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Abstract
Strategic information is valuable either by remaining private (for instance if it is sen-
sitive) or, on the other hand, by being used publicly to increase some utility. These
two objectives are antagonistic and leaking this information by taking full advantage
of it might be more rewarding than concealing it. Unlike classical solutions that focus
on the first point, we consider instead agents that optimize a natural trade-off between
both objectives. We formalize this as an optimization problem where the objective
mapping is regularized by the amount of information revealed to the adversary (mea-
sured as a divergence between the prior and posterior on the private knowledge). Quite
surprisingly, when combined with the entropic regularization, the Sinkhorn loss nat-
urally emerges in the optimization objective, making it efficiently solvable via better
adapted optimization schemes. We empirically compare these different techniques on
a toy example and apply them to preserve some privacy in online repeated auctions.
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1 Introduction

In many economic mechanisms and strategic games involving different agents, asym-
metries of information (induced by a private type, some knowledge on the hidden
state of Nature, etc.) can and should be leveraged to increase one’s utility. When these
interactions between agents are repeated over time, preserving some asymmetry (i.e.,
not revealing private information) can be crucial to guarantee a larger utility in the
long run. Indeed, the small short term utility of publicly using information can be
overwhelmed by the long term effect of revealing it [5].

Informally speaking, an agent should use, and potentially reveal some private infor-
mation only if she gets a subsequent utility increase in return. Keeping this information
private is no longer a constraint [22, as in other classical privacy concepts such as dif-
ferential privacy] but becomes part of the objective, which is then to decide how and
when to use it. For instance, it might happen that revealing everything is optimal or,
on the contrary, that a non-revealing policy is the best one. This is roughly similar
to a poker player deciding whether to bluff or not. In some situations, it might be
interesting to focus solely on the utility even if it implies losing the whole knowledge
advantage, while in other situations, the immediate profit for using this advantage is
so small that playing independently of it (or bluffing) is better.

After a rigorous mathematical formulation of this utility vs. privacy trade-off, it
appears that this problem can be recast as a regularized optimal transport minimiza-
tion. In the specific case of entropic regularization, this problem has received a lot of
interest in the recent years as it induces a computationally tractable way to approx-
imate an optimal transport distance between distributions and has thus been used in
many applications [18]. Our work showcases how the new Privacy Regularized Policy
problem benefits in practice from this theory.

Private mechanisms Differential privacy is the most widely used private learning
framework [21, 22, 63] and ensures that any single element of the whole dataset
cannot be retrieved from the output of the algorithm. This constraint is often too
strong for economic applications (as illustrated before, it is sometimes optimal to
disclose publicly someprivate information). f -divergence privacy costs have thus been
proposed in recent literature as a promising alternative [14]. These f -divergences, such
as Kullback–Leibler, are also used by economists to measure the cost of information
from a Bayesian perspective, as in the rational inattention literature [50, 51, 69]. It was
only recently that this approach has been considered to measure “privacy losses” in
economic mechanisms [23]. This model assumes that the designer of the mechanism
has some prior belief on the unobserved and private information. After observing the
action of the player, this belief is updated and the cost of information corresponds to
the KL between the prior and posterior distributions of this private information.

Optimal privacy preserving strategies with privacy constraints have been recently
studied in this setting under specific conditions [23]. Loss of privacy can however be
directly considered as a cost in the overall objective and an optimal strategy reveals
information only if it actually leads to a significant increase in utility. Meanwhile,
constrained strategies systematically reveal as much as allowed by the constraints,
without incorporating the additional cost of this revelation.
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Optimal transport Finding an appropriate way to compare probability distributions
is a major challenge in learning theory. Optimal Transport manages to provide pow-
erful tools to compare distributions in metric spaces [78]. As a consequence, it has
received an increasing interest these past years [66], especially for generative models
[4, 29, 65]. With the exception of particular cases [7, 19, 41, see e.g.,], such power-
ful distances however come at the expense of heavy and intractable computations [6,
55], which might not be suitable to learning algorithms. It was recently showcased
that adding an entropic regularization term enables fast computations of approximated
distances using Sinkhorn algorithm [18, 70]. Since then, the Sinkhorn loss has also
shown promising results for applications such as generative models [28, 29], domain
adaptation [17] and supervised learning [26], besides having interesting theoretical
properties [25, 30, 60].

Contributions and organization of the paper The new framework of Privacy Regular-
ized Policy is motivated by several applications, presented in Sect. 2 and is formalized
in Sect. 3. This problem is mathematically formulated as some optimization prob-
lem (yet eventually in an infinite dimensional space), which is convex if the privacy
cost is an f -divergence, see Sect. 4. Also, if the private information space is discrete,
this problem admits an optimal discrete distribution. The minimization problem then
becomes dimensionally finite, but non-convex.

If the Kullback–Leibler divergence between the prior and the posterior is consid-
ered for the cost of information, the equivalence with a Sinkhorn loss minimization
problem is shown in Sect. 5. Although non-convex, this new problem formulation
allows different optimization techniques developed in Sect. 6 to efficiently compute
partially revealing policies. Finally, with a linear utility cost, the problem is equiva-
lent to the minimization of the difference of two convex functions. Using the theories
of these specific problems, different optimization methods can be compared, which
illustrate the practical aspect of our new model. This is done in Sect. 7, where we also
compute partially revealing strategies for repeated auctions.

A preliminary version of this work appeared in [11]. This version provides an
additional detailed study of existing optimization methods to minimize the Sinkhorn
loss; as well as supplementary experiments, especially to compare these different
possible methods.

2 Some applications

Our model is motivated by different applications described in this section: online
repeated auctions and learning models on external servers.

