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Abstract. Job Shop Scheduling Problem (JSSP) is among the combinatorial op-

timization and Non-Deterministic Polynomial-time (NP) problems. Researchers 

have contributed in this area using several methods, among the methods we have 

machine learning algorithms, more precisely Reinforcement Learning (RL). The 

reason why the scientists resort to RL is the adequacy of the algorithm for this 

type of problem. The results of the RL approach tend toward optimal or near-

optimal solutions. In this paper, we deal with the JSSP, using the RL algorithm, 

more specifically a Q-learning algorithm. We propose a new representation of 

the state of the environment. We introduce two evaluations of the agent using 

two different methods. The actions selected by the agent are the dispatching rules. 

Finally, we compared the results obtained by the approach with the literature. 

Keywords: Job Shop Scheduling Problem, Reinforcement Learning, dispatch-

ing rules, Q-learning. 

Introduction 

Production planning ensures that the company can develop, manufacture and finalize 

products efficiently and within predefined deadlines. Scheduling is an important step 

when planning a production process. By using production scheduling, manufacturing 

companies can allocate tasks to needed resources efficiently. 

Job Shop Scheduling Problems (JSSP) are currently one of the most relevant issues 

in manufacturing, especially for systems that require a high degree of flexibility to meet 

customer needs. As manufacturers adapt to this demand, they will make changes to 

increase system flexibility, which will inevitably increase the complexity of the overall 

system [1]. JSSP are combinatorial optimization problems and Non-Deterministic Pol-

ynomial-time (NP) hard problems. One of the resolution methods is the use of dispatch-

ing rules due to their simplicity and ease of use such as Shortest Processing Time (SPT), 

First in First Out (FIFO), Longest Processing Time (LPT), Last in First Out (LIFO), 

and Earliest Due Date (EDD). The problem is that dispatching rules may be much more 

appropriate in one problem and not in another one. Due to the large-scale combinatorial 

optimization problems, it is complicated to use exact methods, which is the reason why 

the researchers move to the solutions related to Artificial Intelligence. Generally, they 

use the meta-heuristics such as Genetic Algorithms (GA) [2], or the Machine Learning 
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methods such as Supervised Learning [3], Unsupervised Learning [4], and Reinforce-

ment Learning [5] 

In this paper, we are interested in JSSP resolution using Machine learning algo-

rithms, in particular, Reinforcement Learning (RL). RL addresses how autonomous 

agents learn to choose appropriate actions to achieve their goals by interacting with the 

environment [6]. The reason why we choose this type of machine learning is the dy-

namic environment that makes the agent in a situation of taking a real-time decision. 

There are many algorithms in RL, such as SARSA [7], actor cretic algorithm [8], and 

Q-learning algorithm [9]. In our research, we have used the Q-learning algorithm (QL) 

QL is a model-free RL algorithm in which the agent learns from real-world experience 

examples from the environment and never uses the generated next-state predictions.  

We propose a new state representation, which helps the agent to take decisions de-

pending on a real situation. We have equipped an agent, which selects in each situation 

the most appropriate dispatching rule according to which it will schedule the jobs. We 

have evaluated the agent twice, the 1st one is during the jobs assignment, and the 2nd is 

after obtaining the makespan (maximum completion time of jobs also called 𝐶𝑚𝑎𝑥). 

The strategy of exploiting and exploring the environment accelerates the convergence 

of the agent into a good solution and maximizes the rewards of all the decisions driven 

by this solution. We compared the results we obtained with the results of the dispatch-

ing rules (FIFO, LIFO, SPT, and LPT), the meta-heuristics GA [10], Hybrid GA [11], 

and Deep reinforcement learning (DRL) [12]. 

This paper is organized as follows: Section 1: works related to JSSP, and the contri-

bution of some authors using the RL algorithms. Section 2: a description of the JSSP. 

Section 3: background about the RL algorithm we used. Section 4: the implementation 

of the algorithm on the JSSP. Section 5: the results we obtained as well as a comparison 

and a discussion. Section 6: a conclusion and perspectives. 

