
HAL Id: hal-03951403
https://hal.science/hal-03951403v1

Submitted on 23 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MLinter: Learning Coding Practices from
Examples-Dream or Reality?

Corentin Latappy, Quentin Perez, Thomas Degueule, Jean-Rémy Falleri,
Christelle Urtado, Sylvain Vauttier, Xavier Blanc, Cédric Teyton

To cite this version:
Corentin Latappy, Quentin Perez, Thomas Degueule, Jean-Rémy Falleri, Christelle Urtado, et al..
MLinter: Learning Coding Practices from Examples-Dream or Reality?. 30th IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER), Mar 2023, Macao SAR,
Macau SAR China. �hal-03951403�

https://hal.science/hal-03951403v1
https://hal.archives-ouvertes.fr

MLinter: Learning Coding Practices from
Examples—Dream or Reality?

Corentin Latappy∗§, Quentin Perez†, Thomas Degueule∗, Jean-Rémy Falleri∗‡,
Christelle Urtado†, Sylvain Vauttier†, Xavier Blanc∗, Cédric Teyton§

∗Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, F-33400 Talence, France
firstname.lastname@labri.fr

†EuroMov Digital Health in Motion, Univ. Montpellier & IMT Mines Ales, Ales, France
firstname.lastname@mines-ales.fr

‡IUF, Paris, France
§Promyze, Bordeaux, France

Abstract—Coding practices are increasingly used by software
companies. Their use promotes consistency, readability, and
maintainability, which contribute to software quality. Coding
practices were initially enforced by general-purpose linters, but
companies now tend to design and adopt their own company-
specific practices. However, these company-specific practices are
often not automated, making it challenging to ensure they are
shared and used by developers. Converting these practices into
linter rules is a complex task that requires extensive static analysis
and language engineering expertise.

In this paper, we seek to answer the following question: can
coding practices be learned automatically from examples manually
tagged by developers? We conduct a feasibility study using
CodeBERT, a state-of-the-art machine learning approach, to
learn linter rules. Our results show that, although the resulting
classifiers reach high precision and recall scores when evaluated
on balanced synthetic datasets, their application on real-world,
unbalanced codebases, while maintaining excellent recall, suffers
from a severe drop in precision that hinders their usability.

Index Terms—software quality, coding practices, machine
learning, CodeBERT

I. INTRODUCTION

Coding practices are essential to software quality. Some
of them are well-known and widely shared by the developer
community. They are even systematically applied in thousands
of software projects through the use of linters [1], such as
ESLint1 or checkstyle.2 Other coding practices, which are
project or company specific, are not supported by linters,
even though they are gaining in popularity. Described in
natural language with code examples, they are meant to be
applied by developers but always end up buried in inapplicable
documentation wikis.

To make specific coding practices more actionable, special-
ized tools such as CodeQL3 or Semgrep4 provide domain-
specific languages to express specific coding practices and
engines to apply them automatically. They, however, require
advanced expertise making the definition and application of

1https://eslint.org
2https://checkstyle.sourceforge.io
3https://codeql.github.com/
4https://semgrep.dev/

specific coding practices too complex to be largely used in
software projects.

This lack of support for specific coding practices often hurts
the development process since non-compliant code is more
likely to land in code review and be discussed repeatedly. This
is especially true for the contributions of junior developers who
still need to become familiar with project or company practices.
With Promyze, our industrial partner, we aim to democratize
the use of company-specific coding practices. Our dream is
to automatically learn practices from examples of compliant
and non-compliant source code provided by developers. The
underlying hypothesis is that it would drastically lower the
barrier to entry, enabling companies to design and adopt
customized coding practices more efficiently.

Machine learning (ML) has yielded promising results for
automating coding tasks, such as code completion [2], [3].
However, our use case contrasts with the traditional use of
ML because the goal is to learn practices from a small set
of examples. Indeed, in our vision, developers must provide
examples of compliant and non-compliant code themselves.
We expect to get, at best, a thousand examples for a given
rule, which would even be a relatively high bar requiring a
coordinated campaign. Obtaining a large training dataset is
impossible in our setting since we are trying to learn custom
practices that are not typically shared by a large community.
For this reason, this work focuses on transfer learning, the state-
of-the-art solution to limit the number of examples required.

Therefore, whether ML would be a good solution for our
ultimate goal of automating the detection of company-specific
coding practices with as few examples as possible remains an
open question. A previous study showed that coding practices
could be learned with about 700 examples using decision
trees [4]. However, this is still an upper bound in our industrial
context. Our goal in this paper is to evaluate whether it is
possible to train efficient classifiers with even fewer examples.
This paper performs a feasibility study to answer this question.
Our idea is to exploit a popular linter with dozens of coding
practices (ESLint) and a vast dataset of open-source projects
with conforming and non-conforming code and evaluate how
well a state-of-the-art ML technique (CodeBERT [5]) that is

compatible with transfer learning can learn the linter’s rules
with a smaller example budget.

We aim to answer the following research questions:
RQ1 How many examples are required to learn a practice?

Our overarching objective is to be able to learn a practice,
ideally using as few examples as possible.

RQ2 What are the best code examples to learn a practice?
One can provide several types of code examples to train a
classifier: examples that do not comply with the practice,
examples resulting from enforcing the practice on them
(fixes), and examples not related to the practice. Is it worth
providing fixed code and/or unrelated code to train the
classifiers?

Our results show that, although the resulting classifiers
reach high precision and recall when evaluated on a balanced
synthetic dataset, their application on realistic, unbalanced data,
while conserving good recall, suffers from a severe precision
drop which hinders their usability.

The remainder of this paper is organized as follows. Sec-
tion II introduces some background notions on linters, company-
specific coding practices, and our industrial use case. Section III
presents the overall design of our approach and how we frame
the learning task in CodeBERT, Section IV details our dataset
design process, Section V discusses our experimental protocol,
and Section VI presents our results. Finally, Section VII
discusses related work and Section VIII concludes.

II. BACKGROUND

A. Coding Practices & Linters

Linters are static analysis tools that automatically warn
developers of possible defects in their code or violations of
best practices and coding standards [6]. They are routinely
used by developers to promote consistency, readability, and
maintainability and to improve code reviews. Linters are
popular: Tómasdóttir et al. find that a quarter of the Javascript
repositories they analyze on GitHub use at least one linter,
ESLint being the most popular [1].