2.1 Online repeated auctions

When a website wants to sell an advertisement slot, firms such as Google or Criteo
take part in an auction to buy this slot for one of their customer, a process illustrated
in Fig. 1. As this interaction happens each time a user lands on the website, this is no
longer a one-time auction problem, but repeated auctions where the seller and/or the
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Fig. 1 Online advertisement auction system

competitor might observe not just one bid, but a distribution of bids. As a consequence,
if a firm were bidding truthfully, seller and other bidders would have access to its true
value distribution μ. This has two possible downsides.

First, if the value distributionμwasknown to the auctioneer, she couldmaximize her
revenue at the expense of the bidder utility [2, 3, 24, 32], for instance with personalized
reserve prices. Second, the auctioneer can sometimes take part in the auction and
becomes a direct concurrent of the bidder (this might be a unique characteristic of
online repeated auctions for ads). For instance, Google is both running some auction
platforms and bidding on some ad slots for their client. As a consequence, if the
distribution μ was perfectly known to some concurrent bidder, he could use it in the
future, by bidding more or less aggressively or by trying to conquer new markets.

It is also closely related to online pricing or repeated posted price auctions. When
a user wants to buy a flight ticket (or any other good), the selling company can learn
the value distribution of the buyer and then dynamically adapts its prices in order to
increase its revenue. The user can prevent this behavior in order to maximize her long
term utility, even if it means refusing some apparently good offers in the short term
(in poker lingo, she would be “bluffing”).

As explained in Sect. 3.1 below, finding the best possible long term strategy is
intractable, as the auctioneer could always adapt to the bidding strategy, leading to
an arm race where the bidder and the auctioneer successively adapt to the other one’s
strategy. Such an arm race is instead avoided by trading-off between the best possible
response to the auctioneer’s fixed strategy aswell as the leaked quantity of information.
The privacy loss here aims at bounding the incurred loss in bidder’s utility if the
auctioneer adapts her strategy using the revealed information.

2.2 Learning through external servers

Nowadays, several servers or clusters allow their clients to perform heavy computa-
tions remotely, for instance to learn some model parameters (say a deep neural net)
for a given training set. The privacy concern when querying a server can sometimes
be handled using homomorphic encryption [10, 31, 67], if the cluster is designed in
that way (typically a public model has been learned on the server). In this case, the
client sends an encrypted testing set to the server, receives encrypted predictions and
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locally recovers the accurate ones. This technique, when available, is powerful, but
requires heavy local computations.

Consider instead a client wanting to learn a newmodel (say, a linear/logistic regres-
sion or any neural net) on a dataset that has some confidential component. Directly
sending the training set would reveal the whole data to the server owner, besides the
risk of someone else observing it. The agent might instead prefer to send noised data,
so that the computed model remains close to the accurate one, while keeping secret
the true data. If the data contain sensitive information on individuals, then differential
privacy is an appropriate solution. However, it is often the case that the private part is
just a single piece of information of the client itself (say, its margin, its current wealth
or its total number of users for instance) that is crucial to the final learned model but
should not be totally revealed to a competitor. Then differential privacy is no longer
the solution, as there is only a single element to protect and/or to use. Indeed, some
privacy leakage is allowed and can lead to muchmore accurate parameters returned by
the server and a higher utility at the end; the Privacy Regularized Policy aims at com-
puting the best dataset to send to the server, in order to maximize the utility-privacy
trade-off.

3 Model

We first introduce a simple toy example in Sect. 3.1 giving insights into the more
general problem, whose formal and general formulation is given in Sect. 3.2.

3.1 Toy Example

Suppose an agent is publicly playing an action x ∈ X to minimize a loss x�ck , where
ck is some vector. The true type k ∈ [K ] is only known to the agent and drawn
from a prior p0. Without privacy concern, the agent would then solve for every k:
minx∈X x�ck .

Let us denote by x∗
k the optimal solution of that problem. Besides maximizing her

reward, the agent actually wants to protect the secret type k. After observing the action
x taken by the agent, an adversary updates her posterior distribution of the hidden
type px .

If the agent were to play deterministically x∗
k when her type is k, then the adversary

could infer the true value of k based on the played action. The agent should instead
choose her action randomly to hide her true type to the adversary. Given a type k, the
strategy of the agent is then a probability distribution μk over X and her expected
reward is Ex∼μk

[
x�ck

]
. In this case, the posterior distribution after playing the action

x is computed using Bayes rule and if the different μk have overlapping supports,
then the posterior distribution is no longer a Dirac mass, i.e., some asymmetry of
information is maintained.

The agent aims at simultaneously minimizing both the utility loss and the amount
of information given to the adversary. A common way to measure the latter is given
by the Kullback–Leibler (KL) divergence between the prior and the posterior [69]:

123



E. Boursier, V. Perchet

KL(px , p0) = ∑K
k=1 log

(
px (k)
p0(k)

)
px (k), where px (k) = p0(k)μk (x)∑K

l=1 p0(l)μl (x)
. If the infor-

mation cost scales in utility with λ > 0, the regularized loss of the agent is then
x�ck + λKL(px , p0) instead of x�ck . Overall, the global objective of the agent is the
following minimization:

min
μ1,...,μK

K∑

k=1

p0(k)Ex∼μk

[
x�ck + λKL(px , p0)

]
.

In the limit case λ = 0, the agent follows a totally revealing strategy and determin-
istically plays x∗

k given k. When λ = ∞, the agent focuses on perfect privacy and
looks for the best action chosen independently of the type: x ⊥⊥ k. It corresponds to
a so called non-revealing strategy in game theory and the best strategy is then to play
argminx x

�c[p0] where c[p0] = ∑K
k=1 p0(k)ck . For a positive λ, the behavior of the

player will then interpolate between these two extreme strategies.
This problem is related to repeated games with incomplete information [5], where

players have private information affecting their utility functions. Playing some action
leaks information to the other players, who then change their strategies in consequence.
The goal is then to control the amount of information leaked to the adversaries in order
to maximize one’s own utility. In practice, it can be impossible to compute the best
adversarial strategy, e.g., the player is unaware of how the adversaries would adapt.
The utility loss caused by adversarial actions is then modeled as a function of the
amount of revealed information.

