle (i.e. the capillary number). 

Comparison with rigid microchannel

A comparison with a rigid microchannel is performed for Ca = 0.05. It is concluded that for a similar capillary number, the microparticle exhibits a different dynamical behavior. Indeed, when the microparticle is confined in the rigid channel, the Taylor parameter evolution with respect to time is ascending till the microparticle is stopped by the channel extremity (see Figure 8(a)). This evolution is akin when the microparticle is subjected to a shear flow [START_REF] Husmann | Deformation and bursting of nonspherical polysiloxane microcapsules in a spinning-drop apparatus[END_REF][START_REF] Lac | Spherical capsules in three-dimensional unbounded Stokes flows: Effect of the membrane constitutive law and onset of buckling[END_REF] or to an elongational flow [START_REF] De Loubens | Mechanical characterization of cross-linked serum albumin microcapsules[END_REF]. Nevertheless, the horizontal plateau is not observed because of the edge effect. Moreover, various deformed shapes are observed for the hyperelastic arterial wall while the particle confined in the rigid channel is deformed into a quasi-steady shape (see Figures 8(b) and 8(c)). Time-snapshots show that at similar times (t = 0.364, 0.698 and 0.910 ms), deformed shapes are widely different. The deformation soars in the case of arterial wall whilst it progressively increases with respect to time (see Figure 8(a)). On the other hand, when the particle flows along the rigid microchannel, it attains the channel extremity at t = 0.910 ms, while at the same time, the microparticle suspended in the arteriole is in the midway (see Figure 8(b)) which reveals that the microparticle moves with different velocities. According to the microparticle rear end velocity time-evolution, the flowing particle in the rigid microchannel attains a maximum velocity before it decelerates quasi-instantly and tends to an asymptotic velocity (see Figure 9). Furthermore, the microparticle confined in arteriole accelerates along its course. Curves show that for the highest and the lowest capillary number (Ca = 0.01, Ca = 0.05), a slight gap exists till a certain time (t ≈ 0.3 ms) and the curves finally coincide. This result suggests that for any capillary number, velocity tends to a common magnitude. All of observed discrepancies are due to the arterial wall distensibility and its hyperelastic response to the flow. The expansion-constriction changes the confinement and therefore the shear rate (i.e. viscous forces applied on the flowing particle). In these conditions, viscous forces applied on the microparticle are related to the wall displacement, leading to different deformed shapes for a same capillary number. In contrast, in the case of rigid microchannel, the microparticle is deformed into a quasi-steady shape. For a deformable wall, it is more appropriate to talk about an initial capillary number that correspond to the undeformed wall state.

Arteriole embedded in muscle

In this paragraph, we report the effect of the presence of a surrounding muscle on arteriolar wall displacement and on deformation of the microparticle. This configuration is more realistic than the FEW assumption. As expected, it is found that the presence of the muscle that serves as a uniform mechanical load, restricts both arteriolar wall vertical displacement (Figure 10) [START_REF] Westerhof | Cross-Talk Between Cardiac Muscle and Coronary Vasculature[END_REF] and microparticle deformation (Figure 11). The higher the muscle thickness the less the arteriolar wall dilation upon blood flow. In the absence of the surrounding muscle, the maximum dilation of the arteriole (34.02%) is within the range of experimental dilation values reported for human coronary arteriole in [START_REF] Miura | Flow-Induced Dilation of Human Coronary Arterioles Important Role of Ca 2 + Activated K + Channels[END_REF]. The maximum of Taylor parameter is constant starting from H m = 35 µm (Figure 11). A comparison performed for H m = 60 µm and the rigid wall reveals that both configurations are quasi-identical (discrepancies are comprised between 0.89% and 4.31%.)

Implications of results in a medical context

Whether in the presence of the surrounding muscle (H m < 35 µm) or in its absence, it is found that microparticle deformation is increased comparing to the rigid wall assumption. In a context of medical application, an important deformation is potentially a risk of premature burst in the vicinity of a non-targeted environment which implies toxic effects on healthy tissues. Regarding the velocity, the arteriolar wall distensibility is found to decelerates the microparticle. Firstly, that means that the particle is in longer contact with RBCs and white blood cells and knowing that these biological cells (which size is comparable to the studied microparticle) imposes stresses on microparticle membrane and consequently, a longer contact could result in an additional burst risk. Secondly, the microparticle could impedes bloodstream flow. These findings must imperatively be taken into account while designing microparticles in order to ensure a safe and efficient functioning of the drug-eluting microparticles. 