1 Related works  
In recent years, several papers related to JSSP use RL algorithms, with a difference 

that relies on the chosen RL algorithm, or the objective function as well as the state 

representation and the reward function. If we take the 𝐶𝑚𝑎𝑥 as the objective function, it 

was addressed in [13] [14] [15], they used the QL algorithm, and the latter is one of the 

most prominent algorithms used in the JSSP. Wang et al. [12] proposed a dynamic 

scheduling method based on deep reinforcement learning (DRL). They adopted the 

proximal policy optimization (PPO) to find the optimal policy for the scheduling to 

handle the large scale of the state, to represent the state, they used three matrices, a 

machine matrix, a processing time matrix for each operation in jobs, which do not 

change over time and a job processing status matrix. The function of the reward is re-

lated to the utilization of the machine and the obtained makespan. Liu et al. [8] proposed 

deep reinforcement learning to deal effectively with the Job shop scheduling problem. 

The proposed model comprises an actor network and a critic network. They represent 

the state of the environment in three matrices, a process time matrix, a boolean matrix 

of the assigned job to each machine and a boolean matrix of the completed job, and the 

reward in three different functions, process time of the selected job, remaining process 

time of the job and the comparison of the smallest makespan.  



Jiménez et al. [16] developed a tool for the Job Shop scheduling, which works with 

the Q-learning algorithm and can be adapted to different scheduling scenarios such as 

Flexible JSSP or and, Parallel machines problems. Zhou et al. [17] used a DRL, they 

build two networks, the prediction and target network. Waschneck et al. [18] proposed 

cooperative DQN agents, which utilize deep neural networks trained with user-defined 

objectives to optimize scheduling. They applied their study in a small factory simula-

tion of an abstracted frontend-of-line semiconductor production facility. Tassel et al. 

[19] represented a DRL environment for Job-Shop Scheduling, they make a meaningful 

state representation using a matrix, each row describes information about the job such 

as the allocation of the number of operations rests or the competed ones. They designed 

a dense reward function based on the scheduled area. After each action, they computed 

the difference between the duration of the allocated operations and the idle time of a 

machine. Samsonov et al. [20] proposed a new form of reward and designed a new space 

for action, they represent the state in six characteristics: machine states, the sum of all 

operations’ processing times currently in the queue of each machine, the sum of all 

operations’ processing times for each job, the duration of the next operation for each 

job, the index of the next required machine for each job, and finally the time already 

passed in any given moment. For the reward, the agent is evaluated at the end of the 

episode. 

All authors who contribute to this field applied different approaches for defining the 

states and evaluating the agent’s actions. They choose to represent the state by giving 

all information about the environment to the agent. This representation of the state may 

not be necessary. The reason is that the agent that selects an order set of jobs on a 

machine does not need to have information about other jobs. Action selection in most 

works is based on the selection of jobs to be executed on a machine. This puts the agent 

in a situation where multiple actions are available on the same machine. We can find 

this phenomenon in large workshops.  

2 Problem description  
Job shop-type workshops are the most complicated in terms of assigning tasks to 

machines, where each job has its specific routing and the processing time of tasks in 

the same machine is not necessarily identical as shown in Fig. 1. 

In a Job Shop, we have a set of 𝑛 Jobs: {𝐽1, 𝐽2, 𝐽3, … , 𝐽𝑛}, each job has its operations: 

𝐽𝑖 = {𝑂𝑖1, 𝑂𝑖2, 𝑂𝑖3 , … 𝑂𝑖𝑗 … , 𝑂𝑖𝑚} with 𝑖 𝜖 {1, 𝑛}, 𝑗 𝜖 {1, 𝑚} and 𝑚 is the number of op-

erations executed in 𝑚 machines: {𝑀1, 𝑀2, 𝑀3, … , 𝑀𝑚}. All the tasks or the operations 

𝑂𝑖𝑗  are defined with a start time 𝑡𝑖𝑗, a processing time 𝑝𝑖𝑗, and a completion time 𝐶𝑖𝑗. 

 

Fig. 1. Job shop example 



The completion time of operations on a machine is referred to as 𝐶𝑗. The maximum 

load 𝑚𝑎𝑥𝐿𝑜𝑎𝑑𝑗  of a machine 𝑀𝑗  is the sum of the processing times of all operations to 

be executed in this machine. The instantaneous load: 𝑖𝑛𝑠𝑡𝐿𝑜𝑎𝑑𝑗 , represents the load of 

the machine after the affectation of an operation (it is the ratio between executed oper-

ations and 𝑚𝑎𝑥𝐿𝑜𝑎𝑑𝑗). 𝑏𝑎𝑡𝑐ℎ𝑗 and 𝑠𝑒𝑞𝑗  are the current queues of 𝑀𝑗  and the current 

sequence of tasks of this machine respectively. 