For the sake of illustration, let us detail the eqeqeq coding
practice5 defined in ESLint which states that developers should
favor using the equality operators === and !== over the == and
!= operators to avoid Javascript’s obscure type coercion rules.
A simple example of non-compliant code is a == b which
should instead be expressed as a === b. The linter’s goal is to
pinpoint every location in a given codebase that contains non-
compliant code for all the coding practices (commonly called
rules) it handles. Violations of the rules are then reported as
warnings on the corresponding lines. Some linters go beyond
merely detecting non-compliant code to fix the code and make
it comply with the coding practice. In our example, ESLint
can automatically rewrite a == b to a === b.

Practically speaking, linters typically parse the analyzed
codebase to build an abstract syntax tree, visit its nodes, and
let rule-specific code hook into the visit steps to implement

5https://eslint.org/docs/latest/rules/eqeqeq

rule-specific logic.6 Developers wishing to implement new rules
must acquire extensive knowledge of the tree structure produced
by the parser, the linter’s internals, and non-trivial static analysis
notions. In the case of company-specific practices, typically
designed and used by a limited audience, investing in these
development efforts is too costly.

A major concern for the adoption of linters in practice is
that they should strive for high precision to minimize the
number of false positives and avoid annoying developers.
Indeed, Christakis et al. find that 90% of developers are willing
to accept up to a 5% false positive rate, and only 24% of
them would tolerate a false positive rate as high as 20% [7].
Interestingly, they also find that developers favor tools that
find fewer bugs over those that generate many false positives.
Tools enforcing coding practices should therefore strive for
high precision (≥ 80%) over high recall.

B. Company-specific Coding Practices: the Promyze Example

Promyze is a French company specializing in knowledge
sharing for software developers and technical debt management.
Its eponymous tool enables developers to identify and share
coding practices within a company or development team. Using
Promyze, developers can identify coding practices directly
within their IDE (e.g., in Visual Studio) and during code
reviews (e.g., on GitHub). Developers are then invited to
periodically discuss the identified coding practices during so-
called craft workshops, where development teams gather to
share knowledge and manually identify positive and negative
examples of the practices in their codebases. Newly-arrived
developers are also invited to discovery workshops where they
are introduced to existing coding practices to get accustomed
to the company’s codebase and ease onboarding.

As of November 2022, Promyze’s internal catalog hosts
2,825 coding practices created by their customers, out of
which 1,933 have at least one associated (positive or negative)
example, for a total of 2,830 examples. Among the 1,828
negative examples, 605 have at least one associated fix. Besides,
Promyze also hosts a public hub of coding practices, open to
contributions, which currently hosts 351 practices in a wide
range of programming languages stored in 24 catalogs.7

An example of a company-specific practice is “Avoid
.toString(), prefer templating”,8 which encourages develop-
ers to favor TypeScript’s built-in template literal types. This rule
is associated with a positive example and a negative example
that have been identified in existing code—in this specific case,
the positive example results from enforcing the practice on the
negative example:

acc[type] = parseInt(acc[type], 10) + 1;

acc[type] = acc[type].toString();

becomes
acc[type] = `${parseInt(acc[type], 10) + 1}`;

6https://eslint.org/docs/latest/developer-guide/working-with-rules
7https://bestcodingpractices.dev/
8https://bestcodingpractices.dev/catalog/632194d9c21bb23fcc68ebb5/

631b46fb6ceba90fbd1118f3

While workshops succeed in identifying coding practices
as well as positive and negative examples, they do not scale
well for identifying every violation of every practice in huge
legacy codebases. Thus, Promyze’s developers experimented
with tools such as Semgrep to automate the detection of coding
practice violations. Following hands-on working sessions with
their customers, they concluded that their use was too complex
for their target audience, as it required advanced expertise.

III. MLINTER

We now detail our approach to automatically learning coding
practices from developer-provided examples to ease their
adoption.

A. Overview

We model our problem of learning coding practices as a
binary classification problem, as Ochodek et al. show that it is a
successful approach [4]. Given a coding practice, our goal is to
train a binary classifier that takes a line of code as its input and
produces a compliant or non-compliant label as its output. This
modeling of the problem fits well with our context since we can
add new practices by training and deploying a new classifier
without affecting the existing classifiers. Moreover, should the
need arise, the classification process can be parallelized to
scale up to a larger number of coding practices.

Linters commonly raise warnings at the level of code lines.
Of course, many coding practices cannot be detected with only
one code line as an input. For instance, the indent practice
of ESLint, which ensures that the code is correctly indented,
requires contextual information from the surrounding lines. For
the sake of our feasibility study, however, we focus on coding
practices that can be identified from a single line of code and
leave practices requiring more context to future work.

In our context, two broad categories of code lines can be
provided as training examples w.r.t. to a given practice:

• Non-compliant code: a source code line that violates the
practice;

• Compliant code: a source code line that does not violate
the practice. A compliant code line can either be found
natively in a project—we call it an extant code line, or it
corresponds to a line that was originally non-compliant
and has been manually or automatically fixed to comply
with the practice—we call it a fixed code line.

B. CodeBERT

Transfer learning is a specific learning method that addresses
the problem of insufficient training data. The principle of
transfer learning is to first train a machine learning model on
source domain data to acquire some knowledge. The model
is then retrained on target domain data to specialize it on
specific domain knowledge. Several transfer learning models
exist. To name a few, we can cite Global Vectors for Word
Representation (GloVe) [8], Word2Vec [9] or Bidirectional
Encoder Representations from Transformers (BERT) [10].

CodeBERT is a large deep learning model based on Trans-
formers [11] created by Feng et al. [5] and specifically designed

for source code. CodeBERT relies on the natural language
model BERT. The BERT model outperformed state-of-the-
art techniques by a large margin on many Natural Language
Processing (NLP) tasks, such as next words/sentence predic-
tion [10], sentiment analysis [12] and text classification [13].
BERT is a pre-trained model: its training is performed on
large corpora of natural language documents. Thus, BERT
can be used as it stands or adjusted by re-training on a new
corpus to create a specific model for a given context or task
(transfer learning). Like BERT, CodeBERT is a model allowing
the transformation of textual information (lines of code) into
vectors and their use for token prediction in lines of code
(masked language model) or for classification via re-training.