3.2 General model

We now introduce formally the general model sketched by the previous toy example.
The agent (or player) has a private type y ∈ Y drawn according to a prior p0 whose
support can be infinite. She then chooses an action x ∈ X tomaximize her utility,which
depends on both her action and her type. Meanwhile, she wants to hide the true value
of her type y. A strategy is thus a mapping Y → P(X ), where P(X ) denotes the set
of distributions overX ; for the sake of conciseness, we denote by X |Y ∈ P(X )Y such
a strategy. In the toy example, this mapping was given by k 	→ μk . The adversary
observes her action x and tries to infer the type of the agent. We assume a perfect
adversary, i.e., she can compute the exact posterior distribution px .

Let c(x, y) be the utility loss for playing x ∈ X with the type y ∈ Y . The privacy
cost is cpriv(X ,Y ) where (X ,Y ) is the joint distribution of the action and the type. In
the toy example given in Sect. 3.1, the utility cost was given by c(x, k) = x�ck and
the privacy cost was the expected KL divergence between px and p0. Previous works
aimed at minimizing the utility loss with a privacy cost below some threshold ε > 0,
i.e., minimize E(x,y)∼(X ,Y )

[
c(x, y)

]
such that cpriv(X ,Y ) ≤ ε. Instead, as explained

in the toy example, this privacy loss here has some utility scaling with λ > 0, which
can be seen as the value of information. The final objective of the agent is then to
minimize the following loss:
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inf
X |Y∈P(X )Y

E(x,y)∼(X ,Y )

[
c(x, y)

] + λ cpriv(X ,Y ). (1)

Asmentioned above, the privacy cost is here defined as ameasure between the posterior
px and the prior distribution p0 of the type, i.e., cpriv(X ,Y ) = Ex∼X D(px , p0) for
some function D. In the toy example of Sect. 3.1, D(px , p0) = KL(px , p0), which is
a classical cost of information in economics.

Note that the cost is minimized in expectation with respect to both the action x
and the type y, as ex-ante costs are generally considered in repeated games with
asymmetric information1 [5]. It is also motivated by the online ad-auctions problem,
where a central controller runs multiple auctions for different firms and preserves
privacy for each of them.

For a distribution γ ∈ P(X × Y), we denote by π1#γ (resp. π2#γ ) the marginal
distribution of X (resp. Y ): π1#γ (A) = γ (A × Y) and π2#γ (B) = γ (X × B). In
order to have a simpler formulation of the problem, we remark that instead of defining
a strategy by the conditional distribution X |Y , it is equivalent to see it as a joint distri-
bution γ of (X ,Y ) with a marginal over the type equal to the prior: π2#γ = p0. The
remaining of the paper focuses on the problem below, which we call Privacy Regular-
ized Policy[.]With the privacy cost defined as above, the minimization problem (1) is
equivalent to

inf
γ∈P(X×Y)

π2#γ=p0

∫

X×Y
[c(x, y) + λ D(px , p0)] dγ (x, y). (PRP)

4 A convexminimization problem

In this section, we study some theoretical properties of the Problem (PRP). We first
recall the definition of an f -divergence.

Definition 1 D is an f -divergence if for all distributions P, Q such that P is absolutely

continuous w.r.t. Q, D(P, Q) = ∫
Y f

(
dP(y)
dQ(y)

)
dQ(y) where f is a convex function

defined on R
∗+ with f (1) = 0.

The set of f -divergences includes common divergences such as the Kullback–
Leibler divergence, the reverse Kullback–Leibler or the Total Variation distance.

Also, the min-entropy defined by D(P, Q) = log (ess sup dP/dQ) is widely
used for privacy [71, 76]. It corresponds to the limit of the Renyi divergence

log
(∑n

i=1 p
α
i q

1−α
i

)
/(α − 1), when α → +∞ [54, 64]. Although it is not an f -

divergence, the Renyi divergence derives from the f -divergence associated with the
convex function t 	→ (tα − 1)/(α − 1). f -divergence costs have been recently con-
sidered in the computer science literature in a non-Bayesian case and then present the
good properties of convexity, composition and post-processing invariance [14].

In the remaining of the paper, D is an f -divergence. (PRP) then becomes a convex
minimization problem.

1 Ex-ante costs also suggest that the value of information can be heterogeneous among types [23].
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Theorem 1 If D is an f -divergence, (PRP) is a convex problem in γ ∈ P(X×Y).2

Proof The constraint set is obviously convex. The first part of the integral is linear
in γ . It thus remains to show that the privacy loss is also convex in γ . As D is an
f -divergence, the privacy cost is

cpriv(γ ) :=
∫

X×Y
D (px , p0) dγ (x, y)

=
∫

X

∫

Y
f

(
dγ (x, y)

dγ1(x)dp0(y)

)
dp0(y)dγ1(x),

where γ1 = π1#γ . For t ∈ (0, 1) and two distributions γ and μ, we can define the
convex combination ν = tγ + (1 − t)μ. By linearity of the projection π1, ν1 =
tγ1 + (1 − t)μ1. The convexity of cpriv actually results from the convexity of the
perspective of f defined by g(x1, x2) = x2 f (x1/x2) [12]. It indeed implies

f

(
dν

dν1dp0

)
dν1 ≤ t f

(
dγ

dγ1dp0

)
dγ1 + (1 − t) f

( dμ

dμ1dp0

)
dμ1.

The result then directly follows when summing over X × Y . ��
Although P(X × Y) has generally an infinite dimension, it is dimensionally finite

if both sets X and Y are discrete. A minimum can then be found using classical
optimization methods. In the case of bounded low dimensional spaces X and Y , they
can be approximated by finite grids. However, the size of the grid grows exponentially
with the dimension and another approach is needed for large dimensions of X and Y .