Important constraints should be respected to avoid overlapping during the allocation 

of operations to the machines. The precedence constraint is presented in Fig.2.a, where 

we can’t start a new operation 𝑂𝑖𝑗+1of 𝐽𝑖without finishing the previous one 𝑂𝑖𝑗 . 

 

          a. Precedence constraint                                b. Machine constraint 

Fig. 2. Constraints presentation. 

The other constraint related to the completion time of machine 𝐶𝑗, we can’t start an 

operation in a machine without finishing the previous one as presented in Fig.2.b. To 

calculate it, we should see the maximum between the next operation’s completion time 

𝐶𝑖𝑗+1 in a machine 𝑀𝑗+1 and the completion time of the machine, which is: 

𝐶𝑗 =  𝑝𝑖𝑗 + max( 𝐶𝑗 , 𝐶𝑖𝑗+1) 

The objective of our study is to minimize the total completion time of all jobs in all 

machines  

𝐶𝑚𝑎𝑥  (𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛) = min (𝐶max  , 𝑤𝑖𝑡ℎ 𝐶𝑚𝑎𝑥 = max (𝐶𝑗)              

 

3 Reinforcement learning 
RL is a technique that learns what an agent does to interact with a given environment 

to maximize rewards [21]. A learning agent must be able to sense the state of its envi-

ronment to some extent and take actions that affect the state. The agent must also have 

one or more targets related to the state of the environment [22]. 

There are several RL algorithms, in our paper we used Q-learning. It represents a 

form of model-free RL algorithm. The core of the algorithm is a simple value iteration 

update, each state-action pair (𝑠, 𝑎) has a Q-value associated. When action 𝑎 is selected 

by the agent located in state 𝑠𝑡, the Q-value for that state-action pair is updated based 

on the reward received when selecting that action, and the best Q-value for the subse-

quent state 𝑠𝑡+1 [23]. The Q-values are saved in a Q-table, making the agent access them 

rapidly. The function of Bellman which updates the Q-values is as follows: 

𝑄𝑛𝑒𝑤(𝑠t, 𝑎t) = (1 − 𝛼)𝑄𝑜𝑙𝑑(𝑠t, 𝑎t) + 𝛼(𝑟t + 𝛾(max(𝑄(𝑠t+1, 𝑎)))) (1) 



Where α represents the learning rate, it is the probability of acceptance of the target 

value. (1 − 𝛼) is the probability of keeping the old Q-value and 𝛾 is a discount factor, 

it is used to balance the immediate and the future reward. (max(𝑄(𝑠t+1, 𝑎))) represents 

the maximum Q-value of the next state, that is the reason why the Q-learning is an off-

policy algorithm, the policy used during the evaluation stage can differ from the one 

used in the improvement stage, which leads to more exploration at the expense of con-

vergence speed [24]. In other words, it is not necessarily that the action 𝑎t chosen in the 

state 𝑠t is the same one as 𝑎 in the target (𝑟t + 𝛾(max(𝑄(𝑠t+1, 𝑎)))). 

The goal is to find the optimal policy in the long term, to reach this objective. The 

agent needs a process to explore the environment by taking actions randomly and in-

teracting with the environment, and exploits by maximizing its gains when it finds an 

optimal policy. The ɛ-greedy policy is a policy that allows the agent to explore with a 

probability of ɛ and exploit with a probability of 1- ɛ.  

 

4 Implementation  
Now that we have presented the problem and explained the algorithm we used, we 

will see in this section the presentation of the basic elements of the algorithm in terms 

of the JSSP, then the learning phase, and the application phase of the algorithm. 

Presentation of the elements of the learning algorithm 

State representation.  

Our objective is to minimize the total completion time 𝐶𝑚𝑎𝑥. We have represented 

the state as a machine with at least two tasks in the queue. The agent must choose an 

action that represents the select of one prioritized task in the queue. We have chosen to 

define the state in this way because the necessary information for the agent is that which 

must be allocated at this moment. There is no decision to take for the machines that 

have only one job in their queue. So the state in equation (1) is as follows: 

𝑠𝑡 = 𝑏𝑎𝑡𝑐ℎ𝑗        𝑤ℎ𝑒𝑛  |𝑏𝑎𝑡𝑐ℎ𝑗| ≥ 2  

Action selection.  