In our context, we choose CodeBERT for several reasons.
First, CodeBERT is a model working purely with raw textual
information and does not use any other information such as
Abstract Syntax Trees (ASTs) like Code2Seq [14] or Code2Vec
[15] which must transform the input code into ASTs. Thus,
we can use this model on single lines of source code, and
it relaxes the constraint of parsability on the line. Second,
CodeBERT is publicly available through the Hugging Face
repository9 and can thus be easily exploited. Third, CodeBERT
has been pre-trained on more than 6M lines of code written
in six major languages (Go, Java, JavaScript, PHP, Python,
and Ruby). This pre-training allows for having less data than
the initial training during the specialization (fine-tuning) on
our specific classification tasks. The use of six languages in
CodeBERT initial training makes the CodeBERT model more
generalized than those trained using a single language [16].
Lastly, CodeBERT has been shown to perform well for many
software engineering tasks, for instance, program repair [17],
flaky tests prediction [18], and defects prediction [19].

C. Building a Classifier

Figure 1 depicts the process we follow to specialize the
pre-trained CodeBERT model to individual coding practices P.
This process takes as input the pre-trained CodeBERT model
for JavaScript that can be readily downloaded. It also takes
as input a set of training instances of the three previously
described types: non-compliant code, extant code, and fixed
code instances. Finally, the pre-trained model and the training
instances are used to produce a new CodeBERT model, fine-
tuned for the practice P. This model is then used to classify
new source code lines into the non-compliant or compliant
classes. This process is to be repeated for each of the coding
practices that should be learned.

IV. DATASET DESIGN

Before creating our own dataset, we looked at existing
datasets [4], [20]. As explained before, we need our dataset to
contain examples of both non-compliant and compliant code
for a given coding practice, including compliant code obtained
by correcting non-compliant code (i.e., fixed code). This was
not present in the datasets we analyzed, so we built our own
dataset using a linter on popular projects from GitHub.

9https://huggingface.co/microsoft/codebert-base

JavaScript pre-trained
CodeBERT

non compliant code for P

CodeBERT fine-tuning

Fine-tuned CodeBERT
for practice P

code
line

compliant
or

non-compliant

co
m

pl
ia

nt
 c

od
e

extant code for P

fixed code for P

Fig. 1. Process to fine-tune CodeBERT for a given practice P

arrow-spacing
path /atom_atom/…/main.js

…

… …
line 39

violation if (atom.onDidFailAssertion != null) {
fix if (atom.onDidFailAssertion !== null) {

arrow-parens
path /atom_atom/…/main.js

…

… …
line 39

violation if (atom.onDidFailAssertion != null) {
fix if (atom.onDidFailAssertion !== null) {

11ty_eleventy

arrow-s
pacingarrow-p

arenseqeqeq

.eslintrc

11ty_eleventy.json

550 projects

536 analysis
38 rules

➊

➋

➌

➍

eqeqeq
path /atom_atom/…/main.js

…

… …
line 39

violation if (atom.onDidFailAssertion != null) {
fix if (atom.onDidFailAssertion !== null) {

➎

Fig. 2. Process to create our dataset

For this study, we chose to work with JavaScript. Among the
linters available for this language, we use ESLint as it is the
most popular JavaScript linters [1]. It is also well documented
and has the ability to automatically fix non-compliant code.

We proceeded in three successive steps, detailed below and
summarized in Figure 2: fetching the JavaScript projects (e.g.,
11ty/eleventy in Figure 2), configuring ESLint, and extracting
and storing results.10

A. Project Selection

We use GitHub repositories to create the codebase on
which we run ESLint. Using the GitHub API, we retrieve
all public projects whose language is JavaScript and have at
least 10,000 stars to obtain a dataset of reasonable size and
containing good quality code. We get a total of 550 repositories
that we clone ➊. Once all projects have been cloned, we filter
all files with the extension .min.js. Indeed, it is common
for JavaScript developers to minify their JavaScript files to
speed-up transfer times between servers and clients. However,
it drastically reduces the readability of the code as it usually
involves shortening the functions and variables names and
removing most white spaces. Moreover, minified code is not
expected to be compliant with the coding practices, as it is
only used for deployment. Therefore, we exclude such code
from our training set, as it would introduce noise.

B. Rules Selection

Before starting the ESLint analysis, we must first select the
rules to activate. Since we need non-compliant code with the
corresponding fixed compliant code for each practice, we only
consider the fixable rules. They represent precisely 100 rules.
For this first study, we only focus on rules identifiable on a
single code line, as it will be the only data we will provide
as an input to the classifier (see Section III). Therefore, by
looking at its documentation, we determine for each rule if
all the information needed to detect it is on the same line.
Our final ESLint configuration has 54 rules enabled. Some
rules allow us to configure options, resulting in a different
analysis behavior. For simplicity, we let each rule with the
default options ➋.

We modify the build configuration for each project by adding
(if not present) a dependency to ESLint with our configuration
activated. Finally, we run ESLint on each project and generate
an output in JSON format. Before running the linter, we have
550 available projects. However, we obtain results for 536
of them (about 2.5% loss). For two projects, the analysis
failed because of linter errors. As for the other missing results,
ESLint did not find any non-compliant code with the specified
configuration. In this step, we thus obtain 536 JSON files, one
per project, containing the ESLint analysis results ➌.

C. Non-compliant Code and Fixed Code Extraction

For each project, ESLint generates a JSON file containing
information about each file of the current project. Each of

10All the scripts used are documented and available for reproducibility: https:
//github.com/labri-progress/MLinter

these files contains the number of errors found. For each of
these files, we have the number of errors found. If a file has
no errors, we have its filename. Otherwise, we have the file’s
complete content and the violations’ details. In almost all cases,
each violation is defined by the rule name, details about the
file’s location, and the associated patch to fix it. We review
all the result files and check two parameters for each error ➍.
First, related to our need to analyze only one-line rules, we
ensure that the violation’s start and end lines are the same.
The second check concerns minification. Despite the filter
previously applied on file names, we observed that minified
code was still present in our dataset since not all developers
use the min.js convention. We remove the lines with more
than 115 characters to avoid minified code. To calculate this
threshold, we went through 385 random files in our dataset,
retrieved the length of all lines, and used the 99% quantile
as our filtering threshold. We pick only 385 files to avoid to
browse all files and save time. We use Cochran sample size
formula with a confidence level at 95% and a 5% precision.
When both conditions are met, we record the line number, the
violation content, the correction if provided by ESLint, and
the path to the file containing the error ➎. We also record the
original GitHub project with the associated commit SHA at
cloning time for reproducibility purposes.

