Manal Abir Belmamoune
email: [manalabir.belmamoune@univ-tlemcen.dz

Latéfa Ghomri
email: latefa.ghomri]@univ-tlemcen.dz

Zakaria Yahouni
email: bzakaria.yahouni@grenoble-inp.fr

Solving a Job Shop Scheduling Problem Using Q-Learning Algorithm

Keywords: Job Shop Scheduling Problem, Reinforcement Learning, dispatching rules, Q-learning. Table 2. Results of QL01 and QL02, dispatching rules (SPT, LPT, FIFO), meta-heuristics (GA, HGA), and DRL

Job Shop Scheduling Problem (JSSP) is among the combinatorial optimization and Non-Deterministic Polynomial-time (NP) problems. Researchers have contributed in this area using several methods, among the methods we have machine learning algorithms, more precisely Reinforcement Learning (RL). The reason why the scientists resort to RL is the adequacy of the algorithm for this type of problem. The results of the RL approach tend toward optimal or nearoptimal solutions. In this paper, we deal with the JSSP, using the RL algorithm, more specifically a Q-learning algorithm. We propose a new representation of the state of the environment. We introduce two evaluations of the agent using two different methods. The actions selected by the agent are the dispatching rules. Finally, we compared the results obtained by the approach with the literature.

Introduction

Production planning ensures that the company can develop, manufacture and finalize products efficiently and within predefined deadlines. Scheduling is an important step when planning a production process. By using production scheduling, manufacturing companies can allocate tasks to needed resources efficiently.

Job Shop Scheduling Problems (JSSP) are currently one of the most relevant issues in manufacturing, especially for systems that require a high degree of flexibility to meet customer needs. As manufacturers adapt to this demand, they will make changes to increase system flexibility, which will inevitably increase the complexity of the overall system [START_REF] Csaba | Dynamic scheduling in a job-shop production system with reinforcement learning[END_REF]. JSSP are combinatorial optimization problems and Non-Deterministic Polynomial-time (NP) hard problems. One of the resolution methods is the use of dispatching rules due to their simplicity and ease of use such as Shortest Processing Time (SPT), First in First Out (FIFO), Longest Processing Time (LPT), Last in First Out (LIFO), and Earliest Due Date (EDD). The problem is that dispatching rules may be much more appropriate in one problem and not in another one. Due to the large-scale combinatorial optimization problems, it is complicated to use exact methods, which is the reason why the researchers move to the solutions related to Artificial Intelligence. Generally, they use the meta-heuristics such as Genetic Algorithms (GA) [START_REF] George | Dynamic scheduling of manufacturing job shops using genetic algorithms[END_REF], or the Machine Learning methods such as Supervised Learning [START_REF] Johann | Approaching Scheduling Problems via a Deep Hybrid Greedy Model and Supervised Learning[END_REF], Unsupervised Learning [START_REF] Chen-Yang | Unsupervised Learning-based Artificial Bee Colony for minimizing non-value-adding operations[END_REF], and Reinforcement Learning [START_REF] Sebastian | Modeling Production Scheduling Problems as Reinforcement Learning Environments based on Discrete-Event Simulation and OpenAI Gym[END_REF] In this paper, we are interested in JSSP resolution using Machine learning algorithms, in particular, Reinforcement Learning (RL). RL addresses how autonomous agents learn to choose appropriate actions to achieve their goals by interacting with the environment [START_REF] Wang | Application of reinforcement learning for agent-based production scheduling[END_REF]. The reason why we choose this type of machine learning is the dynamic environment that makes the agent in a situation of taking a real-time decision. There are many algorithms in RL, such as SARSA [START_REF] Aissani | Efficient and effective reactive scheduling of manufacturing system using Sarsa-multi-objective agents[END_REF], actor cretic algorithm [START_REF] Liu | Actor-Critic Deep Reinforcement Learning for Solving Job Shop Scheduling Problems[END_REF], and Q-learning algorithm [START_REF] Wei | Composite Rules Selection Using Reinforcement Learning for Dynamic Job-Shop Scheduling[END_REF]. In our research, we have used the Q-learning algorithm (QL) QL is a model-free RL algorithm in which the agent learns from real-world experience examples from the environment and never uses the generated next-state predictions.