4.1 Discrete type space

We assume here that X is an infinite action space and Y is of cardinality K (or
equivalently, p0 is a discrete prior of size K ), so that p0 = ∑K

k=1 p
k
0δyk . For afixed joint

distribution γ , let the measure μk be defined for any A ⊂ X by μk(A) = γ (A×{yk})
and μ = ∑K

k=1 μk = π1#γ . The function pk(x) = dμk (x)
dμ(x) , defined over the support

of μ by absolute continuity, is the posterior probability of having the type k when
playing x . The tuple (μ, (pk)k) exactly determines γ (PRP) is then equivalent to:

inf
μ,(pk (·))

pk≥0,
∑K

l=1 pl (·)=1

∑

k

∫

X

[

pk(x)c(x, yk) + λpk0 f

(
pk(x)

pk0

)]

dμ(x)

such that for all k ≤ K ,

∫

X
pk(x)dμ(x) = pk0 . (2)

For fixed posterior distributions pk , this is a generalized moment problem on the
distribution μ [43]. The same types of arguments can then be used for the existence
and the form of optimal solutions.

2 It is convex in a usual sense and not geodesically here.

123



Utility/privacy trade-off as regularized optimal transport

Theorem 2 If the prior is discrete of size K , for all ε > 0, (PRP) has an ε-optimal
solution such that π1#γ = μ has a finite support of at most K + 2 points.

Furthermore, if X is compact and c(·, yk) is lower semi-continuous for every k,
then it also holds for ε = 0.

Proof For ε > 0, let (pk)k and μ be an ε-optimal solution. We define

⎧
⎨

⎩
g0(x) := ∑

k

[
pk(x)c(x, yk) + λpk0(x) f

(
pk (x)
pk0

)]
,

gk(x) := pk(x) for k ∈ {1, . . . , K }.

Let α j (μ) = ∫
X g jdμ for any j ∈ {0, . . . , K }. The considered solution μ is included

in a convex hull as follows:

(α j (μ))0≤ j≤K ∈ Conv{(g j (x))0≤ j≤K/x ∈ X }.

By Caratheodory theorem, there are K + 2 points xi ∈ X and (ti ) ∈ 	K+2 such that
α j (μ) = ∑K+2

i=1 ti g j (xi ) for any j . Let μ′ = ∑K+2
i=1 tiδxi . We then have α j (μ

′) =
α j (μ) for all j , which means that (μ′, (pk)k) is also an ε-optimal solution of the
problem (2) and the support of μ′ is of size at most K + 2. ��

Now assume thatX is compact and the c(·, yk) are lower semi-continuous. The first
part of Theorem 2 that we just proved leads to Corollary 1, which is given below and
claims that (PRP) is equivalent to its discrete version given by Eq. (3). We consider
the formulation of Eq. (3) in the remaining of the proof.

Define hk(γi ) :=
(∑K

m=1 γi,m

)
f

(
γi,k

pk0
∑K

m=1 γi,m

)
, with the conventions f (0) =

limx→0 f (x) ∈ R ∪ {+∞} and hk(γi ) = 0 if
∑K

m=1 γi,m = 0.
The privacy cost is then the sum of the hk(γi ) for all k and i . The case ε = 0 comes

from the lower semi-continuity of the objective function, as claimed by Lemma 1
proven below.

Lemma 1 For any k in {1, . . . , K }, hk is lower semi-continuous.
Let (γ (n), x (n))n be a feasible sequence whose value converges to this infimum. By

compacity, we can assume after extraction that (x (n), γ (n)) → (x, γ ). As c(·, yk) and
hk are all lower semi-continuous, the infimum is reached in (γ, x). ��
Proof of Lemma 1 f is convex and thus continuous onR∗+. If limx→0+ f (x) ∈ R, then
f can be extended as a continuous function on R+ and all the hk are thus continuous.
Otherwise by convexity, limx→0+ f (x) = +∞. Thus, hk is continuous at γi as soon
as γi, j > 0 for every j . If γi,k = 0, but the sum

∑K
l=1 γi,l is strictly positive, then

hk(γi ) = +∞; but as soon as ρ → γ , we also have an infinite limit.

If
∑K

l=1 γi,l = 0, then lim infρ→γ f
(

ρi,k

pk0
∑

l ρi,l

)
∈ R ∪ {+∞}. This term is multi-

plied by a factor going to 0, so lim infρ→γ hk(ρi ) ≥ 0 = hk(γi ). Finally, hk is lower
semi-continuous in all the cases. ��
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If the support of γ is included in {(xi , yk) | 1 ≤ i ≤ K + 2, 1 ≤ k ≤ K }, it can be
denoted as a matrix γi,k := γ ({(xi , yk)}).

Corollary 1 In the case of a discrete prior, (PRP) is equivalent to:

inf
(γ,x)∈R(K+2)×K

+ ×X K+2

∑

i,k

γi,k c(xi , yk) + λ
∑

i,k

γi,k D(pxi , p0)

such that ∀k ≤ K ,
∑

i

γi,k = pk0 . (3)

Proof Theorem 2 claims that (PRP) is equivalent to the problem of Corollary 1 if we
also impose xi �= x j for i �= j . The value of problem (3) is thus lower than the value
of (PRP) as we consider a larger feasible set. Let us consider a redundant solution
(γ, x) with xi = x j for i �= j . It remains to show that a non redundant version of this
solution has a lower value.

The functions hk defined in the proof of Theorem 2 are convex as the perspectives
of convex functions [12]. Also, they are obviously homogeneous of degree 1. These
two properties imply that the hk are subadditive. Thus, let (γ ′, x ′) be defined by

⎧
⎪⎨

⎪⎩

γ ′
l,k := γl,k for any l /∈ {i, j},

γ ′
i,k := γi,k + γ j,k,

γ ′
j,k := 0

and

{
x ′
l := xl for any l �= j,

x ′
j ∈ X \ {xl |1 ≤ l ≤ K + 2}.