Finally, for our protocol needs, we need a minimum of 1,000
examples (violations and fixes) for each rule. Applying this
threshold removes 16 rules, resulting in a final total of 38 rules.

D. Descriptive Statistics

Our codebase of 550 projects cloned from GitHub contains
218,530 files with more than 33 million lines of code. Our
final dataset contains almost 13 million violations from 38
different rules. There is an important gap between the most
and the least violated rules. We have almost 4 million
examples for the quotes rule and barely 1,480 examples for
the no-floating-decimal rule (see Figure 3). An important
observation is the ratio between the number of non-compliant
examples and the number of lines from our corpus for each
rule. There are 35 rules having a ratio under one percent. From
this observation, we can conclude that most coding practices
in our dataset result in extremely imbalanced classification
problems [21]. Interestingly, these ratios are consistent with
those observed in previous work [4]. Therefore, we conjecture
that this distribution of ratios is inherent to the problem of
detecting non-compliant code.

V. EXPERIMENTAL PROTOCOL

Answering our two research questions requires the construc-
tion of several classifiers for different linter rules, with different
numbers of examples used to learn a rule and different ratios
of compliant and non-compliant code. All of these classifiers
are trained on a training set and are validated on a testing set
by checking their ability to detect the same rule violations as
the linter.

Fig. 3. Number of non-compliant examples, with ratio, per rule

A. Learning Configurations

Each classifier targets a coding practice defined by an ESLint
rule and checks whether a given line of code complies with
the practice. It is trained on a training set that consists of
source code lines, some of which are non-compliant and others
compliant.

Regarding the number of lines in the training set, we
recall that our main motivation is to check whether a single
developer or a small development team can train a classifier by
feeding it with a small-enough number of examples. Following
discussions with our industrial partner, we consider that a set of
10 examples is quite small (easily done by a single developer),
100 is medium (within reach of a development team), and 1000
is large (would require coordinated work from several teams).
We, therefore, consider three sizes (S=10, M=100, L=1,000)
for the training sets.

For most practices, we are dealing with extremely imbal-
anced data where compliant code largely dominates over non-
compliant code (see Section IV). To deal with this issue, we use
a classical data-level method relying on undersampling compli-
ant code instances to construct balanced training sets with 50%
of instances of compliant and non-compliant code [21]. The
50% of compliant code in the training sets can either be fixed
or extant, as described in Section III. Our hypothesis is that the
classifier would learn better when presented with some amount
of fixed code, which represents a sort of “border” between
the compliant and non-compliant code instances. Following
this idea, we opt for three training set ratios: 50% of non-
compliant code and 50% of fixed code (the VF ratio), 50% of
non-compliant code and 50% of extant code (the VE ratio),
and 50% of non-compliant code, 25% of fixed code, and 25%
of extant code (the VFE ratio).

We obtain nine learning configurations for each classifier by
combining the three sizes (S, M, L) and the three ratios (VF,
VE, VFE). For example, an M/VF classifier is trained on a set
of 100 lines composed of 50 non-compliant and 50 fixed code
lines. Note that the special case S/VFE is trained on 10 lines
composed of 5 non-compliant code lines, 3 fixed code lines,
and 2 extant code lines.

B. Validation Protocol

As the number of source code lines we use for our training
sets (10, 100, or 1000) is very small compared to the total
number of source code lines in our dataset (33M lines), it is
likely that the precision and recall obtained by a particular
classifier is not representative enough. To address this threat,
we use a validation inspired by the out-of-sample bootstrap
validation approach [22] that is the best performing validation
approach in [23]. We train 100 classifiers for each of the nine
configurations and 38 linter rules. The lines included in a given
training set are drawn at random with replacement from the
whole dataset until the expected size and ratios are obtained.
For instance, for a S/VFE classifier training set, we draw at
random 5 non-compliant code lines, 3 fixed code lines, and
2 extant code lines. In contrast to the classical out-of-sample
bootstrap, we do not draw a training set with the same size
as the whole dataset because, in our study, we want to assess
the effect of the training test size. This training set is then
used to fine-tune CodeBERT as explained in Section III. As
recommended by Devlin et al. [10], we use the following
hyper-parameters for the fine-tuning process: 4 epoch, a batch
size of 16, a learning rate of 5e−5 and a eps of 1e−8.

To validate a classifier, we apply it on a set of source code
lines (the testing set), and ask, for each line, whether it is
compliant or not. We then compare the classifier’s results
with the ground truth established by ESLint on the same lines
and calculate its precision, recall, accuracy, and F-score. To
build a testing set, we need to define its size and balance (the
percentage of compliant and non-compliant code lines in the
set). We define two approaches for building the testing set:
the balanced and the realistic approaches. In the balanced
approach, we build a testing set with the same size and balance
as the training set by drawing instances at random without
replacement among the instances not included in the training
set to mimic the out-of-sample bootstrap approach. In contrast
to the out-of-sample bootstrap, we do not use all instances not
in the training set as the testing set, as our dataset contains
millions of code lines, and using it would be computationally
too expensive. In the realistic approach, we build a testing set
with a balance similar to real source code files. We construct a
testing set composed of all lines with less than 115 characters
contained in 5 source code files drawn at random without
replacement among the files that have no common line with
the training set while having at least one non-compliant code
line w.r.t. the practice. This testing set aims to approximate the
balance of the classes that exist in real code files while having
some amount of non-compliant code to compute precision and
recall.

In total, our protocol builds 34,200 classifiers (38 rules ×
9 kinds × 100). Each classifier learns on its own training set,
randomly constructed from a global set of source code lines
containing non-compliant, fixed, and extant code lines. Each
classifier is then validated twice according to our two validation
approaches.

Fig. 4. Scores obtained by the classifiers according to the number of lines
used for training, grouped by ratio, with the balanced validation

VI. RESULTS

To answer our research questions, we now discuss the results
obtained by applying the protocol introduced in Section V to
the dataset designed in Section IV. Specifically, we study the
influence of our two main parameters on the performance of
the resulting classifiers: the size of the learning set, and the
ratio of non-compliant and compliant lines.

We divide this section along our two validation methods.
We first present the results obtained with the balanced val-
idation in Section VI-A, then the results obtained with the
realistic validation in Section VI-B, we discuss the results
in Section VI-C and finally we conclude with the threats to
validity in Section VI-D.