We propose a new state representation, which helps the agent to take decisions depending on a real situation. We have equipped an agent, which selects in each situation the most appropriate dispatching rule according to which it will schedule the jobs. We have evaluated the agent twice, the 1 st one is during the jobs assignment, and the 2 nd is after obtaining the makespan (maximum completion time of jobs also called 𝐶 𝑚𝑎𝑥). The strategy of exploiting and exploring the environment accelerates the convergence of the agent into a good solution and maximizes the rewards of all the decisions driven by this solution. We compared the results we obtained with the results of the dispatching rules (FIFO, LIFO, SPT, and LPT), the meta-heuristics GA [START_REF] Ombuki | Local Search Genetic Algorithms for the Job Shop Scheduling Problem[END_REF], Hybrid GA [START_REF] Qing-Dao-Er-Ji | A new hybrid genetic algorithm for job shop scheduling problem[END_REF], and Deep reinforcement learning (DRL) [START_REF] Wang | Dynamic job-shop scheduling in smart manufacturing using deep reinforcement learning[END_REF].

This paper is organized as follows: Section 1: works related to JSSP, and the contribution of some authors using the RL algorithms. Section 2: a description of the JSSP. Section 3: background about the RL algorithm we used. Section 4: the implementation of the algorithm on the JSSP. Section 5: the results we obtained as well as a comparison and a discussion. Section 6: a conclusion and perspectives.

1

Related works

In recent years, several papers related to JSSP use RL algorithms, with a difference that relies on the chosen RL algorithm, or the objective function as well as the state representation and the reward function. If we take the 𝐶 𝑚𝑎𝑥 as the objective function, it was addressed in [START_REF] Thomas | On a Successful Application of Multi-Agent Reinforcement Learning to Operations Research Benchmarks[END_REF] [14] [START_REF] Yu-Fang | Adaptive job shop scheduling strategy based on weighted Q-learning algorithm[END_REF], they used the QL algorithm, and the latter is one of the most prominent algorithms used in the JSSP. Wang et al. [START_REF] Wang | Dynamic job-shop scheduling in smart manufacturing using deep reinforcement learning[END_REF] proposed a dynamic scheduling method based on deep reinforcement learning (DRL). They adopted the proximal policy optimization (PPO) to find the optimal policy for the scheduling to handle the large scale of the state, to represent the state, they used three matrices, a machine matrix, a processing time matrix for each operation in jobs, which do not change over time and a job processing status matrix. The function of the reward is related to the utilization of the machine and the obtained makespan. Liu et al. [START_REF] Liu | Actor-Critic Deep Reinforcement Learning for Solving Job Shop Scheduling Problems[END_REF] proposed deep reinforcement learning to deal effectively with the Job shop scheduling problem. The proposed model comprises an actor network and a critic network. They represent the state of the environment in three matrices, a process time matrix, a boolean matrix of the assigned job to each machine and a boolean matrix of the completed job, and the reward in three different functions, process time of the selected job, remaining process time of the job and the comparison of the smallest makespan.

Jiménez et al. [START_REF] Jiménez | Multi-Agent Reinforcement Learning Tool for Job Shop Scheduling Problems[END_REF] developed a tool for the Job Shop scheduling, which works with the Q-learning algorithm and can be adapted to different scheduling scenarios such as Flexible JSSP or and, Parallel machines problems. Zhou et al. [START_REF] Zhou | Deep reinforcement learning-based dynamic scheduling in smart manufacturing[END_REF] used a DRL, they build two networks, the prediction and target network. Waschneck et al. [START_REF] Waschneck | Optimization of global production scheduling with deep reinforcement learning[END_REF] proposed cooperative DQN agents, which utilize deep neural networks trained with user-defined objectives to optimize scheduling. They applied their study in a small factory simulation of an abstracted frontend-of-line semiconductor production facility. Tassel et al. [START_REF] Tassel | A Reinforcement Learning Environment For Job-Shop Scheduling[END_REF] represented a DRL environment for Job-Shop Scheduling, they make a meaningful state representation using a matrix, each row describes information about the job such as the allocation of the number of operations rests or the competed ones. They designed a dense reward function based on the scheduled area. After each action, they computed the difference between the duration of the allocated operations and the idle time of a machine. Samsonov et al. [START_REF] Samsonov | Manufacturing Control in Job Shop Environments with Reinforcement Learning[END_REF] proposed a new form of reward and designed a new space for action, they represent the state in six characteristics: machine states, the sum of all operations' processing times currently in the queue of each machine, the sum of all operations' processing times for each job, the duration of the next operation for each job, the index of the next required machine for each job, and finally the time already passed in any given moment. For the reward, the agent is evaluated at the end of the episode.