The subadditivity of hk and hk(0) = 0 implies hk(γ ′
i ) + hk(γ ′

j ) ≤ hk(γi ) + hk(γ j )

for any k. The other terms in the objective function will be the same for (γ, x) and
(γ ′, x ′). It thus holds

∑

i,k

γi,kc(xi , yk) + λ
∑

i,k

pk0hk(γi ) ≥
∑

i,k

γ ′
i,kc(x

′
i , yk) + λ

∑

i,k

pk0hk(γ
′
i ).

The tuple (γ ′, x ′) is in the feasible set of the problem of Corollary 1 and we removed
a redundant condition from x . We can thus iteratively construct a solution (γ̃ , x̃) until
reaching non redundancy. We then have (γ̃ , x̃) a non redundant solution with a lower
value than (γ, x), i.e., allowing redundancy does not change the infimum. ��

Although it seems easier to consider the dimensionally finite problem given by
Corollary 1, it is not jointly convex in (γ, x). No general algorithms exist to efficiently
minimize non-convex problems. We refer the reader to [37] for an introduction to
non-convex optimization.

The next sections reformulate the problem to better understand its structure, leading
to optimization methods reaching better local minima.
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5 Sinkhorn loss minimization

Formally, (PRP) is expressed as Optimal Transport Minimization for the utility cost c
with a regularization given by the privacy cost. This section considers the Kullback–
Leibler divergence for privacy cost. In this case, the problem becomes a Sinkhorn loss
minimization, which presents computationally tractable schemes [60]. If the privacy
cost is the KL divergence between the posterior and the prior, i.e., f (t) = t log(t),
then the regularization term corresponds to the mutual information I (X; Y ), which is
the classical cost of information in economics.

The Sinkhorn loss for distributions (μ, ν) ∈ P(X ) × P(Y) is defined by

OTc,λ(μ, ν) := min
γ∈5(μ,ν)

∫
c(x, y)dγ (x, y)

+ λ

∫
log

(
dγ (x, y)

dμ(x)dν(y)

)
dγ (x, y), (4)

where 5(μ, ν) = {γ ∈ P(X ×Y) | π1#γ = μ and π2#γ = ν}. In Optimal Transport,
c(x, y) is the transportation cost from x to y and the goal is to find a transport map (or
a joint distribution γ with Kantorovich relaxation) minimizing the total transportation
cost between the distributions μ and ν. The second term is an entropic regularization
term on γ allowing fast approximation schemes [18]. The term t log(t) of theKLdiver-
gence appears, when replacing dγ (x, y) by dγ (x,y)

dμ(x)dν(y)dμ(x)dν(y). When developing
the logarithm, the difference between the entropies of μ ⊗ ν and γ appears.

Problem (PRP) with the privacy cost given by the Kullback–Leibler divergence is
actually a Sinkhorn loss minimization problem.

Theorem 3 Problem (PRP) with D = KL is equivalent to

inf
μ∈P(X )

OTc,λ(μ, p0). (5)

Proof Observe that dγ (x,y)
dμ(x) is the posterior probability dpx (y), thanks to Bayes rule.

The regularization term in Eq. (4) then corresponds to Ex [D(px , p0)] as p0 = ν

and D = KL here. The minimization problem given by Eq. (4) is thus equivalent to
Eq. (PRP)with the additional constraintπ1#γ = μ.Minimizingwithout this constraint
is thus equivalent to minimizing the Sinkhorn loss over all action distributions μ. ��

While the regularization term is usually only added to speed up the computations
of optimal transport, it here directly appears in the cost of the original problem since
it corresponds to the privacy cost! An approximation of OTc,λ(μ, ν) can then be
quickly computed for discrete distributions using Sinkhorn algorithm [18], described
in Sect. 5.1.

Notice that the definition of Sinkhorn loss sometimes differs in the literature and
instead uses

∫
log (dγ (x, y)) dγ (x, y) for the regularization term, thus ignoring the

entropy of μ ⊗ ν. When μ and ν are both fixed, the optimal transport plan γ remains
the same. As μ is varying here, these notions yet become different. For this alternative
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definition, a minimizing distribution μ would actually be easy to compute. It is much
more complex in our problem because of the presence of μ in the denominator of the
logarithmic term.

With a discrete prior, we can then look for a distribution μ = ∑K+2
j=1 α jδx j . In case

of a continuous prior, it could still be approximatedusing sampleddiscrete distributions
as previously done for generative models [29, 30].

Besides being a new interpretation of Sinkhorn loss, this reformulation allows
a better understanding of the problem structure and reduces the dimension of the
considered distributions.

5.1 Computing Sinkhorn loss

Itwas recently suggested to use theSinkhorn algorithm,which has a linear convergence
rate, to compute OTc,λ(μ, ν) for distributions μ = ∑n

i=1 αiδxi and ν = ∑m
j=1 β jδy j

[18, 42]. With K the exponential cost matrix defined by Ki, j = e− c(xi ,y j )
λ , the unique

matrix γ solution of the problem (4) has the form diag(u)Kdiag(v). The Sinkhorn
algorithm then updates alternatively u ← α/Kv and v ← β/K�u (with component-
wise division) for n iterations or until convergence.

6 Minimization schemes

Despite the equivalence between (PRP) and the minimization of Sinkhorn loss given
by Eq. (5), minimizing this quantity remains an open problem. This section suggests
different possible optimization methods in this direction.

6.1 Optimizationmethods

This section presents different formulations of problem (5), leading to several possible
optimization schemes, described in Sect. 6.2.

Convex minimization over distribution Problems (PRP) and (5) are both of the form

min
μ∈P(X )

J (μ), (6)

with J convex. Although solving such a problem is unknown in general, somemethods
are possible in specific cases (see e.g., [15] for a short overview).

For polynomial costs, this problem can be solved using generalized moment
approaches [43], but the complexity explodes with the degree of the polynomial.