In our study, we tried to choose the action differently, the agent will choose one of 

the popular dispatching rules for each decision. There are two reasons why we choose 

this selection. Firstly, it is interesting and easy to understand to schedule using a rule in 

a state; A different rule may perform better in another state. Secondly, the agent will 

choose only four actions, which are the dispatching rules SPT, LPT, FIFO and LIFO 

instead of choosing all the possible Jobs. So, the actions in equation (1) are: 

𝑎𝑡 = {𝑆𝑃𝑇, 𝐿𝑃𝑇, 𝐹𝐼𝐹𝑂, 𝐿𝐼𝐹𝑂} 

Reward function.  

The reward function represents an important step in the implementation of the algo-

rithm. The reward is most often proportional to the optimization target or a value that 

highly correlates with it (e.g. makespan and average utilization) [24]. In our study, the 

reward has a relation to the machine loads (𝑖𝑛𝑠𝑡𝐿𝑜𝑎𝑑𝑗) and the completion time of the 

job. If the machines have been well loaded at the time of the decision means that they 

are well balanced and the completion time is best. When the agent is in a state 𝑠𝑡 and 



it must take a decision on 𝑀𝑗, it calculates the load of each machine (𝑖𝑛𝑠𝑡𝐿𝑜𝑎𝑑𝑗), then 

it calculates the average loads of all the machines except 𝑀𝑗. Then, the current load of  

𝑀𝑗 (𝑖𝑛𝑠𝑡𝐿𝑜𝑎𝑑𝑗) is compared with the average to see if the machine is balanced with the 

others or not. In this step, we will evaluate the action chosen by the agent, and whether 

it deserves a reward or a penalty. For instance, if 𝑖𝑛𝑠𝑡𝐿𝑜𝑎𝑑𝑗 = 20% and the average 

load of the other machines is 60%, means that the machines are not well balanced. In 

this case, the correct action is to choose the rule that prioritizes the job with the longest 

processing time. If the chosen rule does not select first the job with this characteristic, 

a penalty is given.  

 The reward function has a relation to the completion time obtained by applying the 

action chosen by the agent and the completion time obtained for the other actions. This 

process evaluates the policy chosen by the agent, makes cooperation between the dis-

patching rules in the same episode and leads to the optimal policy: 

𝑟𝑡 = {
(𝟏 −   𝑪𝒋 )/∑ 𝑪𝒋  (𝒂𝒍𝒍 𝒂𝒄𝒕𝒊𝒐𝒏𝒔),   if 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑐𝑡𝑖𝑜𝑛 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑠 𝑡ℎ𝑒 𝑙𝑜𝑎𝑑𝑠

− (𝟏 −   𝑪𝒋 )/∑ 𝑪𝒋  (𝒂𝒍𝒍 𝒂𝒄𝒕𝒊𝒐𝒏𝒔),  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

We have used another method of representing the reward while keeping the same 

idea of the evaluation manner, as shown below:  

𝑟𝑡 = {
+𝟏,   𝑖𝑓 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑐𝑡𝑖𝑜𝑛 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑠 𝑡ℎ𝑒 𝑙𝑜𝑎𝑑𝑠
− 𝟐,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The agent will be evaluated twice, the first one during the learning process in an 

episode, i.e. when assigning jobs to machines, using loads and completion times as we 

mentioned before. The second is at the end of the episode where it obtains the 𝐶𝑚𝑎𝑥. In 

this case, the evaluation is done using the 𝐶𝑚𝑎𝑥 obtained, if it is the smallest until now, 

we will maximize the rewards of all the actions taken in this episode. Otherwise, we 

will add nothing. This policy helps the agent maximize the gain only for the right deci-

sions. The evaluation at the end of the episode is represented as follows: 

𝑟𝑡 = ((𝐶𝑚𝑎𝑥(𝑚𝑎𝑥𝑖𝑚𝑎𝑙) −  𝐶𝑚𝑎𝑥)/𝐶𝑚𝑎𝑥(𝑚𝑎𝑥𝑖𝑚𝑎𝑙)) × 𝑒𝑝𝑖𝑠𝑜𝑑𝑒,    𝐶𝑚𝑎𝑥 ≤  𝐶𝑚𝑎𝑥(𝑚𝑎𝑥𝑖𝑚𝑎𝑙) 