All authors who contribute to this field applied different approaches for defining the states and evaluating the agent's actions. They choose to represent the state by giving all information about the environment to the agent. This representation of the state may not be necessary. The reason is that the agent that selects an order set of jobs on a machine does not need to have information about other jobs. Action selection in most works is based on the selection of jobs to be executed on a machine. This puts the agent in a situation where multiple actions are available on the same machine. We can find this phenomenon in large workshops.

Problem description

Job shop-type workshops are the most complicated in terms of assigning tasks to machines, where each job has its specific routing and the processing time of tasks in the same machine is not necessarily identical as shown in Fig. 1.

In a Job Shop, we have a set of 𝑛 Jobs: {𝐽 1 , 𝐽 2 , 𝐽 3 , … , 𝐽 𝑛 }, each job has its operations: 𝐽 𝑖 = {𝑂 𝑖1 , 𝑂 𝑖2 , 𝑂 𝑖3 , … 𝑂 𝑖𝑗 … , 𝑂 𝑖𝑚 } with 𝑖 𝜖 {1, 𝑛}, 𝑗 𝜖 {1, 𝑚} and 𝑚 is the number of operations executed in 𝑚 machines: {𝑀 1 , 𝑀 2 , 𝑀 3 , … , 𝑀 𝑚 }. All the tasks or the operations 𝑂 𝑖𝑗 are defined with a start time 𝑡 𝑖𝑗 , a processing time 𝑝 𝑖𝑗, and a completion time 𝐶 𝑖𝑗 .

Fig. 1. Job shop example

The completion time of operations on a machine is referred to as 𝐶 𝑗 . The maximum load 𝑚𝑎𝑥𝐿𝑜𝑎𝑑 𝑗 of a machine 𝑀 𝑗 is the sum of the processing times of all operations to be executed in this machine. The instantaneous load: 𝑖𝑛𝑠𝑡𝐿𝑜𝑎𝑑 𝑗 , represents the load of the machine after the affectation of an operation (it is the ratio between executed operations and 𝑚𝑎𝑥𝐿𝑜𝑎𝑑 𝑗). 𝑏𝑎𝑡𝑐ℎ 𝑗 and 𝑠𝑒𝑞 𝑗 are the current queues of 𝑀 𝑗 and the current sequence of tasks of this machine respectively.

Important constraints should be respected to avoid overlapping during the allocation of operations to the machines. The precedence constraint is presented in Fig. 2 The other constraint related to the completion time of machine 𝐶 𝑗 , we can't start an operation in a machine without finishing the previous one as presented in Fig. 2.b. To calculate it, we should see the maximum between the next operation's completion time 𝐶 𝑖𝑗+1 in a machine 𝑀 𝑗+1 and the completion time of the machine, which is:

𝐶 𝑗 = 𝑝 𝑖𝑗 + max(𝐶 𝑗 , 𝐶 𝑖𝑗+1)
The objective of our study is to minimize the total completion time of all jobs in all machines 𝐶 𝑚𝑎𝑥 (𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛) = min (𝐶 max , 𝑤𝑖𝑡ℎ 𝐶 𝑚𝑎𝑥 = max (𝐶 𝑗)

Reinforcement learning

RL is a technique that learns what an agent does to interact with a given environment to maximize rewards [START_REF] Usuga | Machine learning applied in production planning and control: a state-of-the-art in the era of industry 4[END_REF]. A learning agent must be able to sense the state of its environment to some extent and take actions that affect the state. The agent must also have one or more targets related to the state of the environment [START_REF] Sutton | Reinforcement Learning -An Introduction[END_REF].