P(X ) is the convex hull of Dirac distributions on X , so Frank-Wolfe algorithm
might be a good choice [38], especially to guarantee sparsity of the returned distribu-
tion using away-steps technique [16, 33]. Unfortunately, the Franke-Wolfe algorithm
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requires at each step to solve a subproblem, which is here equivalent to

argmaxx∈X
∑

y∈Y
p0(y) exp

(
g(y) − c(x, y)

ε

)
,

where g depends on the previous optimization step. This problem is computationally
intractable for most cost functions, making Frank–Wolfe methods unadapted to our
problem.

Problem (PRP) resembles the problem solved for computing a single step of discrete
Wasserstein gradient flow [39], which is of the form

min
μ

W p
p (μ, ν) + τ F(μ),

where Wp is the p-Wasserstein distance and F a regularizing functional. Computing
its minimizer is possible under some conditions (see e.g.,[60]; Chap. 9.3 [9, 27, 44,
52, 53]. However, we here minimize over the joint distribution instead of the marginal
one. Moreover, we do not consider a Wasserstein distance as the cost function c is
not necessarily an euclidean distance. The methods known for solving this kind of
problem are unfortunately not adapted to the more general conditions considered in
Problem (PRP).

Non-convex minimizationMinimizing over the set of distributions remains solved only
for specific cases. The most common approach instead approximates problem (6) by
discretizing it as

min
x∈Xm

α∈	m

J

(
m∑

i=1

αiδxi

)

. (7)

Although this dimensionally finite problem is not convex, recent literature has shown
the absence of spurious local minima for a large number of particles m (over-
parameterization). These results yet hold only under restrictive conditions on the loss
function and problem structure [15, 46, 72, 73, 77], which are adapted to optimization
with neural networks. None of these conditions are satisfied here, making the benefit
from over-parameterization uncertain. The empirical results in Sect. 7.2 yet suggest
that such a phenomenon might also hold in our setting.

In general, reachingglobal optimality in non-convexminimization is intractable [34,
68], so we only aim at computing local minima. In practice, RMSProp and ADAM
are often considered as the best algorithms in such cases, as they tend to avoid bad
local minima thanks to the use of specific momentums [35, 40]. They yet remain little
understood in theory [62, 80].

Minimax formulation Note that the dual formulation ([60] Proposition 4.4) of Eq. (4)
allows the following formulation of the optimization problem (5):

min
μ∈P(X )

max
f ∈C(X )
g∈C(Y)

〈
μ, f

〉 + 〈
p0, g

〉 − λ
〈
μ ⊗ p0, exp (( f ⊕ g − c)/λ)

〉
, (8)
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where
〈
μ, f

〉 := ∫
X f (x)dμ(x) for a distributionμ and a continuous function f onX ,

μ ⊗ p0 is the product distribution and f ⊕ g(x, y) = f (x) + g(y). This corresponds
to a minimax problem of the formminx maxy ψ(x, y)whereψ(·, y) is convex for any
y and ψ(x, ·) is concave for any x . Such problems appear in many applications and
have been extensively studied. We refer to [13, 48, 57, 75] for detailed surveys on the
topic.

Aswe are considering the discretized problem (7), we are actually in the nonconvex-
concave setting where ψ is nonconvex on its first variable and concave on its second.
Algorithmswith theoretical convergence rates to localminimahave been studied in this
specific setting [47–49, 58, 59, 61, 75]. Most of them alternate (accelerated) gradient
descent on x and gradient ascent on y, while considering a regularized version ψε

of ψ .
Their interests aremostly theoretical asADAMandRMSPropon thefirst coordinate

instead of gradient descent should converge to better localminima in practice, similarly
to nonconvex minimization. In practice, they still provide good heuristics as shown in
Sect. 7.2.

Onminimizing Sinkhorn divergenceBallu et al. [8] recently proposed amethod to solve
the minimization problem (5). Unfortunately, they consider discrete distributions and
focus on reducing the dependency in the size of their supports. More importantly,
this method adds a regularization term ηK L(μ, β) for some reference measure β and
requires this regularizer to be more significant than the one originally in the Sinkhorn
loss, i.e., η ≥ λ. While this does not add any trouble when considering regimes where
both are close to 0, we here consider fixed λ, potentially far from 0 as explained in
Sect. 5. The scaling factor η thus cannot be negligible, making this method unadapted
to our case.

6.2 Different algorithms

Using the previous formulations, we propose several algorithms to solve the optimiza-
tion problem (5), which are compared experimentally in Sect. 7.2. As explained above,
we consider the discrete but non-convex formulation:

min
x∈Xm

α∈	m

OTc,λ

(
m∑

i=1

αiδxi , p0

)

. (9)

We first consider ADAM and RMSProp algorithms for this problem. Note that the
gradient of the Sinkhorn loss [25] is given by ∇OTc,λ(μ, ν) = ( f , g), where f and g
are the solutions of the dual problem given by Eq. (8), i.e., ( f , g) = λ(log(u), log(v))

where u and v are the vectors computed by the Sinkhorn algorithm presented in
Sect. 5.1. The gradient of OTc,λ can then only be approximated, as it is the solution of
an optimization problem. Luckily, first order optimization methods can still be used
with inexact gradients [20]. Two approximations of the gradient are possible.

Analytic differentiation: ∇OTc,λ(μ, ν) is approximated by ( f (n), g(n)), which are
the dual variables obtained after n iterations of the Sinkhorn algorithm.
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Automatic differentiation: the gradient is computed via the chain rule over the
successive operations processed during the Sinkhorn algorithm.

These two methods have been recently compared by Ablin et al. [1] and showed to
perform similarly for a fixed computation time.