For each classifier, we compute its accuracy, precision,
and recall scores. We aggregate the results obtained for
every rule by size and by ratio. This means that, for a
given configuration (e.g., M/VF) and validation method (e.g.,
realistic), we aggregate the 3,800 scores obtained by the
corresponding classifiers (38 rules × 100 classifiers).

A. Balanced Validation

Figure 4 depicts the results obtained with the balanced
validation. First, regardless of size and ratio, the full set
of 34,200 classifiers (38 rules × 3 sizes × 3 ratios × 100
measures) obtains a median precision of 0.979 and a median
recall of 1. These first results are very promising since we aim
for a minimum precision of 0.8 and an ideal precision ≥ 0.95.

1) Influence of size: Looking at the distributions, we notice
that all scores increase as the size of the training set grows,
regardless of the ratio. First, we group all the measures obtained
for each size and compare their medians. Regarding precision,
the sizes S, M, and L obtain, respectively, 0.625, 0.977, and

TABLE I
MANN-WHITNEY p-VALUES AND RANK-BISERIAL CORRELATION SCORES

OBTAINED FOR THE ANALYSIS OF PRECISION IN THE BALANCED
VALIDATION

Size

Size 1 Size 2 p-value RBC

S M 0 −0.70
S L 0 −0.76
M L 0 −0.34

Ratio

Ratio 1 Ratio 2 p-value RBC

VE VFE 1.8e−301 0.28
VE VF 3.2e−112 0.17
VFE VF 2.5e−38 −0.10

TABLE II
NUMBER OF RULES WHERE THE MEDIAN PRECISION OF CLASSIFIERS IS

GREATER THAN P FOR EACH SIZE AND RATIO IN THE BALANCED
VALIDATION

P = 0.8 P = 0.95

Size VE VFE VF VE VFE VF

S 1 0 3 0 0 1
M 38 32 30 38 17 25
L 38 38 38 38 38 38

0.995. Accuracy follows the same trend with 0.700, 0.970,
and 0.996. The recall is stable whatever the size with scores
of 1, 0.980, and 0.998. We observe the same trend on every
individual ratio, as shown in Figure 4.

To better qualify the difference between each size, we then
compute non-parametric Mann-Whitney U tests [24] and effect
sizes (using rank-biserial correlation—RBC [25]) between the
groups (Table I). The RBC is a value between −1 and 1. An
RBC value of 1 indicates that all values from the first group
are greater than all values from the second group. A value of 0
indicates an equal amount of values in each group greater than
in the other group. We compare the groups pairwise: S vs. M,
S vs. L, and M vs. L. We adjust the resulting p-values using a
Bonferroni correction. We obtain p-values equal to 0 for the
three comparisons, rejecting the null hypotheses. Regarding
effect size, the RBC indicates that S < M < L. The difference
between S and M, as well as between S and L, is large with
an RBC ≤ −0.7. The difference between M and L, on the
other hand, is less marked, with an RBC of −0.34.

As explained in Section II-A, developers favor tools that
keep false positives to a minimum. Thus, we now look at how
many of the 38 rules produce classifiers that obtain a median
precision above our minimum goal of 0.8 and our ideal goal
of 0.95 (Table II). We observe that every rule reaches the
minimum and ideal goals for size L, that some do not reach
the goals for size M, and that size S cannot produce satisfactory
classifiers.

In summary, we observe that the number of lines used to learn
positively affects the performance of the resulting classifiers.
A crucial element is that even for a medium size of 100 lines,

we obtain many results that reach our requirements and that
these results are close to those obtained with the large size of
1,000 lines.

2) Influence of ratio: We apply the same methodology we
used to study the influence of size to study the influence of the
ratio, and we immediately see that the impact is less apparent.

We analyze the median measures by grouping them by ratio.
For the VE, VFE, and VF ratios, we get precision medians
of 0.992, 0.943, and 0.978, accuracy medians of 0.990, 0.940,
and 0.960, and recall medians of 1, 0.998, and 0.988. We
observe that the VE ratio performs best, followed by VF and
VFE. When grouping the measures by size (Figure 4), we
observe that VE performs best for sizes S and M, the results
for size L being very similar for the three ratios. There is no
visible difference between the VFE and VF ratios for sizes S
and L.

The statistical tests confirm our first observation: the differ-
ence between the three configurations is not as marked as with
size (Table I). The three pairwise comparisons are now: VE vs.
VFE, VE vs. VF, and VFE vs. VF. The results obtained by the
classifiers with different ratios are different, as the p-values
indicate. However, the RBC scores indicate that their impact
is much weaker than the size.

Computing the number of rules with a median precision
higher than our thresholds does not help to discriminate the
ratios. For size S, VF appears to perform better; for size M,
VE performs better; and for size L, all rules reach the ideal
goal of 0.95.

In summary, the ratio of non-compliant and compliant code
(fixed or extant) used to train our classifiers has a limited
effect: the best ratio across all training set sizes is VE, but
the improvement is minor. For this balanced validation, we
conclude that the best-performing learning configuration has a
size L and a ratio VE. However, the results obtained with size
M also reach our goals, making it usable and easier to apply
in our application domain.

B. Realistic Validation

Figure 5 depicts the results obtained with the realistic
validation. The first observation is clear: the precision scores
plummet, regardless of the size and ratio used for training.
We obtain good results for the global median of the accuracy
(0.887) and recall (0.929), but the median precision falls to
0.043, compared to 0.979 with the balanced validation.

1) Influence of size: Regarding size, we observe the same
tendency as with the balanced validation: larger sizes for the
training set yield better results. For the sake of conciseness,
we do not run a statistical analysis as detailed as for the
balanced validation because the obtained precision scores are
low across the board: 0.014 for size S, 0.091 for size M, and
0.133 for size L. Yet, the statistical tests confirm two points
(Table III). First, there is indeed a difference between the
distributions of precisions obtained for each size, and the rank-
biserial correlations indicate that S < M and S < L. Second,
the RBC score obtained between M and L is only −0.02,
indicating a very small effect. Although the precision scores

Fig. 5. Scores obtained by the classifiers according to the number of lines
used for training, grouped by ratio, with the realistic validation

TABLE III
MANN-WHITNEY p-VALUES AND RANK-BISERIAL CORRELATION SCORES

OBTAINED FOR THE ANALYSIS OF PRECISION IN THE REALISTIC
VALIDATION

Size

Size 1 Size 2 p-value RBC

S M 0 −0.39
S L 0 −0.30
M L 0.0005 −0.02

Ratio

Ratio 1 Ratio 2 p-value RBC

VE VFE 5.0e−219 −0.2408
VE VF 0.31 0.0006
VFE VF 0 0.2909

are much lower than observed in the balanced validation, the
trend is similar.