There are several RL algorithms, in our paper we used Q-learning. It represents a form of model-free RL algorithm. The core of the algorithm is a simple value iteration update, each state-action pair (𝑠, 𝑎) has a Q-value associated. When action 𝑎 is selected by the agent located in state 𝑠 𝑡 , the Q-value for that state-action pair is updated based on the reward received when selecting that action, and the best Q-value for the subsequent state 𝑠 𝑡+1 [START_REF] Palacio | A Q-Learning algorithm for flexible job shop scheduling in a real-world manufacturing scenario[END_REF]. The Q-values are saved in a Q-table, making the agent access them rapidly. The function of Bellman which updates the Q-values is as follows:

𝑄 𝑛𝑒𝑤 (𝑠 t , 𝑎 t) = (1 -𝛼)𝑄 𝑜𝑙𝑑 (𝑠 t , 𝑎 t) + 𝛼(𝑟 t + 𝛾(max(𝑄(𝑠 t+1 , 𝑎))))

Where α represents the learning rate, it is the probability of acceptance of the target value. (1 -𝛼) is the probability of keeping the old Q-value and 𝛾 is a discount factor, it is used to balance the immediate and the future reward. (max(𝑄(𝑠 t+1 , 𝑎))) represents the maximum Q-value of the next state, that is the reason why the Q-learning is an offpolicy algorithm, the policy used during the evaluation stage can differ from the one used in the improvement stage, which leads to more exploration at the expense of convergence speed [START_REF] Rinciog | Towards Standardizing Reinforcement Learning Approaches for Stochastic Production Scheduling[END_REF]. In other words, it is not necessarily that the action 𝑎 t chosen in the state 𝑠 t is the same one as 𝑎 in the target (𝑟 t + 𝛾(max(𝑄(𝑠 t+1 , 𝑎)))).

The goal is to find the optimal policy in the long term, to reach this objective. The agent needs a process to explore the environment by taking actions randomly and interacting with the environment, and exploits by maximizing its gains when it finds an optimal policy. The ɛ-greedy policy is a policy that allows the agent to explore with a probability of ɛ and exploit with a probability of 1-ɛ.

Implementation

Now that we have presented the problem and explained the algorithm we used, we will see in this section the presentation of the basic elements of the algorithm in terms of the JSSP, then the learning phase, and the application phase of the algorithm.

Presentation of the elements of the learning algorithm

State representation.

Our objective is to minimize the total completion time 𝐶 𝑚𝑎𝑥 . We have represented the state as a machine with at least two tasks in the queue. The agent must choose an action that represents the select of one prioritized task in the queue. We have chosen to define the state in this way because the necessary information for the agent is that which must be allocated at this moment. There is no decision to take for the machines that have only one job in their queue. So the state in equation (1) is as follows:

𝑠 𝑡 = 𝑏𝑎𝑡𝑐ℎ 𝑗 𝑤ℎ𝑒𝑛 |𝑏𝑎𝑡𝑐ℎ 𝑗 | ≥ 2

Action selection.

In our study, we tried to choose the action differently, the agent will choose one of the popular dispatching rules for each decision. There are two reasons why we choose this selection. Firstly, it is interesting and easy to understand to schedule using a rule in a state; A different rule may perform better in another state. Secondly, the agent will choose only four actions, which are the dispatching rules SPT, LPT, FIFO and LIFO instead of choosing all the possible Jobs. So, the actions in equation (1) are:

𝑎 𝑡 = {𝑆𝑃𝑇, 𝐿𝑃𝑇, 𝐹𝐼𝐹𝑂, 𝐿𝐼𝐹𝑂}

Reward function.

The reward function represents an important step in the implementation of the algorithm. The reward is most often proportional to the optimization target or a value that highly correlates with it (e.g. makespan and average utilization) [START_REF] Rinciog | Towards Standardizing Reinforcement Learning Approaches for Stochastic Production Scheduling[END_REF]. In our study, the reward has a relation to the machine loads (𝑖𝑛𝑠𝑡𝐿𝑜𝑎𝑑 𝑗) and the completion time of the job. If the machines have been well loaded at the time of the decision means that they are well balanced and the completion time is best. When the agent is in a state 𝑠 𝑡 and it must take a decision on 𝑀 𝑗 , it calculates the load of each machine (𝑖𝑛𝑠𝑡𝐿𝑜𝑎𝑑 𝑗), then it calculates the average loads of all the machines except 𝑀 𝑗 . Then, the current load of 𝑀 𝑗 (𝑖𝑛𝑠𝑡𝐿𝑜𝑎𝑑 𝑗) is compared with the average to see if the machine is balanced with the others or not. In this step, we will evaluate the action chosen by the agent, and whether it deserves a reward or a penalty. For instance, if 𝑖𝑛𝑠𝑡𝐿𝑜𝑎𝑑 𝑗 = 20% and the average load of the other machines is 60%, means that the machines are not well balanced. In this case, the correct action is to choose the rule that prioritizes the job with the longest processing time. If the chosen rule does not select first the job with this characteristic, a penalty is given.