Learning phase 

In this phase, we will use the Q-learning algorithm adapted to the different charac-

teristics of the JSSP. During the learning phase, the agent will try to maximize the re-

wards of a good solution. We have defined the reward of how it will maximize each 

time it finds a good solution to its exploration path.  But it must also increase the ex-

ploitation rate each time when it finds a good solution. We have added a mechanism 

that will help the agent to exploit much more solutions each time it finds a good solu-

tion. This is conducted by increasing the value of epsilon each time until epsilon is 

greater than 0.9, it will take the value of 0.999.  In this way, the agent does not explore 

too much, which leads to slow learning, and does not converge quickly to the best so-

lution. For the same reason, the agent will not exploit too much so that the actions do 

not lead to local solutions. Table 1 resumes the learning phase. 

 

 

 



Table 1. Learning Phase Algorithm 

1. initialize the Q − table empty 

2. calculate the 𝑚𝑎𝑥𝐿𝑜𝑎𝑑𝑗  and 𝑖𝑛𝑠𝑡𝐿𝑜𝑎𝑑𝑗  of all the machines 

3. ε = 0.2, α = 0.9, γ = 0.75 

4. For several episodes: 

 While the end of the allocation of all jobs is not done: 

a.  Fill the machines queue  

b.  If  |𝑏𝑎𝑡𝑐ℎ𝑗| ≥  2: 

 Add a row Q − table  with 4 columns with null values 

 Choose an action using an ε − greedy policy  

 Calculate the reward using the first evaluation 

 Update the Q − value (Qold(st, at)  ← Qnew(st, at)) in the Q −

table  

 Add the job to the machine. seq 

  Update the state of the batch (st ← st+1)  

  If there is another machine [m + 1]. batch ≥  2 return to (b) 

 Compare the Cmax  of this episode with the smallest one obtained and calculate the 

 reward using the second  evaluation  

 Increase the ε value 

 If ε > 0.9: 

ε = 0.999 

Final model 

After the end of the learning phase, the Q-table contains all the states experienced 

by the agent, as well as the Q-values of each action applied in each state. Actions are 

considered as good decisions with maximum Q-values or bad decisions with minimum 

Q-values, since the learning strategy leads to maximizing the gain for good decisions. 

In this phase, the agent's optimal policy 𝜋∗ is used to choose actions with maximum Q-

value. This brings us to the solution approximated by the learning algorithm. 

𝜋∗(𝑠𝑡) = max (𝑄(𝑠𝑡 , 𝑎)) 

5  Results and discussion 
QL01 represents the results by using the reward function related to the completion 

time of actions, and QL02 where the reward is +1 and -2. We have applied this experi-

ence to 46 benchmark instances from the OR Library [25] and compared the results 

given by QL01 and QL02 with the dispatching rules (FIFO, SPT, LPT), GA [10], HGA 

[11], DRL [12] and the optimal solution as well. The algorithms are executed under 

1000 episodes for small instances (ft06, ft10, la01 to la15, orb01 to orb03 and orb07) 

and 10000 episodes for mean and large scales (la16 to la40) in a reasonable time. The 

results are shown in Table. 2. Columns QL01 and QL02 in the second row of this table 

show if the proposed approach outperformed the compared one (value equal to 1 if it is 

the case).    

Our approaches gave good results compared with the dispatching rules. In all the 

instances, the proposed algorithms gave solutions much closer to the optimal solution 



Table 2. Results of QL01 and QL02, dispatching rules (SPT, LPT, FIFO), meta-heuristics (GA, HGA), and DRL. 

 
Workshop SPT LPT FIFO OPT QL 01 QL 02 GA [10] HGA [11] DRL [17] 