2) Influence of ratio: With the balanced validation, no ratio
configuration stood out. Here, one configuration produces
slightly better results. Between VF and VE, tests indicate
two similar populations, but they are both dominated by VFE.
In our realistic validation, the ratio has an actual impact on
the resulting precision of the classifiers.

C. Discussion

As a general conclusion of our analyses, we observe that
the validation method has a staggering impact on the resulting
precision of the classifiers. Indeed, many rules and classifiers
that obtained good precision results in the balanced validation
fell off in the realistic validation. As our industrial scenario
involves the analysis of real-world files, where the ratio of
non-compliant code over compliant code is generally very low,

the classifiers would not perform well w.r.t. to the developers’
requirements. We may explain this lack of success with two
points.

First, although CodeBERT fits well with transfer learning,
it is usually used to learn on training sets larger than what we
require for our scenario. Our goal is to use as few examples as
possible to make the approach usable in practice, so we focus
on training set sizes of up to 1,000 lines of code. It is likely
that we would obtain much better results using bigger training
set sizes, as was already observed by other authors [4], but
this would hurt the applicability of the approach to our target
scenario. In future work, we will investigate how the approach
of [4] behaves with smaller training set sizes, and compare its
validation method (stratified k-fold) against ours.

Second, the realistic validation obtains low precision results
because there are only a few lines of non-compliant code in
the validation set given to the classifiers. As a reminder, 35 of
the 38 rules have a ratio of non-compliant lines over compliant
lines lower than 1%. The classifiers are battling an extremely
imbalanced data problem: even if the classifiers reach very high
accuracy, they will inevitably misclassify a small portion of
the compliant lines as non-compliant, which hurts the resulting
precision when compliant lines are the most frequent case, due
to the base rate fallacy.

In summary, we answer our research questions as follows:
RQ1: With both validation methods, we observe that bigger

training set sizes yield better results. A small size S of 10 lines
is clearly insufficient to efficiently learn a coding practice. On
the other hand, in the balanced validation, we observe that the
difference between sizes M and L is small and that both can
be used to efficiently learn practices with a precision ≥ 0.8.
Although size M is able to learn some coding practices with a
precision ≥ 0.95, size L performs better in this case.

RQ2: In the balanced validation, we do not observe that a
ratio has a clear advantage over the other ones. In the realistic
validation, the VFE ratio obtains better scores, but the precision
reached in every case is too low regardless.

D. Threats to Validity

Regarding internal validity, we drew popular projects from
GitHub and analyzed all the JavaScript code they contain.
However, some of this code, such as obfuscated code, minified
code, or generated code, is not meant to be subjected to coding
practices and therefore is not a good basis to learn from and
to test against. We mitigated this threat by doing our best
to exclude minified code from our dataset, but we cannot
guarantee that our dataset only contains code that has been
manually written by developers.

Regarding external validity, our study uses only a subset of
rules from ESLint that can be decided on one line. Therefore,
we cannot guarantee that the results obtained on an arbitrary
set of company-specific rules would be similar. However, we
made sure to select rules that are possible to learn. Therefore,
our results could be seen as a sort of upper bound.

VII. RELATED WORK

To the best of our knowledge, the work of Ochodek et al. [4]
is the only one that uses machine learning to learn coding
practices. In contrast to our work, they rely on a custom-made
feature extractor and classical decision trees for classification.
They rely on a repeated stratified k-fold validation approach to
evaluate the accuracy of their classifiers. They report good F-
scores and accuracy on most rules and obtain variable precision
scores, which tend to be higher than the ones we obtain on
training sets of comparable size (1000 in our study, around 2000
in their study). However, we push the experiment further by
studying the performance of classifiers trained on even smaller
training sets. In the remainder of the section, we discuss other
related work on similar topics.

A. Patch Inference in Software Engineering

Patch inference has been used to automatically repair
warnings raised by linters [26]–[30] and correct the use of
deprecated APIs, with good reported results [31]–[37]. The idea
is to automatically infer an AST-based tree transformation from
a set of examples, by first using an AST differencing algorithm
(such as GumTree [38]), and then abstracting some elements
from the produced edit-script. Some approaches go even beyond
and can deal with control and data flow dependencies [35]. In
contrast to our approach, they focus on fixing the warnings
while we aim at issuing the warnings, with the work of Garg
et al. [39] being a notable exception since it has the same
objective as we do. An advantage of these approaches is that
they may produce human-readable patches that can be manually
improved to improve accuracy if needed. Another advantage
is that they appear to require fewer examples than traditional
machine learning approaches. However, since they operate
at the AST level, they require advanced language-specific
tooling. Therefore, adapting these approaches to a wide range of
languages requires significant effort. In contrast, our approach
uses binary classification and transfer learning which is more
straightforward to port to new languages, as it only requires
the existence of a pre-trained model for the chosen language.

B. Machine learning for smell detection

Several approaches use machine learning to detect code
smells. A comprehensive overview of these approaches can
be found in a survey on the subject [40]. The main difference
between coding practices and code smells is that code smells are
generally defined at the design level, while coding practices are
defined at the code level. Therefore the features used to detect
code smells are commonly design metrics (such as coupling or
cohesion). Interestingly, none of the surveyed approaches uses
a code embedding technique such as CodeBERT. To the best of
our knowledge, only one approach [41] uses code embedding
techniques (namely code2vec, code2seq, and CuBERT) in
addition to metrics to detect code smells (long method and
god class). In the reported results, CuBERT outperformed all
other tested combinations. This result is consistent with our
intuition that BERT-based approaches are well suited to tackle
this kind of learning task.

VIII. CONCLUSION

In this article, we presented a feasibility study on the
ability of CodeBERT to learn coding practices through transfer
learning using few examples. While our approach obtains fairly
good accuracy and recall, its precision is too low to be usable,
probably due to the imbalance between compliant and non-
compliant code in real-world software. An interesting finding
is that we obtain weaker precision results than a previous
approach [4] which uses a custom feature extraction approach
and classical decision trees on training sets of comparable
sizes. This was surprising as CodeBERT generally outperforms
classical classifiers in software engineering tasks. As future
work, we will perform a full-fledged replication study of [4] to
better understand the influence of the underlying technology on
the performance of the classifiers and explore new approaches
to classification, such as anomaly detection models.