For each optimization step, the gradient ∇OTc,λ is approximated by computing
(u(k+1)

t , v
(k+1)
t ) ← (α/Kv

(k)
t , β/K�u(k+1)

t ) forn iterates.However, if the distribution
μt did not significantly change since the last step, the gradient does not change too
much as well. Instead of starting the Sinkhorn algorithm from scratch (u(0)

t = 111), we
instead want to use the last optimization step (u(0)

t = u(n)
t−1) to converge faster. Note

that this technique, which we call warm restart, cannot be coupled with automatic
differentiation as it would require nt backpropagation operations for the optimization
step t .

The iteration step (u, v) ← (α/Kv, β/K�u) actually corresponds to a gradient
ascent step on ( f , g) in the minimax formulation given by Eq. (8). The warm restart
technique then just corresponds to alternating optimization steps between the primal
and dual variables, which is classical in minimax optimization.

To summarize, here are the different features of the optimization scheme to compare
in Sect. 7.2.

Optimizer: the general used algorithm, i.e., ADAM, RMSProp or accelerated gra-
dient descent (AGD).

Differentiation: whether we use automatic or analytic differentiation.

Warm restart: whetherwe use thewarm restart technique,which is only compatible
with analytic differentiation.

7 Experiments and particular cases

In this section, the case of linear utility cost is first considered and shown to have
relations with DC programming. The performances of different optimization schemes
are then compared on a simple example. Simulations based on the Sinkhorn scheme
are then run for the real problem of online repeated auctions. The code is publicly
available at https://github.com/eboursier/regularized_private_learning.

7.1 Linear utility cost

Section 4 described a general optimization scheme for (PRP) with a discrete type prior.
Its objective is to find local minima, for a dimensionally finite, non-convex problem,
using classical algorithms [79]. However in some particular cases, better schemes are
possible as claimed in Sects. 5 and 6 for the particular case of entropic regularization.
In the case of a linear utility for any privacy cost, it is related to DC programming
[37]. A standard DC program is of the form minx∈X f (x) − g(x), where both f and
g are convex functions. Specific optimization schemes are then possible [36, 37, 74].
In the case of linear utility costs over a hyperrectangle, (PRP) can be reformulated as
a DC program stated in Theorem 4.
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Theorem 4 If X = ∏d
l=1[al , bl ] and c(x, y) = x�y, define φ(y)l := (bl − al)yl/2

andhk(γi ) := ( ∑K
m=1 γi,m

)
f
( γi,k

pk0
∑K

m=1 γi,m

)
. Then (PRP) is equivalent to the following

DC program:

min
γ∈R(K+2)×K

+
λ

∑

i,k

pk0hk(γi ) −
K+2∑

i=1

∥∥∥∥
∥

K∑

k=1

γi,kφ(yk)

∥∥∥∥
∥
1

,

such that for all k ≤ K ,

K+2∑

i=1

γi,k = pk0 .

Proof Let ψ be the rescaling of X to [−1, 1]d , i.e., ψ(x)l := 2xl−bl−al
bl−al

. Then,

c(x, y) = ψ(x)Tφ(y) + η(y) where φ(y)l := (bl − al)
yl

2 and η(y) = ∑d
l=1

al+bl
bl−al

yl .
The problem given by Corollary 1 is then equivalent to minimizing

∑

i,k

γi,k(x
�
i φ(yk) + η(yk)) + λ

∑

i,k

pk0hk(γi ),

for x ∈ [−1, 1]d×(K+2). Because of the marginal constraints,
∑

i,k γi,kη(yk) =
∑

k p
k
0η(yk). This sum does depend neither on x nor γ , so that the terms η(yk) can be

omitted, i.e., we minimize

∑

i

x�
i

( ∑

k

γi,kφ(yk)

)
+ λ

∑

i,k

pk0hk(γi ).

It is clear that for a fixed γ , the best xi corresponds to xli = −sign(
∑

k γi,kφ(yk)l)
and the term x�

i

(∑
k γi,kφ(yk)

)
then corresponds to the opposite of the 1-norm of∑

k γi,kφ(yk), i.e., the problem then minimizes

−
∑

i

∥∥
∥∥∥

∑

k

γi,kφ(yk)

∥∥
∥∥∥
1

+ λ
∑

i,k

pk0hk(γi ).

��
More generally, if the cost c is concave and the action spaceX is a polytope, optimal

actions are located on the vertices of X . In that case, X can be replaced by the set
of its vertices and the problem becomes dimensionally finite. Unfortunately, for some
polytopes such as hyperrectangles, the number of vertices grows exponentially with
the dimension and the optimization scheme is no longer tractable in large dimensions.

7.2 Minimize Sinkhorn loss on the toy example

This section compares empirically different ways of minimizing the Sinkhorn loss as
described in Sect. 6.2. We consider the linear utility loss c(x, y) = x�y over the space
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Fig. 2 Comparison of different features for Sinkhorn minimization

Fig. 3 Influence of number of actions m

X = [−1, 1]d and the Kullback–Leibler divergence for privacy cost, so that both DC
and Sinkhorn schemes are possible. The comparison with DC scheme is available in
Sect. 7.3.

We optimized using well tuned learning rates. The prior pk0 is chosen proportional
to eZk for any k ∈ [K ], where Zk is drawn uniformly at random in [0, 1] and K = 100.
Each yik is taken uniformly at random in [−1, 1] and is rescaled so that ‖yk‖1 = 1.
The values are averaged over 200 runs.

Figure 2 compares the different features described at the end of Sect. 6.2 for dif-
ferent problem parameters. As suggested by Ablin et al. [1], the algorithms perform
similarly with automatic and analytic differentiation. However, the analytic differenti-
ation allows to use the warm restart technique which, coupled with RMSProp, yields
better performances as shown in Fig. 2.

Figure 3 on the other hand studies the influence of the chosen number of actions,3

which is the parameterm in Eq. (9). As expected, the larger the number of actions, the
better. Note that for λ = 0.5, increasing the number of actions has no real influence
after m ≥ 153. The global minimum might always be reached in this case; and
this minimum does not depend on m as soon as it is greater than K + 2, thanks to
Theorem 2. It yet remains unkown whether the reached minima are global minima
when the number of actions tends to infinity (over-parameterization).