The reward function has a relation to the completion time obtained by applying the action chosen by the agent and the completion time obtained for the other actions. This process evaluates the policy chosen by the agent, makes between the dispatching rules in the same episode and leads to the optimal policy:

𝑟 𝑡 = { (𝟏 -𝑪 𝒋)/∑ 𝑪 𝒋 (𝒂𝒍𝒍 𝒂𝒄𝒕𝒊𝒐𝒏𝒔), if 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑐𝑡𝑖𝑜𝑛 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑠 𝑡ℎ𝑒 𝑙𝑜𝑎𝑑𝑠 -(𝟏 -𝑪 𝒋)/∑ 𝑪 𝒋 (𝒂𝒍𝒍 𝒂𝒄𝒕𝒊𝒐𝒏𝒔), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
We have used another method of representing the reward while keeping the same idea of the evaluation manner, as shown below:

𝑟 𝑡 = { +𝟏, 𝑖𝑓 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑐𝑡𝑖𝑜𝑛 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑠 𝑡ℎ𝑒 𝑙𝑜𝑎𝑑𝑠 -𝟐, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
The agent will be evaluated twice, the first one during the learning process in an episode, i.e. when assigning jobs to machines, using loads and completion times as we mentioned before. The second is at the end of the episode where it obtains the 𝐶 𝑚𝑎𝑥 . In this case, the evaluation is done using the 𝐶 𝑚𝑎𝑥 obtained, if it is the smallest until now, we will maximize the rewards of all the actions taken in this episode. Otherwise, we will add nothing. This policy helps the agent maximize the gain only for the right decisions. The evaluation at the end of the episode is represented as follows:

𝑟 𝑡 = ((𝐶 𝑚𝑎𝑥 (𝑚𝑎𝑥𝑖𝑚𝑎𝑙) -𝐶 𝑚𝑎𝑥)/𝐶 𝑚𝑎𝑥 (𝑚𝑎𝑥𝑖𝑚𝑎𝑙)) × 𝑒𝑝𝑖𝑠𝑜𝑑𝑒, 𝐶 𝑚𝑎𝑥 ≤ 𝐶 𝑚𝑎𝑥 (𝑚𝑎𝑥𝑖𝑚𝑎𝑙)

Learning phase

In this phase, we will use the Q-learning algorithm adapted to the different characteristics of the JSSP. During the learning phase, the agent will try to maximize the rewards of a good solution. We have defined the reward of how it will maximize each time it finds a good solution to its exploration path. But it must also increase the exploitation rate each time when it finds a good solution. We have added a mechanism that will help the agent to exploit much more solutions each time it finds a good solution. This is conducted by increasing the value of epsilon each time until epsilon is greater than 0.9, it will take the value of 0.999. In this way, the agent does not explore too much, which leads to slow learning, and does not converge quickly to the best solution. For the same reason, the agent will not exploit too much so that the actions do not lead to local solutions. Table 1 resumes the learning phase.

Final model

After the end of the learning phase, the Q-table contains all the states experienced by the agent, as well as the Q-values of each action applied in each state. Actions are considered as good decisions with maximum Q-values or bad decisions with minimum Q-values, since the learning strategy leads to maximizing the gain for good decisions. In this phase, the agent's optimal policy 𝜋 * is used to choose actions with maximum Qvalue. This brings us to the solution approximated by the learning algorithm.