Cmax Error Cmax Error Cmax Error QL 01 QL 02 Cmax Error QL 01 QL 02 Cmax Error QL 01 QL 02 

ft06(06x06) 88 77 65 55 57 -2 57 -2 55 0 0 0 55 0 0 0 57 -2 1 1 

ft10(10x10) 1074 1295 1184 930 1017 -87 999 -69 994 -64 0 0 938 -8 0 0 1033 -103 1 1 

la01(05x10) 751 822 772 666 666 0 666 0 667 -1 1 1 666 0 1 1 666 0 1 1 

la02(05x10) 821 990 830 655 685 -30 685 -30 676 -21 0 0 655 0 0 0 715 -60 1 1 

la03(05x10) 672 825 755 597 623 -26 619 -22 627 -30 1 1 597 0 0 0 634 -37 1 1 

la04(05x10) 711 818 695 590 620 -30 620 -30 608 -18 0 0 590 0 0 0 665 -75 1 1 

la05(05x10) 610 693 610 593 593 0 593 0 593 0 1 1 593 0 1 1 593 0 1 1 

la06(05x15) 1200 1125 926 926 926 0 926 0 926 0 1 1 926 0 1 1 926 0 1 1 

la07(05x15) 1034 1069 1088 890 890 0 967 -77 891 -1 1 0 890 0 1 0 894 -4 1 0 

la08(05x15) 942 1035 980 863 863 0 876 -13 863 0 1 0 863 0 1 0 863 0 1 0 

la09(05x15) 1045 1183 1018 951 951 0 951 0 951 0 1 1 951 0 1 1 951 0 1 1 

la10(05x15) 1049 1132 1006 958 958 0 958 0 958 0 1 1 958 0 1 1 958 0 1 1 

la11(05x20) 1473 1467 1272 1222 1222 0 1222 0 1222 0 1 1 1222 0 1 1 1222 0 1 1 

la12(05x20) 1203 1240 1039 1039 1039 0 1039 0 1039 0 1 1 1039 0 1 1 1039 0 1 1 

la13(05x20) 1275 1230 1199 1150 1150 0 1150 0 1150 0 1 1 1150 0 1 1 1150 0 1 1 

la14(05x20) 1427 1434 1292 1292 1292 0 1292 0 1292 0 1 1 1292 0 1 1 1292 0 1 1 

la15(05x20) 1339 1612 1587 1207 1207 0 1302 -95 1256 -49 1 0 1207 0 1 0 1212 -5 1 0 

la16(10x10) 1156 1229 1180 945 983 -38 995 -50 993 -48 1 0 945 0 0 0 / / / / 

la17(10x10) 924 940 943 784 800 -16 800 -16 804 -20 1 1 784 0 0 0 / / / / 

la18(10x10) 981 1114 1049 848 873 -25 861 -13 874 -26 1 1 848 0 0 0 / / / / 

la19(10x10) 940 1062 983 842 875 -33 875 -33 895 -53 1 1 844 -2 0 0 / / / / 

la20(10x10) 1000 1272 1272 902 939 -37 941 -39 942 -40 1 1 911 -9 0 0 / / / / 



 

la21(10x15) 1324 1451 1265 1046 1107 -61 1126 -80 1180 -134 1 1 1046 0 0 0 / / / / 

la22(10x15) 1180 1315 1369 927 1022 -95 1026 -99 1103 -176 1 1 935 -8 0 0 / / / / 

la23(10x15) 1162 1302 1354 1032 1038 -6 1053 -21 1100 -68 1 1 1032 0 0 0 / / / / 

la24(10x15) 1203 1245 1141 935 1000 -65 1021 -86 1077 -142 1 1 953 -18 0 0 / / / / 

la25(10x15) 1449 1374 1283 977 1074 -97 1059 -82 1116 -139 1 1 984 -7 0 0 / / / / 

la26(10x20) 1499 1564 1372 1218 1302 -84 1327 -109 1433 -215 1 1 1218 0 0 0 / / / / 

la27(10x20) 1784 1700 1644 1252 1364 -112 1361 -109 1469 -217 1 1 1256 -4 0 0 / / / / 

la28(10x20) 1610 1844 1532 1273 1358 -85 1363 -90 1408 -135 1 1 1225 48 0 0 / / / / 

la29(10x20) 1556 1720 1540 1238 1363 -125 1348 -110 1439 -201 1 1 1196 42 0 0 / / / / 

la30(10x20) 1792 1866 1664 1355 1390 -35 1440 -85 1546 -191 1 1 1355 0 0 0 / / / / 

la31(10x30) 1954 2340 1918 1784 1857 -73 1802 -18 1906 -122 1 1 1784 0 0 0 / / / / 

la32(10x30) 2165 2513 2110 1850 1914 -64 1883 -33 2002 -152 1 1 1850 0 0 0 / / / / 

la33(10x30) 1901 2306 1873 1719 1817 -98 1802 -83 1838 -119 1 1 1719 0 0 0 / / / / 