REFERENCES

[1] K. F. Tómasdóttir, M. Aniche, and A. Van Deursen, “The Adoption
of JavaScript Linters in Practice: A Case Study on ESLint,” IEEE
Transactions on Software Engineering, vol. 46, no. 8, pp. 863–891, Aug.
2020, conference Name: IEEE Transactions on Software Engineering.

[2] A. Svyatkovskiy, Y. Zhao, S. Fu, and N. Sundaresan, “Pythia:
AI-assisted Code Completion System,” in Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, ser. KDD ’19. New York, NY, USA: Association for
Computing Machinery, Jul. 2019, pp. 2727–2735. [Online]. Available:
https://doi.org/10.1145/3292500.3330699

[3] A. Svyatkovskiy, S. Lee, A. Hadjitofi, M. Riechert, J. V. Franco, and
M. Allamanis, “Fast and Memory-Efficient Neural Code Completion,”
in 2021 IEEE/ACM 18th International Conference on Mining Software
Repositories (MSR), May 2021, pp. 329–340, iSSN: 2574-3864.

[4] M. Ochodek, R. Hebig, W. Meding, G. Frost, and M. Staron,
“Recognizing lines of code violating company-specific coding guidelines
using machine learning: A Method and Its Evaluation,” Empirical
Software Engineering, vol. 25, no. 1, pp. 220–265, Jan. 2020. [Online].
Available: https://doi.org/10.1007/s10664-019-09769-8

[5] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang, and M. Zhou, “CodeBERT: A Pre-Trained Model for
Programming and Natural Languages,” Sep. 2020, arXiv:2002.08155
[cs]. [Online]. Available: http://arxiv.org/abs/2002.08155

[6] M. Beller, R. Bholanath, S. McIntosh, and A. Zaidman, “Analyzing
the State of Static Analysis: A Large-Scale Evaluation in Open
Source Software,” in 2016 IEEE 23rd International Conference
on Software Analysis, Evolution, and Reengineering (SANER).
Suita: IEEE, Mar. 2016, pp. 470–481. [Online]. Available: http:
//ieeexplore.ieee.org/document/7476667/

[7] M. Christakis and C. Bird, “What Developers Want and Need from
Program Analysis: An Empirical Study,” in Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering,
ser. ASE 2016. New York, NY, USA: ACM, 2016, pp. 332–343.
[Online]. Available: http://doi.acm.org/10.1145/2970276.2970347

[8] J. Pennington, R. Socher, and C. Manning, “GloVe: Global Vectors
for Word Representation,” in Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP).
Doha, Qatar: Association for Computational Linguistics, Oct. 2014, pp.
1532–1543. [Online]. Available: https://aclanthology.org/D14-1162

[9] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” in
Proceedings of the 26th International Conference on Neural Information
Processing Systems - Volume 2, ser. NIPS’13. Red Hook, NY, USA:
Curran Associates Inc., Dec. 2013, pp. 3111–3119.

[10] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). Minneapolis,

Minnesota: Association for Computational Linguistics, Jun. 2019, pp.
4171–4186. [Online]. Available: https://aclanthology.org/N19-1423

[11] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is All you Need,” in
Advances in Neural Information Processing Systems, vol. 30. Curran
Associates, Inc., 2017. [Online]. Available: https://papers.nips.cc/paper/
2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

[12] M. Hoang, O. A. Bihorac, and J. Rouces, “Aspect-Based Sentiment
Analysis using BERT,” in Proceedings of the 22nd Nordic Conference
on Computational Linguistics. Turku, Finland: Linköping University
Electronic Press, Sep. 2019, pp. 187–196. [Online]. Available:
https://aclanthology.org/W19-6120

[13] S. Garg and G. Ramakrishnan, “BAE: BERT-based Adversarial Examples
for Text Classification,” in Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP). Online:
Association for Computational Linguistics, Nov. 2020, pp. 6174–6181.
[Online]. Available: https://aclanthology.org/2020.emnlp-main.498

[14] U. Alon, S. Brody, O. Levy, and E. Yahav, “code2seq: Generating
Sequences from Structured Representations of Code,” in International
Conference on Learning Representations, 2019. [Online]. Available:
https://openreview.net/forum?id=H1gKYo09tX

[15] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: learning
distributed representations of code,” Proceedings of the ACM on
Programming Languages, vol. 3, no. POPL, pp. 40:1–40:29, Jan. 2019.
[Online]. Available: https://doi.org/10.1145/3290353

[16] X. Zhou, D. Han, and D. Lo, “Assessing Generalizability of CodeBERT,”
in 2021 IEEE International Conference on Software Maintenance and
Evolution (ICSME), Sep. 2021, pp. 425–436, iSSN: 2576-3148.

[17] E. Mashhadi and H. Hemmati, “Applying CodeBERT for Automated
Program Repair of Java Simple Bugs,” in 2021 IEEE/ACM 18th
International Conference on Mining Software Repositories (MSR), May
2021, pp. 505–509, iSSN: 2574-3864.

[18] S. Fatima, T. A. Ghaleb, and L. Briand, “Flakify: A Black-Box, Language
Model-Based Predictor for Flaky Tests,” IEEE Transactions on Software
Engineering, pp. 1–17, 2022, conference Name: IEEE Transactions on
Software Engineering.

[19] C. Pan, M. Lu, and B. Xu, “An Empirical Study on Software
Defect Prediction Using CodeBERT Model,” Applied Sciences,
vol. 11, no. 11, p. 4793, Jan. 2021, number: 11 Publisher:
Multidisciplinary Digital Publishing Institute. [Online]. Available:
https://www.mdpi.com/2076-3417/11/11/4793

[20] U. Ferreira Campos, G. Smethurst, J. P. Moraes, R. Bonifácio, and
G. Pinto, “Mining Rule Violations in JavaScript Code Snippets,” in
2019 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR), May 2019, pp. 195–199, iSSN: 2574-3864.