𝜋 * (𝑠 𝑡) = max (𝑄(𝑠 𝑡 , 𝑎))

5

Results and discussion

QL01 represents the results by using the reward function related to the completion time of actions, and QL02 where the reward is +1 and -2. We have applied this experience to 46 benchmark instances from the OR Library [25] and compared the results given by QL01 and QL02 with the dispatching rules (FIFO, SPT, LPT), GA [START_REF] Ombuki | Local Search Genetic Algorithms for the Job Shop Scheduling Problem[END_REF], HGA [START_REF] Qing-Dao-Er-Ji | A new hybrid genetic algorithm for job shop scheduling problem[END_REF], DRL [START_REF] Wang | Dynamic job-shop scheduling in smart manufacturing using deep reinforcement learning[END_REF] and the optimal solution as well. The algorithms are executed under 1000 episodes for small instances (ft06, ft10, la01 to la15, orb01 to orb03 and orb07) and 10000 episodes for mean and large scales (la16 to la40) in a reasonable time. The results are shown in Table . 2. Columns QL01 and QL02 in the second row of this table show if the proposed approach outperformed the compared one (value equal to 1 if it is the case).

Our approaches gave good results compared with the dispatching rules. In all the instances, the proposed algorithms gave solutions much closer to the optimal solution compared to the minimal solution among the dispatching rules. The reason is that it is better to use a mix of rules in a problem rather than using only one rule. By comparing the difference between the GA and optimal solution and the difference between the QL01and optimal solution, 89,13 % of the 46 instances give the best result than GA especially the instances with a large scale. For QL02, it was 80,43% of the 46 instances it gives a good solution compared with GA in large scales and some average scales instances except la07, la08, la15, and la16. By comparing with HGA, our algorithm QL01 gives a good result for 27,90% of the compared instances, and 20,93 % in QL02. The reason why our approaches did not give good results compared with the HGA may be because of the limits of the possible actions. The agent in our case chooses four actions instead of all the possible Jobs that can be allocated. For DRL, QL01 gives an interesting solution for all the compared instances (100%), and 80,95% compared with QL02. to searching the solution space and finding a solution that approaches the optimal solution, as shown in Fig 5 . We can notice that the exploration time of the environment increases every time we have a larger instance. This is due to the expansion of the solution space from one instance of small size to another instance of large size.

Conclusion

In our article, we discussed an important problem of production planning process in a manufacturing system, namely JSSP. We use QL to solve this problem because it is best suited for this type of problem. We use a new representation of the state of the environment that only affects the machines on which the agent will make decisions. Two new reward functions are introduced based on loads of machines. The agent's decision is then evaluated first during the assignment of jobs and second at the end of the schedule.

The application of the algorithm is compared with literature work. The results of the algorithm outperformed the genetic algorithm and dispatching rules. However, due to the number of agent's action, the algorithm was not able to perform better than a deep reinforcement learning. Since this approach yields interesting results, as a perspective, we will apply it to more complex conditions, where the agent will learn in a dynamic environment, when the tasks to be planned over some time are not known in advance and arrive gradually.

Fig. 2 .

 2 Fig. 2. Constraints presentation.

Fig. 3 .

 3 Fig. 3. Convergence of solution for instance ft06 (06x06) QL01

Fig. 4 .

 4 Fig. 4. Convergence of solution for instance orb07 (10x10) QL02

Fig. 5 .

 5 Fig. 5. Convergence of solution for la40 (15 x15) QL02

Table 1 .

 1 Learning Phase Algorithm 1. initialize the Q -table empty 2. calculate the 𝑚𝑎𝑥𝐿𝑜𝑎𝑑 𝑗 and 𝑖𝑛𝑠𝑡𝐿𝑜𝑎𝑑 𝑗 of all the machines

	3. ε = 0.2, α = 0.9, γ = 0.75
	4. For several episodes:
		While the end of the allocation of all jobs is not done:
		a. Fill the machines queue
		b. If |𝑏𝑎𝑡𝑐ℎ 𝑗 | ≥ 2:
			Add a row Q -table with 4 columns with null values
			Choose an action using an ε -greedy policy
			Calculate the reward using the first evaluation
			Update the Q -value (Q old (s t , a t) ← Q new (s t , a t)) in the Q -
			table
			Add the job to the machine. seq
			Update the state of the batch (s t ← s t+1)
			If there is another machine [m + 1]. batch ≥ 2 return to (b)
		Compare the C max of this episode with the smallest one obtained and calculate the
		reward using the second evaluation
		Increase the ε value
		If ε > 0.9:
		ε = 0.999