la34(10x30) 2005 2324 1925 1721 1828 -107 1794 -73 1934 -213 1 1 1721 0 0 0 / / / / 

la35(10x30) 2118 2421 2142 1888 1985 -97 1925 -37 2106 -218 1 1 1888 0 0 0 / / / / 

la36(15x15) 1854 1946 1516 1268 1415 -147 1372 -104 1480 -212 1 1 1287 -19 0 0 / / / / 

la37(15x15) 1632 1944 1873 1397 1533 -136 1561 -164 1606 -209 1 1 1408 -11 0 0 / / / / 

la38(15x15) 1395 1732 1475 1196 1334 -138 1351 -155 1435 -239 1 1 1219 -23 0 0 / / / / 

la39(15x15) 1540 1822 1532 1233 1358 -125 1360 -127 1456 -223 1 1 1245 -12 0 0 / / / / 

la40(15x15) 1493 1822 1604 1222 1311 -89 1315 -93 1492 -270 1 1 1241 -19 0 0 / / / / 

orb01(10x10) 1478 1410 1368 1059 1119 -60 1177 -118 1212 -153 1 1 / / / / 1131 -72 1 0 

orb02(10x10) 1175 1293 1007 888 918 -30 922 -34 960 -72 1 1 / / / / 993 -105 1 1 

orb03(10x10) 1179 1430 1405 1005 1071 -66 1075 -70 1162 -157 1 1 / / / / 1092 -87 1 1 

orb07(10x10) 475 470 504 397 418 -21 423 -26 408 -11 0 0 / / / / 432 -35 1 1 

% of instances 

with good re-
sults 

          89,13 80,43   27,90 20,93   100 80,95 



compared to the minimal solution among the dispatching rules. The reason is that it is 

better to use a mix of rules in a problem rather than using only one rule. By comparing 

the difference between the GA and optimal solution and the difference between the 

QL01and optimal solution, 89,13 % of the 46 instances give the best result than GA 

especially the instances with a large scale. For QL02, it was 80,43% of the 46 instances 

it gives a good solution compared with GA in large scales and some average scales 

instances except la07, la08, la15, and la16. By comparing with HGA, our algorithm 

QL01 gives a good result for 27,90% of the compared instances, and 20,93 % in QL02. 

The reason why our approaches did not give good results compared with the HGA may 

be because of the limits of the possible actions. The agent in our case chooses four 

actions instead of all the possible Jobs that can be allocated. For DRL, QL01 gives an 

interesting solution for all the compared instances (100%), and 80,95% compared with 

QL02. 

  

Fig. 3. Convergence of solution for instance ft06 (06x06) QL01 

  In Fig 3, we present the convergence of the learning algorithm during the learning 

phase. At the beginning of the learning, the agent explores the environment. Once it 

finds a better solution, it exploits and keeps a probability of exploring. 

 

 

Fig. 4. Convergence of solution for instance orb07 (10x10) QL02 

    As shown in the picks in Fig 4, in case it finds a bad solution, it goes back to the 

good solution founded and maximizes it, in case it finds another good solution it will 

maximize the rewards for the new one.  The large size instances does not limit the agent 
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to searching the solution space and finding a solution that approaches the optimal solu-

tion, as shown in Fig 5. We can notice that the exploration time of the environment 

increases every time we have a larger instance. This is due to the expansion of the 

solution space from one instance of small size to another instance of large size.  

 

 
Fig. 5.  Convergence of solution for la40 (15 x15) QL02 

6 Conclusion 
In our article, we discussed an important problem of production planning process in 

a manufacturing system, namely JSSP. We use QL to solve this problem because it is 

best suited for this type of problem. We use a new representation of the state of the 

environment that only affects the machines on which the agent will make decisions. 

Two new reward functions are introduced based on loads of machines. The agent’s 

decision is then evaluated first during the assignment of jobs and second at the end of 

the schedule.  

The application of the algorithm is compared with literature work. The results of the 

algorithm outperformed the genetic algorithm and dispatching rules. However, due to 

the number of agent’s action, the algorithm was not able to perform better than a deep 

reinforcement learning. Since this approach yields interesting results, as a perspective, 

we will apply it to more complex conditions, where the agent will learn in a dynamic 

environment, when the tasks to be planned over some time are not known in advance 

and arrive gradually. 
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