Conclusions

In this research paper, we investigate the dynamical behavior of a soft microparticle confined by hyperelastic arterial wall and suspended in blood flow, while fully respecting biomechanical constraints. Finding reveals that the wall distensibility has a great influence on microparticle deformation (qualitatively and quantitatively) and on its flowing velocity along the arteriole. We unambiguously outline the relevance of the inclusion of biomechanical constrains for an accurate prediction of microparticle dynamics, a prerequisite of a safe and proficient trageted drug-delivery procedure. This study is the first of its kind and further investigation remains necessary, in particular a realistic vessel geometry instead of the idealized geometry used for the sake of simplicity. The following concluding remarks could be drawn :

• The deformation and the velocity of the microparticle depend on mechanical properties of the wall.

• The displacement of the wall changes the shear rate an then the viscous forces applied on the microparticle membrane.

• The microparticle rear end and front shape transition ant their dependence on the capillary number are in good agreement with the numerical and experimental observations reported in numerous published studies. • Deformed shapes are morphologically in excellent agreement with literature. 
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 1 Fig. 1. Schematic description of the FSI problem.

Fig. 2 .

 2 Fig. 2. Taylor parameter versus dimensionless time for a capsule suspended in a shear flow (left). Superposition of obtained steady deformed shapes illustrated by different colors: Ca = 0.075 (green) Ca = 0.15 (pink), Ca = 0.3 (yellow), Ca = 0.45 (red) and Ca = 0.6 (blue).
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 3 Fig. 3. Time-evolution of Taylor parameter (a) and of axial and radial lengths (b) for Ca = 0.01 -0.05.

Fig. 4 .

 4 Fig. 4. Real time snapshot at t = 1 (ms). Rainbow color spectrum corresponds to velocity magnitude (m/s) and grey scale color to displacement (m).
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 5 Fig. 5. Influence of the blood viscosity model for Ca = 0.05.

Fig. 6 .

 6 Fig. 6. Pebble-shaped microparticle at t = 0.2602 ms (a). Bullet-shaped microparticle at t = 1 ms (b). Parachute-shaped microparticle with a strongly concave rear end at t = 1.393 ms (c) Corresponding local mesh zoom (d).
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 7 Fig. 7. Arteriole length effect on Taylor parameter. Solid lines are for L = 900 µm and dashed lines for L = 1800 µm.
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 8911 Fig. 8. Taylor parameter and microparticle deformed shapes for Ca = 0.05. (a) Red markers at specific times point out snapshot time used to capture deformed shapes. (b) Real time snapshots of the microparticle flowing along the hyperelastic arteriole (b) and along the rigid microchannel (rigid wall) (c).

Table 1 .

 1 Material parameters. 10 5 2.23 • 10 5 1.37 • 10 6 2.67 • 10 6 3.71 • 10 6 3.78 • 10 6 the external arteriolar wall, we consider a free unconstrained external wall (FEW) where the wall is free to deform and a constrained state where it is surrounded by a muscle which is more realistic. The muscle follows the Neo-Hookean law (5)[START_REF] Cheema | Numerical investigation of hyperelastic wall deformation characteristics in a micro-scale stenotic blood vessel[END_REF]. Muscle thicknesses considered are H m = 5, 10, 15, 20, 27.5, 35 and 60 µm. The FEW assumption corresponds to H m = 0 µm (no surrounding muscle). As for the arteriolar wall, the zero displacement boundary condition is imposed to the ends of the muscle. Results relative to the FEW assumption and to the muscle-embedded arteriole are given on 4.2 and 4.4, respectively.

	ρ kg/m 3	κ (Pa)	C 10 (Pa)	C 01 (Pa)	C 20 (Pa)	C 02 (Pa)	C 11 (Pa)
	1150	2.04 •