[21] B. Krawczyk, “Learning from imbalanced data: open challenges and
future directions,” Progress in Artificial Intelligence, vol. 5, no. 4,
pp. 221–232, Nov. 2016. [Online]. Available: https://doi.org/10.1007/
s13748-016-0094-0

[22] B. Efron, “Estimating the Error Rate of a Prediction Rule:
Improvement on Cross-Validation,” Journal of the American Statistical
Association, vol. 78, no. 382, pp. 316–331, 1983, publisher: [American
Statistical Association, Taylor & Francis, Ltd.]. [Online]. Available:
https://www.jstor.org/stable/2288636

[23] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto,
“An Empirical Comparison of Model Validation Techniques for Defect
Prediction Models,” IEEE Transactions on Software Engineering,
vol. 43, no. 1, pp. 1–18, Jan. 2017. [Online]. Available: http:
//ieeexplore.ieee.org/document/7497471/

[24] H. B. Mann and D. R. Whitney, “On a Test of Whether one of Two
Random Variables is Stochastically Larger than the Other,” The Annals of
Mathematical Statistics, vol. 18, no. 1, pp. 50–60, Mar. 1947, publisher:
Institute of Mathematical Statistics. [Online]. Available: https://
projecteuclid.org/journals/annals-of-mathematical-statistics/volume-18/
issue-1/On-a-Test-of-Whether-one-of-Two-Random-Variables/10.1214/
aoms/1177730491.full

[25] D. S. Kerby, “The Simple Difference Formula: An Approach to
Teaching Nonparametric Correlation,” Comprehensive Psychology, vol. 3,
p. 11.IT.3.1, Jan. 2014, publisher: SAGE Publications Inc. [Online].
Available: https://journals.sagepub.com/doi/abs/10.2466/11.IT.3.1

[26] V. Markovtsev, W. Long, H. Mougard, K. Slavnov, and E. Bulychev,
“STYLE-ANALYZER: fixing code style inconsistencies with interpretable

unsupervised algorithms,” in Proceedings of the 16th International
Conference on Mining Software Repositories, ser. MSR ’19. Montreal,
Quebec, Canada: IEEE Press, May 2019, pp. 468–478. [Online].
Available: https://doi.org/10.1109/MSR.2019.00073

[27] J. Bader, A. Scott, M. Pradel, and S. Chandra, “Getafix: learning to
fix bugs automatically,” Proceedings of the ACM on Programming
Languages, vol. 3, no. OOPSLA, pp. 159:1–159:27, Oct. 2019. [Online].
Available: https://doi.org/10.1145/3360585

[28] D. Marcilio, C. A. Furia, R. Bonifácio, and G. Pinto, “SpongeBugs:
Automatically generating fix suggestions in response to static code
analysis warnings,” Journal of Systems and Software, vol. 168, p.
110671, Oct. 2020. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S016412122030128X

[29] K. Liu, D. Kim, T. F. Bissyandé, S. Yoo, and Y. Le Traon, “Mining
Fix Patterns for FindBugs Violations,” IEEE Transactions on Software
Engineering, vol. 47, no. 1, pp. 165–188, Jan. 2021, conference Name:
IEEE Transactions on Software Engineering.

[30] B. Loriot, F. Madeiral, and M. Monperrus, “Styler: learning formatting
conventions to repair Checkstyle violations,” Empirical Software
Engineering, vol. 27, no. 6, p. 149, Aug. 2022. [Online]. Available:
https://doi.org/10.1007/s10664-021-10107-0

[31] J. Andersen and J. L. Lawall, “Generic patch inference,” Automated
Software Engineering, vol. 17, no. 2, pp. 119–148, Jun. 2010. [Online].
Available: https://doi.org/10.1007/s10515-010-0062-z

[32] N. Meng, M. Kim, and K. S. McKinley, “Lase: Locating and applying
systematic edits by learning from examples,” in 2013 35th International
Conference on Software Engineering (ICSE), May 2013, pp. 502–511,
iSSN: 1558-1225.

[33] J. Jiang, L. Ren, Y. Xiong, and L. Zhang, “Inferring Program Transforma-
tions From Singular Examples via Big Code,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
Nov. 2019, pp. 255–266, iSSN: 2643-1572.

[34] R. Bavishi, H. Yoshida, and M. R. Prasad, “Phoenix: automated
data-driven synthesis of repairs for static analysis violations,” in
Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ser. ESEC/FSE 2019. New York, NY, USA: Association
for Computing Machinery, Aug. 2019, pp. 613–624. [Online]. Available:
https://doi.org/10.1145/3338906.3338952

[35] L. Serrano, V.-A. Nguyen, F. Thung, L. Jiang, D. Lo, J. Lawall,
and G. Muller, “SPINFER: Inferring Semantic Patches for the Linux
Kernel,” in 2020 USENIX Annual Technical Conference (USENIX ATC
20). USENIX Association, Jul. 2020, pp. 235–248. [Online]. Available:
https://www.usenix.org/conference/atc20/presentation/serrano

[36] S. A. Haryono, F. Thung, D. Lo, J. Lawall, and L. Jiang, “Characterization
and Automatic Updates of Deprecated Machine-Learning API Usages,”
in 2021 IEEE International Conference on Software Maintenance and
Evolution (ICSME), Sep. 2021, pp. 137–147, iSSN: 2576-3148.

[37] S. A. Haryono, F. Thung, D. Lo, L. Jiang, J. Lawall, H. J. Kang,
L. Serrano, and G. Muller, “AndroEvolve: automated Android API
update with data flow analysis and variable denormalization,” Empirical
Software Engineering, vol. 27, no. 3, p. 73, Mar. 2022. [Online].
Available: https://doi.org/10.1007/s10664-021-10096-0

[38] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,
“Fine-grained and accurate source code differencing,” in ACM/IEEE
International Conference on Automated Software Engineering, ASE
’14, Vasteras, Sweden - September 15 - 19, 2014, 2014, pp. 313–324.
[Online]. Available: http://doi.acm.org/10.1145/2642937.2642982

[39] P. Garg and S. H. Sengamedu, “Synthesizing code quality rules from
examples,” Proceedings of the ACM on Programming Languages,
vol. 6, no. OOPSLA2, pp. 1757–1787, Oct. 2022. [Online]. Available:
https://dl.acm.org/doi/10.1145/3563350

[40] M. I. Azeem, F. Palomba, L. Shi, and Q. Wang, “Machine
learning techniques for code smell detection: A systematic literature
review and meta-analysis,” Information and Software Technology,
vol. 108, pp. 115–138, Apr. 2019. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0950584918302623

[41] A. Kovačević, J. Slivka, D. Vidaković, K.-G. Grujić, N. Luburić, S. Prokić,
and G. Sladić, “Automatic detection of Long Method and God Class
code smells through neural source code embeddings,” Expert Systems
with Applications, vol. 204, p. 117607, Oct. 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0957417422009186