7.3 Comparingmethods on the toy example

We now compare the performance of Sinkhornminimization with different algorithms
on the toy example described in Sect. 7.2 for m = K + 2 actions.

3 The comparison is done with RMSProp andwarm restart, since it yields the best results for a fixed number
of actions.
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Fig. 4 Comparison of optimization schemes. lr is the learning rate used for DC

Different methods exist for DC programming and they compute either a local or
a global minimum. We here choose the DCA algorithm [74] as it computes a local
minimum and is thus comparable to the other considered schemes. Figure 4 compares
the best Sinkhorn scheme in Sect. 7.2 with DCA and PRPmethod, which uses ADAM
or RMSProp optimizers for the minimization problem (3).

The DC method finds better local minima than the other ones. This was already
observed in practice [74] and confirms that it is more adapted to the structure of the
problem, despite being only applicable in very specific cases such as linear cost on
hyperrectangles. Also, the PRPmethod converges to worse spurious local minima as it
optimizes in higher dimensional spaces than the Sinkhorn method. We also observed
in our experiments that PRP method is more sensitive to problem parameters than
Sinkhorn method.

The Sinkhorn method seems to perform better for larger values of λ. Indeed, given
the actions, the Sinkhorn method computes the best joint distribution for each iteration
and thus performs well when the privacy cost is predominant, while DCA computes
the best actions given a joint distribution and thus performs well when the utility cost
is predominant. It is thus crucial to choose the method which is most adapted to the
problem structure as it can lead to significant improvement in the solution.

7.4 Utility-privacy in repeated auctions

For repeated second price auctions following a precise scheme [45], there exist numer-
ical methods to implement an optimal strategy for the bidder [56]. However, if the
auctioneer knows that the bidder plays such a strategy, he can still infer the bidder’s
type and adapt to it. We thus require to add a privacy cost to avoid this kind of behavior
from the auctioneer as described in Sect. 2.1.

For simplicity, bidder’s valuations are assumed to be exponential distributions,
so that the private type y is the parameter of this distribution, i.e., its expectation:
y = Ev∼μy [v]. Moreover, we assume that the prior p0 over y is the discretized
uniform distribution on [0, 1] with a support of size K = 10; let {yk}k=1,...,K be the
support of p0.

In repeated auctions, values v are repeatedly sampled from the distribution μyk
and a bidder policy is a mapping β(·) from values to bids, i.e., she bids β(v) if her
value is v. So a type yk and a policy β(·) generate the bid distribution β#μyk , which
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(a)
(b)

Fig. 5 Privacy-utility trade-off in online repeated auctions

corresponds to an action inX in our setting. As a consequence, the set of actions of the
agent are the probability distributions over R+ and an action ρi is naturally generated
from the valuation distribution via the optimal monotone transport map denoted by β i

k ,
i.e., ρi = β i

k#μyk [66]. In the particular case of exponential distributions, this implies
that βk

i (v) = βi (v/yk) where βi is the unique monotone transport map from Exp(1)
to ρi . The revenue of the bidder is then deduced for exponential distributions [56] as

r(βi , yk) = 1 − c(βi , yk)

= Ev∼Exp(1)
[(
ykv − βi (v) + β ′

i (v)
)
G

(
βi (v)

)
1βi (v)−β ′

i (v)≥0
]
,

whereG is the c.d.f. of themaximumbid of the other bidders.We here consider a single
truthful opponentwith a uniformvalue distributionon [0, 1], so thatG(x) = min(x, 1).
This utility is averaged over 103 values drawn from the corresponding distribution at
each training step and 106 values for the final evaluation.

Considering the KL for privacy cost, we compute a strategy (γ, β) using the
Sinkhorn scheme yielding the best results in Sect. 7.2. Every action βi is parametrized
as a single layer neural network of 100 ReLUs. Figure 5a represents both utility and
privacy as a function of the regularization factor λ.

Naturally, both the bidder revenue and the privacy loss decrease with λ, going from
revealing strategies for λ � 10−3 to non-revealing strategies for larger λ. They signif-
icantly drop at a critical point near 0.05, which can be seen as the cost of information
here. There is a 7% revenue difference4 between the non revealing strategy and the
partially revealing strategy shown in Fig. 5b. The latter randomizes the type over its
neighbors and reveals more information when the revenue is sensible to the action,
i.e., for low types yk here. This strategy thus takes advantage from the fact that the
value of information is here heterogeneous among types, as desired in the design of
our model.

Figure 6 shows the most used action for different types and λ. In the revealing
strategy (λ = 0), the action significantly scales with the type. But as λ grows, this

4 Which is significant for large firms such as those presented in Figure 1 besides the revenue difference
brought by considering non truthful strategies [56].
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Fig. 6 Evolution of the bidding strategy with the type and the regularization constant

rescaling shrinks so that the actions perform for several types, until having a single
action in the non-revealing strategy. This shrinkage is also more important for large
values of yk . This confirms the observation made above: the player loses less by hiding
her type for large values than for low values and she is thus more willing to hide her
type when it is large.

Besides confirming expected results, this illustrates how the Privacy Regularized
Policy is adapted to complex utility costs and action spaces, such as distributions or
function spaces.

8 Conclusion

We formalized a new utility-privacy trade-off problem to compute strategies revealing
private information only if it induces a significant increase in utility. For classical
Bayesian costs, it benefits from recent advances in Optimal Transport. It yet leads
to a non-convex minimization problem for which only heuristics are available. The
computation of global minima yet remains open.

We believe that this work is a step towards the design of optimal utility vs. privacy
trade-offs in economic mechanisms as well as for other applications. Its numerous
connexions with recent topics of interest motivate a better understanding of them as
future work.
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